2016-2017学年苏科版初二数学八年级上册期中测试卷含答案
(沪科版)2016-2017年八年级上册:期中数学试题(有答案)
东至县2016-2017年第一学期期中素质测试八年级数学试题一选择题(每题3分,共30分)1.下列函数中,是一次函数的有()①12y x=;②y=3+1 ;③4yx=;④y=-2A.1个B.2个C.3个D.4个2.如图,直线y=+b与轴交于点(﹣4,0),则y>0时,的取值范围是( )A.>﹣4B.>0C.<﹣4D.<03.下列长度的各组线段中,能组成三角形的是()A.1,1,2B.3,7,11C.6,8,9D.2,6,34.下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线5.小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?小明提示说:“可通过作较长边上的高求解.”小华根据小明的提示作出的图形正确的是()6.有一个安装有进出水管的30升容器,水管每单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间(分)之间的函数关系如图所示.根据图象信息给出下列说法:①每分钟进水5升;②当4≤≤12时,容器中水量在减少;③若12分钟后只放水,不进水,还要8分钟可以把水放完;④若从一开始进出水管同时打开需要24分钟可以将容器灌满.以下说法中正确的有( )A.1个B.2个C.3个D.4个7.P (m ,n )是第二象限内一点,则P ′(m ﹣2,n+1)位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限8.在平面直角坐标系中,点P (2,3)先向左平移3个单位,再向下平移4个单位,得到点的坐标为( ) A.(5,7) B.(-1,-1) C.(-1,1) D.(5,-1) 9.函数自变量的取值范围是( ) A .≥﹣3 B .<3 C .≤﹣3D .≤310.王老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二 填空题(每小题3分,共24分)11.若电影院的5排2号记为(2,5),则3排5号记为。
江苏省苏州市八年级数学上学期期中试卷(含解析) 苏科版-苏科版初中八年级全册数学试题
某某省某某市2016-2017学年八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个2.16的平方根是()A.4 B.±4 C.D.±3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点 D.三边的垂直平分线的交点4.在,﹣,0.,,,(﹣1)0,﹣,0.1010010001…等数中,无理数的个数为()A.1 B.2 C.3 D.45.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,126.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或187.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④8.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.159.如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH,则线段BE的长为()A.B.4 C.D.510.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°二、填空题(本大题共8小题,每小题3分,共24分)11.的平方根是.×104,它是精确到位.13.已知等腰三角形的一个内角等于50°,则它的底角是°.14.若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于.15.已知△ABC的三边长a、b、c满足,则△ABC一定是三角形.16.如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为.17.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是.18.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有个.三、解答题19.(8分)计算或化简:(1)()2﹣﹣(2)+(1﹣)0﹣(﹣)﹣1.20.(8分)求下列各式中x的值:(1)(x﹣1)3+27=0;(2)9(x﹣1)2=16.21.(5分)已知5x﹣1的平方根是±3,4x+2y+1的立方根是1,求4x﹣2y的平方根.22.(5分)作图题:如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P.(保留作图痕迹)23.(5分)如图网格图中,每个小正方形的边长均为1,每个小格的顶点叫做格点.(1)请在图1中,画一个格点三角形,使它的三边长都是有理数;(2)请在图2中,画一个格点三角形,使它的三边长都是无理数;(3)图3中的△ABC的面积为.24.(5分)已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?25.(6分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.26.(6分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来.于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为在的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(2)已知10+=2x+y,其中x是整数,且0<y<1,求3x﹣y的值.27.(8分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.2016-2017学年某某省某某市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.【解答】解:根据轴对称图形的定义:第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;第三个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选:C.【点评】本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.16的平方根是()A.4 B.±4 C.D.±【考点】平方根.【分析】直接利用平方根的定义计算即可.【解答】解:∵±4的平方是16,∴16的平方根是±4.故选B【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.3.与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点 D.三边的垂直平分线的交点【考点】线段垂直平分线的性质.【分析】可分别根据线段垂直平分线的性质进行思考,首先满足到A点、B点的距离相等,然后思考满足到C点、B点的距离相等,都分别在各自线段的垂直平分线上,于是答案可得.【解答】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.【点评】此题考查了线段垂直平分线的性质;题目比较简单,只要熟知线段垂直平分线的性质即可.分别思考,两两满足条件是解答本题的关键.4.在,﹣,0.,,,(﹣1)0,﹣,0.1010010001…等数中,无理数的个数为()A.1 B.2 C.3 D.4【考点】无理数;零指数幂.【分析】由于无理数就是无限不循环小数,利用无理数的概念即可判定选择项.【解答】解:无理数为:,﹣,,0.1010010001…;故选D【点评】此题要熟记无理数的概念及形式.初中X围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.9,40,41 D.7,9,12【考点】勾股数.【分析】根据勾股定理的逆定理对四个答案进行逐一判断即可.【解答】解:A、∵62+82=102=100,∴能构成直角三角形;B、52+122=132=169,∴能构成直角三角形;C、92+402=412=1681,∴能构成直角三角形;D、∵72+92≠122,∴不能构成直角三角形.故选D.【点评】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.6.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或18【考点】等腰三角形的性质;三角形三边关系.【分析】由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的周长的定义计算即可求解.【解答】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选C.【点评】此题主要考查了三角形的周长的计算,也利用了等腰三角形的性质,同时也利用了分类讨论的思想.7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.8.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21 B.18 C.13 D.15【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半求出DF、EF,再根据三角形的周长的定义解答.【解答】解:∵CD⊥AB,F为BC的中点,∴DF=BC=×8=4,∵BE⊥AC,F为BC的中点,∴EF=BC=×8=4,∴△DEF的周长=DE+EF+DF=5+4+4=13.故选C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,是基础题,熟记性质并准确识图是解题的关键.9.如图,长方形ABCD中,AB=9,BC=6,将长方形折叠,使A点与BC的中点F重合,折痕为EH,则线段BE的长为()A.B.4 C.D.5【考点】翻折变换(折叠问题).【分析】根据折叠的性质得到EF=AE=9﹣BE,由线段中点的性质得到BF=BC=3,根据勾股定理列方程即可得到结论.【解答】解:∵将长方形折叠,使A点与BC的中点F重合,∴EF=AE=9﹣BE,∵BF=BC=3,在Rt△BEF中,EF2=BE2+BF2,即(9﹣BE)2=BE2+32,解得:BE=4.故选B.【点评】本题考查了翻折变换﹣折叠问题,勾股定理,熟记折叠的性质是解题的关键.10.如图,四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.50° B.60° C.70° D.80°【考点】轴对称-最短路线问题.【分析】据要使△AEF的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′E+∠A″=∠HAA′=50°,进而得出∠AEF+∠AFE=2(∠AA′E+∠A″),即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于E,交CD于F,则A′A″即为△AEF的周长最小值.作DA延长线AH,∵∠C=50°,∴∠DAB=130°,∴∠HAA′=50°,∴∠AA′E+∠A″=∠HAA′=50°,∵∠EA′A=∠EAA′,∠FAD=∠A″,∴∠EAA′+∠A″AF=50°,∴∠EAF=130°﹣50°=80°,故选:D.【点评】本题考查的是轴对称﹣最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出E,F的位置是解题关键.二、填空题(本大题共8小题,每小题3分,共24分)11.的平方根是±.【考点】平方根.【分析】由=3,再根据平方根定义求解即可.【解答】解:∵ =3,∴的平方根是±.故答案为:±.【点评】本题主要考查平方根与算术平方根,掌握平方根定义是关键.×104,它是精确到百位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】×104精确到百位.故答案为百.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.13.已知等腰三角形的一个内角等于50°,则它的底角是50°或65°°.【考点】等腰三角形的性质.【分析】等腰三角形的两个底角相等,已知一个内角是50°,则这个角可能是底角也可能是顶角.要分两种情况讨论.【解答】解:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故答案是:50°或65°.【点评】本题考查了等腰三角形的性质,分类讨论是正确解答本题的关键.14.若一正数的两个平方根分别是2a﹣1与2a+5,则这个正数等于9 .【考点】平方根.【分析】根据正数的两个平方根互为相反数列方程求出a,再求出一个平方根,然后平方即可.【解答】解:∵一正数的两个平方根分别是2a﹣1与2a+5,∴2a﹣1+2a+5=0,解得a=﹣1,∴2a﹣1=﹣2﹣1=﹣3,∴这个正数等于(﹣3)2=9.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.15.已知△ABC的三边长a、b、c满足,则△ABC一定是等腰直角三角形.【考点】等腰直角三角形;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根;勾股定理的逆定理.【分析】先根据非负数的性质求出a、b、c的值,再根据三角形的三边关系进行判断即可.【解答】解:∵△ABC的三边长a、b、c满足,∴a﹣1=0,b﹣1=0,c﹣=0,∴a=1,b=1,c=.∵a2+b2=c2,∴△ABC一定是等腰直角三角形.【点评】本题考查的知识点是:一个数的算术平方根与某个数的绝对值以及另一数的平方的和等于0,那么算术平方根的被开方数为0,绝对值里面的代数式的值为0,平方数的底数为0及勾股定理的逆定理.16.如图,DE是△ABC中AC边上的垂直平分线,若BC=9,AB=11,则△EBC的周长为20 .【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到EA=EC,根据三角形的周长公式计算即可.【解答】解:∵DE是AC边上的垂直平分线,∴EA=EC,∴△EBC的周长=BC+BE+EC=BC+BE+EA=BC+AB=20.故答案为:20.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.如图,E为正方形ABCD边AB上一点,BE=3AE=3,P为对角线BD上一个动点,则PA+PE 的最小值是 5 .【考点】轴对称-最短路线问题.【分析】连接EC,则EC的长就是PA+PE的最小值.【解答】解:连接EC.∵BE=3AE=3,∴AB=4,则BC=AB=4,在直角△BCE中,CE===5.故答案是:5.【点评】本题考查了轴对称,理解EC的长是PA+PE的最小值是关键.18.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有 4 个.【考点】利用轴对称设计图案.【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找.【解答】解:分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则△ABM、△ANB、△EHF、△EFC都是符合题意的三角形,故答案为:4.【点评】此题考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,注意不要漏解三、解答题19.计算或化简:(1)()2﹣﹣(2)+(1﹣)0﹣(﹣)﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用零指数幂、负整数指数幂法则,以及二次根式性质计算即可得到结果.【解答】解:(1)原式=4+3﹣10=﹣3;(2)原式=2+1+2=2+3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.求下列各式中x的值:(1)(x﹣1)3+27=0;(2)9(x﹣1)2=16.【考点】立方根;平方根.【分析】根据平方根和立方根的定义解答.【解答】解:(1)(x﹣1)3+27=0,解得:x=﹣2;(2)9(x﹣1)2=16,解得:或x=﹣.【点评】本题主要考查了平方根和立方根的概念,关键是根据平方根和立方根的定义计算.21.已知5x﹣1的平方根是±3,4x+2y+1的立方根是1,求4x﹣2y的平方根.【考点】立方根;平方根.【分析】根据平方根的定义可得5x﹣1=9,计算出x的值;再根据立方根定义可得4x+2y+1=1,进而计算出y的值,然后可得4x﹣2y的值,再算平方根即可.【解答】解:∵5x﹣1的算术平方根为3,∴5x﹣1=9,∴x=2,∵4x+2y+1的立方根是1,∴4x+2y+1=1,∴y=﹣4,∴4x﹣2y=4×2﹣2×(﹣4)=16,∴4x﹣2y的平方根是±4.【点评】此题主要考查了立方根和平方根,关键是掌握如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.22.作图题:如图,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你用直尺和圆规画出灯柱的位置点P.(保留作图痕迹)【考点】作图—应用与设计作图.【分析】直接作出线段DC的垂直平分线,再作出∠AOB的平分线,进而得出其交点即可.【解答】解:如图所示:点P即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.23.如图网格图中,每个小正方形的边长均为1,每个小格的顶点叫做格点.(1)请在图1中,画一个格点三角形,使它的三边长都是有理数;(2)请在图2中,画一个格点三角形,使它的三边长都是无理数;(3)图3中的△ABC的面积为.【考点】勾股定理.【分析】由于正方形的边长为1,连接铬点的线段,可通过勾股定理计算出其边长.根据题目要求,3、4、5符合(1)要求的三角形,例如、3、2符合(2)要求的三角形.(3)三角形的面积=矩形的面积﹣3个小直角三角形的面积.【解答】解:(1)(2)如右图所示.(3)三角形的面积=22﹣2×﹣﹣=故答案为:【点评】本题考查了铬点三角形、勾股定理及三角形的面积公式.知道3、4、5能组成三角形,会把不规则的图形转化成规则图形求面积是解决本题的关键.24.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?【考点】勾股定理的应用.【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD,在直角三角形ABD 中可求得BD的长,由BD、CD、BC的长度关系可得三角形DBC为一直角三角形,DC为斜边;由此看,四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解.【解答】解:连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=,==36.所以需费用36×200=7200(元).【点评】通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.25.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.26.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来.于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为在的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(﹣2).请解答:(1)如果的小数部分为a,的整数部分为b,求a+b﹣的值.(2)已知10+=2x+y,其中x是整数,且0<y<1,求3x﹣y的值.【考点】估算无理数的大小;算术平方根.【分析】(1)根据题意得出a=﹣2,b=5,代入可得;(2)由2=且3<<4知13<10+<14,从而得出x=、y=﹣3,再代入计算即可.【解答】解:(1)根据题意得:a=﹣2,b=5,则原式=﹣2+5﹣=3;(2)∵2=,且3<<4,∴13<10+<14,∴2x=13,y=10+﹣13=﹣3,即x=,则3x﹣y=3×﹣(﹣3)=﹣2.【点评】此题主要考查了无理数的估算能力,解题关键是估算无理数的整数部分和小数部分,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.27.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发,以每秒4cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.【考点】三角形综合题;角平分线的性质;等腰三角形的判定与性质;勾股定理的应用;三角形中位线定理.【分析】(1)设存在点P,使得PA=PB,此时PA=PB=4t,PC=8﹣4t,根据勾股定理列方程即可得到t的值;(2)过P作PE⊥AB,设CP=x,根据角平分线的性质和勾股定理列方程式进行解答即可;(3)分类讨论:当CP=CB时,△BCP为等腰三角形,若点P在AC上,根据AP的长即可得到t的值,若点P在AB上,根据P移动的路程易得t的值;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,根据等腰三角形的性质得BD=CD,则可判断PD为△ABC的中位线,则AP=AB=5,易得t的值;当BP=BC=6时,△BCP为等腰三角形,易得t的值.【解答】解:(1)∵△ABC中,∠ACB=90°,AB=10cm,BC=6cm,∴由勾股定理得AC==8,如图,连接BP,当PA=PB时,PA=PB=4t,PC=8﹣4t,在Rt△PCB中,PC2+CB2=PB2,即(8﹣4t)2+62=(4t)2,解得:t=,∴当t=时,PA=PB;(2)解:如图1,过P作PE⊥AB,又∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=10cm,BC=6cm,∴CP=EP,∴△ACP≌△AEP(HL),∴AC=8cm=AE,BE=2,设CP=x,则BP=6﹣x,PE=x,∴Rt△BEP中,BE2+PE2=BP2,即22+x2=(6﹣x)2解得x=,∴CP=,∴CA+CP=8+=,∴t=÷4=(s);(3)①如图2,当CP=CB时,△BCP为等腰三角形,若点P在CA上,则4t=8﹣6,解得t=(s);②如图3,当BP=BC=6时,△BCP为等腰三角形,∴AC+CB+BP=8+6+6=20,∴t=20÷4=5(s);③如图4,若点P在AB上,CP=CB=6,作CD⊥AB于D,则根据面积法求得CD=4.8,在Rt△BCD中,由勾股定理得,BD=3.6,∴PB=2BD=7.2,∴CA+CB+BP=8+6+7.2=21.2,÷4=5.3(s);④如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则D为BC的中点,∴PD为△ABC的中位线,∴AP=BP=AB=5,∴AC+CB+BP=8+6+5=19,∴t=19÷4=(s);综上所述,t为s时,△BCP为等腰三角形.【点评】本题以动点问题为背景,考查了等腰三角形的判定与性质、角平分线的性质、勾股定理、三角形面积的计算以及全等三角形的判定与性质等知识的综合应用,熟练掌握等腰三角形的判定与性质,进行分类讨论是解决问题的关键.解题时需要作辅助线构造直角三角形以及等腰三角形.。
