七年级数学上学期期中试题(扫描版) 北师大版
北师大版七年级上册数学期中测试题含答案解析
北师大版七年级上学期期中考试数学试题一、选择题1.若规定向东走为正,即向东走8m记为+8m,那么﹣6米表示()A. 向东走6米B. 向南走6米C. 向西走6米D. 向北走6米2.某年,一些国家的服务出口额比上年的增长率如下:美国德国英国中国-0.9%3.4%- 2.8%- 5.3%上述四国中哪国增长率最低?()A. 美国B. 德国C. 英国D. 中国3.下列四个几何体中,是三棱柱的为( ).A. B.C. D.4.某图书馆有图书约985000册,数据985000用科学记数法可表示为()A. 3⨯ D. 6⨯0.985109.8510⨯ C. 5⨯ B. 49851098.5105.下列平面图形经过折叠后,不能围成正方体的是()A. B. C. D.6.按要求对0.05019分别取近似值,下面结果错误是()A. 0.1(精确到0.1)B. 0.05(精确到千分位)C. 0.050(精确到0.001)D. 0.0502(精确到万分位)7.下列四个几何体,从正面和上面看,看到的相同,这样的几何体共有( )正方体 圆锥球 圆柱 A 4个 B. 3个C. 2个D. 1个 8.如图,一正方体截去一角后,剩下的几何体的面数和棱数分别为( )A. 6,14B. 7,15C. 7,14D. 6,15 9.数轴上表示数4-和2的点分别是点A 和点B ,则点A 和点B 的距离是( )A. 6-B. 2-C. 2D. 6 10.下列各组数中,数值相等的是( )A. 23和32B. 3(2)-和32-C. 23-和2(3)-D. (2)--和|2|--二、填空11.-5的相反数是 _______12.计算35-=_________.13.登山队员攀登珠穆朗玛峰,在海拔3000m 时,气温为﹣20℃,已知每登高1000m ,气温降低6℃,当海拔为5000m 时,气温是_____℃.14.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.15.有2020个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是________.三、解答题16.请把下列各数分别填在相应的集合中: 132-,0.3,0, 3.4-,12,9-,142,2- 正数集合{ }负分数集合{ }非负数集合{ }整数集合{ }17.计算.(1)()()()()341119-+--+-- (2)110.5 2.7542⎛⎫⎛⎫+--+- ⎪ ⎪⎝⎭⎝⎭18.把下列各数:﹣2.5,2(1)-,0,2--,(3)--在数轴上表示出来,并用“<”把它们连接起来.19.计算:(1)512.584⎛⎫-+⨯- ⎪⎝⎭(2)()()22264⎡⎤-----⎣⎦ 20.一个六棱柱模型如图所示,它的底面边长都是6m ,侧棱长4m ,观察这个模型,回答下列问题:(1)这个六棱柱的几个面分别是什么形状?哪些面的形状、大小完全相同?(2)这个六棱柱的所有侧面的面积之和是多少?21.“又甜又脆”水果店现从批发市场买进6箱苹果,买进价每箱40元,以每箱10kg 为准,称重记示如下(超过为正,不足为负,单位:kg ): 1.5-, 1.3-,0,0.3, 1.5-,2.(1)问这6箱苹果的总重量是多少?(2)在出售这批苹果时,有10%的苹果烂掉(不能出售),若出售价为8元/kg ,卖完这批苹果该水果店可可赢利多少元?22.数学老师布置了一道思考题“计算:1151236⎛⎫-÷- ⎪⎝⎭,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为()15115124106361236⎛⎫⎛⎫⎛⎫-÷-=-⨯-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以115112366⎛⎫-÷-= ⎪⎝⎭. (1)请你判断小明的解答是否正确?答_________________;(2)请你运用小明的解法解答问题.计算:111348368⎛⎫-÷-- ⎪⎝⎭23.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?24.有个填写运算符号的游戏:在“1269”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果.(1)计算:1269+﹣﹣;(2)若请推算12696÷⨯=﹣,□内的符号;(3)在“1269﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数.一、选择题1.若规定向东走为正,即向东走8m记为+8m,那么﹣6米表示()A. 向东走6米B. 向南走6米C. 向西走6米D. 向北走6米【答案】C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】如果规定向东为正,那么﹣6米表示:向西走6米.故选C.【点睛】本题主要考查了正数和负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,比较简单.2.某年,一些国家的服务出口额比上年的增长率如下:上述四国中哪国增长率最低?()A. 美国B. 德国C. 英国D. 中国【答案】C【解析】【分析】比较各国出口额比上年增长率得结论.【详解】解:因为-5.3%<-3.4%<-0.9%<2.8%,所以增长率最低的国家是英国.故选C.【点睛】本题考查了有理数大小的比较.会比较有理数的大小是解决本题的关键.3.下列四个几何体中,是三棱柱的为( ).A. B. C. D.【答案】C【解析】【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【详解】解:A 、该几何体为四棱柱,不符合题意;B 、该几何体为四棱锥,不符合题意;C 、该几何体为三棱柱,符合题意;D 、该几何体为圆柱,不符合题意.故选C .【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.4.某图书馆有图书约985000册,数据985000用科学记数法可表示为( )A. 398510⨯B. 498.510⨯C. 59.8510⨯D. 60.98510⨯【答案】C【解析】【分析】 科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤<,为整数.确定的值是易错点,由于985000有6位,所以可以确定615n =﹣= .【详解】解:985000=59.8510⨯故选C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.5.下列平面图形经过折叠后,不能围成正方体的是()A. B. C. D.【答案】D【解析】【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可【详解】解:常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有D选项不能围成正方体.故选D.【点睛】本题考查了正方体展开图,解题关键是熟记展开图常见的11种形式与不能围成正方体的常见形式“一线不过四,田凹应弃之”.6.按要求对0.05019分别取近似值,下面结果错误的是()A. 0.1(精确到0.1)B. 0.05(精确到千分位)C. 0.050(精确到0.001)D. 0.0502(精确到万分位)【答案】B【解析】【分析】根据近似数的的定义解答即可.【详解】A.把0.05019精确到0.1,后一数位上数字为5,要向前进一,约为0.1,本选项正确;B.把0.05019精确到千分位,后一数位上数字为1,要舍去,约为0.050,故本选项错误;C.把0.05019精确到0.001约为0.050,本选项正确;D.把0.05019精确到万分位约为0.0502,后一数位上数字为9,要向前进一,,本选项正确.故选B.【点睛】本题考查了近似数,精确到哪一数位,该数位后面的数字通常四舍五入.7.下列四个几何体,从正面和上面看,看到的相同,这样的几何体共有( )正方体圆锥球圆柱A. 4个B. 3个C. 2个D. 1个【答案】C【解析】【分析】分别找到从正面看和上面看所得到的图形即可.【详解】正方体的主视图是正方形,俯视图是正方形,故图符合题意;圆锥的主视图是等腰三角形,俯视图是圆,故此图不符合题意;球的主视图是圆形,俯视图是圆,故此图符合题意;圆柱的主视图是矩形,俯视图是圆,故此图不符合题意;故选C.【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.8.如图,一正方体截去一角后,剩下的几何体的面数和棱数分别为()A. 6,14B. 7,15C. 7,14D. 6,15【答案】B【解析】【分析】将一个正方体截去一个角,则其面数增加一个;直接数棱数即可.【详解】将一个正方体截去一个角,则其面数增加一个,故面数为:6+1=7;直接数棱数可得15条棱.故答案选:B【点睛】此题考查了将一个正方体截去一个角后的面数及棱数,掌握数几何体的面数及棱数是解题的关键.9.数轴上表示数4-和2的点分别是点A和点B,则点A和点B的距离是()A. 6-B. 2-C. 2D. 6【答案】D【解析】【分析】根据数轴上两点之间的距离来求解即可.【详解】AB =|﹣4﹣2|=6.故选D . 【点睛】本题考查了数轴上两点之间的距离的计算方法,掌握“数轴上两点之间的距离等于这两个点所表示的数的差的绝对值”是正确解答本题的关键.10.下列各组数中,数值相等的是( )A. 23和32B. 3(2)-和32-C. 23-和2(3)-D. (2)--和|2|--【答案】B【解析】【分析】 求出各选项中两式的结果,即可做出判断.【详解】23=9≠32=8;3(2)-=-8=32-=-8;23-=-9≠2(3)-=-9;(2)--=2≠|2|--=-2故选B【点睛】考核知识点:有理数计算. 此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.二、填空11.-5的相反数是 _______【答案】5【解析】【分析】根据相反数的定义直接求得结果.【详解】解:-5的相反数是5.本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.12.计算35-=_________.【答案】2【解析】【分析】先算减法,再计算绝对值即可求解.【详解】|3﹣5|=|﹣2|=2.故答案为2.【点睛】本题考查了有理数的减法,绝对值,熟练掌握计算法则是解题的关键.13.登山队员攀登珠穆朗玛峰,在海拔3000m时,气温为﹣20℃,已知每登高1000m,气温降低6℃,当海拔为5000m时,气温是_____℃.【答案】-32【解析】【分析】根据题意列出算式,计算即可求出值.【详解】根据题意得:﹣20﹣(5000﹣3000)÷1000×6=﹣20﹣12=﹣32,∴当海拔为5000m时,气温是﹣32℃,故答案为﹣32.【点睛】本题考查了有理数的混合运算的应用,根据题意正确列出算式是解决问题的关键.14.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.【答案】18【解析】【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键. 15.有2020个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是________.【答案】2【解析】【分析】根据题意可以写出这组数据的前几个数,从而可以得到数字的变化规律,即可解答本题.【详解】由题意可得:这列数为:0,1,1,0,﹣1,﹣1,0,1,1,…,∴前6个数的和是:0+1+1+0+(﹣1)+(﹣1)=0.∵2020÷6=336…4,∴这2020个数的和是:0×336+(0+1+1+0)=2.故答案为2.【点睛】本题考查了数字的变化类问题,解答本题的关键是明确题意,发现题目中数字的变化规律,每六个数循环出现.三、解答题16.请把下列各数分别填在相应的集合中:132-,0.3,0, 3.4-,12,9-,142,2- 正数集合{ }负分数集合{ }非负数集合{ }整数集合{ }【答案】{0.3,12,142};{132-, 3.4-};{0.3,0,12,142};{0,12,9-,2-} 【解析】【分析】根据有理数的分类即可得到结论.【详解】正数集合{0.3,12,142}; 负分数集合{132-,﹣3.4};非负数集合{0.3,0,12,142};整数集合{0,12,﹣9,﹣2 }.【点睛】本题考查了有理数,熟练掌握有理数的分类是解答本题的关键.17.计算.(1)()()()()341119-+--+-- (2)110.5 2.7542⎛⎫⎛⎫+--+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)1 (2)3-【解析】【分析】(1)根据有理数的加减混合运算法则计算即可求解;(2)根据运算律简化运算即可求解.【详解】(1)原式=﹣3﹣4﹣11+19=﹣18+19=1;(2)原式=0.5+(﹣12)+(﹣14)﹣2.75=0﹣3=﹣3. 【点睛】本题考查了有理数的加减混合运算,解答本题的关键是利用运算律简化运算.18.把下列各数:﹣2.5,2(1)-,0,2--,(3)--在数轴上表示出来,并用“<”把它们连接起来.【答案】22.520(1)(3)-<--<<-<--【解析】试题分析:根据数轴上的点与实数是一一对应的关系,数轴上的点比较大小的方法是左边的数总是小于右边的数,即可得出答案.试题解析:如图所示, ,故()()22.52013.-<--<<-<--点睛:数轴上右边的数总比左边的数大.19.计算:(1)512.584⎛⎫-+⨯- ⎪⎝⎭(2)()()22264⎡⎤-----⎣⎦【答案】(1)﹣8532;(2)-36 【解析】【分析】 (1)根据有理数的乘法和加法可以解答本题;(2)根据有理数的乘方、有理数的减法可以解答本题.【详解】(1)原式=﹣2.5+(﹣532)=﹣8032+(﹣532)=﹣8532; (2)原式=﹣4﹣(36﹣4)=﹣4﹣32=﹣36.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.一个六棱柱模型如图所示,它的底面边长都是6m ,侧棱长4m ,观察这个模型,回答下列问题:(1)这个六棱柱的几个面分别是什么形状?哪些面的形状、大小完全相同?(2)这个六棱柱的所有侧面的面积之和是多少?【答案】(1)见解析 (2)1442m【解析】【分析】(1)上下两个底面是正六边形,侧面是长为6宽为4的六个长方形;(2)计算六个侧面面积和即可.【详解】(1)这个六棱柱有8个面,其中2个底面是大小和形状相同的正六边形,6个侧面是长为6m ,宽为4m 的长方形;(2)其侧面积为:6×4×6=144(m 2).答:这个六棱柱的所有侧面的面积之和为144m 2.【点睛】本题考查了棱柱的特征,底面是大小形状相同的正六边形,侧面是长为6,宽为4的六个长方形. 21.“又甜又脆”水果店现从批发市场买进6箱苹果,买进价每箱40元,以每箱10kg 为准,称重记示如下(超过为正,不足为负,单位:kg ): 1.5-, 1.3-,0,0.3, 1.5-,2.(1)问这6箱苹果的总重量是多少?(2)在出售这批苹果时,有10%的苹果烂掉(不能出售),若出售价为8元/kg ,卖完这批苹果该水果店可可赢利多少元?【答案】(1)58kg (2)177.6元【解析】【分析】(1)直接利用正负数的意义计算得出答案;(2)根据(1)中所求,结合售价与进价得出答案.【详解】(1)10×6+(﹣1.5﹣1.3+0+0.3﹣1.5+2 )=60﹣2=58(kg )答:这6箱苹果的总重量是58kg .(2)58×(1﹣10%)×8﹣40×6=1776(元)答:卖完这批苹果该水果店可赢利177.6元.【点睛】本题考查了正数与负数,正确理解正负数的意义是解题的关键.22.数学老师布置了一道思考题“计算:1151236⎛⎫-÷- ⎪⎝⎭,小明仔细思考了一番,用了一种不同的方法解决了这个问题. 小明的解法:原式的倒数为()15115124106361236⎛⎫⎛⎫⎛⎫-÷-=-⨯-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以115112366⎛⎫-÷-= ⎪⎝⎭. (1)请你判断小明的解答是否正确?答_________________;(2)请你运用小明的解法解答问题.计算:111348368⎛⎫-÷-- ⎪⎝⎭【答案】(1)正确 (2)110【解析】【分析】 (1)小明的解答正确,因为已知一个数的倒数,可以求出这个数.(2)应用乘法分配律,求出113136848⎛⎫⎛⎫--÷-⎪ ⎪⎝⎭⎝⎭的值是多少,即可求出111348368⎛⎫⎛⎫-÷-- ⎪ ⎪⎝⎭⎝⎭的值是多少.【详解】(1)正确.理由:因为已知一个数的倒数,可以求出这个数.(2)1131 36848⎛⎫⎛⎫--÷-⎪ ⎪⎝⎭⎝⎭=113(48) 368⎛⎫--⨯-⎪⎝⎭=113(48)(48)(48) 368⨯--⨯--⨯-=﹣16+8+18 =10∴111348368⎛⎫⎛⎫-÷--⎪ ⎪⎝⎭⎝⎭=110.【点睛】本题考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律的应用.23.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?【答案】(1)画图见解析;(2)小彬家与学校之间的距离是3km;(3)小明跑步共用了36分钟.【解析】试题分析:(1)根据题意画出即可;(2)计算2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=÷速度即可求出答案.试题解析:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了36 分钟长时间.24.有个填写运算符号的游戏:在“1269”中的每个□内,填入+⨯÷,﹣,,中的某一个(可重复使用),然后计算结果.(1)计算:1269+﹣﹣;(2)若请推算12696÷⨯=﹣,□内的符号;(3)在“1269﹣”的□内填入符号后,使计算所得数最小,直接写出这个最小数.【答案】(1)-2;(2)-;(3)-20,理由详见解析.【解析】【分析】(1)根据有理数的加减法法则解答即可;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【详解】(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴112⨯⨯6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点睛】本题考查了有理数的混合运算,明确有理数混合运算的计算方法是解答本题的关键.。
北师大版七年级上册数学期中考试试题及答案
北师大版七年级上册数学期中考试试卷2022年一、单选题1.下图中哪个图形经过折叠后可以围成一个棱柱()A .B .C .D .2.如果收入80元记作+80元,那么支出20元记作()A .+20元B .-20元C .+100元D .-100元3.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点为439000米.将439000用科学记数法表示应为()A .60.43910⨯B .64.3910⨯C .54.3910⨯D .34.3910⨯4.用一个平面去截一个如图所示的正方体,截面形状不可能为()A .B .C .D .5.下面说法正确的是()A .13πx 2的系数是13B .13xy 2的次数是2C .﹣5x 2的系数是5D .3x 2的次数是26.下列运算正确的是()A .4a+3b=7abB .4xy-3xy=xyC .-2x+5x=7xD .2y-y=17.“五一”小长假期间,某公园的门票价格是:成人10元,学生5元.某旅行团有成人x 人,学生y 人,该团应付的门票为()A .(105)x y +元B .(105)y x +元C .(1515)x y +元D .15xy 元8.一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A .﹣5℃B .﹣6℃C .﹣7℃D .﹣8℃9.已知-5a 6b 2和7a 2nb 2是同类项,则代数式10n-2的值是()A .58B .18C .28D .3810.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,搭100个这样的小正方形需要小棒()根.A .300B .301C .302D .400二、填空题11.计算:-3+2=_____.12.从正面,左面,上面看到的几何体的形状图都一样的几何体是________(一种即可).13.数轴的单位长度为1,如果点A 表示的数是-2,那么点B 表示的数是_________.14.计算(﹣1)÷6×(﹣16)=_____.15.化简:2(a+1)-a=____16.若a-2b=3,则2a-4b-5=______.17.数a ,b 在数轴上的位置如图所示,化简a a b --的结果是__________.三、解答题18.计算:2108(2)(4)(3)-+÷---⨯-.19.化简:822(52)a b a b ++-.20.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.21.9月10日这一天下午,出租车司机小王在东西走向的幸福大道上运营,若规定向东为正,向西为负,出租车的行车里程如下:+15,-4,+13,-10,-12,+3,-13,-17(1)将最后一名乘客送到目的地,小王距离出车地点多少千米?(2)若汽车耗油量为0.2升/千米,这天下午汽车共耗油多少升?22.如图是分别从正面、左面、上面观察一个几何体得到的图形,请解答以下问题:(1)这个几何体的名称为;(2)若从正面看到的是长方形,其长为10cm ;从上面看到的是等边三角形,其边长为4cm ,求这个几何体的侧面积.23.有一道化简求值题:“当a=-2,b=-3时,求(3a 2b-2ab )-2(ab-4a 2)+(4ab-a 2b )的值.”小芳做题时,把“a=-2”错抄成了“a=2”,但她的计算结果却是正确的,小芳百思不得其解,请你先化简并求值,再帮助她解释一下原因.24.在数轴上把下列各数表示出来,并用“<”连接各数.0,|1|--,-3,112,-(-4)25.已知,一个点从数轴上的原点开始,先向左移动7个单位到达A 点,再从A 点向右移动12个单位到达B 点,把点A 到点B 的距离记为AB ,点C 是线段AB 的中点.(1)点C 表示的数是;(2)若点A以每秒2个单位的速度向左移动,同时C、B点分别以每秒1个单位、4个单位的速度向右移动,设移动时间为t秒,①点C表示的数是(用含有t的代数式表示);②当t=2秒时,求CB-AC的值;③试探索:CB-AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太麻烦,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果:1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×=.(1)补全例题解题过程;(2)请猜想:1+2+3+4+5+6+…+(2n﹣2)+(2n﹣1)+2n=.(3)试计算:a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).参考答案1.B【解析】【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:选项A、D缺少一个面,不能围成棱柱;选项C中折叠后底面重合,不能折成棱柱;只有B能围成三棱柱.所以B选项是正确的.【点睛】考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.B【解析】【详解】试题分析:具有相反意义的量是指意义相反,与值无关,收入为正,则支出为负.∵收入80元记作+80元,∴支出20元记作-20元.故选:B.考点:具有相反意义的量.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:439000=4.39×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.C【解析】【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,截面也不可能有弧度,因此截面形状不可能为圆.解:用一个平面无论如何去截,截面也不可能有弧度,因此截面形状不可能为圆.故选:C .【点睛】本题考查正方体的截面.正方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形或其它的弧形.5.D 【解析】【分析】根据单项式的系数和次数的定义即可完成即可.【详解】解:A .13πx 2的系数是13π,故此选项错误;B .12xy 2的次数是3,故此选项错误;C .﹣5x 2的系数是﹣5,故此选项错误;D .3x 2的次数是2,正确.故答案为D .【点睛】本题考查了单项式的系数和次数,解题的关键在于掌握单项式的系数和次数的求法,即系数为单项式的数字部分,注意π为数字,这是解答本题的关键.6.B 【解析】【分析】根据整式加减法的运算法则进行计算判断即可.【详解】A 选项中,因为43a b +中两个项不是同类项,不能合并,所以A 中计算错误,不符合题意;B 选项中,因为43xy xy xy -=,所以B 中计算正确,符合题意;C 选项中,因为253x x x -+=,所以C 中计算错误,不符合题意;D 选项中,因为2y y y -=,所以D 中计算错误,不符合题意.故选B .熟记“整式加减法的运算法则”是正确解答本题的关键.7.A【解析】【分析】门票费=成人门票总价+学生门票总价.【详解】解:门票费为(10x+5y)元.故选A.【点睛】解决问题的关键是读懂题意,找到所求的量的等量关系.8.A【解析】【详解】=-+-=-℃晚上的气温71195故选A.9.C【解析】【分析】根据同类项定义,相同字母的指数相同,可得出n的值,继而可得出答案.【详解】解:∵-5a6b2和7a2nb2是同类项,∴2n=6,解得:n=3,∴10n-2=28.故选择:C.【点睛】本题考查了同类项,掌握同类项的定义是解题的关键.10.B【解析】【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;…,搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭100个这样的正方形需要3×100+1=301根火柴棒;故选B.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.11.-1【解析】【分析】由绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0,即可求得答案.【详解】解:﹣3+2=﹣1.故答案为:﹣1.12.球(答案不唯一)【解析】【分析】根据主视图,左视图,俯视图的定义找出从正面,左面,上面看到的几何体的形状图都一样的几何体即可.