信号与系统课件SandS-3-6
《信号与系统教案》课件
《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类定义:信号是自变量为时间(或空间)的函数,用于描述物理量或信息。
分类:模拟信号、数字信号、离散信号、连续信号等。
1.2 系统的概念与分类定义:系统是由输入信号、系统本身和输出信号三部分组成的。
分类:线性系统、非线性系统、时不变系统、时变系统等。
第二章:信号的运算与处理2.1 信号的运算加法、减法、乘法、除法等基本运算。
叠加原理与分配律。
2.2 信号的处理滤波器、放大器、采样与量化等。
第三章:线性时不变系统的性质3.1 齐次性定义:若系统对于任意输入信号f(t),其输出信号y(t)都满足y(t)=af(t),则称系统为齐次系统。
3.2 叠加性定义:若系统对于两个输入信号f1(t)和f2(t)的输出信号y1(t)和y2(t)满足y1(t)+y2(t)=a(f1(t)+f2(t)),则称系统为叠加系统。
3.3 时不变性定义:若系统对于任意输入信号f(t),其输出信号y(t-t0)与输入信号f(t-t0)的输出信号y(t)相同,则称系统为时不变系统。
第四章:傅里叶级数与傅里叶变换4.1 傅里叶级数定义:将周期信号分解为正弦、余弦信号的和。
傅里叶级数的展开与系数计算。
4.2 傅里叶变换定义:将信号从时域转换到频域。
傅里叶变换的性质与计算方法。
第五章:拉普拉斯变换与Z变换5.1 拉普拉斯变换定义:将信号从时域转换到复频域。
拉普拉斯变换的性质与计算方法。
5.2 Z变换定义:将信号从时域转换到离散域。
Z变换的性质与计算方法。
第六章:信号与系统的时域分析6.1 系统的时域响应定义:系统对输入信号的响应称为系统的时域响应。
系统的时域响应的计算方法。
6.2 系统的稳定性定义:系统在长时间内能否收敛到一个稳定状态。
判断系统稳定性的方法。
第七章:信号与系统的频域分析7.1 傅里叶变换的应用频谱分析:分析信号的频率成分。
滤波器设计:设计线性时不变系统的滤波器。
信号与系统ppt课件
02
时不变:系统的特性不随时间变 化。
系统的数学模型为非线性微分方 程或差分方程。
03
频域分析方法不适用,需采用其 他方法如几何法、状态空间法等
。
04
时变系统
系统的特性随时间变 化,即系统在不同时 刻的响应具有不同的 特性。
时域分析方法:积分 方程、微分方程等。
系统的数学模型为时 变微分方程或差分方 程。
信号与系统PPT课件
目录
CONTENTS
• 信号与系统概述 • 信号的基本特性 • 系统分析方法 • 系统分类与特性 • 系统应用实例
01
CHAPTER
信号与系统概述
信号的定义与分类
总结词
信号是传输信息的一种媒介,具有时间和幅度的变化特性。
详细描述
信号是表示数据、文字、图像、声音等的电脉冲或电磁波,它可以被传输、处理和记录。根据不同的特性,信号 可以分为模拟信号和数字信号。模拟信号是连续变化的物理量,如声音、光线等;数字信号则是离散的二进制数 据,如计算机中的数据传输。
04
CHAPTER
系统分类与特性
线性时不变系统
线性
系统的响应与输入信号的 线性组合成正比,即输出 =K*输入+常数。
时不变
系统的特性不随时间变化 ,即系统在不同时刻的响 应具有相同的特性。
频域分析方法
傅里叶变换、拉普拉斯变 换等。
非线性时不变系统
01
系统的响应与输入信号的非线性 关系,即输出不等于K*输入+常 数。
系统的定义与分类
总结词
系统是由相互关联的元素组成的整体,具有输入、输出和转 换功能。
详细描述
系统可以是一个物理装置、生物体、组织或抽象的概念,它 能够接收输入、进行转换并产生输出。根据不同的分类标准 ,系统可以分为线性系统和非线性系统、时不变系统和时变 系统等频域分析方法将信号和系统从时间域转换到频率域,通过分析系统的频率响应 来了解系统的性能,如系统的幅频特性和相频特性,这种方法特别适用于分析 周期信号和非周期信号。
《信号和系统》课件
系统建模:MATL AB可以建立系统的数学模型,并进行仿真和优化