江苏省泰州市姜堰区2016-2017学年八年级(上)期中数学试卷(解析版)
2016-2017学年江苏省泰州市姜堰区八年级(上)期中数学试卷一、选择题(共6小题,每小题3分,共18分)1.4的平方根是()A.2 B.±2 C.D.﹣22.下面的图形中,是轴对称图形的是()A.B.C.D.3.如果下列各组数是三角形的三边长,那么能组成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.5,6,74.已知等腰三角形的两边长分別为a、b,且a、b满足+(7﹣b)2=0,则此等腰三角形的底边长为()A.3或7 B.4 C.7 D.35.下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.平方根等于本身的数是0D.数轴上的每一个点都对应一个有理数6.如图,OP是∠AOB的平分线,点C、D分别在∠AOB的两边OA、OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.∠OPC=∠OPD B.PC=PD C.PC⊥OA,PD⊥OB D.OC=OD二、填空题(共10小题,每小题3分,共30分)7.比较大小:﹣|﹣3| ﹣..9.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为cm.10.在镜子中看到电子表显示的时间是,电子表上实际显示的时间为.11.在等腰三角形ABC中,∠A=100°,则∠C=°.12.已知正数x的两个平方根是m+3和2m﹣15,则x=.13.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交BC于点E,AB=5,AC=3,则△ACE的周长为.14.如图,正方形OABC的边OC落在数轴上,点C表示的数为1,点P表示的数为﹣1,以P点为圆心,PB长为半径作圆弧与数轴交于点D,则点D表示的数为.15.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠AA′B′=20°,则∠B的度数为°.16.如图,△ABC的周长是12,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.三、解答题(共102分)17.求下列各式中x的值.(1)x2﹣2=0(2)(x+1)2﹣9=0.18.计算:(1)1+﹣(2)﹣32+(π﹣1)0+.19.如图,点E、F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:△ABF≌△DCE.20.已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y的值.21.如图,在△ABC中,∠C=90°,∠A>∠B.(1)用直尺和圆规作AB的垂直平分线,垂足为D,交BC于E;(不写作法,保留作图痕迹)(2)在(1)的条件下,若CE=DE,求∠A的度数.22.已知△ABC中,D为边BC上一点,AB=AD=CD.(1)试说明∠ABC=2∠C;(2)过点B作AD的平行线交CA的延长线于点E,若AD平分∠BAC,求证:AE=AB.23.如图,在6×6的正方形网格中,每个小正方形边长都是1,每个小正方形的顶点叫做格点.A、B两格点位置如图所示.(1)在如图正方形网格中找格点C,使△ABC是等腰直角三角形,问:满足条件的点C有个;(2)如图,点D为正方形网格的格点,试求△ABD的面积.24.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C出发,沿线段CA向点A运动,到达A点后停止运动,且速度为每秒2cm,设出发的时间为t秒.(1)当t为何值时,△PBC是等腰三角形;(2)过点P作PH⊥AB,垂足为H,当H为AB中点时,求t的值.25.在小学,我们已经初步了解到,正方形的每个角都是90°,每条边都相等.如图,在正方形ABCD的AD边右侧作直线AQ,且∠QAD=30°,点D关于直线AQ 的对称点为E,连接DE、BE,DE交AQ于点G,BE的延长线交AQ于点F.(1)求证:△ADE是等边三角形;(2)求∠ABE的度数;(3)若AB=4,求FG的长.26.已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B 向直线CP作垂线,垂足分别为E、F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,求证:QE=QF;(2)如图2,若AC=BC,求证:BF=AE+EF;(3)在(2)的条件下,若AE=6,QE=,求线段AC的长.2016-2017学年江苏省泰州市姜堰区八年级(上)期中数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,共18分)1.4的平方根是()A.2 B.±2 C.D.﹣2【考点】平方根.【分析】根据平方根的定义求出4的平方根即可.【解答】解:4的平方根是±2;故选B.2.下面的图形中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念分别判断得出答案.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确.故选:D.3.如果下列各组数是三角形的三边长,那么能组成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.5,6,7【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【解答】解:A、∵22+32≠42,∴此三角形不是直角三角形,不合题意;B、∵32+42=52,∴此三角形是直角三角形,符合题意;C、∵42+52≠62,∴此三角形不是直角三角形,不合题意;D、∵52+62≠72,∴此三角形不是直角三角形,不合题意.故选:B.4.已知等腰三角形的两边长分別为a、b,且a、b满足+(7﹣b)2=0,则此等腰三角形的底边长为()A.3或7 B.4 C.7 D.3【考点】等腰三角形的性质;非负数的性质:偶次方;非负数的性质:算术平方根;三角形三边关系.【分析】先根据非负数的性质列式求出a、b的值,再分3是腰长与底边两种情况讨论求解.【解答】解:根据题意得,a﹣3=0,7﹣b=0,解得a=3,b=7,①3是腰长时,三角形的三边分别为3、3、7,∵3+3<7,∴不能组成三角形,②3是底边时,三角形的三边分别为3、7、7,能组成三角形,所以,三角形底边长为3故选D.5.下列说法正确的是()A.无限小数都是无理数B.9的立方根是3C.平方根等于本身的数是0D.数轴上的每一个点都对应一个有理数【考点】实数.【分析】根据实数的分类、平方根和立方根的定义进行选择即可.【解答】解:A、无限不循环小数都是无理数,故A错误;B、9的立方根是,故B错误;C、平方根等于本身的数是0,故C正确;D、数轴上的每一个点都对应一个实数,故D错误;故选C.6.如图,OP是∠AOB的平分线,点C、D分别在∠AOB的两边OA、OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.∠OPC=∠OPD B.PC=PD C.PC⊥OA,PD⊥OB D.OC=OD【考点】角平分线的性质;全等三角形的判定.【分析】根据三角形全等的判定方法对各选项分析判断即可得解.【解答】解:∵OP是∠AOB的平分线,∴∠AOP=∠BOP,OP是公共边,A、添加∠OPC=∠OPD可以利用“ASA”判定△POC≌△POD,B、添加PC=PD符合“边边角”,不能判定△POC≌△POD,C、添加PC⊥OA,PD⊥OB可以利用“AAS”判定△POC≌△POD,D、添加OC=OD可以利用“SAS”判定△POC≌△POD.故选B.二、填空题(共10小题,每小题3分,共30分)7.比较大小:﹣|﹣3| <﹣.【考点】实数大小比较.【分析】根据有理数大小比较的规律可知两个负数比较,绝对值大的反而小,即可得出答案.【解答】解:∵﹣|﹣3|=﹣,且|﹣|>|﹣|,∴﹣<﹣,∴﹣|﹣3|<﹣.故答案是:<..【考点】近似数和有效数字.【分析】根据题目中的要求和四舍五入法可以解答本题.【解答】解:∵≈∴9.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为5cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AB.【解答】解:∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5cm.故答案为:5.10.在镜子中看到电子表显示的时间是,电子表上实际显示的时间为16:25:08.【考点】镜面对称.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右,上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,分析可得题中从镜子中看到电子表的时刻16:25:08,所以此时实际时刻为16:25:08,故答案为:16:25:08.11.在等腰三角形ABC中,∠A=100°,则∠C=40°.【考点】等腰三角形的性质.【分析】由条件可判断∠A为顶角,再利用三角形内角和定理求得∠C.【解答】解:∵∠A=100°,∴∠A只能为△ABC的顶角,∵△ABC为等腰三角形,∴∠B=∠C=×=40°,故答案为:40.12.已知正数x的两个平方根是m+3和2m﹣15,则x=49.【考点】平方根.【分析】根据正数有两个平方根,它们互为相反数得出方程m+3+2m﹣15=0,求出m,即可求出x.【解答】解:∵正数x的两个平方根是m+3和2m﹣15,∴m+3+2m﹣15=0,∴3m=12,m=4,∴m+3=7,即x=72=49,故答案为:49.13.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交BC于点E,AB=5,AC=3,则△ACE的周长为7.【考点】勾股定理;线段垂直平分线的性质.【分析】先根据勾股定理求出BC的长,再由线段垂直平分线的性质即可得出结论.【解答】解:∵在Rt△ABC中,∠C=90°,AB=5,AC=3,∴BC===4.∵AB的垂直平分线交BC于点E,∴AE=BE,∴△ACE的周长=AC+BC=3+4=7.故答案为:7.14.如图,正方形OABC的边OC落在数轴上,点C表示的数为1,点P表示的数为﹣1,以P点为圆心,PB长为半径作圆弧与数轴交于点D,则点D表示的数为﹣1.【考点】实数与数轴.【分析】根据勾股定理求出PB的长,即PD的长,再根据两点间的距离公式求出点D对应的数.【解答】解:由勾股定理知:PB===,∴PD=,∴点D表示的数为﹣1.故答案是:﹣1.15.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠AA′B′=20°,则∠B的度数为65°.【考点】旋转的性质.【分析】由将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,可得△ACA′是等腰直角三角形,∠CAA′的度数,然后由三角形的外角的性质求得答案.【解答】解:∵将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,∴AC=A′C,∠ACA′=90°,∠B=∠AB′C,∴∠CAA′=45°,∵∠AA′B′=20°,∴∠AB′C=∠CAA′+∠AA′B=65°,∴∠B=65°.答案为:65°.16.如图,△ABC的周长是12,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是18.【考点】角平分线的性质.【分析】过点O作OE⊥AB于E,作OF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OE=OD=OF,然后根据三角形的面积列式计算即可得解.【解答】解:如图,过点O作OE⊥AB于E,作OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD=OF=3,∴△ABC的面积=×12×3=18.故答案为:18.三、解答题(共102分)17.求下列各式中x的值.(1)x2﹣2=0(2)(x+1)2﹣9=0.【考点】解一元二次方程﹣直接开平方法.【分析】(1)移项后即可直接利用直接开平方法求解可得;(2)由原式可得(x+1)2=9,直接开平方法即可得.【解答】解:(1)x2﹣2=0,x2=2,x=±;(2)(x+1)2﹣9=0,(x+1)2=9,∴x+1=±3,即x=﹣1±3,∴x=﹣4或x=2.18.计算:(1)1+﹣(2)﹣32+(π﹣1)0+.【考点】实数的运算;零指数幂.【分析】(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用乘方的意义,零指数幂法则,以及二次根式性质计算即可得到结果.【解答】解:(1)原式=1+2﹣3=0;(2)原式=﹣9+1+5=﹣3.19.如图,点E、F在线段BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:△ABF≌△DCE.【考点】全等三角形的判定.【分析】由BE=CF,两边加上EF,得到BF=CE,利用AAS即可得证.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(AAS).20.已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y的值.【考点】立方根;算术平方根.【分析】利用平方根、立方根定义求出x与y的值,代入原式计算即可得到结果.【解答】解:根据题意得:5x﹣1=9,4x+2y+1=1,解得:x=2,y=﹣4,则4x﹣2y=8+8=16.21.如图,在△ABC中,∠C=90°,∠A>∠B.(1)用直尺和圆规作AB的垂直平分线,垂足为D,交BC于E;(不写作法,保留作图痕迹)(2)在(1)的条件下,若CE=DE,求∠A的度数.【考点】作图—基本作图;线段垂直平分线的性质;等腰三角形的性质.【分析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)根据CE=DE可得出△ACE≌△ADE,故可得出∠CAE=∠DAE,再由线段垂直平分线的性质得出∠B=∠DAE,根据直角三角形的性质得出∠DAE的度数,进而可得出结论.【解答】解:(1)如图,直线DE即为所求;(2)∵DE⊥AB,∴∠ADE=∠C=90°.在Rt△ACE与Rt△ADE中,∵,∴Rt△ACE≌Rt△ADE,∴∠CAE=∠DAE.∵DE是线段AB的垂直平分线,∴∠B=∠DAE=∠CAE,∴3∠CAE=90°,∴∠CAE=30°,∴∠BAC=2∠CAE=60°.22.已知△ABC中,D为边BC上一点,AB=AD=CD.(1)试说明∠ABC=2∠C;(2)过点B作AD的平行线交CA的延长线于点E,若AD平分∠BAC,求证:AE=AB.【考点】等腰三角形的判定与性质.【分析】(1)根据等腰三角形的性质、三角形外角的性质,以及等量关系即可求解;(2)根据角平分线的性质和平行线的性质可得∠E=∠ABE,再根据等腰三角形的性质即可求解.【解答】证明:(1)∵AB=AD,∴∠ABC=∠ADB,∵AD=CD,∴∠DAC=∠C,∵∠ADB=∠DAC+∠C=2∠C,∴∠ABC=2∠C;(2)∵AD平分∠BAC,∴∠DAB=∠CAD,∵BE∥AD,∴∠DAB=∠ABE,∠E=∠CAD,∴∠ABE=∠E,∴AE=AB.23.如图,在6×6的正方形网格中,每个小正方形边长都是1,每个小正方形的顶点叫做格点.A、B两格点位置如图所示.(1)在如图正方形网格中找格点C,使△ABC是等腰直角三角形,问:满足条件的点C有4个;(2)如图,点D为正方形网格的格点,试求△ABD的面积.【考点】等腰直角三角形;三角形的面积.【分析】(1)画出图形,结合图形即可得到点C的个数;(2)△ABD的面积=长方形的面积﹣三个直角三角形的面积.【解答】解:(1)由图可知:使△ABC是等腰直角三角形点C的个数为4,故答案为4;(2)△ABD的面积=8﹣1﹣﹣2=.24.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C出发,沿线段CA向点A运动,到达A点后停止运动,且速度为每秒2cm,设出发的时间为t秒.(1)当t为何值时,△PBC是等腰三角形;(2)过点P作PH⊥AB,垂足为H,当H为AB中点时,求t的值.【考点】等腰三角形的判定.【分析】(1)当△PCB为等腰三角形时,则可知其为等腰直角三角形,则有PC=BC,可求得t的值;(2)由题意可知PH为线段AB的垂直平分线,则有AP=BP,可用t表示出AP 和BP的长,在Rt△BCP中由勾股定理可列方程,可求得t的值.【解答】解:(1)∵∠C=90°,∴当△PBC为等腰三角形时,其必为等腰直角三角形,∴BC=PC,由题意可知PC=2t,且BC=6cm,∴2t=6,解得t=3,即当t为3秒时,△PBC为等腰三角形;(2)在Rt△ABC中,AB=10cm,BC=6cm,∴AC=8cm,∵PH⊥AB,且H为AB中点,∴PH垂直平分AB,∴PB=PA,由题意可知PC=2tcm,则PB=PA=(8﹣2t)cm,在Rt△PBC中,由勾股定理可得PB2=CB2+CP2,即(8﹣2t)2=62+(2t)2,解得t=,即当H为AB中点时t的值为.25.在小学,我们已经初步了解到,正方形的每个角都是90°,每条边都相等.如图,在正方形ABCD的AD边右侧作直线AQ,且∠QAD=30°,点D关于直线AQ 的对称点为E,连接DE、BE,DE交AQ于点G,BE的延长线交AQ于点F.(1)求证:△ADE是等边三角形;(2)求∠ABE的度数;(3)若AB=4,求FG的长.【考点】四边形综合题.【分析】(1)欲证明△ADE是等边三角形,只要证明∠DAE=60°,AD=AE即可.(2)只要证明△ABE是顶角为30°的等腰三角形即可解决问题.(3)只要证明△EFG是等腰直角三角形即可.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∵D、E关于AQ对称,∴AD=AE,∠DAF=∠FAE=30°,∴∠DAE=60°,∵AD=AE,∴△AED是等边三角形.(2)解:由(1)可知AB=AE,∠BAE=90°﹣∠BAE=30°,∴∠ABE=∠AEB==75°.(3)解:在△ABF中,∵∠ABF=75°,∠FAB=60°,∴∠AFB=45°,∵AF⊥DE,∴∠FGE=90°,∴∠GFE=∠GEF=45°,∴FG=EG=DG=DE,∵AD=DE=AE=4,∴FG=2.26.已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B 向直线CP作垂线,垂足分别为E、F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,求证:QE=QF;(2)如图2,若AC=BC,求证:BF=AE+EF;(3)在(2)的条件下,若AE=6,QE=,求线段AC的长.【考点】三角形综合题.【分析】(1)根据AAS推出△AEQ≌△BFQ,推出AE=BF即可;(2)先判断出∠BCF=∠EAC进而得出△BCF≌△CAE(AAS)即可得出结论;(3)先判断出△AEQ≌△BGQ进而得出△GFE是等腰直角三角形最后用勾股定理即可得出结论.【解答】解:(1)当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是AE=BF,理由是:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中∴△AEQ≌△BFQ,∴QE=QF,(2)∵∠BCF+∠ECA=90°,∠EAC+∠ECA=90°∴∠BCF=∠EAC在△BCF和△CAE中:∴△BCF≌△CAE(AAS)∴BF=CE CF=AE∴BF=CF+EF=AE+EF(3)延长EQ交BF于G∵AE⊥CE、BF⊥CE∴∠AEF=∠BFE=90°∴AE∥BF∴∠EAQ=∠GBQ在△AEQ和△BGQ中:∴△AEQ≌△BGQ∴AE=BG、EQ=GQ∵AE=CF∴BG=CF∵BF=CE∴BF﹣BG=CE﹣CF,即GF=EF∴△GFE是等腰直角三角形∵EQ=GQ∴QF⊥EG、QF=EG=QE=∴EF==2∴在Rt△ACE中:AC==10.2017年3月18日。
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版
2016-2017学年苏教版八年级数学上册期末试卷(含答案)word版2016-2017学年苏教版八年级数学上册期末试卷一、细心填一填本大题共有13小题,20空,每空2分,共40分。
1.4的平方根是2;124的算术平方根是11;9的立方根为-2.2.计算:(1)a÷a=1;(2)(m+2n)(m-2n)=m^2-4n^2;(3)0.3.在数轴上与表示3的点距离最近的整数点所表示的数是3.4.如图,△ABC中,∠ABC=38°,BC=6cm,E为BC 的中点,平移△ABC得到△DEF,则∠DEF=38°,平移距离为6cm。
5.正九边形绕它的旋转中心至少旋转40°后才能与原图形重合。
6.如图,若□ABCD与□EBCF关于BC所在直线对称,且∠ABE=90°,则∠F=90°。