【详解】解:球从正面,左面,上面看到的平面图形为全等的圆,故答案为球(答案不唯一).【点睛】本题考查三视图的有关知识,注意三视图都相同的常见的几何体有球、正方体.13.2【解析】由4,AB=点A表示的数是-2,把点A往右移动4个单位可得答案.【详解】解: 点A表示的数是-2,4,AB=∴把点A往右移动4个单位可得点B,B∴表示的数为:242,-+=故答案为:2.【点睛】本题考查的是数轴上两点之间的距离,及点的移动后对应的数的表示,掌握以上知识是解题的关键.14.1 36.【解析】【分析】由有理数的乘除法的运算法则进行计算,即可得到答案.【详解】解:原式=111()66-⨯⨯-=136;故答案为:1 36.【点睛】本题考查了有理数的乘除法混合运算,解题的关键是掌握运算法则进行解题.15.a+2##2+a【解析】【详解】解:原式=2a+2-a=a+2.故答案为:a+216.1【解析】【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a﹣2b=3整体代入并求值即可.解:a-2b=3,∵2a ﹣4b ﹣5=2(a ﹣2b)-5=2×3-5=1.故答案为:1.17.-b 【解析】【分析】根据数轴可判断a <0,a−b <0,然后去绝对值即可.【详解】解:由数轴可知,a <0,a−b <0,∴()a a b a b a a b a b --=---=--+=-,故答案为-b .【点睛】本题考查了数轴与绝对值,解决此类题目的关键是判断绝对值里式子的符号,熟练运用去绝对值的法则,合并同类项的法则,是各地中考的常考点.18.-20【解析】【分析】根据有理数的运算顺序,先算乘方,再算乘除,最后算加减即得.【详解】解:原式=−10+8÷4−12=-10+2-12=-20【点睛】本题考查有理数的混合运算,按照有理数运算顺序计算是解题关键,按照乘法与除法运算法则确定符号是易错点.19.18a−2b 【解析】【分析】根据整式的运算法则,先去括号,再合并同类项即可求出答案.【详解】解:原式=8a+2b+10a−4b=18a−2b【点睛】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.见解析【解析】【分析】从正面看:共有3列,从左往右分别有1,2,1个小正方形;从左面看:共有2列,左面一列有2个,右边一列有1个小正方形;从上面看:共分3列,从左往右分别有2,1,1个小正方形.据此可画出图形.【详解】解:如图所示:【点睛】此题考查画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.21.(1)小王距离出车地点西边25千米(2)这天下午汽车共耗油17.4升【解析】【详解】试题分析:(1)根据有理数的加法,直接可求解;(2)根据行车就要耗油,求其各段行驶过程的绝对值,乘以单位耗油量即可.试题解析:(1)+15-4+13-10-12+3-13-17=-25千米小王距离出车地点西边25千米(2)+15+4+13+10+12+3+13+17=87千米这天下午汽车共耗油87×0.2=17.4升22.(1)三棱柱;(2)这个几何体的侧面积为2120cm.【解析】【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为三角形,故可判断出该几何体是三棱柱;(2)侧面积为3个长方形,它的长和宽分别为10cm,4cm,计算出一个长方形的面积,乘3即可.【详解】解:(1)这个几何体是三棱柱;故答案为:三棱柱;(2)三棱柱的侧面展开图形是长方形,长方形的长是等边三角形的周长,宽是三棱柱的高,所以三棱柱侧面展开图形的面积为:()2S cm=⨯⨯=.3410120120cm.答:这个几何体的侧面积为2【点睛】本题主要考查由三视图确定几何体和求几何体的面积等相关知识,考查学生的空间想象能力.注意:棱柱的侧面都是长方形,上下底面是几边形就是几棱柱.23.2a2b+8a2,8,理由见解析【解析】【分析】先把(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)去括号后合并同类项化为2a2b+8a2,再代入求值即可.无论a=−2,还是a=2,a2都等于4,代入后结果是一样的.【详解】解:(3a2b−2ab)−2(ab−4a2)+(4ab−a2b)=3a2b−2ab−2ab+8a2+4ab−a2b=2a2b+8a2当a=−2,b=−3时,原式=2×4×(−3)+8×4=8.原因:因为无论a=−2,还是a=2,a 2都等于4,代入后结果是一样的,所以计算结果是正确的.【点睛】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.24.见解析,-3<|1|--<0<112<-(-4).【解析】【分析】在数轴上表示出各数,从左到右用“<”连接起来即可.【详解】解:如图所示,,由图可知,-3<|1|--<0<112<-(-4).故答案为见解析,-3<|1|--<0<112<-(-4).【点睛】本题考查数轴,有理数的大小比较,熟知数轴上右边的数总比左边的大是解题的关键.25.(1)-1(2)①−1+t ;②0;③CB−AC 的值不随着时间t 的变化而改变,CB−AC 的值为0.【解析】【分析】(1)根据题意可以求得点C 表示的数;(2)①根据题意可以用代数式表示点C 运动时间t 时表示的数;②根据题意可以求得当t =2秒时,CB−AC 的值;③先判断是否变化,然后求出CB−AC 的值即可解答本题.(1)解:由题意可得,AC =12×12=6,∴点C 表示的数为:0−7+6=−1,故答案为:−1;(2)解:①由题意可得,点C移动t秒时表示的数为:−1+t,故答案为:−1+t;②当t=2时,CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0;③CB−AC的值不随着时间t的变化而改变,∵CB−AC=[(0−7+12+4t)−(−1+t)]−[(−1+t)−(0−7−2t)]=(5+4t+1−t)−(−1+t+7+2t)=6+3t−6−3t=0,∴CB−AC的值不随着时间t的变化而改变,CB−AC的值为0.【点睛】点评:本题考查数轴,解答本题的关键是明确题意,找出所求问题需要的条件.26.(1)50;5050;(2)n(2n+1);(3)100a+4950b.【解析】【分析】(1)由题意可得从1到100共有100个数据,两个一组,则共有50组,由此即可补全例题的解题过程;(2)观察、分析所给式子可知,所给代数式中共包含了2n个式子,这样参照例题方法解答即可;(3)观察、分析所给式子可知,所给代数式中共包含了100个式子,再参照例题方法解答即可.【详解】解:(1)原式=1+2+3+4+5+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)=101×50=5050;故答案为:50;5050;(2)原式=(1+2n)+(2+2n-1)+(3+2n-2)+…+(n+n+1)=(2n+1)+(2n+1)+(2n+1)+…+(2n+1)=(2n+1)×n=n(2n+1);故答案为:n(2n+1);(3)原式=[a+(a+99b)]+[(a+b)+(a+98b)]+…+[(a+49b)+(a+50b)]=(2a+99b)+(2a+99b)+…+(2a+99b)=50(2a+99b)=100a+4950b.【点睛】本题的解题要点是通过观察、分析得到本题的三个式子都有如下规律:(1)每个算式中都包含了偶数个式子;(2)每个算式中相邻两个式子的差是相等的;(3)每个算式中第1个和最后1个式子相加,第2个式子和倒数第2个式子相加,…,所得的和相等;这样根据上述特点即可按例题中的方法方便的计算出每个小题的结果了.。
北师大版数学七年级上册期中同步练习含答案
北师大版数学七年级上册期中同步练习(含答案)七年级上学期北师大版数学期中同步练习一.选择题(共10小题)1.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃ B.+2℃ C.+3℃ D.﹣3℃2.有下列各数:﹣1,﹣9,﹣2.23,0,0.,+3,,﹣,其中分数有()A.1个B.2个C.3个D.4个3.四位同学画数轴如图所示,你认为正确的是()A.B.C.D.4.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q5.已知x3m﹣1y3与﹣x5y2n+1是同类项,则5m+3n的值是()A.12 B.13 C.16 D.176.下列说法正确的是()A.没有最小的有理数B.0既是正数也是负数C.有理数包括整数、分数和小数D.﹣1是最大的负有理数7.已知a是一个两位数,b是一个一位数,若把b置于a的左边可以得到一个三位数,则这个三位数可表示成()A.ba B.10b+a C.100b+a D.100b+10a8.如果a、b互为相反数(a≠0),x、y互为倒数,那么代数式的值是()A.0 B.1 C.﹣1 D.29.按如图的程序计算,若开始输入的值x为正整数,最后输出的结果小于20,则输出结果最多有()种.A.2个B.3个C.4个D.5个10.如图所示:下列各三角形中的三个数均有相同的规律,由此规律最后一个三角形中,y的值是()A.380 B.382 C.384 D.386二.填空题(共8小题)11.2023年5月11日,国务院第七次全国人口普查小组在发布会上公布,全国人口共141178万人,则141178万人用科学记数法表示为人.12.﹣xy3+2x2y4﹣3是次项式,常数项是.13.比较大小:﹣0.4﹣.14.已知x2﹣2x=3,则3x2﹣6x﹣4的值为.15.已知:(a+2)2+|b﹣1|=0,则(a+b)2022=.16.若代数式:﹣x|a|y3与x2yb是同类项,则a﹣b=.17.有理数a,b,c在数轴上对应的点的位置如图所示,则式子:|c ﹣a|﹣2|a﹣b|+|b+c|=.18.已知关于x的一元一次方程+3=2023x+m的解为x=2,那么关于y的一元一次方程+3=2023(1﹣y)+m的解y=.三.解答题(共7小题)19.计算:(1)﹣4+1.5﹣3.75+8;(2)﹣1.25﹣3+|﹣﹣1|.20.计算:(1)﹣12022×[﹣23﹣32+÷(﹣)]﹣2;(2)[﹣5×+(﹣1)2023]÷(﹣).21.化简:(1)﹣2a2﹣(3a2﹣6a+1)+3;(2)﹣3x﹣(2x﹣3y2)+.22.解方程:(1)3x﹣4x﹣6=1﹣3x+5;(2)3(5x+4)﹣2(x﹣1)=43﹣4(x+3).23.先化简,再求值:5x2y﹣[﹣2(﹣2x2y+xy2﹣3)+3x2y]+2,其中|x|=3,y=,且xy<0.24.春节,即农历新年,是一年之岁首、传统意义上的年节.俗称新春、新年、新岁、岁旦、年禧、大年等,口头上又称度岁、庆岁、过年、过大年.春节历史悠久,由上古时代岁首祈年祭祀演变而来,为了喜迎新春,某水果店现购进水果篮40个和坚果礼盒20个,已知每个水果篮的进价比每个坚果礼盒的进价便宜10%,水果篮每个售价110元,坚果礼盒每个售价150元.(1)春节期间水果店促销,坚果礼盒按售价八折出售,水果篮按原价销售.某公司一共花了1030元买了水果篮和坚果礼盒共9个,问某公司水果篮和坚果礼盒各买了多少个?(2)在(1)的条件下水果篮和坚果礼盒销售一空,水果篮利润是坚果礼盒利润的2倍.问水果篮和坚果礼盒每个进价各是多少元?25.已知数轴上有A、B两点,分别用a、b表示,且关于x、y的多项式2xa+5y2+(b﹣3)y为三次单项式.(1)求出a、b的值,并在数轴上标注A、B两点;(2)若动点Q从B点出发,以每秒2个单位长度的速度向左运动;同时动点P从A点出发,以每秒3个单位长度的速度向右运动,动点P到达原点后立即向左运动(只改变方向,不改变速度大小),则经过多长时间动点P与动点Q到原点的距离相等;(3)在(2)的条件下,P、Q出发的同时,又有一动点M从B点出发,以每秒3.5个单位长度的速度向左运动,则经过多长时间,动点P、Q、M互为余下两点的中点?(请直接写出答案)2022-2023学年七年级上学期北师大版数学期中同步练习(答案)一.选择题(共10小题)1.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃ B.+2℃ C.+3℃ D.﹣3℃【答案】A2.有下列各数:﹣1,﹣9,﹣2.23,0,0.,+3,,﹣,其中分数有()A.1个B.2个C.3个D.4个【答案】C3.四位同学画数轴如图所示,你认为正确的是()A.B.C.D.【答案】D4.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q【答案】D5.已知x3m﹣1y3与﹣x5y2n+1是同类项,则5m+3n的值是()A.12 B.13 C.16 D.17【答案】B6.下列说法正确的是()A.没有最小的有理数B.0既是正数也是负数C.有理数包括整数、分数和小数D.﹣1是最大的负有理数【答案】A7.已知a是一个两位数,b是一个一位数,若把b置于a的左边可以得到一个三位数,则这个三位数可表示成()A.ba B.10b+a C.100b+a D.100b+10a【答案】C8.如果a、b互为相反数(a≠0),x、y互为倒数,那么代数式的值是()A.0 B.1 C.﹣1 D.2【答案】A9.按如图的程序计算,若开始输入的值x为正整数,最后输出的结果小于20,则输出结果最多有()种.A.2个B.3个C.4个D.5个【答案】B10.如图所示:下列各三角形中的三个数均有相同的规律,由此规律最后一个三角形中,y的值是()A.380 B.382 C.384 D.386【答案】B二.填空题(共8小题)11.2023年5月11日,国务院第七次全国人口普查小组在发布会上公布,全国人口共141178万人,则141178万人用科学记数法表示为1.41178×109人.【答案】1.41178×109.12.﹣xy3+2x2y4﹣3是六次三项式,常数项是﹣3.【答案】六,三,﹣3.13.比较大小:﹣0.4>﹣.【答案】见试题解答内容14.已知x2﹣2x=3,则3x2﹣6x﹣4的值为5.【答案】5.15.已知:(a+2)2+|b﹣1|=0,则(a+b)2022=1.【答案】1.16.若代数式:﹣x|a|y3与x2yb是同类项,则a﹣b=﹣1或﹣5.【答案】﹣1或﹣5.17.有理数a,b,c在数轴上对应的点的位置如图所示,则式子:|c ﹣a|﹣2|a﹣b|+|b+c|=3a﹣b.【答案】3a﹣b.18.已知关于x的一元一次方程+3=2023x+m的解为x=2,那么关于y的一元一次方程+3=2023(1﹣y)+m的解y=﹣1.【答案】﹣1.三.解答题(共7小题)19.计算:(1)﹣4+1.5﹣3.75+8;(2)﹣1.25﹣3+|﹣﹣1|.【答案】(1)2;(2)﹣3.5(或).20.计算:(1)﹣12022×[﹣23﹣32+÷(﹣)]﹣2;(2)[﹣5×+(﹣1)2023]÷(﹣).【答案】(1)20;(2).21.化简:(1)﹣2a2﹣(3a2﹣6a+1)+3;(2)﹣3x﹣(2x﹣3y2)+.【答案】(1)﹣5a2+6a+2;(2)﹣4x+2y2.22.解方程:(1)3x﹣4x﹣6=1﹣3x+5;(2)3(5x+4)﹣2(x﹣1)=43﹣4(x+3).【答案】(1)x=6;(2)x=1.23.先化简,再求值:5x2y﹣[﹣2(﹣2x2y+xy2﹣3)+3x2y]+2,其中|x|=3,y=,且xy<0.【答案】﹣2x2y+2xy2﹣4,﹣10.24.春节,即农历新年,是一年之岁首、传统意义上的年节.俗称新春、新年、新岁、岁旦、年禧、大年等,口头上又称度岁、庆岁、过年、过大年.春节历史悠久,由上古时代岁首祈年祭祀演变而来,为了喜迎新春,某水果店现购进水果篮40个和坚果礼盒20个,已知每个水果篮的进价比每个坚果礼盒的进价便宜10%,水果篮每个售价110元,坚果礼盒每个售价150元.(1)春节期间水果店促销,坚果礼盒按售价八折出售,水果篮按原价销售.某公司一共花了1030元买了水果篮和坚果礼盒共9个,问某公司水果篮和坚果礼盒各买了多少个?(2)在(1)的条件下水果篮和坚果礼盒销售一空,水果篮利润是坚果礼盒利润的2倍.问水果篮和坚果礼盒每个进价各是多少元?【答案】(1)水果篮:5个;坚果礼盒:4个(2)水果篮的进价为:90元;坚果礼盒的进价为:100元.25.已知数轴上有A、B两点,分别用a、b表示,且关于x、y的多项式2xa+5y2+(b﹣3)y为三次单项式.(1)求出a、b的值,并在数轴上标注A、B两点;(2)若动点Q从B点出发,以每秒2个单位长度的速度向左运动;同时动点P从A点出发,以每秒3个单位长度的速度向右运动,动点P到达原点后立即向左运动(只改变方向,不改变速度大小),则经过多长时间动点P与动点Q到原点的距离相等;(3)在(2)的条件下,P、Q出发的同时,又有一动点M从B点出发,以每秒3.5个单位长度的速度向左运动,则经过多长时间,动点P、Q、M互为余下两点的中点?(请直接写出答案)【答案】(1)a=﹣4,b=3.图象见解答;(2)经过1秒或秒时,动点P与动点Q到原点的距离相等;(3)当t=秒时,点M为P,Q的中点;当t=秒或4秒时,点P为M,Q的中点.。
北师大版七年级上册数学期中试题及答案
北师大版七年级上册数学期中试题2022年一、单选题1.下列计算不正确...的是()A .253-=-B .()()257-+-=-C .()239-=-D .()211-+=-2.把351000用科学记数法表示,正确的是()A .0.351×106B .3.51×105C .3.51×106D .35.1×1043.下列说法正确的是()A .x 不是单项式B .0不是单项式C .-x 的系数是-1D .1x是单项式4.下列各组式子中是同类项的是()A .4x 与4yB .24xy 与4xyC .24xy 与24x yD .24xy 与24y x5.下列计算中结果正确的是()A .459ab ab +=B .22330a b ba -=C .66xy x y-=D .34712517x x x +=6.用算式表示“比3-℃低8℃的温度”正确的是()A .385-+=B .3811--=-C .3811-+=-D .385--=-7.在代数式25x +,1-,232x x -+,π,5x,215x x ++中,多项式有()A .2个B .3个C .4个D .6个8.有理数a 、b 在数轴上的位置如右图所示,则下面的关系式中正确的个数为()①a-b>0②a+b >0③11a b>④b a ->0A .1个B .2个C .3个D .4个9.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n 需几根火柴棒()A .2+7nB .8+7nC .4+7nD .7n+110.单项式3245a b c -的系数和次数分别是()A .﹣5和9B .﹣5和4C .15-和4D .15-和911.计算27--的结果是()A .9-B .9C .5-D .512.数据393000米用科学记数法表示为()A .70.39310⨯米B .63.9310⨯米C .53.9310⨯米D .439.310⨯米13.下列各数−28,15--,0,−(−6.1),−22中,负数的个数有()A .2个B .3个C .4个D .5个14.下面各组数中,相等的一组是()A .﹣22与(﹣2)2B .323与3(23C .﹣|﹣2|与﹣(﹣2)D .(﹣3)3与﹣3315.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A .①②③④B .②①③④C .③②①④D .④②①③16.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元之后又降低20%,现在售价为n 元,那么该电脑的原售价为()A .(5m+n )元B .(5n+m )元C .(54n m +)元D .(45n m +)元17.下列各题正确的有()个:①()201612016-=;②()011÷-=-;③76233()322⎛⎫-⨯-=- ⎪⎝⎭;④n 棱柱有(2)n +个面,2n 个顶点;⑤平方数是它本身的数是1或0;⑥倒数是它本身的数是±1或0.A .2个B .3个C .4个D .5个18.若a 、b 为实数.2|2|(1)0a b -++=,则2a b -的值为()A .0B .3C .5D .119.一只蚂蚁在数轴上先向右爬3个单位,再向左爬6个单位,所在位置正好距离数轴原点2个单位,则蚂蚁的起始位置所表示的数是()A .5B .-1或5C .1或5D .0或-520.如图,硬纸板上有10个无阴影的正方形,从中选1个,使得它与图中多个有阴影的正方形一起能折叠成一个正方体纸盒,选法共有()A .4种B .5种C .6种D .7种二、填空题21.若3a 2bcm 为七次单项式,则m 的值为___.22.()311246⎛⎫-⨯-= ⎪⎝⎭______.23.写出一个在122-和2之间的负整数:______.24.代数式38x -与3互为相反数,则x =______.25.计算:()()2021201920201236⎛⎫-⨯-⨯-= ⎪⎝⎭______.26.现有一列数1x ,2x ,…,2021x ,其中23x =-,75x =,3336x =-,且满足任意相邻三个数的和为相等的常数,则122021x x x +++L 的值为______.27.已知单项式21312m x y --与64n xy +是同类项,则m n ⋅=_______28.已知代数式2a a +的值是1,则代数式2222011a a ++值是____29.用“>”或“=”或“<”填空.①﹣5_____3;②34-_____35-;③﹣|﹣2.25|_____﹣2.530.已知2350x y --=,则6915x y -+=___.31.如图是一个数值转换机,若输入a 的值为-1,则输出的结果应为___.32.已知a ,b ,c 是三个有理数,他们在数轴上的位置如图所示,化简a b c a b c -+--+=___.33.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,⋯⋯,按此规律,图案ⓝ需________________根火柴棒.三、解答题34.计算(1)()()136243-÷-+⨯-(2)()2411333⎡⎤--⨯--⎣⎦35.解方程(1)617x +=(2)3845x x -=-36.画出数轴,在数轴上标出下列各数,并用“<”把这些数连接起来.2, 3.5-,3-,2.5,5-,()22-.37.先化简,再求值:()()22222222322x y y xyx ++---,其中1,2x y =-=.38.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:9+、4+、7-、5+、8-、6+、3-、6-、4-、10+.(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?39.小红做一道数学题“两个多项式A、B,B为2456x x--,试求A+B的值”.小红误将A+B看成A-B,结果答案(计算正确)为271012x x-++.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.40.一种蔬菜x千克,不加工直接出售每千克可卖y元;如果经过加工重量减少了20%,价格增加了40%,问:(1)写出x千克这种蔬菜加工后可卖钱数的代数式;(2)如果这种蔬菜1000千克,不加工直接出售,每千克可卖1.50元,问加工后原1000千克这种蔬菜可卖多少钱?比加工前多卖多少钱?41.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.(1)则a=,b=,c=.(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C 的距离和为40个单位?(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是xP、xQ、xT,点Q出发的时间为t,当143<t<172时,求2|xP﹣xT|+|xT﹣xQ|+2|xQ﹣xP|的值.42.请大家阅读下面两段材料,并解答问题:材料1:我们知道在数轴上表示4和1的两点之间的距离为3(如图1),而|4﹣1|=3,所以在数轴上表示4和1的两点之间的距离为|4﹣1|.材料2:再如在数轴上表示4和﹣2的两点之间的距离为6(如图2)而|4﹣(﹣2)|=6,所以数轴上表示数4和﹣2的两点之间的距离|4﹣(﹣2)|.(1)(如图3)根据上述规律,我们可以得出结论:在数轴上表示数a和数b两点之间的距离等于.(2)试一试,求在数轴上表示的数523与﹣414的两点之间的距离为.(3)已知数轴上表示数a的点M与表示数﹣1的点之间的距离为3,表示数b的点N与表示数2的点之间的距离为4,求M,N两点之间的距离.43.计算(1)-9-5-(-12)+(-3)(2)-3+(-5)-(-6)+|-4|44.计算(1)122(4.5)4⎛⎫-+-⨯- ⎪⎝⎭(2)357(32)1684⎛⎫-⨯-+ ⎪⎝⎭(3)4311(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦45.若a 、b 互为相反数,c 、d 互为倒数,||4m =,求2563a bm cd m m++-+的值.46.如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.47.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负):星期一二三四五六日增减+5-2-4+13-10+16-9(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行计件工资制,每辆车60元,超额完成任务每辆奖10元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?48.如图,新城社区要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:米).(1)求阴影部分的面积(用含x 的代数式表示);(2)当x =20,π取3时,求阴影部分的面积.49.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和1的两点之间的距离是.②数轴上表示-2和-6的两点之间的距离是.③数轴上表示-4和3的两点之间的距离是.归纳:一般的,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)应用:①如果表示数a 和3的两点之间的距离是9,则可记为:|3|9a -=,那么a =.②若数轴上表示数a 的点位于-4与3之间,求|4||3|a a ++-的值.③当a 取何值时,413a a a ++-+-的值最小,最小值是多少?请说明理理由.参考答案1.C 【解析】【分析】根据有理数的加法运算法则,减法运算法则,乘方的运算对各选项计算后选取答案.【详解】解:A、2−5=−3,正确;B、(−2)+(−5)=−(2+5)=−7,正确;C、(−3)2=9,故本选项错误;D、(−2)+1=−2+1=−1,正确.故选:C.【点睛】本题考查有理数的加法、减法和有理数的乘方的运算,熟练掌握运算法则是解题的关键.2.B【解析】【详解】科学记数法是指:a×n10,1≤a<10,n是指这个数的整数位数减1.