控制系统设计:MATL AB可以进行控制系统的设计、分析和优化 信号和系统分析:MATL AB可以进行信号和系统的分析,包括频谱分析、 时域分析等
MATL AB在系统设计中的应用
互动性强:设置问 答、讨论等环节, 增强学生的学习兴 趣和参与度
信号基础知识
信号定义
信号是信息的载体, 是信息的表现形式
信号可以分为模拟 信号和数字信号
模拟信号是连续变 化的物理量,如声 音、图像等
数字信号是离散变 化的物理量,如二 进制数据等
信号分类
连续信号:在时 间上和数值上都
是连续的信号
结构图描述法:通过结构 图来描述系统的结构关系
系统分析的基本概念
系统:由相互关联的 组件组成的整体,具 有特定的功能和目标
信号:信息的载体, 可以是数字、模拟或
其他形式
输入:系统的输入信 号,决定了系统的行
为和输出
输出:系统的输出信 号,是系统对输入信
号的处理结果
反馈:系统对输出信 号的监测和调整,以 实现更好的性能和稳
适用人群
电子信息工程、 通信工程、自 动化等专业的
学生
信号处理、通 信系统、控制 系统等领域的
工程师
对信号和系统 感兴趣的科研
人员
信号和系统课 程的教师和助
教
课件特点
内容全面:涵盖信 号与系统的基本概 念、理论、应用等
逻辑清晰:按照信 号与系统的发展脉 络进行讲解,易于 理解
实例丰富:结合实 际案例,便于学生 理解抽象概念
定常系统:系统参数不随时间变化的系统
信号与系统ppt课件
结果解释
对实验结果进行解释,说明实验结果所反映 出的系统特性。
总结归纳
对实验过程和结果进行总结归纳,概括出实 验的重点内容和结论。
06
总结与展望
信号与系统的总结
信号与系统是通信、电子、生物医学工程等领域的重 要基础课程,其理论和方法在信号处理、图像处理、
数据压缩等领域有着广泛的应用。
信号与系统的主要内容包括信号的时域和频域表示、 线性时不变系统、调制与解调、滤波器设计等。
信号与系统ppt课件
目录
• 信号与系统概述 • 信号的基本特性 • 系统的基本特性 • 信号与系统的应用 • 信号与系统的实验与实践 • 总结与展望
01
信号与系统概述
信号的定义与分类
信号的定义
信号是传递信息的一种方式,可以表示声音、图像、文字等。在通信系统中, 信号是传递信息的载体。
信号的分类
系统的分类
根据系统的复杂程度,可以分为线性系统和非线性系统;根据系统的稳定性,可以分为稳定系统和不稳定系统; 根据系统的时域特性,可以分为时域系统和频域系统。
信号与系统的重要性
01
信号是信息传递的载体,系统 是实现特定功能的整体,因此 信号与系统在信息处理中具有 非常重要的地位。
02
在通信系统中,信号的传输和 处理是实现信息传递的关键环 节,而系统的设计和优化直接 影响到通信系统的性能和可靠 性。
03
信号可以用数学函数来表示,其中离散信号常用序列
表示,连续信号常用函数表示。
信号的时域特性
01
02
03
信号的幅度
信号的幅度是表示信号强 弱的量,通常用振幅来表 示。
信号的相位
信号的相位是表示信号时 间先后顺序的量,通常用 角度来表示。
信号与系统课件第六章(电子)
k 0 序列f(k)的双边z变换为:
F ( z )
f
k
(k)zk
z2
2z
3
2 z
1 z2
其单边z变换为: F ( z )
k0
f
(k)zk
3
2 z
1 z2
可见:*单边与双边z变换不同;
*对双边z变换,除z=0,和∞外对任意z,
F(z)有界,故其收敛域0<|z|<∞;
*对单边z变换,其收敛域|z|>0。
第六章 离散系统的z域分析
第三章中我们讨论了离散时间系统的时域分析法,重点 介绍了差分方程的时域求解方法。在连续时间系统中,为 避免求解微分方程的困难,可以通过拉氏变换把微分方程 转换为复频域的代数方程。基于同样的理由,在离散时间 系统中,为了避开求解差分方程的困难,也可以通过一种称 为z变换的方法,把差分方程转换为z域的代数方程。
因此,z变换在离散系统分析中的地位和拉氏变换在连续 系统分析中的地位是相似的。
z变换可以直接从数学角度进行定义;也可以利用拉普 拉斯变换引出。
本章主要内容 6.1 z变换 6.2 z变换的性质 6.3 逆z变换 6.4 z域分析
§6.1 z变换