7.如图,在正方形ABCD中,以BC为边在正方形外部作等边三角形BCE,连结DE,则∠CDE的度数为60°。
8.如图,在□ABCD中,∠ABC的平分线交AD于点E,且AE=DE=1,则□ABCD的周长等于4+2√2.9.AD∥BC,∠A=2∠B=40°。
10.在梯形ABCD中,∠C=90°,则∠D的度数为90°。
11.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是6.12.直角三角形三边长分别为2,3,m,则m=√5.13.矩形ABCD的周长为24,面积为32,则其四条边的平方和为100;对角线AC、BD相交于点O,其中AC+BD=28,CD=10.(1)若四边形ABCD是平行四边形,则△OCD的周长为22;(2)若四边形ABCD是菱形,则菱形的面积为48;(3)若四边形ABCD是矩形,则AD的长为8.二、精心选一选本大题共有7小题,每小题2分,共14分。
在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内。
20162017学年度上学期期末八年级数学试题含答案
2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
江苏省泰州市兴化市八年级数学上学期期中试卷(含解析) 新人教版-新人教版初中八年级全册数学试题
2016-2017学年某某省某某市兴化市八年级(上)期中数学试卷一、选择题1.我国每年都发行一套生肖邮票.下列生肖邮票中,动物的“脑袋”被设计成轴对称图案的是()A.B.C.D.2.下列各组线段能构成直角三角形的一组是()A.5cm,9cm,12cm B.7cm,12cm,13cmC.30cm,40cm,50cm D.3cm,4cm,6cm3.下列各数中,互为相反数的一组是()A.﹣2 与B.﹣2与C.﹣2与﹣D.|﹣2|与24.下列的式子一定是二次根式的是()A.B.C.D.5.下列条件不能证明△ABC和△DEF全等的是()A.AB=DE,AC=EF,BC=DF B.AB=DE,∠A=∠E,∠B=∠DC.AB=DE,∠A=∠D,AC=DF D.AB=DE,∠A=∠D,BC=EF6.在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,AE为BC边上的中线,且AE=4,AD=3,则△ABC的面积为()A.6 B.8 C.10 D.12二、填空题7.的立方根是.8.有意义,则a的取值X围为.×105精确到位.10.一个三角形的三边长分别为6,8,10,则这个三角形最长边上的高是.11.若实数m,n满足(m+1)2+=0,则=.12.在等腰三角形ABC中,∠A=80°,则∠B=.13.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+=9,则线段MN的长为.14.如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积.若S1=81,S2=225,则S3=.15.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S:S△BCO:S△CAO=.△ABO16.如图,在三角形ABC中,∠BAC=70°,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,则∠DAE=°.三、解答题(计102分)17.(10分)计算:(1)2﹣1+﹣+()0(2)﹣|2﹣|﹣.18.(10分)(1)化简求值÷3×,其中a=4.(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.(8分)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹).(2)连结AP,如果AP平分∠CAB.求∠B的度数.20.(8分)已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.21.(10分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.22.(10分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.23.(10分)已知:如图,在△ABC中,D是BC上的点,AD=AB,E、F分别是AC、BD的中点,AC=6.求EF的长.24.(10分)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8.(1)求BE的长;(2)求△ADB的面积.25.(12分)如图,在△ABC中,∠ACB=90°,以AB长为一边作△ABD,∠ADB=90°,取AB中点E,连DE、CE、CD.(1)求证:DE=CE(2)当∠CAB+∠DBA=时,△DEC是等边三角形,并说明理由(3)当∠CAB+∠DBA=45°时,若CD=5,取CD中点F,求EF的长.26.(14分)在△ABC中(如图1),AB=17,BC=21,AC=10.(1)求△ABC的面积(某学习小组经过合作交流,给出了下面的解题思路,如图2,请你按照他们的解题思路完成解解答过程).(2)若点P在直线BC上,当△APC为直角三角形时,求CP的长.(利用(1)的方法)(3)若有一点Q在在直线BC上运动,当△AQC为等腰三角形时,求BQ的长.2016-2017学年某某省某某市兴化市昭阳湖中学八年级(上)期中数学试卷参考答案与试题解析一、选择题1.我国每年都发行一套生肖邮票.下列生肖邮票中,动物的“脑袋”被设计成轴对称图案的是()A.B.C.D.【考点】利用轴对称设计图案.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A中图形不是轴对称图形,故此选项错误;B中图形不是轴对称图形,故此选项错误;C中图形不是轴对称图形,故此选项错误;D中图形是轴对称图形,故此选项正确;故选:D.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.2.下列各组线段能构成直角三角形的一组是()A.5cm,9cm,12cm B.7cm,12cm,13cmC.30cm,40cm,50cm D.3cm,4cm,6cm【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行判断,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.【解答】解:A.∵5cm,9cm,12cm不符合勾股定理的逆定理,∴不能构成直角三角形;B.∵7cm,12cm,13cm不符合勾股定理的逆定理,∴不能构成直角三角形;C.∵30cm,40cm,50cm符合302+402=502,∴能构成直角三角形;D.∵3cm,4cm,6cm不符合勾股定理的逆定理,∴不能构成直角三角形;故选:C.【点评】本题主要考查了勾股定理的逆定理的运用,要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.下列各数中,互为相反数的一组是()A.﹣2 与B.﹣2与C.﹣2与﹣D.|﹣2|与2【考点】实数的性质;立方根.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:A、都是﹣2,故A错误;B、只有符号不同的两个数互为相反数,故B正确;C、绝对值不同,故C错误;D、都是2,故D错误;故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.4.下列的式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=0时,﹣x﹣2<0,无意义,故本选项错误;B、当x=﹣1时,无意义;故本选项错误;C、∵x2+2≥2,∴符合二次根式的定义;故本选项正确;D、当x=±1时,x2﹣2=﹣1<0,无意义;故本选项错误;故选:C.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a ≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).5.下列条件不能证明△ABC和△DEF全等的是()A.AB=DE,AC=EF,BC=DF B.AB=DE,∠A=∠E,∠B=∠DC.AB=DE,∠A=∠D,AC=DF D.AB=DE,∠A=∠D,BC=EF【考点】全等三角形的判定.【分析】根据全等三角形的判定方法对各选项分析判断后利用排除法求解.【解答】解:A、AB=DE,AC=EF,BC=DF,符合“SSS”,能判定△ABC和△DEF全等,故本选项不符合题意;B、AB=DE,∠A=∠E,∠B=∠D,符合“ASA”,能判定△ABC和△DEF全等,故本选项不符合题意;C、AB=DE,∠A=∠D,AC=DF,符合“SAS”,能判定△ABC和△DEF全等,故本选项不符合题意;D、AB=DE,∠A=∠D,BC=EF,不符合“SAS”,不能判定△ABC和△DEF全等,故本选项符合题意.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,熟记各方法是解题的关键.6.在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,AE为BC边上的中线,且AE=4,AD=3,则△ABC的面积为()A.6 B.8 C.10 D.12【考点】直角三角形斜边上的中线;三角形的面积.【分析】根据直角三角形的性质的性质即可得到结论.【解答】解:∵∠BAC=90°,AE为BC边上的中线,∴BC=2AE=8,∵AD⊥BC于点D,∴△ABC的面积=BC•AD=12,故选D.【点评】本题考查了直角三角形斜边上的中线,三角形的面积的计算,熟练掌握直角三角形的性质是解题的关键.二、填空题7.的立方根是 2 .【考点】立方根.【分析】根据算术平方根的定义先求出,再根据立方根的定义即可得出答案.【解答】解:∵ =8,∴的立方根是2;故答案为:2.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.8.有意义,则a的取值X围为a≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数大于或等于0,列不等式求解.【解答】解:根据二次根式有意义的条件,得a﹣1≥0,解得a≥1.故a的取值X围为a≥1.【点评】本题考查的知识点为:二次根式的被开方数是非负数.×105精确到百位.【考点】近似数和有效数字.【分析】一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位.【解答】×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位.【点评】对于用科学记数法表示的数,有效数字的计算方法以及精确到哪一位是需要识记的内容,经常会出错.10.一个三角形的三边长分别为6,8,10,则这个三角形最长边上的高是 4.8 .【考点】勾股定理的逆定理.【分析】根据已知先判定其形状,再根据三角形的面积公式求得其高.【解答】解:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:×6×8=×10h,解得h=4.8.【点评】解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.11.若实数m,n满足(m+1)2+=0,则= 2 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出算式,求出m、n的值,根据算术平方根的概念计算即可.【解答】解:由题意得,m+1=0,n﹣5=0,解得,m=﹣1,n=5,则===2,故答案为:2.【点评】本题考查的是非负数的性质,掌握非负数之和等于0时,各项都等于0是解题的关键.12.在等腰三角形ABC中,∠A=80°,则∠B= 50°或20°或80°.【考点】等腰三角形的性质.【分析】分∠A是顶角,∠B是顶角,∠C是顶角三种情况,根据等腰三角形的性质和内角和定理求解.【解答】解:已知等腰△ABC中∠A=80°,若∠A是顶角,则∠B=∠C,所以∠B=(180°﹣80°)=50°;若∠B是顶角,则∠A=∠C=80°,所以∠B=180°﹣80°﹣80°=20°;若∠C是顶角,则∠B=∠A=80°.故答案为:50°或20°或80°.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+=9,则线段MN的长为9 .【考点】等腰三角形的判定与性质;角平分线的定义;平行线的性质.【分析】由∠ABC、∠ACB的平分线相交于点O,∠MBE=∠EBC,∠E=∠ECB,利用两直线平行,内错角相等,利用等量代换可∠MBE=∠MEB,∠NEC=∠E,然后即可求得结论.【解答】解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠E=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠E,∴BM=ME,EN=,∴MN=ME+EN,即MN=BM+.∵BM+=9∴MN=9,故答案为:9.【点评】题考查学生对等腰三角形的判定与性质和平行线性质的理解与掌握.此题关键是证明△BME,△E是等腰三角形.14.如图,已知△ABC中,∠ACB=90°,以△ABC的各边为边在△ABC外作三个正方形,S1、S2、S3分别表示这三个正方形的面积.若S1=81,S2=225,则S3= 144 .【考点】勾股定理.【分析】根据勾股定理求出BC2=AB2﹣AC2=144,即可得出结果.【解答】解:根据题意得:AB2=225,AC2=81,∵∠ACB=90°,∴BC2=AB2﹣AC2=225﹣81=144,则S3=BC2=144.故答案为:144.【点评】考查了勾股定理、正方形的性质、正方形的面积;熟练掌握勾股定理,由勾股定理求出BC的平方是解决问题的关键.15.如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S:S△BCO:S△CAO= 4:5:6 .△ABO【考点】角平分线的性质.【分析】首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC 是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.【解答】解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=(AB•OD):(BC•OF):(AC•OE)=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.【点评】此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.16.如图,在三角形ABC中,∠BAC=70°,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,则∠DAE= 35 °.【考点】等腰三角形的性质.【分析】由在△ABC中,∠BAC=70°,AB=AC,可求得∠ABC与∠ACB的度数,然后由BD=BA,CE=CA,分别求得∠BAD与∠CAE的度数,继而求得答案.【解答】解:∵∠BAC=70°,AB=AC,∴∠B=∠A CB=55°,∵AB=BD,AC=CE,∴∠BAD=∠BDA,∠E=∠CAE,∴∠BAD=(180°﹣55°)=62.5°,∴∠CAE=∠ACB=27.5°,∴∠DAC=∠BAC﹣∠BAD=70°﹣62.5°=7.5°,∴∠DAE=∠DAC+∠CAE=35°;故答案为:35【点评】此题考查等腰三角形的性质,内角和定理,外角性质等知识.多次利用外角的性质得到角之间的关系式正确解答本题的关键.三、解答题(计102分)17.(10分)(2016秋•兴化市校级期中)计算:(1)2﹣1+﹣+()0(2)﹣|2﹣|﹣.【考点】实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,平方根、立方根定义计算即可得到结果;(2)原式利用二次根式性质,绝对值的代数意义,以及立方根定义计算即可得到结果.【解答】解:(1)原式=+2﹣2+1=;(2)原式=5﹣2+﹣3=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(2016秋•兴化市校级期中)(1)化简求值÷3×,其中a=4.(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【考点】实数的运算.【分析】(1)原式利用二次根式的乘除法则计算,将a的值代入计算即可求出值;(2)利用平方根及立方根定义求出x与y的值,即可求出原式的算术平方根.【解答】解:(1)原式=×==,当a=4时,原式=;(2)根据题意得:x﹣2=4,2x+y+7=27,解得:x=6,y=8,则x2+y2=100,100的算术平方根是10.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹).(2)连结AP,如果AP平分∠CAB.求∠B的度数.【考点】作图—复杂作图;线段垂直平分线的性质.【分析】(1)如图,作AB的垂直平分线交BC于P,则点P满足条件;(2)由PA=PB得到∠B=∠PAB,再由AP平分∠CAB得到∠PAB=∠CAB,则∠CAB=2∠B,然后根据三角形内角和计算∠B.【解答】解:(1)如图,点P为所作;(2)∵PA=PB,∴∠B=∠PAB,∵AP平分∠CAB,∴∠PAB=∠CAB,∴∠CAB=2∠B,∵∠CAB+∠B=90°,即2∠B+∠B=90°,∴∠B=30°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.【考点】勾股定理的逆定理;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据三角形的三边关系,勾股定理的逆定理判断即可.【解答】解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0, =0,(c﹣4)2=0.解得:a=,b=5,c=4;(2)∵a=,b=5,c=4,∴a+b=+5>4,∴以a、b、c为边能构成三角形,∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形,∴S△==.【点评】本题考查了勾股定理的逆定理,非负数的性质,求三角形的面积,熟练掌握勾股定理的逆定理是解题的关键.21.(10分)(2016秋•太仓市期中)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.【考点】作图-轴对称变换.【分析】(1)做BO⊥CD于点O,并延长到B′,使B′O=BO,连接AB即可;(2)轴对称图形沿某条直线折叠后,直线两旁的部分能完全重合.【解答】解:所作图形如下所示:【点评】本题考查对称轴作图,掌握画图的方法和图形的特点是解题的关键.22.(10分)(2012•某某)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.【点评】本题考查了全等三角形的判定及性质;用到的知识点是全等三角形的判定及性质、等腰三角形的判定等,全等三角形的判定是重点,本题是道基础题,是对全等三角形的判定的训练.23.(10分)(2016秋•宜兴市期中)已知:如图,在△ABC中,D是BC上的点,AD=AB,E、F分别是AC、BD的中点,AC=6.求EF的长.【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】连接AF,根据等腰三角形三线合一的性质可得AF⊥BD,在Rt△AFC中,再利用直角三角形斜边上的中线等于斜边的一半即可求出EF=AC.【解答】解:连接AF.∵AB=AD,F是BD的中点,∴AF⊥BD,又∵E是AC的中点,∴EF=AC(直角三角形斜边上的中线等于斜边的一半)∵AC=6,∴EF=3.故答案为:3.【点评】本题考查了等腰三角形三线合一的性质,直角三角形斜边上的中线等于斜边的一半的性质,作出辅助线构造出直角三角形是解题的关键.24.(10分)(2016秋•兴化市校级期中)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8.(1)求BE的长;(2)求△ADB的面积.【考点】勾股定理;角平分线的性质.【分析】(1)根据角平分线的性质和勾股定理得出AE=AC即可;(2)根据勾股定理得出方程求出DE,根据三角形的面积公式即可得到结论.【解答】解:(1)∵∠C=90°,AD平分∠CAB,DE⊥AB于E,∴CD=DE,AB==10,∴AD=AD,由勾股定理得:AE=AC=6,∴BE=1B﹣AE=4;(2)AB==10,设CD=DE=x,则BD=8﹣x,由勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴DE=3,∴S△ABD=AB•DE=×10×3=15.【点评】本题主要考查角平分线的性质和勾股定理,找到CD、DE、BD之间的关系得到关于DE的方程是解题的关键.注意方程思想的应用.25.(12分)(2016秋•兴化市校级期中)如图,在△ABC中,∠ACB=90°,以AB长为一边作△ABD,∠ADB=90°,取AB中点E,连DE、CE、CD.(1)求证:DE=CE(2)当∠CAB+∠DBA= 60°,时,△DEC是等边三角形,并说明理由(3)当∠CAB+∠DBA=45°时,若CD=5,取CD中点F,求EF的长.【考点】等边三角形的判定;等腰三角形的性质.【分析】(1)由直角三角形斜边上的中线性质即可得出结论;(2)证明A、B、C、D四点共圆,E是圆心,由圆周角定理得出∠BEC=2∠CAB,∠AED=2∠DBA,得出∠BEC+∠AED=2×60°=120°,求出∠DEC=60°即可;(3)同(2)证出∠DEC=90°,由直角三角形斜边上的中线性质即可得出结论.【解答】(1)证明:∵∠ACB=∠ADB=90°,E是AB的中点,∴DE=AB,CE=AB,∴DE=CE;(2)解:当∠CAB+∠DBA=60°时,△DEC是等边三角形,理由如下:∵∠ACB=∠ADB=90°,∴A、B、C、D四点共圆,E是圆心,∴∠BEC=2∠CAB,∠AED=2∠DBA,∵∠CAB+∠DBA=60°,∴∠BEC+∠AED=2×60°=120°,∴∠DEC=60°,∵DE=CE,∴△DEC是等边三角形;故答案为:60°;(3)解:同(2)得:∠BEC=2∠CAB,∠AED=2∠DBA,∵∠CAB+∠DBA=45°,∴∠BEC+∠AED=2×45°=90°,∴∠DEC=90°,∵F是CD的中点,∴EF=CD=2.5.【点评】本题考查了等边三角形的判定与性质、四点共圆、圆周角定理、直角三角形斜边上的中线性质等知识;本题有一定难度.26.(14分)(2016秋•兴化市校级期中)在△ABC中(如图1),AB=17,BC=21,AC=10.(1)求△ABC的面积(某学习小组经过合作交流,给出了下面的解题思路,如图2,请你按照他们的解题思路完成解解答过程).(2)若点P在直线BC上,当△APC为直角三角形时,求CP的长.(利用(1)的方法)(3)若有一点Q在在直线BC上运动,当△AQC为等腰三角形时,求BQ的长.【考点】三角形综合题.【分析】(1)作AD垂直于BC,设BD=x,则有CD=21﹣x,分别利用勾股定理表示出AD2,列出关于x的方程,求出方程的解得到x的值,进而确定出AD的长,求出三角形ABC面积即可;(2)如图所示,分两种情况考虑:当△ACP2为直角三角形时;当△ACP1为直角三角形时,分别求出CP的长即可;(3)如图所示,分四种情况考虑:当AC=CQ1=10时;当AQ2=AC=10时;当AQ3=CQ3时;当AC=CQ4=10时,分别求出BQ的长即可.【解答】解:(1)作AD⊥BC,设BD=x,则有CD=21﹣x,在Rt△ABD中,根据勾股定理得:AD2=172﹣x2,在Rt△ACD中,根据勾股定理得:AD2=102﹣(21﹣x)2,可得289﹣x2=100﹣(21﹣x)2,整理得:42x=630,解得:x=15,∴AD=8,则S=BC•AD=84;(2)如图所示:当P2与D重合时,此时△APC2为直角三角形,CP2=6;当△AP1C为直角三角形时,AD2=P1D•CD,即64=6P1D,解得:P1D=,此时CP1=;(3)如图所示,分四种情况考虑:当AC=CQ1=10时,BQ1=21﹣10=11;当AQ2=AC=10时,CD=Q2D=6,此时BQ2=21﹣12=9;当AQ3=CQ3时,此时BQ3=;当AC=CQ4=10时,BQ4=21+10=31.【点评】此题属于三角形综合题,涉及的知识有:勾股定理,相似三角形的判定与性质,以及线段垂直平分线定理,熟练掌握定理是解本题的关键.。