即原数=3.51×510.故选B3.C【解析】【分析】根据单项式的定义解答即可.【详解】解:x,0是单项式,故A,B项不正确;x 的系数为-1,故C项正确;D项1x不是整式,故不是单项式.故选:C.【点睛】本题考查了单项式的相关知识,解题的关键是掌握单项式的定义. 4.D【解析】【分析】含有相同的字母,且相同字母的指数也分别相等的项是同类项,根据定义解答.【详解】解:A.4x与4y不是同类项,故该项不符合题意;4xy与4xy不是同类项,故该项不符合题意;B.24xy与24x y不是同类项,故该项不符合题意;C.24xy与24y x是同类项,故该项符合题意;D.2故选:D.【点睛】此题考查了同类项定义,熟记定义及正确应用是解题的关键.5.B【解析】【分析】根据同类项的定义及合并同类项法则依次判断.【详解】解:4与5ab不是同类项,不能合并,故选项A不符合题意;22-=,,故选项B符合题意;a b ba3306xy与-x不是同类项不能合并,故选项C不符合题意;12x3与5x4不是同类项,不能合并,故选项D不符合题意;故选:B.【点睛】此题考查了同类项的定义及合并同类项的法则,正确掌握定义及合并的法则是解题的关键.6.B【解析】【分析】-减去8,进而根据有理数的减法进行计算即可根据题意列算式即,用3【详解】-℃低8℃的温度”可得,解:由“比33811--=-故选B【点睛】本题考查了有理数减法的应用,理解题意是解题的关键.7.A 【解析】【分析】根据多项式的定义分析即可.【详解】解:25x +,232x x -+是多项式,1-,π是单项式,5x,215x x ++的分母含字母,不是整式;故选A .【点睛】本题考查了整式、单项式、多项式的识别,只含有加、减、乘、乘方的代数式叫做整式;其中不含有加减运算的整式叫做单项式,单独的一个数或衣蛾字母也是单项式;含有加减运算的整式叫做多项式.8.B 【解析】【分析】首先根据数轴可以得到b <−1<0<a <1,以及|a|<|b|,根据有理数的加法法则以及不等式的性质即可作出判断.【详解】根据数轴可以得到:b <−1<0<a <1.∵a >b∴a−b >0,b−a <0故①正确,④错误;∵a >0,b <0,且|a|<|b|∴a +b <0,故②错误;∵a >0,b <0∴ab <0在a >b 两边同时除以ab ,得:1b <1a ,即11a b>,故③正确;故正确的是:①③.故选:B .【点睛】本题主要考查了利用数轴比较数的大小以及不等式的性质,判断③时,两边同时除以ab ,不等号的方向变化是容易出现的错误.9.D【解析】【详解】∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n+1根;故选D .【点睛】本题是一道规律题.分析图形得出从第2个图形开始每增加一个八边形需要7根火柴是解题的关键.10.D【解析】【详解】试题分析:根据单项式系数、次数的定义,单项式3245a b c -的系数和次数分别是15-和9.故选D .考点:单项式系数和次数11.A【解析】【分析】先把减法转化为加法,再按照有理数的加法法则运算即可.【详解】解:()27279.--=-+-=-【点睛】本题考查的是有理数的减法,掌握有理数的减法法则进行运算是解题的关键.12.C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将393000用科学记数法表示为:53.9310⨯.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.B【解析】【分析】根据相反数的定义以及绝对值的性质化简相关的数,再根据小于零的数是负数,可得答案.【详解】解:-|-15|=-15,-(-6.1)=6.1,-22=-4,∴负数有−28,-|-15|,-22,共3个.故选:B .【点睛】本题考查了正数和负数,小于零的数是负数,大于零的数是正数,注意零既不是正数也不是负数.14.D【解析】【分析】根据有理数的乘方,绝对值和多重符号化简的运算法则逐一计算可得.A.﹣224=-,(﹣2)24=,故该选项不符合题意;B.328=33,3(238=27,故该选项不符合题意;C.﹣|﹣2|2=-,﹣(﹣2)2=,故该选项不符合题意;D.(﹣3)327=-,﹣3327=-,故该选项符合题意;故选D【点睛】本题考查了有理数的乘方,绝对值和多重符号化简的运算法则,正确的计算是解题的关键.15.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.16.C【解析】【分析】设电脑的原售价为x 元,按原价降低m 元之后又降低20%,价格为(x -m )(1-20%)等于现售价为n 元作为相等关系,列方程解出即可.【详解】设电脑的原售价为x 元,则(x -m )(1-20%)=n ,∴x =54n m +.【点睛】当题中数量关系较为复杂时,利用一元一次方程作为模型解题不失为一种好的方法,思路清晰简单,避免了思维混乱而出现的错误.17.B【解析】【分析】根据幂指数定义可判断①,根据除法的运算法则可判断②,根据乘法法则可判断③,根据棱柱的定义可判断④,根据平方的定义可判断⑤,根据倒数的定义可判断⑥.【详解】解:∵(-1)2016=1,∴①错误,∵0÷(-1)=0×(-1)=0,∴②错误,∵(−23)6×(−32)7=(−23)6×(−32)6×(−32)=−32,∴③正确,∵n棱柱有(n+2)个面,2n个顶点,∴④正确,∵平方数是它本身的数只有1和0,∴⑤正确,∵0没有倒数,∴⑥错误,∴正确的有③④⑤,共3个,故选:B.【点睛】本题主要考查了有理数的运算,关键是要牢记乘除法,乘方等的运算法则,理解平方和倒数的含义.18.C【解析】根据绝对值和偶次方的非负数性质求出a、b的值,再代入所求式子计算即可.【详解】解:∵a、b为实数,且|a-2|+(b+1)2=0,而|a-2|≥0,(b+1)2≥0,∴a-2=0,b+1=0,解得a=2,b=-1,∴a2-b=22-(-1)=4+1=5.故选:C.【点睛】本题考查的是非负数的性质,熟知绝对值以及偶次方具有非负性是解答此题的关键.19.C【解析】【分析】根据数轴的相关知识解题.【详解】解:设蚂蚁的起始位置所表示的数是x,则根据题意知,x+3-6=-2或x+3-6=2,解得,x=1或x=5.故选:C.【点睛】本题考查了数轴,关键是对数轴定义、数轴上点的表示方法等知识应用.20.A【解析】【分析】利用正方体的展开图即可解决问题,共四种.【详解】解:如图所示:共四种.故选A .【点睛】本题主要考查了正方体的展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.21.4.【解析】【分析】单项式3a 2bcm 为七次单项式,即是字母的指数和为7,列方程求m 的值.【详解】依题意,得:2+1+m=7解得:m=4.故答案为4.【点睛】本题考查了单项式的次数的概念.单项式的次数是指各字母的指数和,字母指数为1时,省去不写.22.-7【解析】【分析】根据乘法分配律解答.【详解】解:()()()31311212129274646⎛⎫-⨯-=⨯--⨯-=-+=- ⎪⎝⎭,故答案为:-7.【点睛】此题考查了乘法分配律的计算法则,熟记计算法则并应用是解题的关键.23.-2或者-1【解析】【分析】可以通过画数轴的方法,直观的找出在122-和2之间的负整数.【详解】解:如数轴所示,在122-和2之间的负整数为-2,-1即答案为:-2或-1【点睛】本题主要考查了学生对有理数的认识,解答此题的关键是正确理解负整数的定义.24.53【解析】【分析】根据相反数的定义得到38x -+3=0,通过解一元一次方程计算即可.【详解】解:由题意得38x -+3=0,解得x=53,故答案为:53.【点睛】此题考查了解一元一次方程,相反数的定义:只有符号不同的两个数是互为相反数,熟记定义是解题的关键.25.112【解析】【分析】根据同底数幂相乘的逆运算将()20212020136⎛⎫-⨯- ⎪⎝⎭写成()201920192113(3)()66⎛⎫-⨯-⨯-⨯- ⎪⎝⎭,再根据积的乘方逆运算及乘法法则解答.【详解】解:原式=()()20192019201921123(3)()66⎛⎫-⨯-⨯-⨯-⨯- ⎪⎝⎭=()()201921123(3)()66⎡⎤⎛⎫-⨯-⨯-⨯-⨯- ⎪⎢⎥⎝⎭⎣⎦=11(3)36-⨯-⨯=112.故答案为:112.【点睛】此题考查了有理数的乘法计算,正确掌握同底数幂乘法法则的逆运算及积的乘方逆运算及乘法法则是解题的关键.26.-2690【解析】【分析】先根据任意相邻三个数的和为相等的常数可推出x 1=x 4=x 7=…=x 2020=x 7=5,x 2=x 5=x 8=…=x 2021=-3,x 3=x 6=x 9=…=x 333=x 2019=-6,由此可求x 1+x 2+x 3+…+x 2021的值.【详解】解:∵x 1+x 2+x 3=x 2+x 3+x 4,∴x 1=x 4,同理可得:x 1=x 4=x 7=…=x 2020=x 7=5,x 2=x 5=x 8=…=x 2021=-3,x 3=x 6=x 9=…=x 333=x 2019=-6,∴x 1+x 2+x 3=-4,∵2021=673×3+2,∴x 1+x 2+x 3+…+x 2021=(-4)×673+(5-3)=-2692+2=-2690.故答案为:-2690.【点睛】本题考查数字的变化规律,通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.27.﹣3【解析】【详解】试题分析:由同类项的定义得n=﹣3,m=1,代入中,结果为﹣3.考点:同类项的定义28.2013【解析】【详解】试题分析:因为=1,所以()2=220112013a a ++=.考点:代数式的求值29.<<>【解析】【分析】根据正数大于零,零大于负数,两个负数比较时绝对值大的反而小可得答案.【详解】解:①﹣5<3;②33153312,44205520-==-==,15122020> 3345∴-<-;③ 2.25 2.25-= 2.5 2.5∴-=2.25 2.5<∴-->-2.25 2.5故答案为:①<;②<;③>.【点睛】本题考查有理数的大小比较,涉及绝对值的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.30.30【解析】【分析】由2x-3y-5=0得出2x-3y=5,再把6x-9y+15变形为3(2x-3y)+15即可得出答案.【详解】解:∵2x-3y-5=0,∴2x-3y=5,又∵6x-9y+15=3(2x-3y)+15,∴6x-9y+15=3×5+15=30,故答案为:30.【点睛】本题主要考查了代数式求值问题,关键是要能把6x-9y+15变形为3(2x-3y)+15的形式.31.11【解析】【分析】把a的值代入数值转换机中计算即可确定出结果.【详解】解:把a=-1代入得:[(-1)2-4]×(-3)+2=9+2=11,故答案为:11.【点睛】本题考查了有理数的混合运算,弄清数值转换机中的运算是解本题的关键.32.2a【解析】【分析】由a、b、c在数轴上的位置知a-b>0、c-a<0、b+c<0,再根据绝对值的性质取绝对值符号,然后去括号、合并即可得.【详解】解:由数轴知c<b<0<a,则a-b>0,c-a<0,b+c<0,∴原式=(a-b)-(c-a)+(b+c)=a-b-c+a+b+c=2a.故答案为:2a.【点睛】本题主要考查了数轴,解题的关键是掌握点的数轴上的位置及绝对值的性质.7n1+33.()【解析】【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,8=7+1,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒7n+1根.【详解】图案①需火柴棒:7+1=8根;图案②需火柴棒:7+7+1=15根;图案③需火柴棒:7+7+7+1=22根;…,∴图案n需火柴棒:7n+1根;故答案为:7n+1【点睛】本题是一道规律探究题,仔细观察,根据所给图形找出图形的变化规律是解答本题的关键. 34.(1)4(2)1【解析】【分析】(1)同时计算乘除法,再计算加减法;(2)先计算乘方,再计算括号内的即乘法,最后计算加法.(1)解:()()136243-÷-+⨯-=13+3-12=4;(2)解:()2411333⎡⎤--⨯--⎣⎦=11(39)3--⨯-=-1+2=1.【点睛】此题考查了有理数的混合运算,含乘方的有理数的混合运算,正确掌握运算顺序及法则是解题的关键.35.(1)x=1(2)x=-3【解析】【分析】先移项,再合并同类项,化系数为1即可求解;先移项,再合并同类项,化系数为1即可求解;(1)解:移项,得6x=7-1,合并同类项,得6x=6,系数化为1,得x=1.(2)解:移项,得3x-4x=-5+8,合并同类项,得-x=3,系数化为1,得x=-3.【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解答此题的关键.36.数轴见详解,−3.5<−3<2<2.5<(−2)2<|−5|.【解析】【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.【详解】解:如图所示:用“<”连接为:−3.5<−3<2<2.5<(−2)2<|−5|.【点睛】本题考查了有理数大小比较,利用数轴上的点表示的数右边的总比左边的大是解题关键.37.7【解析】【分析】先化简,再将x、y的值代入计算即可.【详解】原式=2x2+y2+2y2-3x2-2y2+4x2=3x2+y2当x=-1y=2时,原式=3×(-1)2+22=3 1+4=7.38.(1)出租车离鼓楼出发点6km,在鼓楼东边(2)148.8元【解析】【分析】(1)把记录的数字加起来,看结果是正还是负,就可确定是向东还是西;(2)求出记录数字的绝对值的和,再乘以2.4即可.(1)解:9+4+7-5+8-6+3-6-4-10+=6故出租车最后在鼓楼东边6km 的位置;(2)解:9+4+7+5+8+6+3+6+4+10=6262 2.4148.8⨯=故司机一个下午的营业额是148.8元.【点睛】本题考查了正数和负数的理解,有理数的运算,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量是解题的关键.39.(1)2x ;(2)9.【解析】【分析】(1)因为271012A B x x -=-++,且2456B x x =--,所以可以求出A ,再进一步求出A B +;(2)根据(1)的结论,把3x =代入求值即可.【详解】解:(1)由题意271012A Bx x -=-++,∴2(456)A x x ---271012x x =-++,∴2456A x x =--271012x x -++=2356x x -++.2356A B x x ∴+=-++2456x x +--2.x =(2)把3x =代入2x 得:239.A B +==【点睛】考点:整式的加减.40.(1)1.12xy 元;(2)加工后可卖1680元,比加工前多卖180元【解析】【分析】(1)求出加工后的蔬菜重量和价格,即可求出代数式;(2)将数字代入(1)中代数式即可.【详解】(1)x 千克这种蔬菜加工后可卖钱为:()120%140% 1.12x y xy -+= ()(元)(2)加工后可卖:1.121000 1.51680⨯⨯=比加工前多卖:1680151000180-⨯=.(元)答:1680元,比加工前多卖180元【点睛】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要掌握销售问题的价格与重量之间的关系.41.(1)﹣24,﹣10,10;(2)t =2s 或5s ;(3)46【解析】【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建方程即可解决问题;(3)当点P 追上T 的时间t 1=1414413=-.当Q 追上T 的时间t 2=3417512=-.当Q 追上P 的时间t 3=2054-=20,推出当143<t <172时,位置如图,利用绝对值的性质即可解决问题.【详解】(1)∵M =(a +24)x 3﹣10x 2+10x +5是关于x 的二次多项式,∴a +24=0,b =﹣10,c =10,∴a =﹣24,故答案为﹣24,﹣10,10.(2)①当点P 在线段AB 上时,14+(34﹣4t )=40,解得t =2.②当点P 在线段BC 上时,34+(4t ﹣14)=40,解得t =5,③当点P 在AC 的延长线上时,4t+(4t-14)+(4t-34)=40,解得t=223,不符合题意,排除,∴t =2s 或5s 时,P 到A 、B 、C 的距离和为40个单位.(3)当点P 追上T 的时间t 1=1414413=-.当Q 追上T 的时间t 2=3417512=-.当Q追上P的时间t3=2054=20,∴当143<t<172时,位置如图,∴2|xP﹣xT|+|xT﹣xQ|+2|xQ﹣xP|=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t=74-28=46.【点睛】本题考查多项式、绝对值、数轴、一元一次方程的应用等知识,解题的关键是理解题意,学会构建方程解决问题,学会用分类讨论的思想思考问题.42.(1)|a﹣b|;(2)91112;(3)2或4或10.【解析】【分析】(1)根据材料提供的数轴上两点之间距离的计算方法即可得出答案;(2)根据(1)的结论计算即可;(3)根据题意可求出a、b的值,根据a、b的不同值,分别代入计算即可求出结果.【详解】解:(1)在数轴上表示数a和数b两点之间的距离等于|a﹣b|,故答案为|a﹣b|;(2)|523﹣(﹣414)|=91112,故答案为91112.(3)由题意得,|a﹣(﹣1)|=3,|b﹣2|=4,解得,a=2或a=﹣4,b=6或b=﹣2.①当a=2,b=6时,|a﹣b|=|2﹣6|=4,②当a=2,b=﹣2时,|a﹣b|=|2﹣(﹣2)|=4,③当a=﹣4,b=6时,|a﹣b|=|﹣4﹣6|=10,④当a=﹣4,b=﹣2时,|a﹣b|=|﹣4﹣(﹣2)|=2.答:点M、N之间的距离为2或4或10.【点睛】本题考查了数轴上两点之间的距离、绝对值的意义和有理数的加减运算,正确理解数轴上两点之间的距离、全面分类、准确计算是解答的关键.43.(1)-5(2)2【解析】【分析】(1)先将减法转化为加法,再根据加法法则计算可得;(2)先将减法转化为加法,再根据加法法则计算可得.(1)解:-9-5-(-12)+(-3)=-9-5+12-3=(-9-5-3)+12=-17+12=-5;(2)解:-3+(-5)-(-6)+|-4|=−3−5+6+4=(−3−5)+(6+4)=−8+10=2.【点睛】本题主要考查了有理数的加减混合运算,解题的关键是掌握有理数的加减运算法则和运算顺序及其运算律.44.(1)65 8(2)-42(3)-6【解析】【分析】(1)先算乘法,再算加法;(2)根据乘法分配律简便计算计算;(3)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(1)解:−2+(−214)×(−4.5)=-2+94×92=-2+81 8=65 8;(2)解:357 (32)1684⎛⎫-⨯-+⎪⎝⎭357(32)(32)(32)1684 =-⨯--⨯-⨯=-6+20-56=-42;(3)解:-14-(1-0.5)×13×[3−(−3)3]=-1-12×13×(3+27)=-1-12×13×30=-1-5=-6.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.45.35或-13.【解析】【分析】利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,m的值,代入原式计算即可得到结果.【详解】解:根据题意得:a+b=0,cd=1,m=4或-4,当m=4时,2563a b m cd m m++-+=0+16-5+24=35;当m=-4时,2563a b m cd m m ++-+=0+16-5-24=-13.【点睛】本题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.46.见解析.【解析】【分析】根据从正面看到的小正方体个数以及排列方式可得从正面看到的图形,同理可得从左面看到的图形,从上面看到的图形,据此画出即可.【详解】如图所示:【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.47.(1)599(2)26(3)该厂工人这一周的工资是84630元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与减产的最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.(1)解:前三天生产的辆数是200×3+(5-2-4)=599(辆).故答案为:599;(2)解:超产的最多是星期六,超产16辆;减产的最少是星期五,减产10辆;则16-(-10)=16+10=26(辆),故答案为:26;(3)解:这一周多生产的总辆数是5-2-4+13-10+16-9=9(辆).(1400+9)×60+9×10=84630(元).答:该厂工人这一周的工资是84630元.【点睛】本题考查了正数和负数以及有理数的混合运算,理解正负数的意义,掌握有理数的运算法则是关键.48.(1)(6x ﹣20﹣4.5π)平方米;(2)86.5平方米【解析】【分析】(1)先求出两个长方形的面积,再减去半圆的面积,即可得出阴影部分的面积;(2)把20x =,π取3代入(1)中的结论,即可得出答案.【详解】解:(1)由图可知上面的长方形的面积为4(22)(416)x x ⨯--=-(平方米),下面的长方形的面积为2(2)(24)x x ⨯-=-(平方米),∴两个长方形的面积为620x -(平方米),半圆的半径为(42)23+÷=(米),∴半圆的面积为232 4.5ππ⋅÷=(平方米),∴阴影部分的面积为(620 4.5)x π--平方米;(2)当20x =,π取3时,阴影部分的面积=620 4.5x π--62020 4.53=⨯--⨯1202013.5=--=(平方米),86.5∴阴影部分的面积为86.5平方米.49.(1)①4;②4;③7(2)①12或-6;②7;③a=1时,|a+4|+|a-1|+|a-3|的值最小,最小值是7.【解析】(1)根据两点间的距离公式,可得答案;(2)①根据两点间的距离公式,可得答案;②根据线段上的点到线段两端点的距离的和最小,可得答案;③根据线段上的点到线段两端点的距离的和最小,可得答案.(1)解:①数轴上表示5和1的两点之间的距离是4,②数轴上表示-2和-6的两点之间的距离是4,③数轴上表示-4和3的两点之间的距离是7,故答案为:①4,②4,③7;(2)解:①如果表示数a和3的两点之间的距离是9,则可记为:|a-3|=9,则a-3=9或a-3=-9,那么a=12或-6,故答案为:12或-6;②若数轴上表示数a的点位于-4与3之间,则|a+4|+|a-3|=a+4+3-a=7;③∵|a+4|+|a-1|+|a-3|表示数轴上数a和数-4,1,3之间的距离之和,∴a=1时距离的和最小,∴|a+4|+|a-1|+|a-3|=5+0+2=7.∴a=1时,|a+4|+|a-1|+|a-3|的值最小,最小值是7.31。
北师大版七年级上册数学期中考试试卷带答案