一、从拉普拉斯变换到z变换 二、z变换 三、收敛域
一、从拉普拉斯变换到z变换
(3)对于双边z变换必须 标明收敛域,否则其对应序 列将不是唯一的。
|b|
|a|
0
Re[z]
双边序列的收敛域
ak (k) z z a
za
bk (k 1) z z b
zb
bk (k 1) z z b
zb
若已知 Fz,则 其原函数不唯一.如:
Fz z
z2
f k 2k k 或 f k 2k k 1
《信号与系统教案》课件
介绍了信号与系统分析的常用方法,如时域分析、频域分析、复频域 分析等。
信号与系统的应用
列举了一些信号与系统的实际应用案例,如通信系统、控制系统等, 以展示信号与系统在工程实践中的重要性。
未来发展方向与展望
信号处理的新技术
介绍了一些新兴的信号处理技 术,如深度学习在信号处理中 的应用、稀疏信号处理等,并 探讨了这些技术对未来信号处 理领域的影响。
详细描述
信号是信息传输的载体,它可以表示声音、图像、文字等不同形式的信息。信号具有时间、幅度、相 位等特征,这些特征在不同类型的信号中有所不同。根据不同的特征和用途,信号可以分为连续信号 和离散信号、确定信号和随机信号、模拟信号和数字信号等类型。
系统的定义与分类
总结词
系统是实现特定功能的整体,由相互关联的元素组成,可以分为线性系统和非线性系统、时不变系统和时变系统 等类型。
信号与系统是信息传输和处理的基础,广泛应用于通 信、图像处理、声音处理等领域。
详细描述
信号与系统是信息传输和处理的基础,它们在通信、图 像处理、声音处理等领域中发挥着重要的作用。通过信 号的传输和处理,可以实现信息的传递、转换和存储, 为各种应用提供必要的信息支持。同时,信号与系统的 理论和方法也在其他领域中得到了广泛的应用,如生物 医学工程、地震勘探、雷达探测等。随着信息技术的发 展,信号与系统的应用范围还将不断扩大,为人们的生 活和工作带来更多的便利和效益。
信号的测量与监测
控制系统需要对各种物理量进行测量和监测,以实现自动化控制, 测量和监测技术能够将各种物理量转换为可处理的电信号。
信号的反馈与控制
反馈和控制技术能够根据系统输出和期望值的偏差,自动调整系统参 数,使系统输出达到期望值。
信号与系统课件SandS-2-6
y(t) H x(t)
(2-6-1)
读作y(t)是H对 x(t)的响应,其中包括系统相应的初始条件
(如果存在)。式(2-6-1)中算子H承担标识系统及约 束 x(t) y(t)运算的双重作用。注意,对于多输入-多输出 系统,系统的输入信号 x(t) 、输出信号y(t)均为矢量。
3
第二章 连续时间信号与系统
因数 Q 为无量纲常数。上述方程中由于定义了这两个新物
理量,可将式(2-6-10)改写为含有n 和 Q 两个参数的二阶
微分方程:
d 2 y(t) dt 2
n
Q
dy(t) dt
n2 y(t)
x(t)
(2-6-10)
从式(2-6-10) 可以看出,增大弹性系数 K 和减小检测块的 质量 M 可以提高固有频率 n ;同时,增大弹性系数K 和检
d
2 y(t) dt 2
a1
dy(t) dt
a2
y(t)
bx(t)
(2-6-11)
用于描述三个不同系统的特例。其中是系统的输出,是 系统的输入,和b都是常数。
11
第二章 连续时间信号与系统
2-6-2 系统的数学模型
2-6-2 系统的数学模型
2、机械系统
设一质量为m的质点被固定在弹簧上,该质点沿水平轴
在有阻力的介质中振动。质点的平衡位置为x 0 ,根据胡克
(Hooke)定律,弹簧作用在质点上弹力是 bx,而介质阻
力 a dx 正比于质点的运动速度,则由牛顿运动定律,有
dt
m
d2x dt 2
bx a
dx dt
国家“十二五”规划教材——《信号与系统》
LOGO
§2-6
连续时间系统 ThemeGallery
《信号与系统 》PPT课件
1.6 系统的描述
一、连续系统 二、离散系统
1.7 LTI系统分析方法概
述
二、冲激函数
点击目录 ,进入相关章节
a
10
第1-10页
■
信号与系统 电子教案
第一章 信号与系统
1.1 绪言
思考问题:什么是信号?什么是系统?为什么把这两 个概念联系在一起?