扬州树人学校2016-2017 学年第二学期期中考试试卷八年级数学(后附答案)
扬州树人学校2016–2017学年第一学期期中试卷八年级数学2016.11(满分:150分;考试时间:120分钟,将答案写在答题卡上)一.选择题:(每小题3分,共24分)1.下列“数字”图形中,有且仅有一条对称轴的是()2.与数轴上点一一对应的数是()A.整数 B.有理数 C.无理数 D.实数3.下列各组数中,可以构成勾股数的是( ).A.4,5,6 B.1,1,2 C.6,7,8 D.12,35,374.下面的四组条件中,不能确定两个三角形全等的一组是()A.两个三角形的两边一角对应相等B.两个三角形的两角一边对应相等C.两个三角形的三边对应相等D.两个三角形的两边及夹角对应相等5.下列说法错误的是()A.1是1的算术平方根B.(-7)2=7C.-27的立方根是-3D.144=±12 6.如图所示,已知∠AOB=40°,OM平分∠AOB,MA⊥OA于A,MB⊥OB于B,则∠MAB的度数为().A. 50°B. 40°C. 30°D. 20°7.如图是一个经过改造的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔。
如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入的球袋是()A.一号袋 B.二号袋 C.三号袋 D.四号袋8.如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①222AC CE AE+=;②S⊿ABC+S⊿CDE≥S⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是()A.1个B.2个C.3个D.4个第6题第7题MECA第8题第 1 页共 4 页第 2 页 共 4 页二.填空题:( 每小题3分,共30分 ) 9.81的平方根是_____________.10.如图,△ABC ≌△ECD ,∠A =48°,点B 、C 、D 在同一直线上,则∠ACE 的度数是 . 11.木工师傅在做完门框后,为防止变形,常常象如图所示那样,钉上两条斜拉的木板条(即图中的AB 、CD 两个木条)这样做根据的数学道理是 .12.如图,以Rt △ABC 的三边向外作正方形,若最大正方形的边长为13cm ,以AC 为边的正方形的面积为144,则AB 长为 .13.若92=a ,162=b ,且0<ab ,则b a -的值为 .14.如图,一个高为9cm 的圆柱,底面半径为4cm ,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面B 点处的食物,则沿着圆柱的表面需要爬行的最短路程是 cm (π值取3). 15.某人一天饮水1890mL ,将1890mL 用科学记数法表示并精确到1000mL 为 mL . 16.如图,∠BAC=100°,将点B 沿MN 折叠使点B 与点A 重合、将点C 沿EF 折叠使点C 与点A 重合,点M 、E 均在边BC 上,则∠MAE 的大小为_____________.17.动手操作:在矩形纸片ABCD 中,AB =8,BC =17.如图所示,折叠纸片使点A 落在边BC 上的A'处,折痕为PQ ,P 、Q 分别在边AB 、AD 上.当点A'在边BC 上移动时,折痕的端点P 、Q 也随之移动.若点Q 与点D 重合时, A'B 的长为 .18.如图在△ABC 中,∠C=90°,AD 、BE 分别是BC 、AC 边的中线,且BE=4,AD=7,则AB 的长为 .三.解答题:19.计算:( 每题4分,共8分 )(10()3π; (2)201321(1)()2-+-20.求下列各式中的x ( 每题4分,共8分 )(1) 16)2(2=+x (2)56)1(83-=+x第11题第12题F EMNCB A第16题DC第14题第18题第10题第17题第 3 页 共 4 页21.(本题8分)如图,在正方形网格中有一个格点四边形ABCD ,每个小正方形的边长都为1. (1)求四边形ABCD 的面积.(2)画出四边形A'B'C'D',使四边形A'B'C'D'与四边形ABCD 关于直线MN 对称.22.(本题8分)已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,求图形中阴影部分的面积.23.(本题8分)如图,在四边形ABCD 中,∠ABC=∠ADC=90°,M 、N 分别是AC 、BD 的中点,猜一猜MN 与BD 的位置关系,并说明理由。
2016-2017学年度下学期期末考试八年级数学试卷(含答案)
2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
山东省菏泽市单县2016-2017学年八年级(上)期中数学试卷(解析版)
2016-2017学年山东省菏泽市单县八年级(上)期中数学试卷一、选择题(每题3分)1.下列图案属于轴对称图形的是()A.B.C.D.2.下列各式中,不论字母取何值时分式都有意义的是()A.B.C.D.3.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD4.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9)C.8(a2﹣9)(a2+6a+9)D.4(a﹣3)2(a+3)25.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°6.下列分式约分,正确的是()A.=a2B.=C.=D.=07.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.8.下列各式从左到右的变形正确的是()A.=B.﹣=C.=2a+1 D.=9.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或710.如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°二、填空题(每题4分)11.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在第象限.12.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB=(度)13.计算:=.14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=D C.其中所有正确结论的序号是.15.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,AE=3ED,如果AC=12cm,那么DE的长为cm.16.化简+的结果是.17.如图,已知△ABC≌△ADE,∠C=79°,DE⊥AB,则∠D的度数为.18.如图,长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,点Q是线段CD上的动点,则AQ+QP的最小值为.三、解答题19.如图,已知点B,E,C,F在一条直线上,AC∥DE,∠A=∠D,AB=DF,(1)试说明:△ABC≌△DEF;(2)若BF=13,EC=7,求BC的长.20.计算下列各题:(1)(﹣)2•()2+(﹣2ab)2(2)(x+3+)+.21.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.22.先化简,再求值:÷+,其中x的值满足x+1与x+6互为相反数.23.如图,把两个含有45°的三角尺如图放置,∠ECD=ACB=90°,且AB=AE,连接AD交BE于点P,试说明:(1)AD=BE;(2)AD平分∠BAE.24.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC 于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.2016-2017学年山东省菏泽市单县八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分)1.下列图案属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选A.2.下列各式中,不论字母取何值时分式都有意义的是()A.B.C.D.【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于零列出不等式,可得答案.【解答】解:∵2x2+1>1,∴不论字母取何值都有意义,故选:D.3.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA 添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.4.对分式,通分时,最简公分母是()A.4(a﹣3)(a+3)2B.4(a2﹣9)(a2+6a+9)C.8(a2﹣9)(a2+6a+9)D.4(a ﹣3)2(a+3)2【考点】最简公分母;通分.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式与的最简公分母是4(a﹣3)(a+3)2,故选A.5.在△ABC中,∠A的相邻外角是70°,要使△ABC为等腰三角形,则∠B为()A.70°B.35°C.110°或35°D.110°【考点】等腰三角形的判定.【分析】根据内角与相邻的外角的和等于180°求出∠A,再根据等腰三角形两底角相等解答.【解答】解:∵∠A的相邻外角是70°,∴∠A=180°﹣70°=110°,∵△ABC为等腰三角形,∴∠B==35°.故选B.6.下列分式约分,正确的是()A.=a2B.=C.=D.=0【考点】约分.【分析】根据分式的基本性质分别进行化简,即可得出答案.【解答】解:A、=a3,故本选项错误;B、=,故本选项错误;C、=,故本选项正确;D、=1,故本选项错误;故选C.7.下列尺规作图,能判断AD是△ABC边上的高是()A.B.C.D.【考点】作图—基本作图.【分析】过点A作BC的垂线,垂足为D,则AD即为所求.【解答】解:过点A作BC的垂线,垂足为D,故选B.8.下列各式从左到右的变形正确的是()A.=B.﹣=C.=2a+1D.=【考点】分式的基本性质.【分析】根据分子、分母、分式的值改变其中的两个的符号,分式的值不变,可得答案.【解答】解:=,故D符合题意;故选:D.9.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【考点】矩形的性质;全等三角形的判定.【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16﹣2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,,∴△ABF≌△DCE,由题意得:AF=16﹣2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选C.10.如图,把一张长方形纸片ABCD沿EF折叠后,若∠2=40°,则∠1的度数为()A.110°B.115°C.125°D.130°【考点】平行线的性质;轴对称的性质;翻折变换(折叠问题).【分析】先根据折叠的性质以及对顶角相等,得出∠A'FG=90°﹣40°=50°,再根据∠1+∠EFG=180°,可得∠1+∠1﹣50°=180°,进而得出∠1=115°.【解答】解:∵∠2=40°,∴∠FGA'=40°,又∵∠A'=∠A=90°,∴Rt△A'FG中,∠A'FG=90°﹣40°=50°,∴∠EFG=∠EFA'﹣50°,又∵∠1=∠EFA',∴∠EFG=∠1﹣50°,又∵∠1+∠EFG=180°,∴∠1+∠1﹣50°=180°,解得∠1=115°,故选:B.二、填空题(每题4分)11.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在第四象限.【考点】关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:由题意,得2﹣a=1,b+5=3,解得a=1,b=﹣2,点C(a,b)在第四象限,故答案为:四.12.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB=60(度)【考点】等边三角形的判定与性质.【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【解答】解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.13.计算:=2.【考点】分式的加减法.【分析】根据同分母分式相加减,分母不变,只把分子相加减求解即可.【解答】解:原式===2.故答案为2.14.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=D C.其中所有正确结论的序号是①②③.【考点】全等三角形的判定与性质.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.15.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,AE=3ED,如果AC=12cm,那么DE的长为3cm.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得CE=DE.【解答】解:∵∠ACB=90°,BE平分∠ABC,DE⊥AB,∴CE=DE,∵AE=3ED,如果AC=12cm,∴AE=3EC,∴CE=DE=3cm,∵故答案为:3.16.化简+的结果是.【考点】分式的加减法.【分析】先通分、再根据分式的加法法则计算即可.【解答】解:原式=+=,故答案为:.17.如图,已知△ABC≌△ADE,∠C=79°,DE⊥AB,则∠D的度数为68°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得到AE=AC,∠DAE=∠BAC,根据三角形内角和定理求出∠DAB,根据垂直的定义计算即可.【解答】解:∵△ABC≌△ADE,∴AE=AC,∠DAE=∠BAC,∴∠EAC=180°﹣79°﹣79°=22°,∴∠DAB=22°,∵DE⊥AB,∴∠D=90°﹣22°=68°,故答案为:68°.18.如图,长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,点Q是线段CD上的动点,则AQ+QP的最小值为.【考点】轴对称﹣最短路线问题;矩形的性质.【分析】根据图形和题意,作点P关于直线CD的对称点P′,然后根据两点之间线段最短,可以解答本题.【解答】解:作点P关于直线CD的对称点P′,如右图所示,∵长方形ABCD中,AD=a,DC=b,(a,b为常数),∠CAB=30°,点P是对角线AC的中点,∴AE=a+0.5a=1.5a,EP′=0.5b,tan30°=,∴b=,∵两点之间线段最短,∴AQ+QP的最小值就是线段AP′的长度,∵∠AEP′=90°,EP′=0.5b,AE=1.a,∴AP′====,故答案为:.三、解答题19.如图,已知点B,E,C,F在一条直线上,AC∥DE,∠A=∠D,AB=DF,(1)试说明:△ABC≌△DEF;(2)若BF=13,EC=7,求BC的长.【考点】全等三角形的判定与性质.【分析】(1)根据两角和其中的一角的对边对应相等的两个三角形全等即可判定.(2)根据全等三角形的性质可知BC=EF,推出BE=CF,由此即可解决问题.【解答】(1)证明:∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),(2)∵△ABC≌△DEF,∴BC=EF,即BE+EC=EC+CF,∴BF=CF,∵BF=13,EC=7,∴BE+CF=BF﹣EC=6,∴BE=CF=3,∴BC=BE+EC=3+7=10.20.计算下列各题:(1)(﹣)2•()2+(﹣2ab)2(2)(x+3+)+.【考点】分式的混合运算.【分析】(1)根据分式乘除法法则即可化简运算.(2)根据因式分解以及分式的基本性质即可化简运算.【解答】解:(1)原式=•=(2)原式=(+)•=﹣•=1﹣x21.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.【考点】等腰三角形的性质.【分析】首先根据AB=AD=AE,DE=EC,得到∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,从而得到∠ADE=∠AED=∠C+∠EDC=2∠C,根据∠DAB=30°,求得∠B=∠ADB=75°,利用∠ADC=∠ADE+∠EDC=3∠C=105°,求得∠C即可.【解答】解:∵AB=AD=AE,DE=EC,∴∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,∴∠ADE=∠AED=∠C+∠EDC=2∠C,∵∠DAB=30°,∴∠B=∠ADB=75°,∴∠ADC=∠ADE+∠EDC=3∠C=105°,∴∠C=35°.22.先化简,再求值:÷+,其中x的值满足x+1与x+6互为相反数.【考点】分式的化简求值;相反数.【分析】先把除法变成乘法,算乘法,再算加法,最后代入求出即可.【解答】解:÷+=•+=+=,∵x的值满足x+1与x+6互为相反数,∴x+1+x+6=0,x+1=﹣(x+6),∴原式=﹣1.23.如图,把两个含有45°的三角尺如图放置,∠ECD=ACB=90°,且AB=AE,连接AD交BE于点P,试说明:(1)AD=BE;(2)AD平分∠BAE.【考点】全等三角形的判定与性质;三角形内角和定理;等腰三角形的性质.【分析】(1)由△ABC和△ECD为含45°的直角三角形,由此即可得出EC=DC、BC=AC,结合∠ECB=∠DCA=90°即可利用全等三角形的判定定理SAS证出△BCE≌△ACD,再根据全等三角形的性质即可得出结论;(2)由△BCE≌△ACD即可得出∠EBC=∠DAC,根据∠EBC+∠BEC=90°即可得出∠DAC+∠BEC=90°,结合三角形内角和定理即可得出∠APE=90°,再利用等腰三角形的三线合一即可证出AD平分∠BAE.【解答】证明:(1)∵两个含有45°的三角尺如图放置,∠ECD=ACB=90°,∴EC=DC,BC=A C.在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴AD=BE.(2)∵△BCE≌△ACD,∴∠EBC=∠DA C.∵∠EBC+∠BEC=90°,∴∠DAC+∠BEC=90°,∴∠APE=90°,即AP⊥BE.又∵AB=AE,∴AD平分∠BAE.24.如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC 于点E,l1与l2相交于点O,连结0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.(1)求线段BC的长;(2)连结OA,求线段OA的长;(3)若∠BAC=120°,求∠DAE的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线的性质得到DA=DB,EA=EC,根据三角形的周长公式计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可;(3)根据线段垂直平分线的性质和等腰三角形的性质进行计算.【解答】解:(1)∵l1是AB边的垂直平分线,∴DA=DB,∵l2是AC边的垂直平分线,∴EA=EC,BC=BD+DE+EC=DA+DE+EA=6cm;(2)∵l1是AB边的垂直平分线,∴OA=OB,∵l2是AC边的垂直平分线,∴OA=OC,∵OB+OC+BC=16cm,∴OA=0B=OC=5cm;(3)∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵DA=DB,EA=EC,∴∠BAD=∠ABC,∠EAC=∠ACB,∴∠DAE=∠BAC﹣∠BAD﹣∠EAC=60°.2017年4月1日。
苏科版数学八年级上学期《期中考试题》带答案
当点C在点D和点E中间时,△ABC 锐角三角形,由此时AD= = ,AE= AB=2 ,则 <AC<2 ,选项中只有2符合此范围.