北师大版七年级上册数学期中考试试题一、单选题1.4-的倒数是( )A .14B .4C .14-D .4- 2.把890000这个数据用科学记数法表示为( )A .58.910⨯B .68.910⨯C .78.910⨯D .88.910⨯ 3.由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的左视图是( )A .B .C .D . 4.下列各组单项式中,不是同类项的是( )A .3与2-B .313x y 与313x y - C .22ab c 与2acb D .2a -与25- 5.如果一个直棱柱有七个面,那么它一定是( )A .三棱柱B .四棱柱C .五棱柱D .六棱柱 6.绝对值大于2且小于5的所有整数的和是( )A .7B .-7C .0D .5 7.44-=表示的意义是( )A .4-的相反数是4B .表示4的点到原点的距离是4C .4的相反数是4-D .表示4-的点到原点的距离是48.下列计算正确的是( )A .2(1)1-=-B .3(1)1-=-C .211-= D .311-=9.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是( )A .B .C .D .10.有理数a ,b 在数轴上的对应点如图所示,则下列式子错误的是( )A .b <0B .a+b <0C .a <0D .b ﹣a <0二、填空题11.十一月某天,某地最高气温5℃,最低气温-2℃.这一天温差是________℃.12.已知单项式223x y -的系数为a ,次数为b ,则ab 的值为________.13.在22-、3(1)-、(5)-+、213⎛⎫- ⎪⎝⎭中,正数有________个.14.用“>”“<”“=”填空:(1)若0a <,则2a ________a ;(2)若0a c b <<<,则abc ________015.在数轴上,与表示3-的点距离2个单位长度的点表示的数是________.16.已知﹣17x 4my 2+23x 7yn =6x 7y 2,则m ﹣n 的值是 ___.17.用火柴棒按如图在方式搭图形,搭第n 个图形需 ___根火紫棒.三、解答题18.把下列个数填到相应的集合内.1、13、0.5、7+、0、 6.4-、9-、613、0.3、5%、26-、1.010010001…… 整数集合:{_______________…}分数集合:{_______________…}19.计算.(1)(8)4718(27)--+--(2)510.474( 1.53)166----(3)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭(4)202031312(1)468⎛⎫-+-⨯+- ⎪⎝⎭20.化简:(1)()()2237427a ab a ab -+--++(2)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x21.化简求值22352(23)4m m m m ⎡⎤---+⎣⎦,其中4m =-.22.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为3 cm,长方形的长为5 cm,宽为3 cm,请直接写出修正后所折叠而成的长方体的体积是cm3.23.为筹备某项工作,甲、乙、丙三个志愿者团队走上街头做宣传工作,在筹备期间,甲队做宣传工作的时间是乙队所用时间的2倍还多5个小时,丙队所用的时间时乙队的三分之一还少10个小时,若设乙队宣传工作用了x个时,回答下列问题.(1)用含x的代数式表示甲队的工作时间为________小时,丙队的工作时间为________小时;(2)甲队比丙队多宣传的时间为多少?(3)若乙队宣传了330个小时,求甲队比丙队多宣传的时间.24.某厂的某生产合作小组每天平均组装n个某型号电子产品(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周的五个工作日每天实际产量情况(超过计划产量记为正,少于计划产量记为负).(1)用含n的代数式表示合作小组本周五天生产电子产品的总量为________个;(2)该厂实行每日计件工资制,每组装生产一个电子产品可得200元,若超额完成任务,n=时,请求出该小组这一周的工资则超过部分每个另奖55元,少生产一个扣60元,当7总额;(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不n=时,在此方式下这一周此小组的工资总额与按日计件的工资哪个多?请说明理变,当7由.25.在一条不完整的数轴上从左到右有A 、B 、C 三点,其中5cm AC =,2cm BC =,设点A 、B 、C 所对应数的和是p .(1)若以点B 为原点,2cm 长为1个单位长度,则点A 所对应的数为________,点C 所对应的数为________,p 的值为________;(2)若原点O 在数轴上,且15cm =OB ,以1cm 长为一个单位长度,求p 的值.26.老师写出一个整式(ax 2+bx ﹣3)﹣(2x 2﹣3x )(其中a 、b 为常数),然后让同学给a 、b 赋予不同的数值进行计算.(1)甲同学给出了一组数据,最后计算的结果为﹣x 2+4x ﹣3,则甲同学给出a 、b 的值分别是a = ,b = ;(2)乙同学给出一组数,计算的最后结果与x 的取值无关,求出ba+ab 的值.参考答案1.C2.A3.A4.D5.C6.C7.D8.B9.B10.D11.7【分析】利用最高气温减去最低气温计算即可.【详解】解:5-(-2)=7(℃),即这一天温差是7℃,故答案为:7.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.12.2-【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】 解:单项式223x y -的系数为:23-,次数为:3, 则23a =-,3b =. 所以2332ab =-⨯=-.故答案为:2-.【点睛】本题考查了单项式,解题的关键是正确把握单项式的次数与系数确定方法.13.1【解析】【分析】根据正数大于零进行分析即可.【详解】解:224-=-,3(1)1-=-,(5)5-+=-,21319⎛⎫-⎪⎭= ⎝,故在22-、3(1)-、(5)-+、213⎛⎫- ⎪⎝⎭中,正数有213⎛⎫-⎪⎝⎭,共1个,故答案为:1.14.<>【解析】【分析】(1)根据一个小于零的数乘以大于1的数会越乘越小即可得出结论;(2)根据两个小于零的数相乘结果大于零,再乘一个大于零的数结果仍然大于零即可得出结论.【详解】解:(1)℃a<0,2>1℃2a<a;(2)℃ab>0,c>0℃abc>0故答案为:<;>.【点睛】本题考查有理数相乘的符号问题,掌握符号的运算规律是本题关键.15.5-或1-##-1或-5【解析】【分析】与表示3-的点距离2个单位长度的点有两个,分别在-3的左侧和-3的右侧,利用数轴即可得到答案.【详解】解:据题意,作图如下如图,与表示3-的点距离2个单位长度的点有两个,分别是5-、1-故答案为:5-或1-【点睛】本题考查数轴上两点之间的距离,牢记相关知识点是解题的关键.16.14-##-0.25 【解析】【分析】由4277217236m n x y x y x y -+=得,4217m x y -、723n x y 、726x y 是同类项,从而得出m 、n 的值,代入即可求出答案.【详解】4277217236m n x y x y x y -+=,472m n =⎧∴⎨=⎩, 解得:742m n ⎧=⎪⎨⎪=⎩, 71244m n ∴-=-=-. 故答案为:14-. 【点睛】本题考查同类项的定义:所含字母相同且相同字母的指数也相同,掌握同类项的定义是解题的关键.17.6(1)n +【解析】【分析】根据三个图形的变化规律找到图形个数与火柴棒根数的关系,即可得出结论.【详解】根据图形可得:第一个图形需12根火紫棒,即126(11)=⨯+,第二个图形需18根火紫棒,即186(21)=⨯+,第三个图形需24根火紫棒,即246(31)=⨯+,,按照这种方法下去,第n 个图形需6(1)n +根火紫棒,故答案为:6(1)n +.【点睛】本题考查图形类的找规律问题,通过观察分析,用一般式子表示出变化规律是解题的关键.18.1,7+,0,9-,26-;13,0.5, 6.4-,613,0.3,5%. 【解析】【分析】利用整数、分数概念判断即可,即整数是正整数、零、负整数的集合;分数是表示一个数是另一个数的几分之几.【详解】解:整数集合:{1,7+,0,9-,26}-; 分数集合:1{3,0.5, 6.4-,613,0.3,5%}. 故答案为:1,7+,0,9-,26-;13,0.5, 6.4-,613,0.3,5%. 【点睛】本题考查了有理数中整数及分数,解题的关键是熟练掌握各自的定义:即整数是正整数、零、负整数的集合;分数是表示一个数是另一个数的几分之几.19.(1)10-;(2)4-;(3)12-;(4)212-【解析】【分析】(1)把减法转化成加法,利用加法的交换律、结合律,能使运算简便;(2)利用加法的交换律和结合律,把小数、同分母的分数分别相加;(3)根据有理数的乘除法则及减法进行计算;(4)利用乘法对加法的分配律,能使运算简便.【详解】解:(1)(8)4718(27)--+--, 8471827=--++,5545=-+,10=-;(2)510.474( 1.53)166----,510.47 1.53(41)66=+-+, 26=-,4=-;(3)1108(2)2⎛⎫--÷-⨯- ⎪⎝⎭, 110(4)2⎛⎫=---⨯- ⎪⎝⎭, 102=--,12=-;(4)202031312(1)468⎛⎫-+-⨯+- ⎪⎝⎭, 99212=-+-+, 212=-. 【点睛】本题考查了有理数的加减、乘除法运算、有理数的乘方,解题的关键是掌握有理数的运算法则,注意:利用运算律可以使运算简便.20.(1)273a ab -;(2)2562x x -- 【解析】【分析】直接根据去括号,合并同类项法则计算即可.【详解】解:(1)()()2237427a ab a ab -+--++ =2237427a ab a ab -++--=273a ab -;(2)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x=221234422x x x x -+--+ =2562x x --. 【点睛】本题考查了整式的加减,熟知相关运算法则是解本题的关键.21.26m m ---,18- 【解析】【分析】去括号合并同类项后,再代入求值.【详解】解:22352(23)4mm m m ⎡⎤---+⎣⎦ =()2235464m m m m --++=2235464m m m m -+-- =26m m ---将4m =-代入,原式=()()2446-----=18-.【点睛】本题主要考查了整式的加减,掌握去括号法则和合并同类项法则是解决本题的关键. 22.(1)见解析;(2)45.【解析】【分析】(1)由于长方体有6个面,且相对的两个面全等,所以展开图是6个长方形(包括正方形),而图中所拼图形共有7个面,所以有多余块,应该去掉一个;又所拼图形中有3个全等的正方形,结合平面图形的折叠可知,可将第二行最左边的一个正方形去掉;(2)由题意可知,此长方体的长、宽、高可分别看作3厘米、5厘米和3厘米,将数据代入长方体的体积公式即可求解.【详解】解:(1)拼图存在问题,如图:(2)折叠而成的长方体的体积为:3×5×3=45(cm 3).23.(1)(25)x +,1(310)x -;(2)5153x +(小时);(3)565小时【解析】【分析】(1)根据甲队做宣传工作的时间是乙队所用时间的2倍还多5个小时,丙队所用的时间比乙队的三分之一少10个小时列代数式即可;(2)用甲队宣传的时间减去丙队宣传的时间,列出代数式,化简即可;(3)根据(2),将330x =代入5153x +求解即可. 【详解】解:(1)甲队的工作时间为:(25)x +小时, 丙队的工作时间为:1(310)x -小时,故答案是:(25)x +,1(310)x -; (2)15(25)(10)1533x x x +--=+; (3)由(2)知甲队比丙队多宣传的时间为5153x +, 当330x =时, 5153x +, 5330153=⨯+, 565=(小时), 答:甲队比丙队多宣传565小时.【点睛】本题考查了列代数式,整式的加减,解题的关键是注意把甲队宣传的时间和丙队宣传的时间看作整体,用小括号括起来.24.(1)59n +;(2)9250元;(3)每周计件工资制一周工人的工资总额更多,理由见解析【解析】【分析】(1)根据正负数的意义分别表示出5天的生产电子产品的数量,再求和即可;(2)5天的生产电子产品的总数200⨯元+超出部分的奖励-罚款可得工人这一周的工资总额;(3)计算出一周的工资,然后与(2)中数据进行比较即可.【详解】解:(1)51613259n n n n n n ++-+-+++-=+,故答案是:59n +;(2)当7n =时,5957944n +=⨯+=,2004455(513)60(162)9250⨯+++---=,所以该厂工人这一周的工资总额是9250元.(3)5(1)(6)13(2)9+-+-++-=,442009559295⨯+⨯=,92509295<,∴每周计件工资制一周工人的工资总额更多.【点睛】本题主要考查了由实际问题列代数式,解题的关键是正确理解题意,掌握每日计件工资制的计算方法.25.(1)32-;1;12-;(2)46-或44 【解析】【分析】(1)由A 、B 、C 点的位置关系,结合5cm AC =,2cm BC =即可求得点A 、点C 所对应的数,进一步求得p ;(2)原点O 在数轴上,1cm 长为一个单位长度,且15cm =OB ,可以知道点B 所对应的数为15-或15,然后分情况讨论并计算即可.【详解】解:(1)若以点B 为原点,2cm 长为1个单位长度,则点A 所对应的数为32-,点C 所对应的数为1,则:310122p =-++=- 故答案为:32-;1;12- (2)℃原点O 在数轴上,1cm 长为一个单位长度,且15cm =OB ,℃点B 所对应的数为15-或15当点B 所对应的数为15-时,点C 所对应的数为13-,点A 所对应的数为18-,则()()(18)151346p =-+-+-=-;当点B 所对应的数为15时,点C 所对应的数为17,点A 所对应的数为12,则12+15+17=44p =.综上所述,点p 的值为:46-或44【点睛】本题考查数轴上两点之间的距离,牢记数轴的相关知识点是解题关键.26.(1)1,1;(2)3【解析】【分析】(1)先计算出()()22323ax bx x x +---的结果为()()2233a x b x -++-,然后根据甲同学的计算结果为243x x -+-,则()()2223343a x b x x x -++-=-+-,由此求解即可; (2)根据()()()()222323233ax bx x x a x b x +---=-++-的结果与x 无关, 则2030a b -=⎧⎨+=⎩,即可得到23a b =⎧⎨=-⎩然后代值计算即可. 【详解】解:(1)()()22323ax bx x x +---22323ax bx x x =+--+()()2233a x b x =-++-,又℃甲同学的计算结果为243x x -+-,℃()()2223343a x b x x x -++-=-+-,℃2134a b -=-⎧⎨+=⎩,℃11a b =⎧⎨=⎩,故答案为:1,1;(2)℃()()()()222323233ax bx x x a x b x +---=-++-的结果与x 无关, ℃2030a b -=⎧⎨+=⎩,℃23a b =⎧⎨=-⎩,℃()()2323963a b ab +=-+⨯-=-=.。
(北师大版)七年级数学上册(全册)期中试卷汇总(共6套)
第3题图 (北师大版)七年级数学上册(全册)期中试卷汇总(共6套)(北师大版)2019-2020学年学年七年级数学上册期中模拟检测试卷及答案(总分120分,90分钟完卷)注意事项:本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷共20个小题,共60分,第Ⅱ卷共7个小题共60分;。
第Ⅰ卷( 共60分)一、正确选择(本大题共10个小题;每小题3分,共30分)1、如果向东走2km 记作-2km ,那么+3km 表示 ( )A .向东走3kmB .向南走3kmC .向西走3kmD .向北走3km 2、 -3的绝对值是 ( )A 、-13B 、3C 、13D 、-33、如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是 ( )A 、 235、、π-- B 、 235、、π- C 、 π、、235- D 、 235-、、π 4、在-(-8),1-,-0,(-2)3,-24这四个数中,负数共有 ( ) A 、4个 B 、3个 C 、2个 D 、1个5.如图绕虚线旋转得到的几何体是 ( ).6、中海油集团成立29年来,发展异常迅猛,到2020年在深水地区实现新的突破,建设一个5000万吨的大油田。
“5000万” 用科学记数法可表示为( )A 、5×103B 、5×106C 、5×107D 、5×1087、下列每组中的两个代数式,属于同类项的是 ( )A 、223221xy y x 与 B 、c a b a 225.05.0与 C 、ab abc 33与 D 、33821nm n m -与8、下列各组数中,相等的一组是 ( )A 、—23和(—2)3B 、 (—2)2和—22C 、—(—2)和—│—2│D 、│—2│3和—│2│39、如果()0312=-++b a ,则b a 的值是 ( )A 、1-B 、2C 、-3D 、410、某种细菌在培养过程中,细菌每半小时分裂一次(由1个分裂 为2个),经过两个小时,这种细菌由1个可分裂成 ( ) A. 4 B. 8 C. 16 D. 32二、准确填空(每小题3分,共30分,11,12,13题前空1分,后空2分)11、 313-相反数是 ,的倒数是12.、-b a 231π的系数是 ,次数是13、比较大小、0 -0.01,2334- ⎽⎽⎽⎽⎽⎽-。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题一、单选题1.﹣22=()A .﹣2B .﹣4C .2D .42.一个七棱柱的顶点的个数为()A .7个B .9个C .14个D .15个3.我国正在设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是()A .1678×104千瓦B .16.78×106千瓦C .1.678×107千瓦D .0.1678×108千瓦4.多项式1+2xy ﹣3xy 2的次数为()A .1B .2C .3D .55.如图,点A 表示的实数是a ,则a ,a -和1的大小顺序为()A .1a a <-<B .1a a -<<C .1a a <<-D .1a a<-<6.下列说法正确的是()A .23表示2×3B .﹣32与(﹣3)2互为相反数C .(﹣4)2中﹣4是底数,2是幂D .a 3=(﹣a )37.下列说法中正确的是()A .5不是单项式B .2x y+是单项式C .2x y 的系数是0D .32x -是整式8.一次知识竞赛共有20道选择题,规定:答对一道得5分,不答或答错一道扣1分,如果某位学生答对了x 道题,则用式子表示他的成绩为()A .5x ﹣(20+x)B .100﹣(20﹣x)C .5xD .5x ﹣(20﹣x)9.一种袋装面粉的质量标识为“25±0.25千克”,则下列合格的有()A .25.30千克B .24.70千克C .25.51千克D .24.80千克10.若||2a =,||5b =,则a b +的值应该是()A .7B .-7和7C .3D .±7或±3二、填空题11.-9的绝对值是______.12.如图所示是一个立体图形的展开图,请写出这个立体图形的名称:________.13.计算:3π-=________.14.若650x y -++=,则x y -=____;15.(1011)(1112)(100101)=--- ________.16.比较大小:-3_______13-.(填:“<”或“>”)17.绝对值不大于5的所有整数的和是______.18.单项式256x y-的系数是____________.19.若a<0,b <0,则()a b --一定是_________(填负数,0或正数)20.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:a ⊕b=ab+(a ﹣b),例如:3⊕2=3×2+(3﹣2)=7,则(﹣4)⊕5=____.三、解答题21.计算:(1)0.5(15)(17)|12|-+-----;(2)313()(24)864+-⨯-;(3)2113()()3838---+-;(4)31175(3)24(2)412÷--⨯-.22.-13.5,2,-5,0,0.128,-2.236,3.14,+27,45-,-15℅,32-,227,.0.3,π.正有理数数集合:{},整数集合:{},负分数集合:{}23.如图所示是一个用5个小立方体搭成的几何体,请画出它的三视图.24.a,b分别是数轴上两个不同的点A,B所表示的有理数,且a=5,b=2,A,B两点在数轴上的位置如图所示:(1)试确定数a,b;(2)A,B两点相距多少个单位长度?(3)若C点在数轴上,C点B点的距离是C点到A点距离的13,求C点表示的数;25.一个几何体的三种视图如图所示.(1)这个几何体的名称是____;(2)求这个几何体的表面积;(3)求这个几何体的体积.26.股民王先生上周星期五买进某公司股票1000股,每股18元,本周该股票的涨跌情况如表(正数表示价格比前一天上涨,负数表示价格比前一天下跌,单位:元):星期一二三四五每股涨跌3+ 2.5+4-2+ 1.5-(1)星期三结束时,该股票每股多少元?(2)该股票本周内每股的最高价和最低价分别是多少元?(3)已知王先生买进该股票时付了0.1%的手续费,卖出股票时须支付0.15%的手续费和0.1%的交易税,若他在星期五结束时将股票全部卖出,则他的收益情况如何?(注:股票市场周末不交易)27.出租车司机小李某天下午营运全是在东西走向的长清清河街,如果规定向东为正,向西为负,他这天下午行车里程如下:+15,-3,+14,-11,+10,-12,+4,-15,+16,-20.(1)将最后一名乘客送到目的地时,小李在出车地的什么方向?距下午出车地点的距离是多少千米?(2)小李将最后一名乘客送到目的地,总共行驶了多少千米?(3)若每千米耗油0.1升,这天下午共耗油多少升?参考答案1.B【解析】【分析】根据有理数的乘方的运算法则计算即可.【详解】解:根据有理数的乘方的运算法则,可得﹣22=﹣4,故选B.【点睛】本题考查了有理数的乘方,解题的关键是掌握相应的运算法则.2.C【解析】【分析】一个七棱柱是由两个七边形的底面和7个四边形的侧面组成,根据其特征进行填空即可.【详解】解:一个七棱柱共有:7×2=14个顶点.故选C.【点睛】本题主要考查n棱柱的构造特点:(n+2)个面,3n条棱,2n个顶点.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将16780000千瓦用科学记数法表示为:1.678×107千瓦.故选:C.4.C【解析】【分析】根据多项式的次数是多项式中最高次项的次数进行作答即可得.【详解】解:多项式1+2xy-3xy2的最高次项是-3xy2,次数为3,故多项式的次数为3,故选C.【点睛】本题考查了多项式的次数,解题的关键是熟知多项式的次数是多项式中最高次项的次数.5.A【解析】【分析】根据互为相反数的两数的几何意义:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等,数轴上右边表示的数总大于左边表示的数进行解答即可.【详解】解:因为-1<a<0,所以0<-a<1,可得:a<-a<1.故选:A.【点睛】此题考查有理数大小的比较问题,要让学生结合数轴理解这一规律:数的大小变化和数轴上表示这个数的点在数轴上移动的关系:左减右加.给学生渗透数形结合的思想.6.B【解析】【分析】根据有理数的乘方的定义对各选项分析判断后利用排除法求解.【详解】A、23表示2×2×2,故本选项错误;B、-32=-9,(-3)2=9,-9与9互为相反数,故本选项正确;C、(-4)2中-4是底数,2是指数,故本选项错误;D、a3=-(-a)3,故本选项错误.故选:B.【点睛】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.7.D 【解析】【分析】根据整式的概念、单项式的相关概念即可确定.【详解】解:A 选项5是单独的数字,是单项式,故A 错误;B 选项222x y x y+=+是两个单项式的和,是多项式,故B 错误;C 选项2x y 的系数是1,故B 错误;D 选项32x -是多项式,当然是整式,故D 正确.故选:D.【点睛】本题考查了整式的分类及单项式和多项式的相关概念,整式分为单项式和多项式,单项式是由数字或字母的积组成的代数式,单独的一个数或字母也叫做单项式,单项式中的数字因数叫做单项式的系数,几个单项式的和叫多项式,熟练掌握相关的概念是解题的关键.8.D 【解析】【分析】根据答对题目的得分-不答或答错的题数,列式可得结论.【详解】解:由题意可得,他的成绩是:5x-(20-x ),故选D .【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.9.D 【解析】【分析】根据题意可确定合格的范围是24.75千克到25.25千克之间,判断即可.【详解】解:根据题意可确定合格的范围是24.75千克到25.25千克之间,只有24.80符合标准,故选:D.【点睛】本题考查了正负数的意义,解题关键是根据负数的意义确定合格的范围.10.D【解析】【分析】求出a=±2,b=±5,分为四种情况①当a=2,b=5时,②当a=2,b=−5时,③当a=−2,b=5时,④当a=−2,b=−5时,代入求出即可.【详解】解:因为|a|=2,|b|=5,所以a=±2,b=±5,①当a=2,b=5时,a+b=2+5=7;②当a=2,b=−5时,a+b=2+(−5)=−3;③当a=−2,b=5时,a+b=−2+5=3;④当a=−2,b=−5时,a+b=−2+(−5)=−7;即a+b的值为7或−3或3或−7,故选D.【点睛】本题考查了绝对值,解题的关键是熟知绝对值等于一个正数的数有两个,它们互为相反数.11.9【解析】【分析】根据负数的绝对值是它的相反数,即可得到答案.【详解】-9的绝对值是9,故填9.【点睛】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.此题主要考查了绝对值,关键是掌握①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数-a ;③当a 是零时,a 的绝对值是零.12.圆锥【解析】【详解】因为圆锥的展开图为一个扇形和一个圆形,所以这个立体图形是圆锥.故答案为∶圆锥13.3π-【解析】【分析】先分析3π-的符号,再关键绝对值是含义可得答案.【详解】解:3 <π,3π∴-<0,()333,πππ∴-=--=-故答案为: 3.π-【点睛】本题考查的是绝对值的含义,掌握绝对值的含义是解题的关键.14.11【解析】【分析】先根据非负数的性质求出x 、y 的值,再代入x-y 进行计算即可.【详解】解:∵|x-6|+|y+5|=0,∴x-6=0,y+5=0,解得x=6,y=-5,∴原式=6+5=11.故答案为11.【点睛】本题考查非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.15.-1【解析】【分析】根据有理数的乘法和乘方运算法则进行计算即可.【详解】解:(1011)(1112)(100101)--- =(1)(1)(1)--- =91(1)-=-1.故答案为:-1.【点睛】本题主要考查了有理数的乘法和乘方,熟练掌握有理数的乘法和乘方运算法则是解答本题的关键.16.<【解析】【分析】根据两个负数比较大小,其绝对值大的反而小比较即可.【详解】解:11133,,3333-=-=> 133∴-<-故答案为:<.【点睛】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键.17.0【解析】【分析】根据有理数大小比较的方法,可得:绝对值不大于5的所有整数有:±5、±4、±3、±2、±1、0,再把它们相加,求出绝对值不大于5的所有整数的和是多少即可.【详解】解:绝对值不大于5的所有整数为5-、4-、3-、2-、1-、0、1、2、3、4、5,它们的和为0.故答案为:0【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.18.56-【解析】【详解】单项式256x y -的系数是5.6-故答案为:5.6-【点睛】本题考查单项式的系数,单项式中的数字因数就是单项式的系数.19.负数【解析】【分析】由于a <0,b <0,然后根据有理数减法法则即可判定a-(-b )是正数还是负数.【详解】解:∵a <0,b <0,而a-(-b )=a+b ,∴a-(-b )一定是负数.故答案为:负数.【点睛】此题主要考查了正负数的定义及实数的大小的比较,判断一个数是正数还是负数,要把它化简成最后形式再判断.概念:用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.20.﹣29【解析】【分析】根据a ⊕b=ab+(a-b ),可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a ⊕b=ab+(a-b ),∴(-4)⊕5=(-4)×5+[(-4)-5]=(-20)+(-9)=-29,故答案为-29.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.(1)-10.5;(2)5;(3)12;(4)50【解析】【详解】解:(1)0.5(15)(17)|12|-+-----0.5151712=--+-10.5=-(2)313()(24)864+-⨯-9418=--+5=(3)2113()()3838---+-21133388⎛⎫=+-+ ⎪⎝⎭112=-12=(4)31175(3)24(2)412÷--⨯-15357524412=-÷+⨯4757015=-⨯+2070=-+50=【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.22.2,0.128,3.14,+27,227,.0.3;2,-5,0,+27;-13.5,-2.236,45-,-15℅,32-.【解析】【分析】根据有理数的分类填写即可【详解】正有理数数集合:{2,0.128,3.14,+27,227,.0.3,……},整数集合:{2,-5,0,+27,……},负分数集合:{-13.5,-2.236,45-,-15℅,32-……}【点睛】本题考查了有理数的分类,掌握有理数的分类是解题的关键.23.