一、信号的概念
1. 消息(message):
a
26
第1-26页
■
信号与系统 电子教案
1.2 信号的描述和分类
4.能量信号与功率信号
将信号f (t)施加于1Ω电阻上,它所消耗的瞬时功率 为| f (t) |2,在区间(–∞ , ∞)的能量和平均功率定义为
(1)信号的能量E
def
E
f (t) 2 dt
(2)信号的功率P
def
Pl
i
m1
TT
29
第1-29页
■
信号与系统 电子教案
1.3 信号的基本运算
二、信号的时间变换运算
1. 反转
演示
将 f (t) → f (– t) , f (k) → f (– k) 称为对信号f (·) 的反转或反折。从图形上看是将f (·)以纵坐标为轴反 转180o。如
f (t) 1
反转 t → - t
1
f (- t )
看成系统。它们所传送的语音、音乐、图像、文字
等都可以看成信号。信号的概念与系统的概念常常
紧密地联系在一起。 系统的基本作用是对输入 输入信号
信号进行加工和处理,将其转 换为所需要的输出信号。
激励
系统
演示
《信号与系统讲义》课件
信号与系统是理解和分析信号处理的基础。本课件将介绍信号与系统的基本 概念、时域信号与频域信号、连续信号与离散信号、线性时不变系统、卷积 运算、采样与重构,以及系统的频率响应和频率特性。
信号与系统的基本概念
了解信号与系统的基本概念是理解信号处理的关键。本节将介绍信号的定义、 分类以及常见的信号类型,以及系统的定义和特性。
卷积运算
卷积运算是信号处理中常用的操作。本节将介绍卷积运算的定义和性质,并 通过实例演示如何使用卷积运算来处理信号。
采样与重构
采样是将连续信号转换为离散信号的过程,而重构则是将离散信号还原为连续信号的过程。本节将介绍 采样和重构的原理和方法。
பைடு நூலகம்
系统的频率响应和频率特性
系统的频率响应和频率特性描述了系统对不同频率的信号的响应情况。本节 将介绍频率响应和频率特性的概念,以及它们在信号处理中的应用。
时域信号与频域信号
在信号处理中,时域信号和频域信号是两种常见的表示方式。本节将解释时 域和频域的概念,以及如何在两个域中相互转换。
连续信号与离散信号
信号可以是连续的,也可以是离散的。本节将讨论连续信号和离散信号的区别,以及在信号处理中如何 处理这两种类型的信号。
线性时不变系统
线性时不变系统是信号处理中常用的模型。本节将介绍线性时不变系统的基本概念和特性,以及如何利 用系统的响应来分析信号的处理过程。
信号与系统分析PPT全套课件可修改全文
1.系统的初始状态
根据各电容及电感的状态值能够确定在 t 0
时刻系统的响应及其响应的各阶导数
( y(0 ) k 1, 2 , , n 1)
称这一组数据为该系统的初始状态。
2.系统的初始值
一般情况下,由于外加激励的作用或系统内 部结构和参数发生变化,使得系统的初始值与 初始状态不等,即:
y(0 ) y(0 )
自由响应又称固有响应,它反映了系统本身 的特性,取决于系统的特征根; 强迫响应又称强制响应,是与激励相关的响 应。 利用经典法可以直接求得自由响应与强迫响 应,强迫响应即特解
先求得系统的零输入响应和零状态响应,并 获得系统的全响应;
然后利用系统特性与自由响应、激励与强迫 响应的关系可以间接得到自由响应和强迫响应。
t
f (t) (t)dt f (0) (t)dt
f (0) (t)dt f (0)
(1)
0
t
ห้องสมุดไป่ตู้(3)偶函数
(4)
(at)
1 a
(t)
f (t) (t) ( f (0))
(5) (t)与U (t)的关系
0
t
1.2 基本信号及其时域特性
单位冲激偶信号 '(t)
f (t) 1/
f ' (t) (1/ )
第2章 连续系统的时域分析
2.1 LTI连续系统的模型 2.2 LTI连续系统的响应 2.3 冲激响应与阶跃响应 2.4 卷积与零状态响应