故选B.
5.从一个等腰三角形纸片的顶角顶点出发,能将其剪成两个等腰三角形纸片,则原等腰三角形纸片的顶角等于( )
A. 90°B. 72°C. 108°D. 90°或108°
点睛:精确到某一位,对紧邻该位后的第1个数字进行四舍五入,表示近似数时,小数点最后一位如果是0,不能去掉.
9.若等边三角形的边长是2cm,则它的高为_______cm.
【答案】 ;
【解析】
试题分析:根据等边三角形:三线合一,所以它的高为: cm.
考点:等边三角形的性质;勾股定理.
点评:本题要求熟练运用等边三角形的性质及勾股定理,较为简单.
11.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,点M在AB上,且∠ACM=∠BAC,则CM 长为_______.
12.如图,OP=1,过P作PQ1⊥OP且PQ1=1,以O为圆心,OQ1为半径画弧,交OP的延长线于P1;再过P1作P1Q2⊥OP1且P1Q2=1,以O为圆心,OQ2为半径画弧,交OP的延长线于P2,则OP2的长为_______.
16.如图,在△ABC中,∠BAC=90°,AC=6,AB=8,点P是BC上一动点,PQ⊥BC,△A'B'C'与△ABC关于PQ成轴对称,若重合部分是等腰三角形,则BP的长应该满足的条件是_______.
三、解答题(本大题共10题,共68分)
17.(6分)求下列各式中的x
(1)(2x)2=4;(2)x3-4=-12.
如图1,已知△ABC和A'B',A'B'=AB.请用直尺和圆规在图(2)中作△A'B'C',使得∠A'=∠A,B'C'=BC,且△A'B'C'与△ABC不全等.(保留作图痕迹,不写作法)
【苏科版】数学八年级上册《期中测试题》含答案解析
故答案为②⑤.
【点睛】此题主要考查了无理数,正确把握无理数的定义是解题关键.
8.小亮用天平称得一个罐头的质量为2.026kg,近似数2.026精确到0.1是_____.
【答案】2.0
【解析】
2.026kg,精确到0. 1即对小数点后的0后边的数进行四舍五入,为2.0,
故答案为2.0.
9.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.
【答案】10.
【解析】
试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=10,答:它的周长是10,故答案为10.
考点:等腰三角形的性质;三角形三边关系.
10.在△ABC和△DEF中,AB=DE,∠A=∠D,要使△ABC≌△DEF,必须增加的一个条件是_____(填写一个即可).
故选B.
点睛:本题考查了全等三角形的判定的应用,全等三角形的判定定理有SAS,AAS,ASA,SSS,题目比较好,难度适中.
4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为()
A.3B.4C.2D.2.5
3.如图, 中, , ,直接使用“SSS”可判定( )
A. ≌ B. ≌ C. ≌ D. ≌
4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为()
A.3B.4C.2D.2.5
5.下列无理数中,与4最接近的是()
苏科版数学八年级上册《期中测试题》带答案
15.下列命题中,假命题的是( )
A.在△ABC中,若∠B+∠C=∠A,则△ABC是直角三角形
B.在△ABC中,若a2=(b+c)(b﹣c),则△ABC是直角三角形
C.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形
苏 科 版 数 学 八年级上学期
期中测 试 卷
学校________班级________姓名________成绩________
考试时间90分钟 满分100分
一、填空(每题2分,共24分)
1.角是轴对称图形,___________是它的对称轴.
2.已知△ABC≌△DEF(A、B分别对应D、E),若BC=10cm,AB=5cm,则EF为cm.
11.如图, ,点P是边 上一个动点(不与点O重合),当 的度数为_____时, 为直角三角形.
【答案】 或
【解析】
【分析】
利用三角形内角和为 ,分两种情况即可计算 的大小.
【详解】因为 为直角三角形,可知 .
当 时,
,
,
综上
【点睛】本题考查了三角形内角和定理,抓住三角和为 是解题 关键.
12.如图,∠C=90°,AC=3,BC=4,∠ABC和∠BAC的角平分线的交点是点D,则△ABD的面积为_____.
1.角是轴对称图形,___________是它的对称轴.
【答案】角平分线所在的直线.
【解析】
【分析】
根据角的对称性解答.
【详解】角的对称轴是“角平分线所在的直线”,
故答案为角平分线所在的直线.
【点睛】此题考查轴对称图形,解题关键在于掌握其性质.
初二数学上学期期中测试卷(苏科版)
初二数学上学期期中测试卷2014.11一. 选择题(每题2分,共16分).1.下列“表情图”中,不属于轴对称图形的是()A. B. C. D.2.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠FB.∠B=∠EC.BC∥EFD.∠A=∠EDF3.今年泰州市初三毕业的人数大约为5.24万人,统计时5.24万精确到了()A.百分位B.万位C.十分位D.百位4.若等腰三角形的两边长分别为4和9,则该三角形的周长为()A.17B.22C.17或22D.不能确定5.若实数x、y满足0)3(22=-+-yx,则332++yx等于()A.0B.5C.4D.±46.如图,直线l上有三个正方形a、b、c,若a、c的面积分别为3和4,则b的面积为()A.3B.4C.5D.77.如图,△ABC中,AB=AC=13,BC=10,点D为BC中点,DE⊥AB,垂足为E,则DE等于()A.1310B.1360C.1315D.13758.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1、l2、l3上,且l1、l2之间的距离为1,l2、l3之间的距离为2,则AC的长是()A. 13B. 20C.26D. 5二.填空题(每空2分,共24分).9.|-4|的平方根为_________;-64的立方根为________.10.国家体育场“鸟巢”的建筑面积达25.8万平方米,将25.8万平方米用科学计数法(精确到万位)表示为___________________平方米.11.若等腰三角形的一个角为80°,则它的底角度数为______________12.已知一个正数的两个不同的平方根是3x﹣2和4﹣x,则x=_________.13.若直角三角形的两直角边之和为7,面积为6,则斜边长为_________.14.如图,直径为1个单位长度的圆形纸片上的点A与数轴上原点重合,若将该圆形纸片沿数轴顺时针滚动一周(无滑动)后点A与数轴上的点A′重合,则点A′表示的数为_______.(2)(6)(8)(7)1O A15.利用图中图形的有关面积的等量关系都能证明数学中一个十分著名的定理,此证明方法就是美国第二十任总统伽菲尔德最先完成的,人们为了纪念他,把这一证法称为“总统”证法.这个定理称为___________,该定理的结论其数学表达式是_______________.16.如图,△ABC 中,∠C=90°,AB=10,AD 平分∠BAC ,若CD=3,则△ABD 的面积为_________.17.如图,Rt △ABC 中,∠ACB=90°,AC=4,将斜边AB 绕点A 逆时针旋转90°至AB ′,连接B ′C ,则△AB ′C 的面积为_________.18.如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD .要使点D 恰好落在BC 上,则AP的长是___________.三.解答题19.(本题9分)求下列各式中x 的值: 2(1)16490x -= 2(2)(1)25x -= 3(3)(2)8x =-20.(本题6分)计算:(1)202)21(920142)3(+---+- (2) 41227)2(32+-+-21.(本题5分)如图,正方形网格中的每个小正方形的边长都为1,每个小正方形的顶点叫格点,图中已给出了两个格点A ,B ,按要求画△ABC :使点C 在格点上,且AC=5,,并利用网格画出∠CAB 的平分线.(17)(18)(14) (16) (15)A 22.(本题6分)如图,AD ∥BC ,BE ∥DF ,AE=CF ,求证:△ADF ≌△CBE.23.(本题6分)中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA ⊥OB ,OA =45海里,OB =15海里,钓鱼岛位于O 点,我国海监船在点B 处发现有一不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向钓鱼岛所在地点O ,我国海监船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C 处的位置;(2)求我国海监船行驶的航程BC 的长.24.(本题8分)如图,在四边形ABCD 中,∠BAD=∠BCD=90°,BC=6,CD=AC=8, M 、N 分别是对角线BD 、AC 的中点.(1)求证:MN ⊥AC.(2)求MN 的长.25.(本题10分)如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,过点A作AF⊥AE,且AF=AE,连接BF、EF.(1)求证:FB⊥BD;(2)若FB=4=BD,求DE的长。
2016-2017年江苏省苏州市昆山市八年级上学期期中数学试卷和答案
2016-2017学年江苏省苏州市昆山市八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3.00分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(3.00分)下列说法正确的是()A.9的立方根是3B.算术平方根等于它本身的数一定是1C.﹣2是4的平方根D.的算术平方根是43.(3.00分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形4.(3.00分)如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是()A.AC=BD B.∠1=∠2 C.AD=BC D.∠C=∠D5.(3.00分)在,﹣3.14,,﹣0.3,,0.5858858885…,中无理数有()A.3个 B.4个 C.5个 D.6个6.(3.00分)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.57.(3.00分)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数为()A.45°B.60°C.55°D.75°8.(3.00分)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或109.(3.00分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.510.(3.00分)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题(本大题共8小题,每小题3分,共24分)11.(3.00分)的平方根是.12.(3.00分)如图,OC是∠AOB的平分线,PD⊥DA,垂足为D,PD=2,则点P 到OB的距离是.13.(3.00分)如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为.14.(3.00分)已知+=0,那么(a+b)2016的值为.15.(3.00分)若一个正数的两个不同的平方根为2m﹣6和m+3,则m为.16.(3.00分)若等腰三角形的一个外角是80°,则等腰三角形的底角是°.17.(3.00分)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有个.18.(3.00分)如图,等边△ABC中,AB=4,E是线段AC上的任意一点,∠BAC 的平分线交BC于D,AD=2,F是AD上的动点,连接CF、EF,则CF+EF的最小值为.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8.00分)计算或化简:(1)()2﹣﹣(2)﹣+(1﹣)0﹣|﹣2|20.(6.00分)求下列各式中x的值(1)(x+1)2﹣3=0;(2)3x3+4=﹣20.21.(5.00分)已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y 的平方根.22.(5.00分)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.23.(6.00分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.24.(8.00分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC 于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.25.(8.00分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.26.(8.00分)在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.27.(9.00分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E 是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.28.(12.00分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.2016-2017学年江苏省苏州市昆山市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.请将下列各题唯一正确的选项代号填涂在答题卡相应的位置上)1.(3.00分)下面有4个汽车标志图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:由轴对称图形的概念可知第1个,第2个,第3个都是轴对称图形.第4个不是轴对称图形,是中心对称图形.故是轴对称图形的有3个.故选:C.2.(3.00分)下列说法正确的是()A.9的立方根是3B.算术平方根等于它本身的数一定是1C.﹣2是4的平方根D.的算术平方根是4【解答】解:A、9的立方根为,错误;B、算术平方根等于本身的数是0和1,错误;C、﹣2是4的平方根,正确;D、=4,4的算术平方根为2,错误,故选:C.3.(3.00分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【解答】解:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选:B.4.(3.00分)如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是()A.AC=BD B.∠1=∠2 C.AD=BC D.∠C=∠D【解答】解:A、∵AC=BD,∠CAB=∠DBA,AB=AB,∴根据SAS能推出△ABC≌△BAD,故本选项错误;B、∵∠CAB=∠DBA,AB=AB,∠1=∠2,∴根据ASA能推出△ABC≌△BAD,故本选项错误;C、根据AD=BC和已知不能推出△ABC≌△BAD,故本选项正确;D、∵∠C=∠D,∠CAB=∠DBA,AB=AB,∴根据AAS能推出△ABC≌△BAD,故本选项错误;故选:C.5.(3.00分)在,﹣3.14,,﹣0.3,,0.5858858885…,中无理数有()A.3个 B.4个 C.5个 D.6个【解答】解:,,0.5858858885…是无理数,故选:A.6.(3.00分)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是()A.﹣1 B.1 C.﹣5 D.5【解答】解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.7.(3.00分)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数为()A.45°B.60°C.55°D.75°【解答】解:等边△ABC中,有∵∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE∴∠APE=∠BAD+∠ABP=∠ABP+∠PBD=∠ABD=60°.故选:B.8.(3.00分)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.9.(3.00分)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7 D.3.5【解答】解:作DM=DE交AC于M,作DN⊥AC于点N,∵DE=DG,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S=S△ADG﹣S△ADM=50﹣39=11,△MDGS△DNM=S△EDF=S△MDG=×11=5.5.故选:B.10.(3.00分)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A.①②③B.①③④C.①②④D.①②③④【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),…①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.…③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.…④正确.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3.00分)的平方根是±2.【解答】解:的平方根是±2.故答案为:±212.(3.00分)如图,OC是∠AOB的平分线,PD⊥DA,垂足为D,PD=2,则点P 到OB的距离是2.【解答】解:如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又PD=2,∴PE=PD=2.故答案为2.13.(3.00分)如图,a∥b,点A在直线a上,点C在直线b上,∠BAC=90°,AB=AC,若∠1=20°,则∠2的度数为65°.【解答】解:∵∠BAC=90°,AB=AC,∴∠ACB=∠B=45°,∵∠1=20°,∴∠ACM=20°+45°=65°,∵直线a∥直线b,∴∠2=∠ACM=65°,故答案为:65°.14.(3.00分)已知+=0,那么(a+b)2016的值为1.【解答】解:由题意得,a﹣2=0,b+3=0,解得,a=2,b=﹣3,则(a+b)2016=1,故答案为:1.15.(3.00分)若一个正数的两个不同的平方根为2m﹣6和m+3,则m为1.【解答】解:由题意可知:(2m﹣6)+(m+3)=0,∴3m=3,∴m=1,故答案为:116.(3.00分)若等腰三角形的一个外角是80°,则等腰三角形的底角是40°.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故答案为:40.17.(3.00分)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.【解答】解:如图所示:与△ABC成轴对称的有:△FBM,△ABE,△AND,△CMN,△BEC共5个,故答案为:5.18.(3.00分)如图,等边△ABC中,AB=4,E是线段AC上的任意一点,∠BAC 的平分线交BC于D,AD=2,F是AD上的动点,连接CF、EF,则CF+EF的最小值为2.【解答】解:∵AD是等边△ABC的∠BAC的平分线,∴AD⊥BC,BD=CD,∴点B、C关于AD对称,过点B作BE⊥AC于E,交AD于F,连接CF,由轴对称确定最短路线问题,点E、F即为使CF+EF的最小值的点,∵△ABC是等边三角形,AD、BE都是高,∴BE=AD=2,∴CF+EF的最小值=BE=2.故答案为:2.三、解答题(本大题共10小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.(8.00分)计算或化简:(1)()2﹣﹣(2)﹣+(1﹣)0﹣|﹣2|【解答】解:(1)原式=4﹣2﹣5=﹣3;(2)原式=﹣+1﹣2+=﹣1.20.(6.00分)求下列各式中x的值(1)(x+1)2﹣3=0;(2)3x3+4=﹣20.【解答】解:(1)(x+1)2﹣3=0,∴x+1=±,解得:x1=﹣1+,x2=﹣1﹣;(2)3x3+4=﹣20,∴3x3=﹣24,∴x3=﹣8,解得:x=﹣2.21.(5.00分)已知5x﹣1的算术平方根是3,4x+2y+1的立方根是1,求4x﹣2y 的平方根.【解答】解:∵5x﹣1的算术平方根为3,∴5x﹣1=9,∴x=2,∵4x+2y+1的立方根是1,∴4x+2y+1=1,∴y=﹣4,4x﹣2y=4×2﹣2×(﹣4)=16,∴4x﹣2y的平方根是±4.22.(5.00分)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.23.(6.00分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.(1)求证:△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.【解答】(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.24.(8.00分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC 于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.25.(8.00分)如图,方格纸上画有AB、CD两条线段,按下列要求作图(不保留作图痕迹,不要求写出作法)(1)请你在图(1)中画出线段AB关于CD所在直线成轴对称的图形;(2)请你在图(2)中添上一条线段,使图中的3条线段组成一个轴对称图形,请画出所有情形.【解答】解:所作图形如下所示:26.(8.00分)在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.【解答】解:(1)如图,∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10cm,∴OC=5cm,∴OA=OC=OB=5cm.27.(9.00分)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E 是AB边上一点.(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.【解答】(1)证明:∵点D是AB中点,AC=BC,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,∴∠CAD=∠CBD=45°,∴∠CAE=∠BCG,又∵BF⊥CE,∴∠CBG+∠BCF=90°,又∵∠ACE+∠BCF=90°,∴∠ACE=∠CBG,在△AEC和△CGB中,∴△AEC≌△CGB(ASA),∴AE=CG,(2)解:BE=CM.证明:∵CH⊥HM,CD⊥ED,∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,∴∠CMA=∠BEC,又∵∠ACM=∠CBE=45°,在△BCE和△CAM中,,∴△BCE≌△CAM(AAS),∴BE=CM.28.(12.00分)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+FD;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:∵小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,∴EF=FG,FG=FD+DG=FD+BE,∴EF=BE+FD,故答案为:EF=BE+FD;探索延伸:上述结论EF=BE+FD成立,理由:如图2,延长FD到点G,使得DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,∵AB=AD,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠DAF+∠BAE=∠BAD﹣∠EAF=∠BAD,∴∠GAF=∠EAF,又∵AG=AE,AF=AF,∴△AFG≌△AFE(SAS),∴EF=GF,∵GF=DF+DG=DF+BE,∴EF=BE+FD;实际应用:如图3,连接EF,延长AE、BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠FOE=70°=,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=60°+120°=180°,∴图3符合探索延伸的条件,∴EF=AE+FB=1.5×(60+80)=210(海里),即此时两舰艇之间的距离210海里.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
2016-2017学年八年级上期中教学质量数学试题含答案
A.-6<a<-3
B.-5<a<-2
C.-2<a<5
) D.a<-5 或 a>2
6、下列命题的逆命题是真命题的是( )
A.同位角相等
B.对顶角相等
C.钝角三角形有两个锐角
D.两直线平行,内错角相等
7、关于函数 y 2x 1,下列结论正确的是 (
)
A.图象必经过点(﹣2,1)
B.图象经过第一、二、三象限
2016-2017 学年八年级上期中教学质量数学试题含答案
八年级上数学期中试卷
班级
姓名
成绩
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分,每小题只有一个是正确的)
1、平面直角坐标系中,点 (2, 1) 所在象限为 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2、平面直角坐标系中,线段 C D 是由线段 A B 平移得到的,点 A(-1,4)的对应点
.