见解析【解析】【分析】主视图从左往右2列正方形的个数依次为3,1;左视图从左往右2列正方形的个数依次为3,1;俯视图从左往右3列正方形的个数依次为2,1,依此画出图形即可.【详解】解:如图所示.【点睛】考查画几何体的三视图;用到的知识点为:主视、左视图、俯视图分别是从物体的正面、左面、上面看得到的图形.24.(1)a=-5,b=-2;(2)3个单位长度;(3)1-2或11 -4【解析】【分析】(1)根据绝对值的定义结合由数轴得出a、b的符号即可得;(2)根据数轴上两点间的距离公式即可得;(3)设C点表示的数为x,分以下两种情况:点C在A、B之间、点C在点B右侧,利用两点间距离公式列方程求解.【详解】解:(1)∵|a|=5,|b|=2,∴a=5或-5,b=2或-2,由数轴可知,a<b<0,∴a=-5,b=-2;(2)A、B两点间的距离是-2-(-5)=3;(3)设C点表示的数为x,当点C在A、B之间时,根据题意有:x-(-5)=3(-2-x),解得:114x=-;当点C在点B右侧时,根据题意有:x-(-5)=3[x-(-2)],解得:12x=-.∴C点表示的数为12-或114-.【点睛】本题主要考查绝对值和数轴及两点间的距离公式,根据题意分类讨论思想的运用是解题的关键.25.(1)圆柱体;(2)这个几何体的表面积为32π;(3)这个几何体的体积为24π.【解析】【分析】(1)根据这个几何体的三视图即可求解;(2)根据三视图可得到圆柱的高为6,底面半径为2,然后根据圆柱的表面积等于侧面积加两个底面积求解即可;(3)根据圆柱的体积等于底面积×高求解即可.【详解】解:(1)由图可得,主视图是长方形,左视图是长方形,俯视图是圆,∴这个几何体是圆柱体,故答案是:圆柱体;(2)由三视图可得,圆柱的高为6,底面半径为2,∴这个圆柱的表面积=底面积×2+侧面积=22222682432πππππ⨯⨯+⨯⨯⨯=+=;(3)这个圆柱的体积=底面积×高=22624ππ⨯⨯=.【点睛】此题考查了几何体的三视图,求圆柱的表面积和体积,解题的关键是熟练掌握三视图的表示方法以及圆柱的表面积和体积公式.26.(1)星期三结束时,该股票每股19.5元;(2)本周内最高价是每股23.5元,最低价每股19.5元;(3)他赚了1932元.【解析】【分析】(1)根据表格列出算式,即可得到结果;(2)根据表格求出每天的股价,即可得到最高与最低股价;(3)根据题意列出算式,计算即可得到结果.【详解】解:(1)根据题意列得:18+3+2.5-4=19.5(元);答:星期三结束时,该股票每股19.5元;(2)根据表格得:星期一每股18+3=21元,星期二每股21+2.5=23.5元,星期三每股23.5-4=19.5元,星期四每股19.5+2=21.5元,星期五每股21.5-1.5=20元,则本周内最高价是每股23.5元,最低价每股19.5元;(3)根据题意列得:1000×20×(1-0.15%-0.1%)-1000×18×(1+0.1%)=19950-18018=1932(元).则他赚了1932元.【点睛】本题考查了有理数的混合运算的应用,弄清题意是解本题的关键.27.(1)小李在出车地的西面方向,距下午出车地点的距离是2千米;(2)小李将最后一名乘客送到目的地,总共行驶了120千米;(3)若每千米耗油0.1升,这天下午共耗油12升.【解析】【分析】(1)根据有理数的加法运算,可得和,根据和的大小,可得答案;(2)根据行车就耗油,距离乘以单位耗油量,可得到答案.【详解】解:(1)15+(-3)+14+(-11)+10+(-12)+4+(-15)+16+(-20)=-2,答:将最后一名乘客送到目的地时,小李在出车地的西方,距下午出车地点的距离是2千米;++-+++-+++-+++-+++-(2)|15||3||14||11||10||12||4||15||16||20|=120(千米)所以,小李将最后一名乘客送到目的地,总共行驶了120千米(3)120×0.1=12(升),答:这天下午共耗油12升.。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题一、单选题1.在式子3n -,2a b ,2m s +≤,x ,ah-,s ab =中代数式的个数有()A .6个B .5个C .4个D .3个2.牛奶盒的包装上印有260±5ml ,下列四盒送去质检,不合格的是()A .265mlB .262mlC .258mlD .250ml3.用一个平面去截下列的几何体,可以得到长方形截面的几何体有()A .1个B .2个C .3个D .4个4.下列说法中正确的个数为()(1)4a 一定是偶数;(2)单项式237xy 的系数是37,次数是3;(3)小数都是有理数;(4)多项式325322x xy -+是五次三项式;(5)连接两点的线段叫做这两点的距离;(6)射线比直线小一半.A .1个B .2个C .3个D .4个5.已知图1的小正方形和图2中所有的小正方形都全等,将图1的小正方形安放在图2中的①、②、③、④的其中某一个位置,放置后所组成的图形是不能围成一个正方体的.那么安放的位置是()A .①B .②C .③D .④6.已知x y y x -=-,2x =,3y =,则2x y -的值为()A .-1B .1C .-1或7D .1或-77.有理数a 、b 在数轴上对应的位置如图所示,则下列结论正确的是()A .0ab >B .b a >-C .0a b +<D .0b a ->8.已知221a a -=,则2364a a -+的值为()A .-1B .1C .-2D .59.如图所示的几何体是由哪个图形绕虚线旋转一周形成的()A .B .C .D .10.若实数a 、b 、c 在数轴上对应点的位置如下图所示,则||||||c b a b c -++-等于()A .2a c --B .2a b -+C .a-D .2a b-二、填空题11.数9899万用科学记数法表示为____________.12.某棱柱共有8个面,则它的棱数是___________.13.若42n xy 与25m x y -是同类项,则n m =___________.14.若m ,n 为相反数,则m +(-2021)+n 为______.15.化简:3π4π---=____________.16.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数.则2x y -的值为___________.17.两根长度分别为8cm 和10cm 的直木条,将它们一端重合且放在同一条直线上,此时两根木条中点之间的距离为________.18.有一个数值转换器的原理如图所示,若开始输入x 的值是23,可发现第1次输出的结果是3-,第2次输出的结果是1,第3次输出的结果是2-,依次继续下去…,第2021次输出的结果是________.三、解答题19.计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭;(2)111122345⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭;(3)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(4)224323(2)2⎡⎤---+-÷⎣⎦;(5)()222233a b ab ab a b -++;(6)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x 20.如图,是由8个大小相同的小立方体块搭建的几何体,请分别画出从这个几何体的三个不同方向看到的形状图.21.先化简,再求值:()()23233a ab b ab b ---+⎡⎤⎣⎦,其中()23310a b ++-=.22.已知关于x ,y 的多项式222622452x mxy y xy x --+-+化简后的结果中不含xy 项.求232m m -+()51m -的值.23.已知:点C 、D 、E 在直线AB 上,且点D 是线段AC 的中点,点E 是线段DB 的中点,若点C 在线段EB 上,且DB =6,CE =1,求线段AB 的长.24.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.25.某日下午,出租车司机小王在南北走向的南海大道上运营.如果规定向南为正,向北为负,出租车的行车情况记录如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣17.(1)将最后一名乘客送到目的地时,小王距出车地点的距离是多少千米?(2)如果每百公里耗油10升,那么小王下午耗油多少升?26.在数轴上,四个不同的点,,,A B C D 分别表示有理数a b c d ,,,,且,a b c d <<.(1)如图1,M 为线段AB 的中点,①当点M 与原点O 重合时,用等式表示a 与b 的关系为;②求点M 表示的有理数m 的值(用含,a b 的代数式表示);(2)已知ab c d+=+,①若三点,,A B C 的位置如图所示,请在图中标出点D 的位置;②a b c d ,,,的大小关系为(用“<”连接)参考答案1.C 2.D 3.B 4.A 5.A 6.D 7.C 8.B 9.A 10.A 11.79.89910⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.据此解答即可.【详解】解:9899万=98990000=9.899×107.故答案为:9.899×107.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要确定a 的值以及n 的值.12.18【详解】某棱柱共有8个面,可知这个棱柱为6棱柱,6棱柱有18条棱.13.16【分析】根据同类项的定义示出m ,n 的值,再代入求解即可.【详解】解:∵42n xy 与25m x y -是同类项,∴m=4,n=2.∴nm =24=16.故答案为:16.14.-2021【分析】根据相反数的意义得出0m n +=,从而可计算m +(-2021)+n 的值.【详解】解:∵m ,n 为相反数,∴0m n +=,∴m +(-2021)+n=0-2021=-2021故答案为:-2021【点睛】本题主要考查互为相反数的概念和性质.只有符号不同的两个数互为相反数,互为相反数的两个数的和为0.15.2π7-【解析】【分析】根据绝对值的定义即可得.【详解】解:3π4π3427πππ---=--+=-;故答案为:2π7-【点睛】此题考查了绝对值,掌握绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值是解题的关键.16.12【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字互为相反数列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形.“-3”与“23x -”是相对面,“y”与“x”是相对面,“-2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴()2330x -+-=,0x y +=,解得3x =,3y =-,∴()22339312x y -=--=+=.故答案为:12.17.1cm 或9cm 【分析】设较长的木条为AB ,较短的木条为BC ,根据中点定义求出BM 、BN 的长度,然后分两种情况:BC 不在AB 上和BC 在AB 上时,分别代入数据进行计算即可得解.【详解】解:设较长的木条为AB=10cm ,较短的木条为BC=8cm ,∵M 、N 分别为AB 、BC 的中点,∴BM=5cm ,BN=4cm ,①如图1,BC 不在AB 上时,MN=BM+BN=5+4=9(cm),②如图2,BC在AB上时,MN=BM−BN=5−4=1(cm),综上所述,两根木条的中点间的距离是1cm或9cm,故答案为:1cm或9cm.如图,18.-1【分析】根据数值转换器依次求出前几次的输出的数值,再根据数值的变化规律求解.【详解】解:第4次输出的结果是2,第5次输出的结果是-1,第6次输出的结果是1,第7次输出的结果是-2,第8次输出的结果是2,第9次输出的结果是-1,所以,从第5次开始,每4次输出为一个循环组依次循环,(2021-4)÷4=504…1,所以,第2021次输出的结果是-1.故答案为:-1.19.(1)1(2)1 5(3)-27(4)3(5)2 6a b(6)2562x x--【分析】(1)根据有理数加法运算法则进行计算;(2)根据乘法分配律进行运算即可;(3)根据有理数加减乘除四则混合运算法则进行计算即可;(4)根据含乘方的有理数混合运算法则进行计算即可;(5)根据整式加减混合运算法则进行计算即可;(6)先去括号,然后合并同类项进行运算即可.(1)解:110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭110.573(2.75)24⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎝⎭⎝⎭76=-1=(2)111122345⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭112112112253545⎛⎫⎛⎫⎛⎫=⨯--⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭643555=-++15=(3)411812944⎛⎫⎛⎫⎛⎫⨯-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭369=-+27=-(4)22323(2)42⎡⎤---+-÷⎣⎦4(92)=---+47=-+3=(5)()222233a b ab ab a b -++222233a b ab ab a b=-++26a b=(6)221123422⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭x x x x 221234422x x x x -+=-+-2562x x --=20.见解析【分析】由已知条件可知,主视图有3列,每列小正方形数目分别为1,3,1;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方形数目分别为1,3,1;据此可画出图形.【详解】解:如图所示:21.233a ab -,30【分析】原式去括号,合并同类项进行化简,然后利用绝对值和偶次幂的非负性确定a 和b 的值,从而代入求值.【详解】解:()()23233a ab b ab b ---+⎡⎤⎣⎦236333a ab b ab b=--++233a ab =-;∵()23310a b ++-=∵30a +≥,()2310b -≥,∴30a +=,310b -=,∴3a =-,13b =,当3a =-,13b =时原式()()227330133333⨯--⨯-⨯==+=;22.3【分析】先根据关于x ,y 的多项式222622452x mxy y xy x --+-+化简后的结果中不含xy 项,求出m 的值,然后化简()23251m m m -+-,最后代入求值即可.【详解】解:222622452x mxy y xy x --+-+()224222x m xy y =+--+∵化简后的结果中不含xy 项,∴420m -=,∴2m =,()23251m m m -+-23255m m m=-+-2375m m =-+当2m =时,原式232725=⨯-⨯+12145=-+3=23.线段AB 的长为10【分析】由题意知AB AD DB =+,116322DE DB ==⨯=,314DC DE EC =+=+=,4AD DC ==,将各值代入AB AD DB =+计算即可.【详解】解:∵点E 是线段DB 的中点,且6DB =∴116322DE DB ==⨯=∵1EC =∴314DC DE EC =+=+=∵点D 是线段AC 的中点∴4AD DC ==∴4610AB AD DB =+=+=.24.见解析【分析】主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.【详解】解:如图所示:25.(1)小王距出车地点的北边12千米处;(2)小王下午耗油7.4升.【分析】(1)根据题意可直接进行求解即可;(2)先求出每次出车的距离之和,然后再进行求解即可.【详解】解:(1)由题意得:()()()()15413101231712++-++-+-++-=-(千米);答:小王距出车地点的北边12千米处.(2)由题意得:15413101231774++++++=(千米),10747.4100⨯=(升);答:小王下午耗油7.4升.26.(1)①0a b +=,②2a b+;(2)①见解析,②a c d b <<<或者c a b d<<<【分析】(1)①根据相反数的性质即可得出答案②根据数轴上两点间的距离公式结合已知条件即可求得(2)①根据数轴上两点间的距离公式可得出AC=DB ,从而确定点D 的位置②根据数轴上的点所表示的数,右边的总比左边的大即可得出答案【详解】解:(1)①∵M 为线段AB 的中点,点M 与原点O 重合∴0a b +=M ②为AB 中点,AM BM ∴=.m a b m ∴-=-.2a bm +∴=(2)①∵a b c d +=+,,a b c d <<.∴c-b-a d =,∴AC=DB∴点D 的位置如图所示②∵a b c d +=+,∴c-b-a d =,∴AC=DB如图或∴a c d b <<<或c a b d<<<故答案为:a c d b <<<或c a b d<<<。
最新北师大版七年级上学期数学期中试卷(含参考答案)
最新北师大版七年级上学期数学期中试卷(含参考答案)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分36分)1、﹣5的相反数是()A.﹣5B.5C.D.﹣2、如果向北走5米记作+5米,那么﹣7米表示()A.向东走7米B.向南走7米C.向西走7米D.向北走7米3、袋大米的质量标识为“10±0.15千克”,则下列大米中质量合格的是()A.9.80千克B.10.16千克C.9.90千克D.10.21千克4、如图,这个几何体是由哪个图形绕虚线旋转一周形成的()A.B.C.D.5、下列平面图形不能够围成正方体的是()A.B.C.D.6、下列计算正确的是()A.2x+3y=5xy B.﹣2ba2+a2b=﹣a2bC.2a2+2a3=2a5D.4a2﹣3a2=17、数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是()A.4B.﹣4C.±8D.±48、一个两位数,十位数字是a,十位数字比个位数字小2,这个两位数是()A.a(a+2)B.10a(a+2)C.10a+(a+2)D.10a+(a﹣2)9、已知x﹣2y=2,则代数式3x﹣6y+2014的值是()A.2016B.2018C.2020D.202110、关于x,y的代数式(﹣3kxy+3y)+(9xy﹣8x+1)中不含二次项,则k=()A.4B.C.3D.11、已知:有理数a、b、c,满足abc<0,则的值为()A.±1B.1或﹣3C.1或﹣2D.不能确定12、高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[﹣1]=﹣3;②[x]+[﹣x]=0;③若[x﹣1]=1,则x的取值范围是2≤x<3;④当﹣1⩽x<1时,[x+1]+[﹣x+1]的值为0,1,2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题3分,满分18分)13、比较大小:(填>,=,<).14、如果3x2y m与﹣2x n﹣1y3是同类项,那么m+n=.15、若等式|x﹣2|+(y+1)2=0成立,那么y x的值为.16、一个多项式加上x2﹣2y2等于3x2+y2,则这个多项式是;17、下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,第n个图案需要根火柴棒.18、如图,5个棱长为1cm的正方体摆在桌子上,为了美观,将这个几何体的所有露出部分(不包含底面)都喷涂油漆,若喷涂1cm2需要油漆0.2克,则喷涂这个几何体需要克油漆.最新北师大版七年级上学期数学期中试卷(答卷)考生注意:本试卷共三道大题,26道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号123456789101112答案二、填空题13、_______ 14、______15、_______ 16、______17、_______ 18、______三、解答题(19、20题每题6分,21、22每题8分,23、24每题9分,25、26每题10分,共计72分,解答题要有必要的文字说明)19、计算:(1)﹣9+5﹣(﹣12)+(﹣3);(2);20、如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.21、化简与计算:(1)化简:3(2a2﹣4b)﹣2(a2﹣4b);(2)先化简再求值:2(a2b+ab2)﹣2(a2b﹣1)+2ab2﹣2,其中a=﹣2,b=2.22、已知A=3x2+bx+2y﹣xy,B=ax2﹣3x﹣y+xy.(1)若A+B的值与x无关,求a b.(2)若|a﹣2|+(b+1)2=0且x+y=,xy=﹣2时,求2A﹣3B的值.23、某县教育局倡导全民阅读行动,婷婷同学坚持阅读,她每天以阅读30分钟为标准,超过的时间记作正数,不足的时间记作负数.如表是她一周阅读情况的记录(单位:分钟):星期一二三四五六日+9+10﹣10+13﹣20+8与标准的差(分钟)(1)星期五婷婷读了分钟;(2)她读得最多的一天比最少的一天多了分钟;(3)求她这周平均每天读书的时间.24、有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)|b﹣1|+|a﹣1|=;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.25、某服装厂生产一种西装和领带,西装每套定价600元,领带每条定价80元,厂方在开展“双11”促销活动期间,可以同时向客户提供两种优惠方案,方案①:买一套西装送一条领带;方案②:西装和领带都按定价的90%付款,现某客户要到该服装厂购买西装20套,领带x条(x超过20).(1)若该客户按方案①购买,需付款元(用含x化简后的式子表示);若该客户按方案②购买,需付款元(用含x化简后的式子表示);(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,请给出一种更为省钱的购买方案,并计算出所需的钱数.26、结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣2和﹣6的两点之间的距离是.③数轴上表示﹣4和3的两点之间的距离是.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.参考答案1-12:BBCABB DCACBA13、<14、6 15、1 16、2x2+3y2 17、(7n+1 18、3.219、(1)原式=﹣42(2)原式=120、解:如图所示:21、(1)原式=4a2﹣4b (2)原式=﹣3222、解:(1)、﹣27(2)、1623、解:(1)、28;(2)、23;(3)、她这周平均每天读书的时间为34分钟.24、解:(1)b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=a﹣b;(3)|a+b|+|a﹣c|﹣|b|+|b﹣c|=a.25、解:(1)答案为:(10400+80x);(10800+72x);(2)按方案①购买较为合算;(3)更为省钱的购买方案为:先按方案①购买20套西装,则领带赠送20条,再按方案②购买剩余的10条领带,共需花费12720元.26、解:(1)探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7,(3)①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或﹣4,故答案为:3,4,7,10或﹣4;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|=a+4+3﹣a=7;=5+0+2=7,③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小理由是:a=1时,正好是3与﹣4两点间的距离.。
最新北师大版七年级上学期数学期中考试试卷(附答案答卷)