2.1 LTI连续系统的模型
2.1.1 LTI连续系统的数学模型 2.1.2 LTI连续系统的框图
返回首页
2.1.1 LTI连续系统的数学模型
对于任意一个线性时不变电路,当电路结构 和组成电路的元件参数确定以后, 根据元件的伏安关系和基尔霍夫定律,可以 建立起与该电路对应的动态方程。
信号与系统 全套课件完整版ppt教学教程最新最全
t
y(t)
f()df( 1)(t)
1.2.3 信号的相加、相乘及综合变换 1.相加
信号相加任一瞬间值,等于同一瞬间相加信号瞬时值的和。即
y (t)f1 (t)f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 2.相乘
信号相乘任一瞬间值,等于同一瞬间相乘信号瞬时值的积。即
离散时间系统是指输入系统的信号是离散时间信号,输出也是离散 时间信号的系统,简称离散系统。如图连续时间系统与离散时间系统(b) 所示。
1.3.1 系统的定义及系统分类 2. 线性系统与非线性系统
线性系统是指具有线性特性的系统,线性特性包括齐次性与叠加性。线 性系统的数学模型是线性微分方程和线性差分方程。
2.1.2 MATLAB语言的特点
1、友好的工作平台和编程环境 2、简单易用的程序语言 3、强大的科学计算机数据处理能力 4、出色的图形处理功能
1、友好的工作平台和编程环境
MATLAB由一系列工具组成。这些工具方 便用户使用MATLAB的函数和文件,其中 许多工具采用的是图形用户界面。
新版本的MATLAB提供了完整的联机查询、 帮助系统,极大的方便了用户的使用。简 单的编程环境提供了比较完备的调试系统, 程序不必经过编译就可以直接运行,而且 能够及时地报告出现的错误及进行出错原 因分析。
y (t)f1 (t) f2 (t) ...
1.2.3 信号的相加、相乘及综合变换 3.综合变换 在信号分析的处理过程中,通常的情况不是以上某种单一信号的运算,往
往都是一些信号的复合变换,我们称之为综合变换。
1.3 系统
1.3.1 系统的定义及系统分类
《信号与系统教案》课件
《信号与系统教案》课件第一章:信号与系统概述1.1 信号的概念与分类定义:信号是反映随机过程或者确定过程的变量,在时间或空间上的函数。
分类:模拟信号、数字信号、离散信号等。
1.2 系统的概念与分类定义:系统是输入与输出之间存在某种关系的装置。
分类:线性系统、非线性系统、时不变系统、时变系统等。
1.3 信号与系统的处理方法信号处理:滤波、采样、量化、调制等。
系统处理:稳定性分析、频率响应分析、时间响应分析等。
第二章:连续信号及其运算2.1 连续信号的基本运算叠加原理:两个连续信号的叠加,其结果也是连续信号。
时移原理:连续信号的时间平移,其结果仍为连续信号。
2.2 连续信号的傅里叶变换傅里叶变换的定义与性质常用连续信号的傅里叶变换2.3 连续信号的拉普拉斯变换拉普拉斯变换的定义与性质常用连续信号的拉普拉斯变换第三章:离散信号及其运算3.1 离散信号的基本运算叠加原理:两个离散信号的叠加,其结果也是离散信号。
时移原理:离散信号的时间平移,其结果仍为离散信号。
3.2 离散信号的傅里叶变换傅里叶变换的定义与性质常用离散信号的傅里叶变换3.3 离散信号的Z变换Z变换的定义与性质常用离散信号的Z变换第四章:信号与系统的时域分析4.1 系统的时域响应单位冲激响应:系统对单位冲激信号的响应。
单位阶跃响应:系统对单位阶跃信号的响应。
4.2 信号的时域处理滤波器设计:低通滤波器、高通滤波器、带通滤波器等。
信号的采样与恢复:采样定理、信号的恢复方法。
4.3 信号的时域分析方法傅里叶级数:信号的分解与合成。
拉普拉斯展开:信号的分解与合成。
第五章:信号与系统的频域分析5.1 系统的频域响应频率响应的定义与性质常用系统的频率响应分析5.2 信号的频域处理滤波器设计:低通滤波器、高通滤波器、带通滤波器等。