x 1
12、直线 y=-3x+5 不经过的象限为
.
13、在△ABC 中, A 800 , B C ,则 B
y 14、函数
2x2 4( x3)
3x(x3) ,则当函数值 x 1 时, y
15、锐角三角形中,最大锐角 a 的取值范围是
. .
.
16、若函数 y=ax+b(a<0)的图象如图所示,则不等式 ax+b≥0 的解集是
2x y 1 0,
C
3x
2
y
5
0
x y 2 0,
D
2x
y
2017年江苏省常州市八年级上学期期中数学试卷与解析答案
2016-2017学年江苏省常州市八年级(上)期中数学试卷一、选择题(每小题2分,共16分)1.(2.00分)下列图形中,是轴对称图形的是()A. B.C.D.2.(2.00分)等腰三角形的对称轴有()A.1条 B.2条 C.3条 D.6条3.(2.00分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.AB=AC,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC4.(2.00分)在△ABC中,∠A=50°,∠B=80°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形5.(2.00分)下列说法中正确的是()A.斜边相等的两个直角三角形全等B.腰相等的两个等腰三角形全等C.有一边相等的两个等边三角形全等D.两条边相等的两个直角三角形全等6.(2.00分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.a2=1,b2=2,c2=3 B.b=c,∠A=45°C.∠A=∠B=3∠C D.a+b=2.5,a﹣b=1.6,c=27.(2.00分)如图,在△ABC中,点D是AB边上一点,且AB=AC=CD,则∠1与∠2之间的关系()A.3∠2﹣2∠1=180°B.2∠2+∠1=180°C.3∠2﹣∠1=180° D.∠1=2∠2 8.(2.00分)如图,在△ABC中,∠A=90°,点D是BC的中点,过点D作DE⊥DF分别AB、AC于点E、F.若BE=1.5,CF=2,则EF的长是()A.2.4 B.2.5 C.3 D.3.5二、填空题(每小题2分,共20分)9.(2.00分)已知△ABC≌△DEF(A、B、C分别对应D、E、F),若∠A=50°,∠E=72°,则∠F为°.10.(2.00分)一个等腰三角形的两边长分别为2和5,则它的周长为.11.(2.00分)如图是某天下午小明在镜中看到身后墙上的时钟情况,则实际时间大约是.12.(2.00分)如图,由Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为cm2.13.(2.00分)如图,在△ABC中,D是BC上的一点,∠CAD=∠BAE=30°,AE=AB,∠E=∠B,则∠ADC的度数为°.14.(2.00分)某园林里有两棵相距8米的树,一棵高8米,另一棵高2米.若有一只鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少要飞米.15.(2.00分)如图,在△ABC中,∠C=90°,AC=5,BC=12,AB的垂直平分线分别交BC、AB于点D、E,则CD的长为.16.(2.00分)在如图所示的4×4正方形网格中,∠1+∠2+∠3=°.17.(2.00分)如图,等边△ABC中,∠ABC和∠ACB的角平分线交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若BE=5,则AE的长为.18.(2.00分)一个直角三角形的一条边长为5,另两条边长之差为3,则这个直角三角形的面积为.三、作图题(其中第19题6分,第20题7分,共13分)19.(6.00分)如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.20.(7.00分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.线段AD的两个端点都在格点上,点B是线段AD上的格点,且BD=1,直线l在格线上.(1)在直线l的左侧找一格点C,使得△ABC是等腰三角形(AC<AB),画出△ABC.(2)将△ABC沿直线l翻折得到△A′B′C′.试画出△A′B′C′.(3)画出点P,使得点P到点D、A′的距离相等,且到边AB、AA′的距离相等.四、解答题(共51分)21.(8.00分)如图,点C为AB中点,CD∥BE,AD∥CE.求证:△ACD≌△CBE.22.(8.00分)如图,线段AD与BC相交于点E,点E是AD的中点,AB=DC=AD.求证:AC=BD且AC∥BD.23.(8.00分)为了测量校园内旗杆的高度,小强先将升旗的绳子拉直到旗杆底端,并在与旗杆低端齐平的绳子处做好标记,测得剩余绳子的长度为0.5米,然后将绳子低端拉至离旗杆底端3.5米处(绳子被拉直且低端恰好与地面接触).请你算出旗杆的高度.24.(8.00分)如图,CD是△ABC的中线,CE是△ABC的高,若AC=9,BC=12,AB=15.(1)求CD的长.(2)求DE的长.25.(9.00分)如图,AD是△ABC的中线,AB=AC,∠BAC=45°.过点C作CE⊥AB于点E,交AD于点F.试判断AF与CD之间的关系,并说明理由.26.(10.00分)如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD沿CD翻折得到△A′CD,连接A′B.(1)求证:CD∥A′B;(2)若AB=4,求A′B2的值.2016-2017学年江苏省常州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.(2.00分)下列图形中,是轴对称图形的是()A. B.C.D.【解答】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:A.2.(2.00分)等腰三角形的对称轴有()A.1条 B.2条 C.3条 D.6条【解答】解:一般等腰三角形有一条对称轴,故选:A.3.(2.00分)如图,下列条件中,不能证明△ABD≌△ACD的是()A.AB=AC,BD=CD B.∠B=∠C,∠BAD=∠CADC.∠B=∠C,BD=CD D.∠ADB=∠ADC,DB=DC【解答】解:A、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS);故A正确;B、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(AAS);故A正确;C、在△ABD和△ACD中,,∵ASS不能证明三角形全等,故C错误;D、∵在△ABD和△ACD中,,∴△ABD≌△ACD;(SAS);故D正确;故选:C.4.(2.00分)在△ABC中,∠A=50°,∠B=80°,则△ABC是()A.钝角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【解答】解:∠C=180°﹣∠A﹣∠B=50°.故△ABC是等腰三角形,故选:B.5.(2.00分)下列说法中正确的是()A.斜边相等的两个直角三角形全等B.腰相等的两个等腰三角形全等C.有一边相等的两个等边三角形全等D.两条边相等的两个直角三角形全等【解答】解:A、全等的两个直角三角形的判定只有一条边对应相等不行,故本选项错误;B、只有两条边对应相等,找不出第三个相等的条件,即两三角形不全等,故本选项错误;C、有一边相等的两个等边三角形全等,根据SSS均能判定它们全等,故此选项正确;D、有两条边对应相等的两个直角三角形,不能判定两直角三角形全,故选项错误;故选:C.6.(2.00分)已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件不能判断△ABC是直角三角形的是()A.a2=1,b2=2,c2=3 B.b=c,∠A=45°C.∠A=∠B=3∠C D.a+b=2.5,a﹣b=1.6,c=2【解答】解:A、∵1+2=3,即a2+b2=c2,∴△ABC是直角三角形,则选项错误;B、∵b=c,∴∠B=∠C==67.5°,△ABS不是直角三角形,选项正确;C、∵∠A=∠B=3∠C,∴设∠C=x°,则∠A=3x°,∠B=2x°,根据题意得x+3x+2x=180°,∴x=30,则∠A=90°,∠B=60°,∠C=30°,△ABC是直角三角形,选项错误;D、根据题意得,解得:,∵22+0.452=2.052,∴b2+c2=a2,∴△ABC是直角三角形,选项错误.故选:B.7.(2.00分)如图,在△ABC中,点D是AB边上一点,且AB=AC=CD,则∠1与∠2之间的关系()A.3∠2﹣2∠1=180°B.2∠2+∠1=180°C.3∠2﹣∠1=180° D.∠1=2∠2【解答】解:∵AC=CD,∴∠2=∠A,∵AB=AC,∴∠B=∠ACB,∵∠2=∠B+∠1,∴∠ACD=180°﹣2∠2,∠B=∠2﹣∠1,∴2(∠2﹣∠1)+∠2=180°,∴3∠2﹣2∠1=180°,故选:A.8.(2.00分)如图,在△ABC中,∠A=90°,点D是BC的中点,过点D作DE⊥DF分别AB、AC于点E、F.若BE=1.5,CF=2,则EF的长是()A.2.4 B.2.5 C.3 D.3.5【解答】解:延长FD至点G,使得DG=DF,连接BG,EG,∵在△CDF和△BDG中,,∴△CDF≌△BDG(SAS),∴BG=CF=2,∠C=∠DBG,∵∠C+∠ABC=90°,∴∠DBG+∠ABC=90°,即∠ABG=90°,∵DE⊥FG,DF=DG,∴EF=EG===2.5.故选:B.二、填空题(每小题2分,共20分)9.(2.00分)已知△ABC≌△DEF(A、B、C分别对应D、E、F),若∠A=50°,∠E=72°,则∠F为58°.【解答】解:∵△ABC≌△DEF,∴∠D=∠A=50°,∵∠E=72°,∴∠F=180°﹣50°﹣72°=58°,故答案为:58.10.(2.00分)一个等腰三角形的两边长分别为2和5,则它的周长为12.【解答】解:(1)若2为腰长,5为底边长,由于2+2<5,则三角形不存在;(2)若5为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为5+5+2=12.故答案为:12.11.(2.00分)如图是某天下午小明在镜中看到身后墙上的时钟情况,则实际时间大约是8:05.【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,故此时的实际时刻是8:05,故答案为:8:05.12.(2.00分)如图,由Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为64cm2.【解答】解:∵S M=AB2,S N=AC2,又∵AC2+AB2=BC2=8×8=64,∴M与正方形N的面积之和为64cm2.13.(2.00分)如图,在△ABC中,D是BC上的一点,∠CAD=∠BAE=30°,AE=AB,∠E=∠B,则∠ADC的度数为75°.【解答】解:∵∠CAD=∠BAE=30°,∴∠CAD+∠BAD=∠BAD+∠BAE,即∠BAC=∠DAE,在△ABC和△AED中∴△ABC≌△AED(ASA),∴AD=AC,∴∠ACD=∠ADC,∵∠CAD=30°,∴∠ADC=75°,故答案为:75.14.(2.00分)某园林里有两棵相距8米的树,一棵高8米,另一棵高2米.若有一只鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少要飞10米.【解答】解:如图,过点A作AE⊥CD于点E,∵AB⊥BD,CD⊥BD,AE⊥CD,∴四边形ABDE是矩形.∵AB=2米,CD=BD=8米,∴AE=BD=8米,CE=8﹣2=6米,∴AC===10(米).故答案为:10.15.(2.00分)如图,在△ABC中,∠C=90°,AC=5,BC=12,AB的垂直平分线分别交BC、AB于点D、E,则CD的长为.【解答】解:∵DE为AB的垂直平分线,∴AD=BD,∵在△ABC中,∠C=90°,AC=5,BC=12,设CD的长为x,则BD=12﹣x,在Rt△ACE中,由勾股定理得:x2+52=(12﹣x)2,解得:x=.故答案为:.16.(2.00分)在如图所示的4×4正方形网格中,∠1+∠2+∠3=135°.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠3=∠BAC,在Rt△ABC中,∠BAC+∠1=90°,∴∠1+∠3=90°,由图可知,△ABF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.17.(2.00分)如图,等边△ABC中,∠ABC和∠ACB的角平分线交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若BE=5,则AE的长为10.【解答】解:∵BO、CO是∠ABC、∠ACB的角平分线,∴∠OBE=∠OBC,∠OCF=∠BCO,又∵EF∥BC,∴∠OBC=∠BOE,∠BCO=∠COF,∴∠OBE=∠BOE,∠COF=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,∵等边△ABC,BE=5,∴AE=EF=BE+CF=2BE=10,故答案为1018.(2.00分)一个直角三角形的一条边长为5,另两条边长之差为3,则这个直角三角形的面积为4或.【解答】或4解:①当5为斜边长时,设较短的一个直角边长为x,则另一直角边的长为:x+3.由勾股定理得:x2+(x+3)2=52.解得:x=(负值舍去).∴x=,∴x+3=,∴直角三角形的面积=××=4;②当5为直角边长时,设较短的一个直角边长为x,则斜边长为:x+3.根据题意得:x2+52=(x+3)2.解得:x=,∴直角三角形的面积=×5×=;故答案为:4或.三、作图题(其中第19题6分,第20题7分,共13分)19.(6.00分)如图,在2×2的正方形网格中,每个小正方形的边长均为1.请分别在下列图中画一个位置不同、顶点都在格点上的三角形,使其与△ABC成轴对称图形.【解答】画对任意三种即可..20.(7.00分)如图,在正方形网格中,每个小正方形的边长为1个单位长度.线段AD的两个端点都在格点上,点B是线段AD上的格点,且BD=1,直线l在格线上.(1)在直线l的左侧找一格点C,使得△ABC是等腰三角形(AC<AB),画出△ABC.(2)将△ABC沿直线l翻折得到△A′B′C′.试画出△A′B′C′.(3)画出点P,使得点P到点D、A′的距离相等,且到边AB、AA′的距离相等.【解答】解:(1)如图,点C为所作点;(2)如图,△A′B′C′为所作三角形;(3)如图,点P为所作点.四、解答题(共51分)21.(8.00分)如图,点C为AB中点,CD∥BE,AD∥CE.求证:△ACD≌△CBE.【解答】证明:∵点C是AB的中点,∴AC=CB∵CD∥BE,∴∠ACD=∠B∵AD∥CE,∴∠A=∠BCE在△ACD和△CBE中∴△ACD≌△CBE(ASA)22.(8.00分)如图,线段AD与BC相交于点E,点E是AD的中点,AB=DC=AD.求证:AC=BD且AC∥BD.【解答】证明:∵点E是AD的中点,∴AE=ED=AD,∵AB=DC=AD,∴AB=AE,ED=CD,∴∠ABE=∠AEB,∠DCE=∠DEC,∵∠AEB=∠DEC,∴∠ABE=∠DCE,在△ABC和△DCB中,∴△ABC≌△DCB (SAS),∴AC=BD,∠ACB=∠DBC∴AC∥BD.23.(8.00分)为了测量校园内旗杆的高度,小强先将升旗的绳子拉直到旗杆底端,并在与旗杆低端齐平的绳子处做好标记,测得剩余绳子的长度为0.5米,然后将绳子低端拉至离旗杆底端3.5米处(绳子被拉直且低端恰好与地面接触).请你算出旗杆的高度.【解答】解:设旗杆的高度为x米,则绳子的长度为(x+0.5)米,根据题意可得:x2+3.52=(x+0.5)2,解这个方程得:x=12.答:旗杆的高度为12米.24.(8.00分)如图,CD是△ABC的中线,CE是△ABC的高,若AC=9,BC=12,AB=15.(1)求CD的长.(2)求DE的长.【解答】解:(1)由AB=15,BC=12得AB2﹣BC2=225﹣144=81.由AC2=81得AB2﹣BC2=AC2即:AB2=BC2+AC2,∴∠ACB=90°,∵点D是AB的中点,∴CD=AB=7.5;=AC•BC=AB•CE,(2)由∠ACB=90°可得:S△ABC∴×9×12=×15CE,解得:CE=7.2,Rt△CDE中:DE==2.1.25.(9.00分)如图,AD是△ABC的中线,AB=AC,∠BAC=45°.过点C作CE⊥AB于点E,交AD于点F.试判断AF与CD之间的关系,并说明理由.【解答】解:AF⊥DC且AF=2CD,∵CE⊥AB,∴∠BEC=∠AEC=90°,∴∠ECB+∠B=90°,又∵∠BAC=45°,∴∠ACE=45°,∴∠BAC=∠ACE,∴AE=EC,∵AB=AC,AD是△ABC的中线,∴BC=2DC,AD⊥BC,即有:AF⊥CD,∴∠ADC=∠ADB=90°,∴∠BAD+∠B=90°,∴∠BAD=∠BCE,在△AEF和△CEB中,,∴△AEF≌△CEB,∴AF=BC,∴AF=2CD.26.(10.00分)如图,在△ACB中,∠ACB=90°,∠A=75°,点D是AB的中点.将△ACD沿CD翻折得到△A′CD,连接A′B.(1)求证:CD∥A′B;(2)若AB=4,求A′B2的值.【解答】解:(1)∵∠ACB=90°,点D是AB的中点∴AD=BD=CD=AB.∴∠ACD=∠A=75°.∴∠ADC=30°.∵△A′CD由△ACD沿CD翻折得到,∴△A′CD≌△ACD.∴AD=AD,∠A′DC=∠ADC=30°.∴AD=A′D=DB,∠ADA′=60°.∴∠A′DB=120°.∴∠DBA′=∠DA′B=30°.∴∠ADC=∠DBA'.∴CD∥A′B.(2)连接AA′∵AD=A′D,∠ADA′=60°,∴△ADA′是等边三角形.∴AA′=AD=AB,∠DAA′=60°.∴∠AA′B=180°﹣∠A′AB ﹣∠ABA′=90°. ∵AB=4, ∴AA ′=2.∴由勾股定理得:A′B 2=AB 2﹣AA′2=42﹣22=12.赠送初中数学几何模型【模型二】半角型:图形特征:A1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +bx -b-ab 45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:a+bx-aa 45°DBa +b-a45°A运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。
宿州市泗县2016-2017学年八年级上期中数学试卷含答案解析
A.