最新北师大版七年级上学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、8的相反数是()A.B.C.﹣8D.82、中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利70元记作+70元,那么亏本50元记作()A.﹣50元B.﹣70元C.+50元D.+70元3、某地一天早晨的气温是﹣7℃,中午上升了11℃,午夜又下降了9℃,则午夜的气温是()A.5℃B.﹣5℃C.﹣3℃D.﹣9℃4、开州区大约有1680000人口,1680000用科学记数法表示,正确的是()A.168×104B.16.8×105C.1.68×104D.1.68×1065、下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a36、下列四个选项绕直线旋转一周可以得到如图立体图形的是()A.B.C.D.7、下列各式中,不相等的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|8、下列说法正确的是()A.﹣15ab的系数是15 B.的系数是C.4a2b2的次数是4D.a4﹣2a3b2+b2的次数是49、当x=1时,整式ax3+bx﹣1的值等于10,那么当x=﹣1时,整式ax3+bx﹣1的值为()A.﹣10B.10C.﹣12D.1210、用火柴按如图的方式搭六边形组成新的图形,图①搭1个六边形的图形需要6根火柴;图②搭2个六边形的图形需要11根火柴;图③搭3个六边形的图形需要16根火柴;…;按此规律,搭369个六边形的图形需要的火柴数是()A.2214B.2213C.1848D.1846二、填空题(每小题3分,满分18分)11、如果单项式3x m y与﹣5x3y n﹣1是同类项,那么m n的值是.12、比较大小:(填“>”或“<”)13、在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密麻麻地斜织着”的语句,这里把雨看成了线,这种生活现象可以反映的数学原理是.14、在数轴上点P表示的数是﹣2,将点P沿数轴移动4个单位长度后所得的点A表示的数是.15、已知a,b互为相反数,c,d互为倒数,|m﹣3|+|2n﹣4|=0,x的绝对值为2,则的值为.16、已知a、b、c为实数,且abc>0,则+=.最新北师大新版七年级上学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:32÷(﹣1)2+5×(﹣2)+|﹣4|.18、先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=2,y=﹣3.19、如图是一个正方体的平面展开图,若将其按虚线折叠成正方体后,相对面上的两个数字之和均为6,求2x﹣y+z的值.20、如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.(1)直接写出这个几何体的表面积(包括底部):;(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.21、有理数a<0,b>0,c>0,且|b|<|a|<|c|.(1)在数轴上将a,b,c三个数填在相应的括号中;(2)化简:|2a﹣b|+|c﹣b|﹣2|a﹣c|.22、已知A=x3+ax,B=2bx3﹣4x﹣1.(1)若多项式2A﹣B的值与x的取值无关,求a,b的值;(2)当x=2时,多项式2A﹣B的值为21,求当x=﹣2时,多项式2A﹣B 的值.23、某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米收费1.3元;超过5千米,每千米收费2.4元.(不足1千米的按1千米计算)(1)若某人乘坐了2千米的路程,则他应支付的费用为,乘坐了4千米的路程,则他应支付的费用为,乘坐了8千米的路程,则他应支付的费用为;(2)若某人乘坐了x(x>5的整数)千米的路程,则他应支付的费用为多少?(3)若某人乘坐了14.2千米的路程,请聪明的你为他算一算需准备多少车费?24、先阅读并填空,再解答问题:我们知道,,,那么:(1)用含有n的式子表示你发现的规律:;(2)计算:;(请写出解题过程)(3)计算:.(请写出解题过程)25、已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+3|+|b﹣2|=0,A、B之间的距离记为|AB|=|a﹣b|或|b﹣a|,请回答问题:(1)直接写出a,b,|AB|的值,a=,b=,|AB|=.(2)设点P在数轴上对应的数为x,若|x﹣3|=5,则x=.(3)如图,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣1,动点P表示的数为x.①若点P在点M、N之间,则|x+1|+|x﹣4|=;②若|x+1|+|x﹣4|=10,则x=;③若点P表示的数是﹣5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?最新北师大版七年级上学期数学期中考试参考答案11、9 12、> 13、点动成线 14、﹣6或2 15、21或﹣19 16、4或0三、解答题17、318、﹣2119、020、解:(1)答案为:26cm2;(2)根据三视图的画法,画出相应的图形如下:21、解:(a<0<b<c,如图,(2)﹣c.22、解:(1)a=﹣2,b=1 (2)﹣19.23、解:(1)10元,11.3元,19.8元;(2)(2.4x+0.6)元;(3)需准备36.6元车费.24、解:(1)(2);(3).25、解:(1)﹣3,2,5.(2)8或﹣2.(3)①、答案为:5;②、答案为:﹣3.5或6.5;③经过2.5秒或10.5秒时,蚂蚁所在的点到点M、点N的距离之和是8.。
北师大版七年级上册数学期中考试试题及答案
北师大版七年级上册数学期中考试试题一、单选题1.若盈余2万元记作2+万元,则2-万元表示( )A .盈余2万元B .亏损2万元C .亏损2-万元D .不盈余也不亏损 2.如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是( )A .B .C .D .3.将5亿这个数用科学记数法表示为( )A .7510⨯B .8510⨯C .9510⨯D .10510⨯ 4.如图是某几何体的展开图,该几何体是( )A .长方体B .圆柱C .圆锥D .三棱柱 5.下列运算正确的是( )A .6a 2b ﹣a 2b =5abB .6a 2b ﹣a 2b =5C .6a 2b ﹣a 2b =5a 2bD .6a 2b ﹣a 2b =5ab 26.下表是几种液体在标准大气压下的沸点:则沸点最高的液体是( )A .液态氧B .液态氢C .液态氮D .液态氦 7.一个儿何体由大小相同的小立方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小正方块的个数,能正确表示该几何体的主视图的是()A.B.C.D.8.已知点C是线段AB的中点,下列说法:①AB=2AC;①BC=12AB;①AC=BC.其中正确的个数是()A.0 B.1 C.2 D.39.有三堆棋子,数目相等,每堆至少有4枚.从左堆中取出3枚放入中堆,从右堆中取出4枚放入中堆,再从中堆中取出与左堆剩余棋子数相同的棋子数放入左堆,这时中堆的棋子数是()A.3 B.4 C.7 D.1010.在数轴上表示a、b两数的点如图所示,则下列判断正确的是()A.ab>0 B.a+b<0 C.ab>0 D.|a|>|b|二、填空题11.﹣(﹣2)=___.12.“x的2倍与5的和”用代数式表示为_________.13.如图,点C,D在线段AB上,且AD=BC,则AC___BD(填“>”、“<”或“=”).14.数轴上表示数m和m﹣4的点到原点的距离相等,则m的值为____.15.已知点C是直线AB上一点,且AC:BC=7:3,若AB=10,则AC=___.16.根据如图所示的程序进行计算,若输入x的值为1 ,则输出y的值为______.17.若有理数a 、b 互为相反数,cd 互为倒数,则2014(a +b )2016+(1ab)2015=________. 三、解答题18.计算:(1)321()(2)433-⨯-+-;(2)3228(2)0.5()(2)5-⨯--÷-.19.先化简,再求值:2(2mn ﹣2m +1)﹣3(2m ﹣mn +2),其中m =2,n =320.尺规作图:已知:如图,线段AB .求作:线段A B '',使2A B AB ''=.21.已知三角形第一条边长为4m +2n ,第二条边比第一条边长m ﹣2n ,第三条边比第一条边短2m +n .(1)第二条边长为 ,第三条边长为 .(2)求这个三角形的周长.22.如图是由若干个大小相同的小立方块搭成的几何体,请画出从正面、左面、上面看到的这个几何体的形状图.23.已知点C,D是线段AB上两点,点M,N分别为AC,DB的中点.(1)如图,若点C在点D的左侧,AB=12,CD=5,求MN的长.(2)若AB=a,CD=b,请直接用含a,b的式子表示MN的长.24.定义“*”运算:当a,b同号时,a*b=+(a2+b2);当a,b异号时,a*b=﹣(a2﹣b2).(1)求4*1的值.(2)求52*[(﹣2)*3]的值.25.某公交车原有乘客(3a-b)人,中途有一半人下车,又上车若干人,使车上共有乘客(8a-5b)人(注:题目中给定的a,b 符合实际意义)试求(1)上车的乘客人数是多少人?(2)当a=10 时,b=8 时,上车的乘客有多少人?26.如图,点A在数轴上所对应的数为2,(1)点B在点A左侧且距点A为3个单位长度,则点B所对应的数为,请在数轴上标出点B的位置;(2)在(1)的条件下,点A以每秒1个单位长度沿数轴向右运动,点B以每秒2个单位长度沿数轴向左运动,当点A运动到5所在的点处时停止运动,同时点B也停止运动,求此时A,B两点间距离;(3)在(2)的条件下,若点A不动,点B沿数轴向右运动,经过t秒A,B两点相距3个单位长度,求t值;(4)在(1)的条件下,点A以每秒1个单位长度,点B以每秒2个单位长度同时沿数轴向左运动,当点B运动到所对应的数为m时停止运动,请直接写出此时点A所对应的数为;若点A继续运动,请直接写出当AB=2时,点A继续运动的距离为.(用含m的式子表示)参考答案1.B2.D3.B4.B5.C6.A7.B8.D9.D10.B11.2【分析】根据相反数的意义计算即可.【详解】①﹣(﹣2)=+2=2,故答案为:2.【点睛】本题考查了有理数的化简,熟练掌握相反数的意义是解题的关键.12.2x+5【解析】【分析】首先表示x 的2倍为2x ,再表示“与5的和”为2x+5.【详解】由题意得:2x+5,故答案为2x+5.【点睛】此题主要考查了列代数式,关键是列代数时要按要求规范地书写.像数字与字母、字母与字母相乘可省略乘号不写,数与数相乘必须写乘号;除法可写成分数形式,带分数与字母相乘需把代分数化为假分数,书写单位名称什么时不加括号,什么时要加括号.注意代数式括号的适当运用.13.=【解析】【分析】利用线段的和差关系与AD BC =可得:,AC CD CD BD 从而可得答案.【详解】 解: AD =BC ,,AC BD ∴=故答案为:=【点睛】本题考查的是线段的和差关系,等式的基本性质,利用图形掌握线段的和差关系是解题的关键.14.2【分析】表示数m 和m -4的点到原点的距离相等可以表示为|m|=|m -4|.然后,进行分类讨论,即可求出对应的m 的值.【详解】解:由题意得|m|=|m -4|,①m=m -4或m=-(m -4),①m=2.故答案为:2.【点睛】本题在根据绝对值的几何意义列出方程之后,在解方程的时候要注意分类讨论,除了同一个数的绝对值相等之外,相反数的绝对值也相等.并且,在解方程之后,会发现有一个方程是无解的.这是一个易错题.15.7或175.【解析】【分析】分两种情况讨论:如图,当C 在线段AB 上时,如图,当C 在线段AB 的延长线上时,再利用线段的和差关系列运算式或方程,从而可得答案.【详解】解:如图,当C 在线段AB 上时,AC :BC =7:3,AB =10,如图,当C 在线段AB 的延长线上时,:7:3,10,AC BC AB设7,AC x 则3,BC x故答案为:7或175.【点睛】本题考查的是线段的和差关系,一元一次方程的应用,掌握利用方程解决线段问题是解题的关键.16.4【详解】试题分析:观察可得计算顺序,可以看出当输入的数输出时时可能会有两种结果,一种是输入后结果小于0,此时就需要将结果返回重新计算,直到结果大于0才能输出结果;另一种是结果大于0,此时可以直接输出结果.将输入得[(-1)+2]×(-2)-4,结果为-6,-6<0,再次输入可得[(-6)+2]×(-2)-4,结果为4,输出即可.考点:有理数的混合运算.17.1【解析】【分析】根据互为相反数两数相加得0,乘积为1的两个数互为倒数,代入计算即可.【详解】解:①有理数a、b互为相反数,cd互为倒数,①0a b+=,1cd=,①2014(a+b)2016+(1ab)2015=2014×02016+12015=1.故答案为:1.【点睛】本题考查了相反数的意义以及倒数的性质,熟知互为相反数两数相加得0,乘积为1的两个数互为倒数是解本题的关键.18.(1)54;(2)8425【解析】【分析】(1)先计算括号,再计算乘法;(2)先计算乘方,把除法转化乘法,最后计算加减即可.【详解】(1)321 ()(2) 433 -⨯-+-=31 ()(2) 43 -⨯-+=35()()43-⨯- =54; (2)3228(2)0.5()(2)5-⨯--÷-641=8240.55-⨯⨯ 16=425- =8425. 【点睛】本题考查了有理数的混合运算,熟练掌握运算顺序,准确计算是解题的关键.19.-52m +7mn -4, 18【解析】【分析】先去括号,后合并同类项,最后代入求值即可.【详解】①2(2mn ﹣2m +1)﹣3(2m ﹣mn +2)=4mn ﹣22m +2﹣32m +3mn -6=-52m +7mn -4,当m =2,n =3时,原式=-5×22+7×2×3-4= -20+42-4,=18.20.作图见解析【分析】利用直尺先作射线,再利用圆规依次在射线上截取两条与AB 相等的线段,从而可得答案.【详解】则线段A B ''即为所求作的线段.【点睛】本题考查的是尺规作图,作一条线段等于已知线段的2倍,掌握“作一条线段等于已知线段”是解题的关键.21.(1)5,2m m n ;(2)113m n【解析】【分析】(1)根据第二条边比第一条边长用加法列运算式,第三条边比第一条边短用减法列运算式,再合并同类项即可;(2)把三角形的三边相加,再合并同类项即可.【详解】解:(1) 三角形第一条边长为4m +2n ,第二条边比第一条边长m ﹣2n ,第三条边比第一条边短2m +n ,∴ 第二条边为:4225,m n m n m第三条边为:4224222,m nm n m n m n m n故答案为:5,2m m n (2)这个三角形的周长为:4252113.m n m m n m n【点睛】本题考查的是列代数式,整式的加减运算的应用,掌握列出正确的代数式是运算的基础,是解题的关键.22.见解析【解析】【分析】观察几何体,作出三视图即可.【详解】解:如图所示:【点睛】此题考查了作图-----三视图,熟练掌握三视图的画法是解本题的关键.23.(1)172;(2)2a b【解析】【分析】(1)先根据AC+CD+DB=AB,计算AC+DB,再根据MN=MC+CD+DN,线段的中点计算即可;(2)利用(1)的结论一般化即可.【详解】(1)如图,①点M,N分别为AC,DB的中点,①AM=MC= 12AC,DN=NB= 12DB,①MC+DN=12AC+12DB=12(AC+BD)=12(AB-CD),①MN=MC+CD+DN=12(AB-CD)+CD=12(AB+CD),①AB=12,CD=5,①MN= 12(12+5)=172;(2)①点M,N分别为AC,DB的中点,①AM=MC= 12AC,DN=NB= 12DB,①MC+DN=12AC+12DB=12(AC+BD)=12(AB-CD),①MN=MC+CD+DN=12(AB -CD )+CD=12(AB+CD ), ①AB =a ,CD =b , ①MN=2a b +. 【点睛】本题考查了线段的中点,线段的和差计算,熟练掌握线段中点,线段和差的意义是解题的关键.24.(1)17;(2)1254. 【解析】【分析】(1)原式利用已知新定义计算即可得到结果;(2)原式利用已知新定义先计算中括号内的,再行计算即可得到结果. 【详解】解:(1)根据已知新定义得:4*1=42+12=17;(2)根据已知新定义得:(﹣2)*3=-(a 2﹣b 2)= b 2-a 2=32-(-2)2=5, 则52*[(﹣2)*3]=5 2*5=(52)2+52=1254.25.(1)13922a b ⎛⎫- ⎪⎝⎭人;(2)29人 【解析】【分析】(1)根据公交车原有乘客()3a b -人,中途有一半人下车,则下车的人数()132a b =-人,再由又上车若干人,使车上共有乘客()85a b -人,即可得到上车的乘客人数()()()185332a b a b a b ⎡⎤=-----⎢⎥⎣⎦人; (2)根据(1)求得的结果把a=10 ,b=8 代入计算即可.【详解】解:(1)公交车原有乘客()3a b -人,中途有一半人下车,①下车的人数()132a b =-人,又①又上车若干人,使车上共有乘客()85a b -人,①上车的乘客人数()()()185332a b a b a b ⎡⎤=-----⎢⎥⎣⎦ ()18532a b a b =--- 13922a b ⎛⎫=- ⎪⎝⎭人 答:上车的乘客人数是13922a b ⎛⎫- ⎪⎝⎭人; (2)当 a=10 时,b=8 时,1391391086536292222a b ⎛⎫-=⨯-⨯=-= ⎪⎝⎭人, ①上车的乘客有29人,答:上车的乘客有29人.【点睛】本题主要考查了整式的加减计算和代数式求值,解题的关键在于能够根据题意准确求出上车的乘客的代数式.26.(1)-1,点B 的位置见解析;(2)此时A ,B 两点间距离为12;(3)t=6或t=3;(4)52m +,12m -或92m - 【分析】(1)根据数轴的意义,即在数轴上标出点B 的位置;(2)根据题意,点A 运动了4个单位长度,用时4秒,则可计算点B 运动的距离,可得到此时点B 在数轴上所对应的数,根据两点距离公式即可求解;(3)经过t 秒,点B 在数轴上所对应的数为2t -1,根据两点距离公式列出方程解答便可; (4)点B 运动的距离为-1-m ,则时间为12m --,即可得点A 所对应的数,再分类求解即可. 【详解】解:(1)点B 在点A 左侧且距点A 为3个单位长度,则点B 所对应的数为-1, 点B 的位置如图所示:(2)根据题意,点A 运动了523-=个单位长度,则用时31=3秒, ①点B 运动了:3⨯2=6(个长度单位),①点B 在数轴上所对应的数为-1-6=-7,①A ,B 两点间距离为5-(-7)=12(个长度单位);(3)经过t 秒,点B 在数轴上所对应的数为2t -7, 根据题意得:2723t --=,即2t -9=3或2t -9=-3,解得t=6或t=3;(4)根据题意,点B 运动的距离为-1-m ,则时间为12m--,①点A 所对应的数为15222mm--+-=,当点A 继续运动到点B 的右侧,此时点A 所对应的数为2m +, ①点A 继续运动的距离为()51222mmm +--+=;当点A 继续运动到点B 的左侧,此时点A 所对应的数为2m -, ①点A 继续运动的距离为()59222mmm +---=. 故答案为:52m +,12m-或92m-.。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题2022年7月一、单选题1.下列各数中,最小的数是()A .4-B .2-C .1D .32.据《吉林日报》2021年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A .37.00610⨯B .47.00610⨯C .370.0610⨯D .40.700610⨯3.下列运算正确的是()A .236=B .660a a --=C .2416-=-D .523xy xy -+=-4.单项式23a b π-的系数和次数分别是()A .3π,3B .3π-,3C .13-,4D .13,45.在代数式:234x ,3ab ,5x +,5yx ,4-,3y ,2a b a -中,整式有()A .4个B .5个C .6个D .7个6.有理数a 在数轴上的对应点的位置如图所示,若有理数b 满足-a <b <a ,则b 的值不可能是()A .2B .0C .-1D .-37.小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,汽车的速度为45千米每小时,小明先步行x 分钟,再乘车y 分钟,则小明家离书店的路程是()千米A .454x y+B .445x y +C .344x y +D .13154x y +8.下列判断正确的是()A .两个数相加,和一定大于其中一个加数B .两数相减,差一定小于被减数C .两数相乘,积一定大于其中一个因数D .|a|一定是非负数9.如图,是由一些棱长为1cm 的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A .33cmB .143cm C .53cm D .73cm 10.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第100次剪完后剩下绳子的长度是()A .9913m ⎛⎫ ⎪⎝⎭B .9923m ⎛⎫ ⎪⎝⎭C .10013m⎛⎫ ⎪⎝⎭D .10023m⎛⎫ ⎪⎝⎭二、填空题11.如果盈利80元记作+80元,那么亏损40元记作______元.12.﹣5的倒数是_____;12018-的相反数是_____.13.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.14.按照如图所示的操作步骤,若输入的值为-3,则输出的值为_______________.15.已知代数式235x x +-的值等于6,则代数式2268x x ++的值为_____________.16.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是_____17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.三、解答题18.计算:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭19.某公司的某种产品由一商店代销,双方协议,不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时,商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用代数式表示,这两个月公司分别应付给商店的钱数;(2)假设代销费为每月20元,每件产品的提成为2元,一月份销售了20件,二月份销售了25件,求该商店这两个月销售其总产品的总收益.20.如图是由几个小立方体所组成几何体从上面看到的形状图,其中小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体从正面和从左面看到的形状图.21.已知多项式()()2223221M x xy y x x yx =++-+++.(1)当()2120x y -+-=,求M 的值;(2)若多项式M 与字母x 的取值无关,求y 的值.22.一辆出租车沿着南北方向的道路来回行驶接送客人,一天早晨从某商店门口出发,中午到达B 地,约定向南为正,向北为负,当天记录如下(单位:千米)18.3-,9.5-,+7.1,+14, 6.2-,+12,+6.8,8.5-(1)B 地在商店何处,相距多少千米?(2)第4个客人下车地点距离商店多少千米?(3)若汽车行驶每千米耗油0.1升,那么这天上午共耗油多少升?23.定义新运算:对于任意a ,b ,都有()()223a b a b a ab b b ⊕=+-+-,等式右边是通常的加法、减法、乘法及乘方运算,比如:()()223525255222⊕=+⨯-⨯+-7198=⨯-1338=-125=(1)求()32⊕-的值.(2)化简()()223a b a ab b b +-+-.24.观察下列等式:①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭…根据上述等式的规律,解答下列问题:(1)请写出第④个等式:_____________;(2)写出第n 个等式(用含有n 的等式表示):_____________;(3)应用你发现的规律,计算:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯.25.“分类讨论”是一种重要数学思想方法,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的四个问题.例:三个有理数a ,b ,c 满足0abc >,求a b c a b c++的值.解:由题意得,a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:1113a b c a b ca b c a b c++=++=++=,②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:()()1111a b c a b c a b c a b c--++=++=+-+-=-.综上,a b c a b c++的值为3或-1.请根据上面的解题思路解答下面的问题:(1)已知3a =,1=b ,且a b <,求a b +的值;(2)已知a ,b 是有理数,当0ab >时,求a ba b+的值.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求a b c a b c++.参考答案1.A 【解析】【分析】根据有理数的大小比较即可求解.【详解】解:∵4213-<-<<,故选:A .【点睛】本题考查有理数的大小比较,掌握有理数的大小比较法则是解题的关键.2.B 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:4700607.006010=⨯,故选:B .【点睛】此题考查科学记数法的表示方法,表示时关键要确定a 的值以及n 的值.3.C 【解析】【分析】A.根据有理数的乘方法则解题;B.根据合并同类项法则解题;C.根据有理数的乘方法则解题;D.根据合并同类项法则解题.【详解】A.239=,故A 错误;B.6612a a a --=-,故B 错误;C.2416-=-,故C 正确;D.523xy xy xy -+=-,故D 错误,故选:C .【点睛】本题考查乘方、合并同类项等知识,是基础考点,难度较易,掌握相关知识是解题关键.4.B 【解析】【分析】根据单项式系数和次数的概念分析即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【详解】单项式23a b π-的系数和次数分别是3π-,3故选B 【点睛】本题考查了单项式系数和次数的概念,掌握概念是解题的关键.5.C 【解析】【分析】根据整式的概念辨析即可得到答案,单项式和多项式统称为整式.【详解】234x ,3ab ,5x +,5y x,4-,3y ,2a b a -是整式的有234x ,3ab ,5x +,4-,3y ,2a b a -,共6个故选:C 【点睛】此题考查了整式的概念,注意5yx分母中含有字母,是分式不是整式.6.D 【解析】【分析】先根据点在数轴上的位置得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴上点的位置得:23a <<32a ∴-<-<-23a ∴<<又a b a -<< 2b ∴≤观察四个选项,只有选项D 不符合故选择:D .【点睛】本题考查了用数轴上的点表示有理数,比较简单,正确表示取值范围是解题关键.7.D 【解析】【分析】首先根据速度×时间=路程,用小明步行的速度乘x ,求出从小明家到车站的路程是多少;然后根据速度×时间=路程,用公交车行驶的速度乘y ,求出从车站到学校的路程是多少;最后把它们相加即可.【详解】解:小明家离书店的路程为:134456060154x y x y ⨯+⨯=+故选:D .【点睛】此题主要考查了列代数式,注意行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.8.D 【解析】【详解】试题分析:A 、(-1)+(-2)=-3,和小于每一个加数,故选项错误;B 、1-(-2)=3,差大于被减数,故选项错误;C 、1×(-2)=-2,积都不大于每一个因数,故选项错误;D 、|a|一定是非负数是正确的.故选D .9.A 【解析】【分析】首先根据三视图确定该几何体的形状,然后确定其体积即可.【详解】易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,体积为:3×1×1×1=3(cm3).故选:A.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.10.C【解析】【分析】根据题意得每次减绳子后的长度都是上次剩下长度的13,根据乘方的定义我们可以得出关于x的关系式,代入100x=求解即可.【详解】∵第一次剪去绳子的23,还剩213⎛⎫-⨯⎪⎝⎭原长第二次剪去剩下绳子的23,还剩213⎛⎫-⨯⎪⎝⎭上次剩下的长度因此每次减绳子后的长度都是上次剩下长度的1 3根据乘方的定义,我们得出第n次剪去绳子的23,还剩13x⎛⎫⎪⎝⎭第100次剪去绳子的23,还剩10013⎛⎫⎪⎝⎭故答案为:C.【点睛】本题考查了乘方的定义,掌握乘方的定义从而确定它们的关系式是解题的关键.11.