信号的调制与解调:调幅、调频、调相等。
5.3 信号的频域分析方法傅里叶变换:信号的频谱分析。
离散傅里叶变换:信号的离散频谱分析。
信号与系统第三版教案第6章课件
零、极点的表示:
图1
阻抗函数的意义: H (s) U (s) 1
s
I (s) C (s s1)(s s2 )
图2
二、零极点分布与时域特性
例
h( t ) = £1[H( s )]
H (s)
1 s
s
1
0
s2
2 0
(s
0 )2
02
h(t) (t) et sin 0t et sin 0t
图3
结论:
• 极点位于S平面原点,h( t )对应为阶跃函数; • 极点位于S平面负实轴上, h( t )对应为衰减指数函数; • 共轭极点位于虚轴上, h( t )对应为正弦振荡; • 共轭极点位于S的左半平面, h( t )对应为衰减的正弦振荡; • H( s )的零点只影响h( t )的幅度和相位, H( s )的极点才决定
时域特性的变化模式。
三、H(s)与频域特性
由H(s)可以决定系统的频率特性H(j),即
H ( j) H (s) s j
二阶系统的四种频域特性:
低通函数: 高通函数: 带通函数: 带阻函数:
H
(
j )
K
s2
a bs
a
s
j
H
(
j
)
K
s2
s2 bs
a
s j
H
(
j )
K
s2
s bs
a
s
j
H
(
j )
K
a1a2 a0a3
例 导弹跟踪系统
H (s)
s3
34.5s2 119.7s 98.1 35.714s2 119.741s 98.1
N (s) D(s)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
§3-6 离散时间系统
3-6-1 离散时间系统的运算
讨论题3-6-2 讨论由
y(n) x(n) x* (n 1)
定义的系统是否具有可加性和齐次性。
讨论:由y(n) x(n) x* (n 1) 定义的系统是可加但非齐次的,因为
{x1(n) x2(n)}{x1(n 1) x2(n 1)}* {x1(n) x1*(n 1)}{x2(n) x2*(n 1)}
x1 (n)
离散时间 线性系统
y1 (n)
C1 x1 (n)
离散时间 线性系统
C1 y1(n)
a) 齐次性
x1 (n) x2 (n)
离散时间 线性系统
至于延迟或右移k个单位,则一般表示为 zk 。前向(或左)移位 x(n)
算子则用z的正幂表示,也就是说 z k 表示超前或左移k个单位,即将 x(n)
变换为 x(n k) ,用运算符号表示则为 zk{x(n)} x(n k)。可以看出,借
助于算子可以将一种函数变换为另外一种函数。如前所述,如果我们用算
(x1(n) x2 (n))2 x1(n 1) x2 (n 1)
T{x1(n)
x2 (n)}
x12 (n) x1(n 1)
x22 (n) x2 (n 1)
不相同。但该系统却是齐次的,因为对于运算,有
T{cx(n)} (cx(n)) 2 c x2 (n) cT{x(n)} cx(n 1) x(n 1)
输入/输出模型:描述系统输入序列和输出序列之间的关系;
状态(或内部)变量模型:描述系统输入序列、内部状态和输出 序列之间的关系。
本书主要研究输入-输出模型描述。具体讲将重点研究4种输入/输出描 述形式:
1、卷积模型 2、差分方程(关于输入/输出)模型 3、离散傅立叶变换模型 4、传输函数模型
3
§3-6 离散时间系统
T{cx(n)} cT{x(n)}
(对齐次运算) (3-6-3)
讨论题3-6-1
由 y(n) x 2 (n) 定义的运算是可加的吗? x(n 1)
7
§3-6 离散时间系统
3-6-1 离散时间系统的运算
讨论: y(n) x 2 (n) 的运算不是可加的,因为 x(n 1)
与