B.
C.(2﹣ )(2+ )=1
小明出发的同时,他的爸爸以 96m/min 速度从邮局同一条道路步行回家,小明 在邮局停留 2min 后沿原路以原速返回,设他们出发后经过 t min 时,小明与家 之间的距离为 s1 m,小明爸爸与家之间的距离为 s2 m,图中折线 OABD、线段 EF 分别表示 s1 、s2 与 t 之间的函数关系的图象. (1)求 s2 与 t 之间的函数关系式; (2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有 多远?
,能构成直角三角形,故此选项错误.
故【点选评C.】此题主要考查了勾股定理的逆定理:已知△ABC 则△ABC 是直角三角形.
的三边满足
a2+b2=c2 ,
2.下列各数: 、0、 、0.23、 、 、6.1010010001…,1﹣ 中无理数 个数为( ) A.3 个 B.4 个 C.5 个 D.6 个 【考点】无理数. 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有 理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理 数,而无限不循环小数是无理数.由此即可判定选择项.
2016-2017 学年安徽省宿州市泗县八年级(上)期中数 学试卷
参考答案与试题解析
一、选择题(共 10 小题,每小题 3 分,满分 30 分) 1.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形 的是( ) A.3、4、5 B.6、8、10 C.4、2、9 D.5、12、13 【考点】勾股定理的逆定理. 【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小 边的平方和是否等于最长边的平方. 【解答】解:A、42+32=52 B、62+82=102,能构成直角,三能角够形成,直故角此三选角项形错,误故;此选项错误; C、42+22≠9 2,不能构成直角三角形,故此选项正确; D、122+52=132
【真卷】2016-2017年江苏省连云港市八年级(上)数学期中试卷带答案
2016-2017学年江苏省连云港市八年级(上)期中数学试卷一、选择题(每题3分,满分24分)1.(3.00分)以下五家银行行标中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(3.00分)下列图形与如图全等的图形是()A.B.C.D.3.(3.00分)以下各组线段长为边,能组成直角三角形的是()A.1,4,4 B.1,2,3 C.9,12,15 D.4,5,64.(3.00分)等腰三角形有一个内角为80°,则它的顶角为()A.80°B.20°C.80°或20°D.不能确定5.(3.00分)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为()A.12cm B.10cm C.8cm D.6cm6.(3.00分)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF7.(3.00分)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP8.(3.00分)如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A.72 B.90 C.108 D.144二、填空题(每题3分,满分24分)9.(3.00分)写出一个你熟悉的轴对称图形的名称:.10.(3.00分)如果△ABC≌△DEC,∠B=60°,∠C=40°,那么∠E=°.11.(3.00分)已知等腰三角形的两条边长分别为3和7,那么它的周长等于.12.(3.00分)已知三角形三边长分别是6,8,10,则此三角形的面积为.13.(3.00分)如图,从电线杆离地面9m处向地面拉一条长15m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有m.14.(3.00分)如图,OD=OC,要使△AOD≌△BOC,需添加的一个条件是(添一个条件即可)15.(3.00分)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是.16.(3.00分)如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE=cm.三、解答题(本大题共11题,满分102分)17.(6.00分)分别在下列各图中补一个小正方形,使它成为轴对称图形(不能重复).18.(6.00分)近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定P点的位置.19.(8.00分)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.20.(10.00分)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;(2)如果AC=6,BD=4,求筝形ABCD的面积.21.(10.00分)如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?22.(12.00分)如图,△ABC是等边三角形,D为AC边上的一点,且∠1=∠2,BD=CE.(1)图中有全等的三角形吗?请找出来并证明;(2)判断△ADE的形状,并说明理由.23.(12.00分)如图,有一个三角形花圃,∠C=90°,AC=20m,BC=10m,两个人同时从点B处出发,以相同速度沿着花圃四周散步,一个沿着BD,DA方向走,另一个沿着BC,CA方向走,结果他们在点A处首次相遇,你能据此求出AD的长吗?试试看.24.(12.00分)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?25.(12.00分)新园小区有一块直角三角形绿地,量得两直角边长分别BC=6m,AC=8m,现在要将绿地扩充成等腰三角形,且扩充部分是以AC为直角边的直角三角形,求扩充后整个等腰三角形绿地的面积.(要求画出简单的示意图,标明数据,写出过程,图2,图3备用)26.(14.00分)如图1,在△ABC中,AB=AC,点D关于直线AE的对称点为F,∠BAC=2∠DAE=2α.(1)求证:△ABD≌△ACF;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.2016-2017学年江苏省连云港市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,满分24分)1.(3.00分)以下五家银行行标中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:第一、二、三个图形是轴对称图形,第四、五个图形不是轴对称图形,故选:C.2.(3.00分)下列图形与如图全等的图形是()A.B.C.D.【解答】解:由全等形的概念可知:A,B,C与左图完全不同,只是D的位置发生了变化.故选:D.3.(3.00分)以下各组线段长为边,能组成直角三角形的是()A.1,4,4 B.1,2,3 C.9,12,15 D.4,5,6【解答】解:A、12+42≠42,不符合勾股定理的逆定理,不能组成直角三角形,故错误;B、12+22≠32,不符合勾股定理的逆定理,不能组成直角三角形,故错误;C、92+122=152,符合勾股定理的逆定理,能组成直角三角形,故正确;D、42+52≠62,不符合勾股定理的逆定理,不能组成直角三角形,故错误.故选:C.4.(3.00分)等腰三角形有一个内角为80°,则它的顶角为()A.80°B.20°C.80°或20°D.不能确定【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:C.5.(3.00分)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为()A.12cm B.10cm C.8cm D.6cm【解答】解:∵l垂直平分BC,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6cm.故选:D.6.(3.00分)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.7.(3.00分)如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是()A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP【解答】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB∴PA=PB∴△OPA≌△OPB∴∠APO=∠BPO,OA=OB∴A、B、C项正确设PO与AB相交于E∵OA=OB,∠AOP=∠BOP,OE=OE∴△AOE≌△BOE∴∠AEO=∠BEO=90°∴OP垂直AB而不能得到AB平分OP故D不成立故选:D.8.(3.00分)如图,矩形ABCD中,AB=12cm,BC=24cm,如果将该矩形沿对角线BD折叠,那么图中阴影部分的面积()cm2.A.72 B.90 C.108 D.144【解答】解:由折叠得到△BCD≌△BC′D,由矩形ABCD得到△ABD≌△CDB,∴△ABD≌△C′DB,∴∠C′BD=∠ADB,∴EB=DE,在△ABE和△C′DE中,,∴△ABE≌△C′DE(AAS),∴AE=C′E,设AE=C′E=xcm,则有ED=AD﹣AE=(24﹣x)cm,在Rt△ABE中,根据勾股定理得:AB2+AE2=BE2,即122+x2=(24﹣x)2,解得:x=9,∴AE=9cm,ED=15cm,=ED•AB=×15×12=90(cm2).则S△BED故选:B.二、填空题(每题3分,满分24分)9.(3.00分)写出一个你熟悉的轴对称图形的名称:圆、矩形.【解答】解:结合所学过的图形的性质,则有线段,等腰三角形,矩形,菱形,正方形,圆等.故答案为:圆、矩形等.10.(3.00分)如果△ABC≌△DEC,∠B=60°,∠C=40°,那么∠E=60°.【解答】解:∵△ABC≌△DEC,∠B=60°,∠C=40°,∴∠E=∠B=60°,故答案为:60.11.(3.00分)已知等腰三角形的两条边长分别为3和7,那么它的周长等于17.【解答】解:当3是腰时,则3+3<7,不能组成三角形,应舍去;当7是腰时,则三角形的周长是3+7×2=17.故答案为:17.12.(3.00分)已知三角形三边长分别是6,8,10,则此三角形的面积为24.【解答】解:∵62+82=102,∴此三角形为直角三角形,∴此三角形的面积为:×6×8=24.故答案为:24.13.(3.00分)如图,从电线杆离地面9m处向地面拉一条长15m的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有12m.【解答】解:如图所示:由题意可得,AB=9m,AC=15m,在Rt△ABC中,BC===12(m),即:这条缆绳在地面的固定点距离电线杆底部12m.故答案是:12.14.(3.00分)如图,OD=OC,要使△AOD≌△BOC,需添加的一个条件是∠D=∠C(添一个条件即可)【解答】解:添加∠D=∠C,∵在△AOD和△BOC中,∴△AOD≌△BOC(ASA),故答案为:∠D=∠C.15.(3.00分)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是25.【解答】解:如图:(1)AB===25;(2)AB===5;(3)AB===5.所以需要爬行的最短距离是25.16.(3.00分)如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE=2cm.【解答】解:如图,过点D,作DF⊥BC,垂足为点F∵BD是∠ABC的角平分线,DE⊥AB,∴DE=DF∵△ABC的面积是30cm2,AB=18cm,BC=12cm,=•DE•AB+•DF•BC,即×18×DE+×12×DE=30,∴S△ABC∴DE=2(cm).故填2.三、解答题(本大题共11题,满分102分)17.(6.00分)分别在下列各图中补一个小正方形,使它成为轴对称图形(不能重复).【解答】解:如图所示.18.(6.00分)近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定P点的位置.【解答】解:(1)画出角平分线;(2)作出垂直平分线.交点P即满足条件.19.(8.00分)如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.【解答】证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.20.(10.00分)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;(2)如果AC=6,BD=4,求筝形ABCD的面积.【解答】(1)证明:①在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC.②∵△ABC≌△ADC,∴∠BAO=∠DAO.∵AB=AD,OA=OA,∴△ABO≌△ADO.∴OB=OD,AC⊥BD.(2)解:筝形ABCD的面积=△ABC的面积+△ACD的面积=×AC×BO+×AC×DO,=×AC×(BO+DO),=×AC×BD,=×6×4,=12.21.(10.00分)如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.小区为美化环境,欲在空地上铺草坪,已知草坪每平方米100元,试问铺满这块空地共需花费多少元?【解答】解:连接AC ,则由勾股定理得AC=5m ,∵AC 2+DC 2=AD 2,∴∠ACD=90°.这块草坪的面积=S Rt △ABC +S Rt △ACD =AB•BC +AC•DC=(3×4+5×12)=36m 2. 故需要的费用为36×100=3600元.答:铺满这块空地共需花费3600元.22.(12.00分)如图,△ABC 是等边三角形,D 为AC 边上的一点,且∠1=∠2,BD=CE .(1)图中有全等的三角形吗?请找出来并证明;(2)判断△ADE 的形状,并说明理由.【解答】解:(1)∵△ABC 是等边三角形,∴AB=AC ,∠BAC=60°,在△ABD 和△ACE 中,,∴△ABD ≌△ACE (SAS );(2)△ADE 是等边三角形理由:∵△ABD ≌△ACE ,∴AD=AE,∠CAE=∠BAD=60°,∴△ADE是等边三角形.23.(12.00分)如图,有一个三角形花圃,∠C=90°,AC=20m,BC=10m,两个人同时从点B处出发,以相同速度沿着花圃四周散步,一个沿着BD,DA方向走,另一个沿着BC,CA方向走,结果他们在点A处首次相遇,你能据此求出AD的长吗?试试看.【解答】解:设BD=x,AD=y,∵BD+AD=BC+AC,AC2+CD2=AD2,AC=20m,BC=10m,∴,解得y=25m,即AD=25m.24.(12.00分)如图,在△ABC中,AB=AC,点D、E、F分别在BC、AB、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【解答】(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B(9分)∵AB=AC,∠A=40°∴∠DEF=∠B=.(3)解:△DEF不可能是等腰直角三角形.∵AB=AC,∴∠B=∠C≠90°∴∠DEF=∠B≠90°,∴△DEF不可能是等腰直角三角形.25.(12.00分)新园小区有一块直角三角形绿地,量得两直角边长分别BC=6m,AC=8m,现在要将绿地扩充成等腰三角形,且扩充部分是以AC为直角边的直角三角形,求扩充后整个等腰三角形绿地的面积.(要求画出简单的示意图,标明数据,写出过程,图2,图3备用)【解答】解:在Rt△ABC中,∵∠ACB=90°,AC=8m,BC=6m,∴AB=10m,(1)如图1,当AB=AD时,CD=6m,则△ABD的面积为:BD•AC=×(6+6)×8=48(m2);(2)如图2,当AB=BD时,CD=4m,则△ABD的面积为:BD•AC=×(6+4)×8=40(m2);(3)如图3,当DA=DB时,设AD=x,则CD=x﹣6,则x2=(x﹣6)2+82,∴x=,则△ABD的面积为:BD•AC=××8=(m2);答:扩充后等腰三角形绿地的面积是48m2或40m2或m2.26.(14.00分)如图1,在△ABC中,AB=AC,点D关于直线AE的对称点为F,∠BAC=2∠DAE=2α.(1)求证:△ABD≌△ACF;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.【解答】解:(1)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∠DAE=∠EAF=α,∴∠CAE+∠CAF=α,∵∠BAC=2∠DAE=2α,∴∠BAD+∠CAE=∠BAC﹣∠DAE=α,∴∠BAD=∠CAF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS);(2)由(1)知,△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,∴DE2=BD2+CE2;(3)等式DE2=BD2+CE2还成立.理由:如图,∵∠BAC=2∠D AE=2α,∴∠DAE=α,∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∠DAE=∠EAF=α,∴∠CAF=∠EAF+∠CAE=α+∠CAE,∴∠BAD=∠BAC﹣∠DAC=2α﹣∠DAC=2α﹣(∠DAE﹣∠CAE)=2α﹣(α﹣∠CAE)=α+∠CAE,∴∠BAD=∠CAF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,∴DE2=BD2+CE2,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年八年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列美丽的图案中是轴对称图形的个数有()A.1个B.2个C.3个D.4个2.在0,,2,﹣3这四个数中,最大的数是()A.0 B.C.2 D.﹣33.如果等腰三角形两边长是8cm和4cm,那么它的周长是()A.20cm B.16cm C.20cm或16cm D.12cm4.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN5.如图所示,有一块直角三角形纸片,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.1cm B.1.5cm C.2cm D.3cm6.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A .3B .3.5C .4D .4.57.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°8.如图,若△ABC 和△DEF 的面积分别为S 1、S 2,则( )A .S 1=S 2B .S 1=S 2C .S 1=S 2D .S 1=S 2二、填空题(本大题共10小题,每小题2分,共20分)9. 16的平方根是 .10.等腰三角形的一个角是110°,则它的底角是 .11.已知△ABC ≌△FED ,∠A=30°,∠B=80°,则∠D= .12.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 种.13.如图,在等腰三角形纸片ABC 中,AB=AC ,∠A=46°,折叠该纸片,使点A 落在点B 处,折痕为DE ,则∠CBE= °.14.如图,在长方形ABCD中,AB=9,BC=15,以点B为圆心,BC长为半径画弧,交边AD于点E,则AE的长为.15.如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点距离相等;④图中共有3对全等三角形,正确的有:.16.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.17.观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a= .(提示:5=,13=,…)18.如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为个.三、解答题19.求下列各式中的x(1)(x+1)2=16(2)﹣(﹣x﹣3)3=8.20.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.21.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.22.如图,BD是△ABC的角平分线,DE⊥AB,DF⊥BC垂足分别为E、F.