-40【解析】【分析】【详解】盈利80元记作+80元,那么亏损40元记为﹣40元.故答案为:﹣40.12.-1512018【解析】【分析】根据倒数和相反数的定义进行解答即可.【详解】解:-5的倒数是-15;12018-的相反数是12018.故答案为:-15;12018.【点睛】本题主要考查倒数和相反数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;只有符号不同的两个数互为相反数.13.18.4C-︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.14.55【解析】【分析】根据运算程序列式计算即可得解.【详解】解:由图可知,输入的值为-3时,()2-3=910<则()()2-32592555⎡⎤+⨯=+⨯=⎢⎥⎣⎦.故答案为:55.【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.15.30【解析】【分析】将代数式化为:2(x 2+3x )+8,由于代数式x 2+3x-5的值等于6,那么x 2+3x=11,将其代入代数式并求出代数式的值.【详解】解:由题意得:x 2+3x-5=6,即:x 2+3x=11,∴2x 2+6x+8=2(x 2+3x )+8=2×11+8=30.故答案为:30.【点睛】本题考查代数式的求值,关键在于找出代数式与已知条件的关系,根据已知条件求出代数式中的未知项,代入求解.16.强【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这个特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“文”与“强”相对,“富”与“主”相对,“民”与“明”相对,故答案为:强.【点睛】本题考查了正方体的展开图,注意从相对面入手,分析及解答问题.17.2-【解析】【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C -=-.【点睛】本题考查数轴上两点间的距离,得到C 为A ,A '中点是解题的关键.18.0【解析】【详解】解:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭()()114188211=---⨯+-÷()()121=---+-1210=-+-=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.19.(1)一月份:()a bm +元;二月份:()a bn +元(2)该商店这两个月销售其总产品的总收益为130元【解析】【分析】(1)每月应付费用为:a 元代销费+b×销售件数,所以这两个月公司应付给商店的钱数=2×a+b×两个月销售件数;(2)把a=200,b=2,m=200,n=250,代入(1)中的式子即可.【详解】(1)一月份:()a bm +元二月份:()a bn +元(2)当20a =,2b =,20m =,25n =时()()a bm a bn +++()2022020225=+⨯++⨯20402050130=+++=(元)答:该商店这两个月销售其总产品的总收益为130元.【点睛】本题考查列代数式和代数式求值,用代数式表示出代销费和提成是解题的关键.20.见解析【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为4,3,1;从左面看有3列,每列小正方形数目分别为3,4,1,据此可画出图形.【详解】解:如图所示:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.(1)M=2(2)2y =【解析】【分析】(1)先化简M ,进而根据非负数的性质求得,x y 的值,进而代入求解即可;(2)根据(1)中M 的化简结果变形,令含x 项的系数为0,进而求得y 的值解:()()2223221M x xy y x x yx =++-+++222322222x xy y x x yx -=++---222xy y x =+-- ()2120x y -+-=1,2x y ∴==原式12222122=⨯+⨯-⨯-=(2)M 222xy y x =+--()222y x y =-+-与字母x 的取值无关,20y ∴-=解得2y =【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.22.(1)B 点在商的北边2.6千米;(2)第4个客人下车地点距离商店6.7千米;(3)这天上午共耗油8.24升【解析】【分析】(1)把所给数据相加,若和为正,则说明B 地在商店的南边,若和为负,则说明B 地在商店的北边,再求出和的绝对值即可解答;(2)求出前4个数据相加的和的绝对值即可;(3)求出所有数据的绝对值的和,再乘以每千米的耗油量即可求解.(1)解:18.39.57.114 6.212 6.88.5 2.6--++-++-=-(千米),所以B 点在店的北边2.6千米;(2)解:18.39.57.114 6.7--++=-(千米),所以第4个客人下车地点距离商店6.7千米;解:18.39.57.114 6.212 6.88.582.4+++++++=(千米)82.40.18.24⨯=升.所以这天上午共耗油8.24升.【点睛】本题考查正负数的实际应用、有理数的混合运算的实际应用,理解相反意义的量的含义是解答的关键.23.(1)27;(2)3a 【解析】【分析】(1)先根据新定义运算的运算顺序运算即可;(2)先用乘法分配律算乘法,再合并同类项即可.【详解】解:(1)∵()()223a b a b a ab b b ⊕=+-+-,∴()2332(32)(3324)(2)⊕-=-+⨯+--=198+=27;(2)()()223a b a ab b b-+++=3222233a ab ab a b ab b b ++---+=3a .【点睛】本题考查了整式的混合运算,理解新定义运算顺序并正确运用运算法则进行计算是解此题的关键.24.(1)111179279⎛⎫=⨯- ⎪⨯⎝⎭(2)()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦(3)20202021【解析】【分析】(1)根据所给等式总结规律解答;(2)根据(1)中规律写出答案即可;(3)根据(2)中规律裂项相消即可;(1)解:∵①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭,…,∴111179279⎛⎫=⨯- ⎪⨯⎝⎭,故答案是:17×9=12×−(2)解:由(1)可知,第n 个等式为:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦,故答案是:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦;(3)解:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111121335577920192021=⨯++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111111111212335577920192021=⨯⨯-+-+-+-+⋅⋅⋅+-112021=-20202021=.【点睛】本题考查了数字类规律探究,以及有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.25.(1)-2或-4;(2)2±;(3)1【解析】【分析】(1)根据绝对值的意义和a <b ,确定a 、b 的值,再计算a+b ;(2)对a 、b 进行讨论,即a 、b 同正,a 、b 同负,根据绝对值的意义进行计算即可;(3)根据a ,b ,c 是有理数,a+b+c=0,0abc <,则a ,b ,c 两正一负,然后进行计算即可.【详解】解:(1)因为3a =,1=b ,且a b <,所以3a =-,1b =或1-,则2a b +=-或4a b +=-.(2)①当0a <,0b <时,112a b a b+=--=-;②当0a >,0b >时,112a b a b+=+=;综上,a b a b+的值为2±.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <.所以a ,b ,c 两正一负,不妨设0a >,0b >,0c <,所以1111a b c a b c++=+-=.【点睛】考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键;。
北师大版七年级上册数学期中考试试卷含答案
北师大版七年级上册数学期中考试试题一、单选题1.3-的相反数是( )A .3B .3-C .13D .13-2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D .五次二项式 3.已知长方形周长为20cm ,设长为x cm ,则宽为( )A .20x -B .202x- C .202x - D .10x -4.下列各式的化简,正确的是( )A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -85.我国最长的河流长江全长约6300千米,6300千米用科学记数法表示为( ) A .6.3×102千米 B .6.3×103千米C .0.63×104千米D .630×10千米6.有理数a b ,在数轴上的位置如图,则下列各式成立的是( )A .a b >B .0a b +<C .0ab >D .||a b < 7.已知:32m x y -与5n xy 是同类项,则代数式2m n -的值是( )A .6-B .5-C .2-D .58.如图,边长为a 的正方形中,阴影部分的面积是( )A .22a a π-B .22a a π-C .222a a π⎛⎫- ⎪⎝⎭ D .2()a π-9.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是( )A .4B .5C .7D .不能确定10.将下面平面图形绕直线l 旋转一周,可得到如图所示立体图形的是( )A .B .C .D .二、填空题11.如果﹣20%表示减少20%,那么+6%表示_____.12.单项式25xy -的系数是______.13.表示“x 与4的差的3倍”的代数式为_____.14.在(﹣25)4中,底数是___,指数是___;在﹣63中,底数是______.15.用“<”“=”或“>”号填空:-3_____0 89- _____89- -(+6) _____-|-6|16.根据你学过的数学知识,写出一个运算结果为2a -的多项式______________. 17.观察一列单项式:234,2,4,8,...a a a a -- 根据你发现的规律,第7个单项式为_____________;第n 个单项式为________.三、解答题18.计算:(1)341119-+--+--()()()()(2)321210.5233---⨯⨯--()[()](3)372a b a b ++-()()(4)222(8)3(2)x y y x y y +--19.先化简,再求值:222[7(43)2]x x x x ----,其中12x =-.20.已知:a b ,互为相反数,c d ,互为倒数,(3)m =--.求2||a b m cd m m+---的值.21.如图,由5个相连的正方形可以折成一个无盖的正方体盒子.请你再画出3种不同的由5个正方形相连组成的图形,使它可以折成一个无盖的正方体盒子.22.已知:已知:A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1.(1)求2A ﹣3B ;(2)若A+2B 的值与a 的取值无关,求b 的值.23.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?24.某自然风景区的门票价格为:成人票20元,学生票10元.某中学七年级共有学生m人,老师n人,八年级学生人数是七年级学生人数的32倍,八年级老师人数是七年级老师人数的6 5倍,若他们一起去此风景区,买门票要花多少钱?若200m=,10n=,你能具体求出门票是多少钱吗?25.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并化简;(3)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.参考答案1.A2.A3.D4.B5.B6.B7.B8.C9.B10.B11.增加6%【分析】根据正负是相反意义的量,“正”和“负”相对,即可解题.【详解】如果﹣20%表示减少20%,那么+6%表示增加6%.故答案为增加6%.12.1 5 -【分析】单项式中的数字因数是单项式的系数,根据定义可得答案.【详解】因为:22155xyxy-=-,所以25xy-的系数是15-.故答案是:1 5 -【点睛】本题考查单项式的系数,掌握单项式系数概念是解题关键.13.3(x-4)【详解】x与4的差为:x-4,差的3倍为:3(4)x-.故答案为3(4)x-.14.﹣2546【分析】根据乘方的定义,即可解答.【详解】解:在425⎛⎫-⎪⎝⎭中,底数是25-,指数是4;在﹣63中,底数是6,故答案为:﹣25,4,6.【点睛】本题考查了有理数的乘方,熟练掌握乘方的定义是解题的关键.15. < = =【解析】【详解】解:因为负数小于0,所以-3<0;89-=89-;因为-(+6)=-6,-|-6|=-6,所以-(+6) =-|-6|.故答案是:<,=,=.16.222a a -(答案不唯一)【分析】运用合并同类项、单项式乘法、单项式除法等知识均可求解,注意答案不唯一.【详解】解:例如:2222a a a -=-故答案为222a a -(答案不唯一)【点睛】本题考查了合并同类项、单项式乘法、单项式除法等知识,属于开放型题目.17. 64a 7(或26a 7) (-2)n -1an【解析】通过观察已知条件,找出这列单项式的规律即可求出结果.【详解】解:根据观察可得,系数是(-2)n -1,a 的指数是n ,∴第7个单项式为64a 7,第n 个单项式为(﹣2)n ﹣1an .故答案为64a 7,(﹣2)n ﹣1an .18.(1)1(2)-416(3)10a ﹣b(4)222x y y -+根据有理数的混合运算和整式的加减的运算法则进行计算即可.(1)解:341119-+--+--()()()()71119--=+1819=-+1=(2) 解:321210.5233---⨯⨯--()[()] 1182923-⨯⨯-=-() 786+=- 416=- (3)解:372a b a b ++-()() 372a a b b ++-=()()10a b -=(4)解:222(8)3(2)x y y x y y +--2221636x y y x y y =+-+2223616x y x y y y =-++222x y y =-+【点睛】本题主要考查了有理数的混合运算和整式的加减,牢固掌握有理数的混合运算和整式的加减的运算法则并准确计算是做出本题的关键.19.12- 【解析】先对222[7(43)2]x x x x ----进行化简,然后将x 的值代入即可求解.【详解】解:222[7(43)2]x x x x ---- 222(7432)x x x x =--+-2227432x x x x =-+-+2433x x =--. 当12x =-时,原式1131433134222⎛⎫=⨯-⨯--=+-=- ⎪⎝⎭. 【点睛】本题主要考查代数式的化简求值,代数式的化简是解答本题的关键.20.5【解析】【分析】根据a ,b 互为相反数,c ,d 互为倒数的性质,以及求出m 的值,代入代数式,即可求解.【详解】解:由已知得0a b +=,1cd =,3m =.20||91|3|91353a b m cd m m +---=---=--=. 【点睛】考查了代数式求值,此题的关键是把a+b ,cd 当成一个整体求值.21.见解析【解析】【分析】根据正方体展开图的特征,画出能折叠成正方体纸盒的展开图即可,注意答案不唯一.【详解】解:画出3种图形如下(答案不唯一):【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.22.(1)7a2+3ab﹣4a+1;(2)b=25.【解析】【分析】(1)把A与B代入原式,去括号合并即可得到结果;(2)由A+2B的结果与a的取值无关,即a的系数为0,确定出b的值即可.【详解】解:(1)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴2A﹣3B=2(2a2+3ab﹣2a﹣1)﹣3(﹣a2+ab﹣1)=4a2+6ab﹣4a﹣2+3a2﹣3ab+3=7a2+3ab﹣4a+1;(2)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴A+2B=2a2+3ab﹣2a﹣1﹣2a2+2ab﹣2=5ab﹣2a﹣3=(5b﹣2)a﹣3,由结果与a的取值无关,得到5b﹣2=0,解得:b=25.【点睛】本题考查整式的加减,熟练掌握运算法则是解本题的关键.23.(1)当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)每套儿童服装的平均售价是54.5元.【解析】【分析】(1)将数据求和,就是和55元偏离的值,用总价减去成本就是盈利.(2)用总售价除以总件数,就是平均售价.【详解】解:(1)售价:55×8+(2﹣3+2+1﹣2﹣1+0﹣3)=440﹣4=436,盈利:436﹣400=36(元);答:当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)平均售价:436÷8=54.5(元),答:每套儿童服装的平均售价是54.5元.24.门票为5440元【解析】【分析】先用m 、n 表示出八年级的学生数和老师数,然后运用总票价=人数×单价即可.【详解】 解:八年级的学生数和老师数32n ,65m 则七八年级一起去景区,应付票钱为:365111020102025442525m m n n m n m n ⎛⎫⎛⎫+++=⨯+⨯=+ ⎪ ⎪⎝⎭⎝⎭. 当200m =,10n =时,原式25200441050004405440=⨯+⨯=+=(元).答:门票为5440元.【点睛】本题主要考查了列代数式以及代数式求值问题,根据已知得出式子表示该支付门票费用是解题关键.25.(1)5a+3b ,2a+3b ;(2)9a+11b ;(3)78【解析】【详解】解:(1)∴三角形的第一条边长为2a +5b ,第二条边比第一条边长3a -2b ,第三条边比第二条边短3a ,∴第二条边长=(2a +5b)+(3a -2b)=2a +5b +3a -2b=5a +3b ,第三条边长=(5a +3b)-3a11 =5a +3b -3a=2a +3b ;故答案为:5a+3b ,2a+3b ;(2)周长:()()()255323911a b a b a b a b +++++=+; (3)∴|a ﹣5|+(b ﹣3)2=0,∴a -5=0,b -3=0,即a =5,b =3,∴周长:9a +11b =45+33=78.。
2024--2025学年河南省郑州市北师大版七年级上册 数学期中试卷 (A)
2024--2025学年河南省郑州市北师大版七年级上册数学期中试卷(A )1.在-(-2)、|-1|、-|0|,-22,(-3)2,-(-4)5中正数有()A .1个B .2个C .3个D .4个2.下列各组数中,结果相等的是()A.与B.与C.与D.与3.人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是()A .143344937kmB .1433449370kmC .14334493700kmD .1.43344937km4.下列选项中,两个单项式属于同类项的是()A .a 3与b 3B .-2a 2b与ba2C .x2y 与-xy2D .3x 2y 与-4x2yz5.已知整式的值为6,则整式的值为()A .0B .12C .14D .186.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D .7.如图,从边长为的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.B .C .D .68.若,则多项式的值为()A .B .5C.D .9.如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为,,,,,则下列正确的是()A.B.C.D.10.如图,一个立方体的六个面上分别标着连续的自然数,若相对两个面上所标之数的和相等,则这六个数的和为()A.69B.75C.78D.8111.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记作+0.22,那么小东跳出了3.85米,记作______.12.一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____cm.13.已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为_____.14.将一个边长为a的正方形纸片[如图(1)]剪去两个小长方形,得到一个如图(2)所示的“”形图案,则这个“”形图案的周长为____.15.如果关于的多项式与多项式的次数相同,则=_________.16.计算(1)(2).17.化简,求值:,其中,.18.一个几何体由几个完全相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小正方体的个数.(1)请画出从正面看、从左面看到的这个几何体的形状图;(2)若小正方体的棱长为1,求这个几何体的表面积.19.某种箱装水果的标准质量为每箱10千克,现抽取8箱样品进行检测,称重如下(单位:千克):10.2,9.9,9.8,10.1,9.6,10.1,9.7,10.2.为了求得这8箱样品的总质量,我们可以选取一个基准质量进行简化运算.(1)你认为选取的这个恰当的基准质量为______千克;(2)根据你选取的基准质量,用正、负数填写下表;(超过基准质量的部分记为正数,不足基准质量的部分记为负数)原质量(千克)10.29.99.810.19.610.19.710.2与基准质量的差距(千克)(3)这8箱样品的总质量是多少?20.如图,两摞完全相同的课本整齐地叠放在讲台上,请根据图中所给出的信息,回答下列问题:(1)每本课本的厚度为cm.(2)若有一摞上述规格的课本x本整齐地叠放在讲台上,请用含x的代数式表示出这摞课本的顶部距离地面的高度.(3)当时,求课本的顶部距离地面的高度.21.【问题情境】某综合实践小组计划进行废物再利用的环保小卫士活动.他们准备用废弃的宣传单制作成装垃圾的无盖纸盒.【操作探究】(1)若准备制作一个无盖的正方体纸盒,如图(1),图形经过折叠能围成一个无盖正方体纸盒.(填A,B,C,或D)(2)如图(2)是小明的设计图,把它折成一个无盖正方体纸盒后与“保”字所在面相对的面上的文字是.(3)如图(3),有一张边长为20cm的正方形废弃宣传单,小华将其四个角各剪去一个边长为4cm小正方形后,折成无盖长方体纸盒.求这个无盖长方体纸盒的底面积和容积.22.某中学准备在网上订购一批篮球和跳绳,查阅后发现篮球每个售价为120元,跳绳每根售价为25元.现有甲、乙两家网店均提供包邮服务,并提出了各自的优惠方案.甲网店:买一个篮球送一根跳绳;乙网店:篮球和跳绳都按定价的付款.已知要购买篮球40个,跳绳x根.(1)若在甲网店购买,则需付款元;若在乙网店购买,则需付款元;(用含x的代数式表示)(2)当时,在哪家网店购买较为合算?(3)当时,你认为还有更为省钱的购买方案吗?如果没有,请说明理由;如果有,请写出你的购买方案,并计算需要付款的金额.23.已知点A,B在数轴上分别表示a,b.任务要求(1)对照数轴填写下表:a 83b 404A ,B 两点间的距离48124问题探究(2)若A ,B 两点间的距离记为d ,试问d 和a ,b 有何数量关系.问题拓展(3)当x 等于多少时,的值最小,最小值是多少?(4)若点C 表示的数为x ,当点C 在什么位置时,|x-1|+|x-5|的值最小,最小值是多少?。
北师大版数学七年级上册《期中测试题》及答案解析