T{x1(n)
x2 (n)}
例如,输入输出之间的关系可以如上所述用数学表达式或函数关系进 行描述;也可以用某种算法来估计;甚至在某些情况下,还可以用表格 (表查询)来确定一个系统,这个表格可能定义了相关的输入-输出序列 对的某种集合。
4
§3-6 离散时间系统
3-6-1 离散时间系统的运算
前已述及,离散时间系统的描述模型之一是差分方程。差分方程中 包含序列及其移位序列,移位序列一般可用运算符号方便地加以描述。 通常,单位延迟或后向(右)移位运算可以用运算符号 z1表示,它将 x(n) 变换为 x(n 1) ,因此可用算子 z 1{x(n)} x(n 1) 表示。
便起见,可以用算子T[•] 表示一个离散时间系统,如图3-6-1所示,图中
输入信号序列x(n)通过算子T[•]被变换为输出信号序列y(n) 。
x(n)
y(n)=T[x(n)]
T[●]
图3-6-1 输入序列通过离散时间系统(T[•])映射成输出序列
2
§3-6 离散时间系统
3-6 离散时间系统
应用中有两种基本的系统模型描述形式:
3-6 离散时间系统
其中前两种方法给出的是系统的离散时间函数,故称之为时域模型;而 后两种方法是以频率为变量,故称之为频域模型。但离散傅立叶变换模 型一般又可认为是传输函数表示法的一种特例,因此实际上只需要研究 3种基本的输入-输出描述形式。
在工程应用中,系统的输入-输出特性是关于系统行为属性的非常重要的 参数,可以用多种方法获得。
我们称一个系统是可加的,是指对于任意序列 x1(n)和 x2 (n),有
6
§3-6 离散时间系统
3-6-1 离散时间系统的运算
T{x1(n) x2 (n)} T{x1(n) T{x2 (n)}
(对可加运算) (3-6-2)
称一个系统是齐次(均匀)的,是指对于任意复常数c和任意输入序列
x(n) ,如果有
子T表示一种运算或变换,那么用T将系统输入、输出关系表示为
y(n) T{(x(n)} (3-6-1)
读做 y(n) 是T对 x(n)的响应,其中包括相应的系统初始条件(如果存在)。
5
§3-6 离散时间系统
3-6-1 离散时间系统的运算
式中算子T起着标识系统及说明由输入序列 x(n) 产生输出序列 y(n) 的作 用。对于多输入、多输出系统,x(n) 和y(n)为矢量。
式(3-6-1)实际上表示的是函数 x(n) 在算子T的操作(或运算)下,得到 一个新的函数 y(n) 的过程。 例如,下列算子运算:
T{} 4z3{} 6
表示 y(n)是通过将 x(n)左移3个单位,再乘4加6得到,即:
4z3{x(n)} 6 4x(n 3) 6 y(n)
在讨论离散时间系统的性质之前,首先需要引入线性运算和叠加性的概念。
于是,一个系统若为线性,则对任意两个输入和 ,以及任意实或者复 常数c1和c2,有
T{c1x1(n) c2 x2 (n)} c1T{x1(n)} c2T{x2 (n)} (3-6-4)
图3-6-2给出了线性性质三要素(齐次性、可加性和叠加性)的图解-6-2 离散系统的性质
国家“十二五”规划教材——《信号与系统》
LOGO
§3-6 离散P时ow间e系rTe统TmhempeGlaaltleery
重点 离散系统的性质 难点 离散系统的计算
3-6 离散时间系统
离散时间系统是一种数学映射或算子,它通过一组约定的法则或者运算 将一个(组)序列(输入激励)变换为另一个(组)序列(输出响应)。为方
但显然
cT{x(n)} cx(n) c*x*(n 1) cx(n) cx*(n 1)
9
§3-6 离散时间系统
3-6-2 离散系统的性质
线性系统
满足叠加性的系统定义为线性系统。叠加性是指系统即满足齐次性又 满足可加性,同时还隐含系统是松弛的(具有零初始条件),而且系统差 分方程中只包含线性运算。换句话说,线性性质需要满足三个要素,即齐 次性、可加性和叠加性。