(1)求证:BE=BF;(2)若△ABC的面积为70,AB=16,DE=5,则BC= .23.如图,已知△ABC,∠ABC=90°,利用直尺和圆规,根据要求作图(不写作法,保留作图痕迹),并解决下面的问题.(1)作AC的垂直平分线,分别交AC、BC于点D、E;(2)若AB=12,BE=5,求△ABC的面积.24.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.25.如图1,在四边形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.(1)求证:AD=DC;(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.26.【问题背景】在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.【初步探索】小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到 BE、EF、FD之间的数量关系是.【探索延伸】在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否任然成立?说明理由.【结论运用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.2016-2017学年八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.下列美丽的图案中是轴对称图形的个数有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念对各图形分析判断即可得解.【解答】解:第一个图形是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有3个.故选C.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.在0,,2,﹣3这四个数中,最大的数是()A.0 B.C.2 D.﹣3【考点】实数大小比较.【专题】推理填空题;实数.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出在0,,2,﹣3这四个数中,最大的数是哪个即可.【解答】解:根据实数比较大小的方法,可得2>>0>﹣3,∴在0,,2,﹣3这四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.3.如果等腰三角形两边长是8cm和4cm,那么它的周长是()A.20cm B.16cm C.20cm或16cm D.12cm【考点】等腰三角形的性质;三角形三边关系.【分析】分腰长为8cm和4cm两种情况,再利用三角形的三边关系进行判定,再计算周长即可.【解答】解:当腰长为8cm时,则三角形的三边长分别为8cm、8cm、4cm,满足三角形的三边关系,此时周长为20cm;当腰长为4cm时,则三角形的三边长分别为4cm、4cm、8cm,此时4+4=8,不满足三角形的三边关系,不符合题意;故选A.【点评】本题主要考查等腰三角形的性质和三角形的三边关系,分两种情况并利用三角形的三边关系进行验证是解题的关键.4.如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN()A.∠M=∠N B.AB=CD C.AM∥CN D.AM=CN【考点】全等三角形的判定.【分析】利用三角形全等的条件分别进行分析即可.【解答】解:A、加上∠M=∠N可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;B、加上AB=CD可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AM∥CN可证明∠A=∠NCB,可利用ASA定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图所示,有一块直角三角形纸片,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.1cm B.1.5cm C.2cm D.3cm【考点】勾股定理;翻折变换(折叠问题).【分析】根据勾股定理可将斜边AB的长求出,根据折叠的性质知,AE=AB,已知AC的长,可将CE 的长求出.【解答】解:在Rt△ABC中,AB===5根据折叠的性质可知:AE=AB=5∵AC=4∴CE=AE﹣AC=1即CE的长为1故选A.【点评】将图形进行折叠后,两个图形全等,是解决折叠问题的突破口.6.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3 B.3.5 C.4 D.4.5【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【分析】由题意推出BD=AD,然后,在Rt△BCD中,CP=BD,即可推出CP的长度.【解答】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∴BD=AD,∵AD=6,∴BD=6,∵P点是BD的中点,∴CP=BD=3.故选A.【点评】本题主要考查角平分线的性质、等腰三角形的判定和性质、折角三角形斜边上的中线的性质,关键在于根据已知推出BD=AD,求出BD的长度.7.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90° B.60° C.45° D.30°【考点】勾股定理.【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:根据勾股定理可以得到:AC=BC=,AB=.∵()2+()2=()2.∴AC2+BC2=AB2.∴△ABC 是等腰直角三角形.∴∠ABC=45°.故选C .【点评】本题考查了勾股定理,判断△ABC 是等腰直角三角形是解决本题的关键.8.如图,若△ABC 和△DEF 的面积分别为S 1、S 2,则( )A .S 1=S 2B .S 1=S 2C .S 1=S 2D .S 1=S 2【考点】解直角三角形;三角形的面积.【专题】计算题.【分析】过A 点作AG ⊥BC 于G ,过D 点作DH ⊥EF 于H .在Rt △ABG 中,根据三角函数可求AG ,在Rt △ABG 中,根据三角函数可求DH ,根据三角形面积公式可得S 1,S 2,依此即可作出选择.【解答】解:过A 点作AG ⊥BC 于G ,过D 点作DH ⊥EF 于H .在Rt △ABG 中,AG=AB •sin40°=5sin40°,∠DEH=180°﹣140°=40°,在Rt △DHE 中,DH=DE •sin40°=8sin40°,S 1=8×5sin40°÷2=20sin40°,S 2=5×8sin40°÷2=20sin40°.则S 1=S 2.故选:C .【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,关键是作出高线构造直角三角形.二、填空题(本大题共10小题,每小题2分,共20分)9.16的平方根是±4 .【考点】平方根.【专题】计算题.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.等腰三角形的一个角是110°,则它的底角是35°.【考点】等腰三角形的性质.【专题】计算题;分类讨论.【分析】题中没有指明已知的角是顶角还是底角,故应该分情况进行分析,从而求解.【解答】解:①当这个角是顶角时,底角=(180°﹣110°)÷2=35°;②当这个角是底角时,另一个底角为110°,因为110°+110°=240°,不符合三角形内角和定理,所以舍去.故答案为:35°.【点评】此题主要考查等腰三角形的性质及三角形内角和定理的综合运用.11.已知△ABC≌△FED,∠A=30°,∠B=80°,则∠D= 70°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠F和∠E,根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△FED,∠A=30°,∠B=80°,∴∠F=∠A=30°,∠E=∠B=80°,∴∠D=180°﹣∠F﹣∠E=70°,故答案为:70°.【点评】本题考查了三角形的内角和定理,全等三角形的性质的应用,能根据全等三角形的性质得出∠F=∠A和∠E=∠B是解此题的关键,注意:全等三角形的对应角相等,对应边相等.12.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有 3 种.【考点】概率公式;轴对称图形.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择小正三角形涂黑,使整个被涂黑的图案构成一个轴对称图形,选择的位置有以下几种:1处,2处,3处,选择的位置共有3处.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.如图,在等腰三角形纸片ABC中,AB=AC,∠A=46°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE= 21 °.【考点】翻折变换(折叠问题).【分析】首先运用等腰三角形的性质求出∠ABC的大小;借助翻折变换的性质求出∠ABE的大小问题即可解决.【解答】解:∵AB=AC,且∠A=46°,∴∠ABC=∠C=(180°﹣46°)÷2=67°;∵翻折,∴AE=BE,∴∠A=∠ABE=46°,∴∠CBE=67°﹣46°=21°,故答案为:21.【点评】此题考查了折叠的性质、等腰三角形的性质及三角形内角和定理.掌握折叠前后图形的对应关系,结合图形解决问题.14.如图,在长方形ABCD中,AB=9,BC=15,以点B为圆心,BC长为半径画弧,交边AD于点E,则AE的长为12 .【考点】矩形的性质;勾股定理.【分析】连接BE,由圆的性质得出BE=BC=15,由矩形的性质得出∠A=90°,由勾股定理求出AE即可.【解答】解:连接BE,如图所示则BE=BC=15,∵四边形ABC是矩形,∴∠A=90°,∴AE===12,故答案为:12.【点评】本题考查了矩形的性质、勾股定理、圆的性质;熟练掌握矩形的性质,由勾股定理求出AE 是解决问题的关键.15.如图,在△ABC中,AB=AC,AD是△ABC的平分线,DE⊥AB,DF⊥AC,垂足分别是E,F.则下面结论中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的点到B、C两点距离相等;④图中共有3对全等三角形,正确的有:①②③④.【考点】全等三角形的判定与性质.【分析】在△ABC中,AB=AC,AD是△ABC的平分线,可知直线AD为△ABC的对称轴,再根据图形的对称性,逐一判断.【解答】解:∵在△ABC中,AB=AC,AD是△ABC的平分线,根据等腰三角形底边上的“三线合一”可知,AD垂直平分BC,①正确;由①的结论,已知DE⊥AB,DF⊥AC,可证△ADE≌△ADF(AAS)故有AE=AF,DE=DF,②正确;AD是△ABC的平分线,根据角平分线性质可知,AD上的点到B、C两点距离相等,③正确;根据图形的对称性可知,图中共有3对全等三角形,④正确.故填①②③④.【点评】本题考查了等腰三角形的判定和性质;利用三角形全等是正确解答本题的关键.16.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60 度.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】几何图形问题.【分析】根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.【解答】解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故答案为:60.【点评】本题利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.17.观察下列勾股数组:①3,4,5;②5,12,13;③7,24,25;④9,40,41;….若a,144,145是其中的一组勾股数,则根据你发现的规律,a= 17 .(提示:5=,13=,…)【考点】勾股数.【专题】规律型.【分析】它们三个一组,都是勾股数,一组勾股数中,并且第一个都是奇数,并且从3开始的连续奇数,每一组勾股数的第二,第三个数是连续整数,第二个数是第一个数的平方减去一除以二.【解答】解:由题意得:a 2+1442=1452,a 2=1452﹣1442,a=17.故答案为:17.【点评】本题主要考查了勾股定理的逆定理,关键是找出数据之间的关系,掌握勾股定理逆定理.18.如图,在△ABC 中,AC=BC >AB ,点P 为△ABC 所在平面内一点,且点P 与△ABC 的任意两个顶点构成△PAB ,△PBC ,△PAC 均是等腰三角形,则满足上述条件的所有点P 的个数为 6 个.【考点】等腰三角形的判定与性质.【专题】压轴题.【分析】根据线段垂直平分线上的点到线段两端点的距离相等,作出AB 的垂直平分线,首先△ABC 的外心满足,再根据圆的半径相等,以点C 为圆心,以AC 长为半径画圆,AB 的垂直平分线相交于两点,分别以点A 、B 为圆心,以AC 长为半径画圆,与AB 的垂直平分线相交于一点,再分别以点A 、B 为圆心,以AB 长为半径画圆,与⊙C 相交于两点,即可得解.【解答】解:如图所示,作AB 的垂直平分线,①△ABC 的外心P 1为满足条件的一个点,②以点C 为圆心,以AC 长为半径画圆,P 2、P 3为满足条件的点,③分别以点A 、B 为圆心,以AC 长为半径画圆,P 4为满足条件的点,④分别以点A 、B 为圆心,以AB 长为半径画圆,P 5、P 6为满足条件的点,综上所述,满足条件的所有点P 的个数为6.故答案为:6.【点评】本题考查了等腰三角形的判定与性质,主要利用了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的外心到三个顶点的距离相等,圆的半径相等的性质,作出图形更形象直观.三、解答题19.求下列各式中的x(1)(x+1)2=16(2)﹣(﹣x﹣3)3=8.【考点】立方根;平方根.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出x的值;(2)方程整理后,利用立方根定义开立方即可求出x的值.【解答】解:(1)开平方得:x+1=±4,即x+1=4或x+1=﹣4,解得:x=3或x=﹣5;(2)方程变形得:(x+3)3=8,开立方得:x+3=2,解得:x=﹣1.【点评】此题考查了立方根,平方根,熟练掌握各自的定义是解本题的关键.20.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.【解答】证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM(SAS),∴MD=ME.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.21.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.【考点】作图—应用与设计作图.【专题】作图题.【分析】(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.【解答】解:(1)如图甲所示:(2)如图乙所示:【点评】此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.22.如图,BD是△ABC的角平分线,DE⊥AB,DF⊥BC垂足分别为E、F.(1)求证:BE=BF;(2)若△ABC的面积为70,AB=16,DE=5,则BC= 12 .【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)由角平分线的对称性直接证明△DBE≌△DBF即可;(2)先算出三角形ABD的面积,再得出三角形BCD的面积,高DF=DE=5,从而直接算出BC.【解答】(1)证明:∵DE⊥AB,DF⊥BC,∴∠BED=∠BFD=90°,∵BD是△ABC的角平分线,∴∠EBD=∠FBD,又∵BD=BD,∴△DBE≌△DBF,∴BE=BF;(2)解:∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DF=DE=5,∴,∴=70﹣40=30,∴BC=12.故答案为12.【点评】本题主要考查了角平分线的性质、全等三角形的判定与性质、面积法求线段长度,难度中等.熟练掌握角平分线的性质是解答本题的关键.23.如图,已知△ABC,∠ABC=90°,利用直尺和圆规,根据要求作图(不写作法,保留作图痕迹),并解决下面的问题.(1)作AC的垂直平分线,分别交AC、BC于点D、E;(2)若AB=12,BE=5,求△ABC的面积.【考点】作图—复杂作图;线段垂直平分线的性质.【专题】作图题.【分析】(1)利用基本作图(作线段的垂直平分线)作出DE即可;(2)先根据勾股定理计算出AE=13,再根据线段垂直平分线的性质得到CE=13,然后根据三角形面积公式求解.【解答】解:(1)如图,DE为所作;(2)连结AE,如图,在Rt△ABE中,∵BE=5,AB=12,∴AE==13,∵DE垂直平分AC,∴EA=EC=13,∴CE=EC+BE=13+5=18,∴△ABC的面积=•AB•BC=×12×13=78.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.24.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.求证:MN⊥BD.【考点】直角三角形斜边上的中线;等腰三角形的判定与性质.【专题】证明题.【分析】根据直角三角形斜边上的中线等于斜边的一半可得DM=EC,BM=EC,从而得到DM=BM,再根据等腰三角形三线合一的性质证明.【解答】证明:∵BC⊥a,DE⊥b,点M是EC的中点,∴DM=EC,BM=EC,∴DM=BM,∵点N是BD的中点,∴MN⊥BD.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.25.如图1,在四边形ABCD中,DC∥AB,AD=BC,BD平分∠ABC.(1)求证:AD=DC;(2)如图2,在上述条件下,若∠A=∠ABC=60°,过点D作DE⊥AB,过点C作CF⊥BD,垂足分别为E、F,连接EF.判断△DEF的形状并证明你的结论.【考点】等边三角形的判定;等腰三角形的判定与性质.【分析】(1)利用平行线的性质以及角平分线的性质得出对应角关系即可得出∠CDB=∠CBD进而得出AD=DC,(2)利用等腰三角形的性质得出点F是BD的中点,再利用直角三角形的性质以及等边三角形的判定得出答案.【解答】(1)证明:∵DC‖AB,∴∠CDB=∠ABD,又∵BD平分∠ABC,∴∠CBD=∠ABD,∴∠CDB=∠CBD,∴BC=DC,又∵AD=BC,∴AD=DC;(2)△DEF为等边三角形,证明:∵BC=DC(已证),CF⊥BD,∴点F是BD的中点,∵∠DEB=90°,∴EF=DF=BF.∵∠ABC=60°,BD平分∠ABC,∠BDE=60°,∴△DEF为等边三角形.【点评】此题主要考查了等边三角形判定以及等腰三角形的性质、直角三角形的性质等知识,得出EF=DF=BF是解题关键.26.【问题背景】在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.【初步探索】小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到 BE、EF、FD之间的数量关系是EF=BE+FD .【探索延伸】在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否任然成立?说明理由.【结论运用】如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.【考点】全等三角形的应用.【分析】探索延伸:延长FD到G,使DG=BE,连接AG,证明△ABE≌△ADG和△AEF≌△GAF,得到答案;结论运用:连接EF,延长AE、BF交于点C,得到EF=AE+BF,根据距离、速度和时间的关系计算即可.【解答】解:初步探索:EF=BE+FD,故答案为:EF=BE+FD,探索延伸:结论仍然成立,证明:如图2,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADG+∠ADC=180°∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF,∴EF=FG,∴FG=DG+FD=BE+DF;结论运用:解:如图3,连接EF,延长AE、BF交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里,答:此时两舰艇之间的距离是210海里.【点评】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键,注意要正确作出辅助线.。