北 师 大 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 在0,-1,5,-0.5四个数中,最大的数是( ) A. 0B. -1C. 5D. -0.52. ﹣9的相反数是【 】 A. 9B. ﹣9C.19D. ﹣193. 下列各选项中的两项为同类项的是( ) A. 2x -与223xy B. 2x 与2yC. 2yx 与3xy -D. 3xy 与22x y4. 用代数式表示“比的32大1的数”是( ) A.312a + B. 213a +C.52a D.512a - 5. 下列各式符合代数式书写规范的是( ) A. 8aB.s tC. 1m -元D. 115x6. 下列计算正确的是( ) A. 4216-=B. |2|2--=C. 231-+=D. 13223⎛⎫÷-⨯=- ⎪⎝⎭7. 下列结论中不正确的是( ) A. 最小的正整数为1 B. 最大的负整数为-1 C. 绝对值最小的有理数为0 D. 倒数等于它本身的数为18. 若单项式12m a b -与212na b 的和仍是单项式,则m n 的值是( ) A. 3B. 6C. 8D. 109. 下列各数: 5,13, ,0.1010010001…,0.01-,其中是有理数的有( ) A. 2个B. 3个C. 4个D. 5个10. 根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A. 9B. 7C. ﹣9D. ﹣711. 将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是( )A. 56B. 58C. 63D. 72 12. 已知、互为相反数,、互为倒数,且||3m =,则22019242()a m b cd -+-的值是( )A. 2017B. -35C. -36D. -37二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡中对应的横线上.13. 受“网红重庆”的影响,到重庆旅游的人数大幅增加,在刚刚过去的国庆长假,重庆在旅游城市排名中增速32.8%,实现旅游收入187****0000,把数据187****0000用科学计数法表示为______.14. 单项式352x y -系数是______.15. 若规定一种特殊运算:2aa b ab b b⊗=-+,则2(3)⊗-=______. 16. 多项式21(4)72mx m x x --++是关于的四次三项式,则的值是______. 17. 若1x =,24y =,且0xy >,则x y +=______.18. 对任意一个四位数,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称为“极数”;如果一个正整数是另一个正整数的平方,则称正整数是完全平方数.若四位数为“极数”,记()33m D m =,若()D m 是完全平方数,则m =______.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19. 先画数轴,然后在数轴上表示下列各数,并按照从小到大顺序用“<”号连接起来.-3,112,122-,1,20. 计算:(1)(3)6(8)-+-+; (2)1115226511⎛⎫⎛⎫÷-+⨯-⎪ ⎪⎝⎭⎝⎭;(3)231(3)120.75243⎛⎫-÷-⨯⨯- ⎪⎝⎭. 21.化简:(1)()()225251a a a a ---+; (2)2(21)5(2)32x y x y y +----+. 22. (1)已知、满足:2302|()|y x ++-=,是最大的负整数,先化简再求值:()()222234x y xyz x y xyz x y +---;(2)已知7a b +=-,10ab =,求代数式(364)(22)ab a b a ab ++--值.23. 某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)(1)生产量最多的一天比生产量最少的一天多生产多少辆? (2)半年内总生产量是多少?比计划多了还是少了,增加或减少多少?24. 如果关于x 、y 的代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,试求代数式3232122(3)4a b a b ---的值.25. 小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同).(1)请用代数式表示装饰物的面积:______;用代数式表示窗户能射进阳光的面积:______;(结果保留)(2)小亮又设计了如图2空帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?(用代数式表示)四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26. 如图已知数轴上点、分别表示、,且|6|b +与2(9)a -互为相反数,为原点.(1)a =______,b =______;(2)将数轴沿某个点折叠,使得点与表示-10的点重合,则此时与点重合的点所表示的数为______; (3)若点M 、分别从点、同时出发,点M 以每秒1个单位长度的速度沿数轴向左匀速运动,点以每秒2个单位长度的速度沿数轴向右匀速运动,到点后立刻原速返回,设运动时间为(0)t t >秒. ①点M 表示的数是______(用含的代数式表示); ②求为何值时,2MO MA =;③求为何值时,点M与相距3个单位长度.答案与解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 在0,-1,5,-0.5四个数中,最大的数是( ) A. 0 B. -1C. 5D. -0.5【答案】C 【解析】 【分析】根据有理数的大小比较方法解答即可. 【详解】∵-1<-0.5<0<5, ∴四个数中,最大的数是5, 故选:C.【点睛】此题考查有理数的大小比较,负数正数大于零,零大于负数,两个负数绝对值大的反而小. 2. ﹣9的相反数是【 】 A. 9 B. ﹣9C.19D. ﹣19【答案】A 【解析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.因此﹣9的相反数是9.故选A . 3. 下列各选项中的两项为同类项的是( ) A. 2x -与223xy B. 2x 与2yC. 2yx 与3xy -D. 3xy 与22x y【答案】C 【解析】 【分析】所含字母相同,相同字母的指数也分别相同的项是同类项,根据定义解答即可. 【详解】A.所含字母不同,故不是同类项;B. 所含字母不同,故不是同类项;C.符合同类项的特点,故是同类项;D.所含相同字母的指数不相同,故不是同类项,故选:C.【点睛】此题考查同类项的定义,熟记定义并掌握同类项的特点即可正确解答问题.4. 用代数式表示“比的32大1的数”是()A. 312a+ B.213a+ C.52a D.512a-【答案】A 【解析】【分析】根据题意列式312a+,即可选出答案.【详解】∵的32是32a,∴比的32大1的数是312a+,故选:B.【点睛】此题考查列代数式,正确理解题意明确各量之间的关系是解题的关键.5. 下列各式符合代数式书写规范的是()A. 8aB. stC. 1m-元 D.115x【答案】B【解析】【分析】根据代数式书写要求解答即可.【详解】A.应为8a,故不正确;B.书写正确;C.多项式后有单位时,多项式应加括号,故错误;D.系数为带分数时应写成假分数,故错误,故选:B.【点睛】此题考查整式的书写形式,正确掌握整式的书写要求即可解答问题.6. 下列计算正确的是( ) A. 4216-= B. |2|2--=C. 231-+=D. 13223⎛⎫÷-⨯=- ⎪⎝⎭【答案】C 【解析】 【分析】根据有理数的乘方、绝对值、加法、乘除混合运算计算后判断即可得到答案. 【详解】A. 4216-=-,故该项错误; B. |2|2--=-,故该项错误; C.计算正确;D. 132183⎛⎫÷-⨯=- ⎪⎝⎭,故该项错误, 故选:C.【点睛】此题考查有理数的计算,正确掌握有理数的乘方、绝对值、加法、乘除混合运算方法即可正确解答. 7. 下列结论中不正确的是( ) A. 最小的正整数为1 B. 最大的负整数为-1 C. 绝对值最小的有理数为0 D. 倒数等于它本身的数为1【答案】D 【解析】 【分析】依次判断各项即可得到答案. 【详解】A.说法正确; B.说法正确; C.说法正确;D.倒数等于它本身的数为1或-1,故该项错误, 故选:D.【点睛】此题考查正整数、负整数、绝对值、倒数的定义. 8. 若单项式12m a b -与212na b 的和仍是单项式,则m n 的值是( ) A. 3B. 6C. 8D. 10【答案】C 【解析】 【分析】和为单项式即两项是同类项,根据同类项定义列式计算m 、n 的值即可得到答案. 【详解】由题意得:m-1=2,n=2, ∴m=3,328m n ==,故选:C.【点睛】此题考查单项式的定义,熟记单项式的特点即可解答问题. 9. 下列各数: 5,13, ,0.1010010001…,0.01-,其中是有理数的有( ) A. 2个 B. 3个C. 4个D. 5个【答案】B 【解析】 【分析】整数和分数统称为有理数,根据有理数定义解答即可. 【详解】有理数有:5,13,0.01-,共3个, 故选:B.【点睛】此题考查有理数的定义,正确掌握有理数的定义及特点即可解题.10. 根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A. 9B. 7C. ﹣9D. ﹣7【答案】C 【解析】【分析】先求出x=7时y 值,再将x=4、y=-1代入y=2x+b 可得答案. 详解】∵当x=7时,y=6-7=-1, ∴当x=4时,y=2×4+b=-1, 解得:b=-9, 故选C .【点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.11. 将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是( )A 56 B. 58 C. 63 D. 72【答案】B 【解析】试题分析:第一个图形小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n 个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个. 考点:规律题12. 已知、互为相反数,、互为倒数,且||3m =,则22019242()a mb cd -+-的值是( )A. 2017B. -35C. -36D. -37【答案】D 【解析】 【分析】根据相反数的定义求出a+b=0,根据倒数的定义得到cd=1,再求出m ,代入代数式计算即可. 【详解】∵、互为相反数, ∴a+b=0, ∵、互为倒数,∴cd=1,∵||3m =,∴3m =±,∴29m =,∴22019242()a m b cd -+-,220192()4()a b m cd =+--,=-36-1,=-37,故选:D.【点睛】此题考查整式的计算,将字母或代数式的值代入求值,题中添加括号是难点.二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将正确答案书写在答题卡中对应的横线上.13. 受“网红重庆”的影响,到重庆旅游的人数大幅增加,在刚刚过去的国庆长假,重庆在旅游城市排名中增速32.8%,实现旅游收入187****0000,把数据187****0000用科学计数法表示为______.【答案】101.876210⨯【解析】【分析】把一个数表示成10n a ⨯的形式,其中10a ≤<1∣∣,n 是整数,这种记数方法叫做科学记数法,根据科学记数法的要求即可解答.【详解】10187****0000 1.876210=⨯,故答案为:101.876210⨯ .【点睛】此题考察科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解.14. 单项式352x y -的系数是______.【答案】-2【解析】【分析】单项式中的数字因数是单项式的系数,根据定义即可解答.【详解】单项式352x y -的系数是-2,故答案为:-2.【点睛】此题考查单项式的系数定义,熟记定义即可解答问题.15. 若规定一种特殊运算为:2a a b ab b b ⊗=-+,则2(3)⊗-=______. 【答案】-1123 【解析】【分析】根据运算公式列式计算即可.【详解】2(3)⊗-=22(3)2(3)3⨯--+⨯--2663=-+-=-1123, 故答案为:-1123. 【点睛】此题考查有理数的混合运算,先计算乘法,再计算加减法.16. 多项式21(4)72m x m x x --++是关于的四次三项式,则的值是______. 【答案】4【解析】【分析】根据多项式的定义解答即可. 【详解】∵21(4)72m x m x x --++是关于的四次三项式, ∴m=4,当m=4时多项式为42172x x ++,是四次三项式, 故答案为:4.【点睛】此题考查多项式的次数及项数,正确掌握多项式的次数及项数即可解答问题.17. 若1x =,24y =,且0xy >,则x y +=______. 【答案】3或-3【解析】【分析】根据绝对值,乘方计算得出x 、y ,再分情况计算x+y.【详解】∵1x =,∴1x =±,∵24y =,∴2y =±,∵0xy >,∴x=1时y=2,x=-1时y=-2,当x=1、y=2时,x+y=3,当x=-1、y=-2时,x+y=-3,故答案为:3或-3.【点睛】此题考查绝对值的定义,乘方的性质,正确计算出x 、y 的值是解题的关键.18. 对任意一个四位数,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称为“极数”;如果一个正整数是另一个正整数的平方,则称正整数是完全平方数.若四位数为“极数”,记()33m D m =,若()D m 是完全平方数,则m =______.【答案】1188或2673或4752或7425【解析】【分析】设四位数m 的个位数字为x ,十位数字为y ,将m 表示出来,根据()33m D m =,()D m 是完全平方数,得到可能的值即可得出结论.【详解】设四位数m 的个位数字为x ,十位数字为y ,(x 是0到9的整数,y 是0到8的整数),∴1000(9)100(9)99(10010)m y x y x y x =-+-++=--, ∵m 是四位数,∴99(10010)y x --是四位数,即100099(10010)y x --<10000, ∵()33m D m ==3(10010)y x --, ∴1030333(10010)y x --<130333, ∵()D m 是完全平方数,∴3(10010)y x --既是3的倍数也是完全平方数,∴3(10010)y x --只有36,81,144,225这四种可能,∴()D m 是完全平方数的所有m 值为1188或2673或4752或7425故答案为:1188或2673或4752或7425.【点睛】此题考查列代数式解决问题,设出m 的代数式后根据题意得到代数式的取值范围是解题的关键,根据取值范围确定可能的值即可解答问题.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19. 先画数轴,然后在数轴上表示下列各数,并按照从小到大的顺序用“<”号连接起来.-3,112,122-,1, 【答案】数轴见解析,-3<122-<1<112< 【解析】【分析】画出数轴,将各数标出,即可从左至右用“<”号连接得到答案.【详解】数轴如图,∴-3<122-<1<112<. 【点睛】此题考查利用数轴比较有理数的大小,正确将各数表示点标在数轴上是解题的关键.20. 计算:(1)(3)6(8)-+-+; (2)1115226511⎛⎫⎛⎫÷-+⨯- ⎪ ⎪⎝⎭⎝⎭; (3)231(3)120.75243⎛⎫-÷-⨯⨯- ⎪⎝⎭. 【答案】(1)-5;(2)-15;(3)-9.【解析】【分析】(1)先化为省略括号的形式,再计算加减法;(2)先分别计算除法和乘法,再将结果相加即可;(3)先计算乘方、括号及绝对值,再计算乘除法.【详解】(1)(3)6(8)-+-+,=-3+6-8,=-5;(2)1115226511⎛⎫⎛⎫÷-+⨯- ⎪ ⎪⎝⎭⎝⎭, =-12+(-3),=-15;(3)231(3)120.75243⎛⎫-÷-⨯⨯- ⎪⎝⎭, 7379()443=÷-⨯⨯, 4379743=-⨯⨯⨯, =-9.【点睛】此题考查有理数的混合计算,掌握正确的运算顺序是解题的关键.21. 化简:(1)()()225251a a a a ---+; (2)2(21)5(2)32x y x y y +----+.【答案】(1)2431a a +-;(2)-x+9y.【解析】【分析】(1)先去括号,再合并同类项;(2)先去括号,再合并同类项.【详解】(1)()()225251a a a a ---+,=225251a a a a --+-,=2431a a +-;(2)2(21)5(2)32x y x y y +----+,=4x+2y-2-5x+10y-3y+2,=-x+9y.【点睛】此题考查整式的加减法计算,正确按照去括号法则去括号是解题的关键.22. (1)已知、满足:2302|()|y x ++-=,是最大的负整数,先化简再求值:()()222234x y xyz x y xyz x y +---;(2)已知7a b +=-,10ab =,求代数式(364)(22)ab a b a ab ++--的值.【答案】(1)255x y xyz -+,90;(2)5ab+4(a+b ),22【解析】【分析】(1)分别计算出x 、y 、z 的值,代入化简后的多项式进行计算;(2)将多项式化简,再将7a b +=-,10ab =整体代入计算.【详解】(1)()()222234x y xyz x y xyz x y +---, 22222334x y xyz x y xyz x y =+-+-,255x y xyz =-+,∵2302|()|y x ++-=,∴x-2=0,y+3=0,∴x=2,y=-3,∵是最大的负整数,∴z=-1,∴原式252(3)52(3)(1)=-⨯⨯-+⨯⨯-⨯-=90;(2)(364)(22)ab a b a ab ++--=3ab+6a+4b-2a+2ab ,=5ab+4a+4b ,=5ab+4(a+b ),∵7a b +=-,10ab =,∴原式=50-28=22【点睛】此题考查整式的化简求值,将整式正确化简是解题的关键,再将字母的值或代数式的值代入计算即可解答问题.23. 某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)半年内总生产量是多少?比计划多了还是少了,增加或减少多少?【答案】(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.【解析】【分析】(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;(2)把每月的生产量加起来即可,然后与计划相比较.【详解】(1)+4-(-5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),因为121>120 121-120=1(辆)答:半年内总生产量是121辆.比计划多了1辆.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.24. 如果关于x 、y 的代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,试求代数式3232122(3)4a b a b ---的值. 【答案】192-. 【解析】【分析】首先去括号,然后再合并同类项,化简后,把a 、b 的值代入计算即可.【详解】(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1),=2x 2+ax ﹣y +6﹣2bx 2+3x ﹣5y +1,=(2﹣2b )x 2+(a +3)x ﹣6y +7,∵代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,∴2﹣2b =0,a +3=0,解得:b =1,a =﹣3,a 3﹣2b 2﹣2(14a 3﹣3b 2)=a 3﹣2b 2﹣12a 3+6b 2=12a 3+4b 2. 当b =1,a =﹣3, 原式=12×(﹣27)+4×1=192-. 【点睛】此题主要考查了整式的加减﹣﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25. 小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同).(1)请用代数式表示装饰物的面积:______;用代数式表示窗户能射进阳光的面积:______;(结果保留)(2)小亮又设计了如图2的空帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?(用代数式表示)【答案】(1)28b π,ab-28b π;(2)能更大,窗户能射进阳光的面积比原来大216b π 【解析】【分析】(1)将两个四分之一的圆面积相加即是装饰物的面积;用矩形的面积减去装饰物的面积即是射进阳光的面积;(2)利用(1)的方法列出代数式进行比较即可【详解】(1)由题意知:四分之一圆的半径为2b , ∴装饰物的面积为=124⨯⨯2()2b ⨯=28b π, ∴窗户能射进阳光的面积为=ab-28b π, 故答案为:28b π,ab-28b π;(2)图2窗户能射进阳光的面积= 22()416bab ab b ππ-=-, ∵28b π>216b π, ∴ab -28b π< 216ab b π-, ∴此时,窗户能射进阳光的面积更大,(216ab b π-)-(ab-28b π)=216ab b π--ab+28b π=216b π, ∴此时,窗户能射进阳光的面积比原来大216b π 【点睛】此题考查列代数式计算,题中装饰物面积的计算是难点,(2)中列式计算注意合并同类项四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26. 如图已知数轴上点、分别表示、,且|6|b +与2(9)a -互为相反数,为原点.(1)a =______,b =______;(2)将数轴沿某个点折叠,使得点与表示-10的点重合,则此时与点重合的点所表示的数为______;(3)若点M 、分别从点、同时出发,点M 以每秒1个单位长度的速度沿数轴向左匀速运动,点以每秒2个单位长度的速度沿数轴向右匀速运动,到点后立刻原速返回,设运动时间为(0)t t >秒.①点M 表示的数是______(用含的代数式表示);②求为何值时,2MO MA =;③求为何值时,点M 与相距3个单位长度.【答案】(1)9,-6;(2)5;(3)①9-t ;②t=6或t=18;③t=4、6或12【解析】【分析】(1)根据|6|b +与2(9)a -互为相反数列式计算得出a 与b ;(2)先计算得出点与表示-10点重合时的折叠点,再根据对称性得到答案;(3)①根据点左右平移的规律即可解答;②分两种情况,点M 在OA 之间,点M 在点O 左侧,根据2MO MA =分别计算得出t 的值即可; ③先计算出点N 表示的数,再分三种情况求出t 的值.【详解】(1)∵|6|b +与2(9)a -互为相反数,∴|6|b ++2(9)a -=0,∴b+6=0,a-9=0,∴b=-6,a=9,故答案为:9,-6;(2)∵点A 表示的数是9,∴当折叠,使得点与表示-10的点重合时的折叠点是1092-+=-0.5, ∴此时与点重合的点所表示的数为-0.5+(-0.5+6)=5,故答案为:5;(3)①点M 从点出发以每秒1个单位长度的速度沿数轴向左匀速运动,∴点M 表示的数是9-t ,故答案为:9-t ;②∵2MO MA =,∴当点M 在OA 之间时,即2(9-t )=t ,解得t=6;当点M 在点O 左侧时,2(t-9)=t ,解得t=18;∴当t=6或t=18时,2MO MA =,③由题意知,AM=t ,BN=2t ,当点N 未到达点A ,且与点M 未相遇时,t+2t+3=15,得t=4;当点N 未到达点A ,且与点M 相遇后,t+2t-3=15,得t=6;当点N 到达点A 后,t-(2t-15)=3,得t=12,2t-15-t=3,得t=18(舍)综上,当t=4、6或12时,点M 与N 相距3个单位长度.【点睛】此题考查绝对值、平方的非负性,两点间的中点,利用线段的数量关系列方程,(3)是难点,注意题中点M与点N的运动条件,分情况解决问题.。
最新北师大版七年级数学上册期中测试题(附答案)
最新北师大版七年级数学上册期中测试题时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.在1,-2,0,53这四个数中,最大的数是( )A.-2B.0C.53D.12.如图所示是由4个大小相同的正方体组合而成的几何体,则从正面看到的图形是( )3.下列各式计算正确的是( ) A.-7-2×5=-45 B.3÷54×45=3C.-22-(-3)3=22D.2×(-5)-5÷⎝⎛⎭⎫-12=0 4.如果-2a m b 2与12a 5b n +1是同类项,那么m +n 的值为( )A.5B.6C.7D.85.用一个平面去截一个圆锥,截面图形不可能是( )6.已知a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A.ab 〉0B.a -b 〉0C.a 2b 〉0D.|b|〈|a|二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式-5x 2yz 的系数是 ,次数是 .8.天宫二号空间实验室将开展空间冷原子钟实验,有望实现3千万年误差一秒的超高精准,对卫星定位导航等生产生活及引力波探测等空间科学研究将产生重大影响.其中3千万用科学记数法表示为 .9.在akg 含糖15%的糖水中,若加入mkg 的水,则这些糖水的浓度变为 ;若再加入nkg 的糖并假设这些糖全部溶解,则这些糖水的浓度变为 .10.若m 、n 互为相反数,则54(3m -2n)-2⎝⎛⎭⎫54m -158n = .11.如图所示是一个正方体纸盒的展开图,若在其中三个正方形的a 、b 、c 内分别填入适当的数,使得它们折成正方体后a 与其相对面上的数互为相反数,b 与其相对面上的数互为倒数,则a = ,b = .12.若|x|=7,|y|=5,且xy >0,则x +y = . 三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-3.25-⎝⎛⎭⎫-19+(-6.75)+179;(2)-12018-(1+0.5)×13÷(-4).14.化简:(1)3x 2-1-2x -5+3x -x 2;(2)(2a 2-1+2a)-3(a -1+a 2).15.将下列各数在数轴上表示出来,然后用“<”连接起来.-212,0,|-4|,0.5,-(-3).16.已知(x +1)2+|y -1|=0,求代数式4⎝⎛⎭⎫x -12y -[2y +3(x +y)+3xy]的值.17.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.四、(本大题共3小题,每小题8分,共24分)18.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?19.如图,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.如图所示是一个包装盒从不同方向看到的图形,求这个包装盒的表面积(结果保留π).五、(本大题共2小题,每小题9分,共18分)21.定义一种新运算:观察下列各式:1⊙3=1×4+3=7,3⊙(-1)=3×4-1=11,5⊙4=5×4+4=24,4⊙(-3)=4×4-3=13.(1)请你想一想:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填“=”或“≠”);(3)先化简,再求值:(a-b)⊙(2a+b),其中a=1,b=2.22.如图,观察数轴,请回答:(1)点C与点D的距离为,点B与点D的距离为;(2)点B与点E的距离为,点A与点C的距离为;发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为MN =(用m,n表示).(3)利用发现的结论解决下列问题:数轴上表示x的点P与点E之间的距离是3,求x 的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图案如图所示:(1)(2)(3)第20个“T”字形图案共有棋子多少个?参考答案与解析1.C2.C3.D4.B5.A6.B7.-548.3×1079.15%aa+m15%a+na+m+n10.011.-31212.12或-12解析:⊙|x|=7,|y|=5,⊙x=±7,y=±5.⊙xy>0,⊙x=7时,y=5,则x +y =7+5=12;x =-7时,y =-5,则x +y =-7-5=-12.综上所述,x +y =12或-12.13.解:(1)原式=-8.(3分) (2)原式=-78.(6分)14.解:(1)原式=3x 2-x 2-2x +3x -1-5=2x 2+x -6.(3分) (2)原式=2a 2-1+2a -3a +3-3a 2=-a 2-a +2.(6分) 15.解:如图所示.(3分)用“<”连接为-212<0<0.5<-(-3)<|-4|.(6分)16.解:由题意可知x +1=0,y -1=0,解得x =-1,y =1.(3分)故原式=x -7y -3xy =-1-7-3×(-1)×1=-5.(6分)17.解:如图所示.(每图3分)18.解:由题意得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(6分)所以他卖完这8套儿童服装后是盈利,盈利37元.(8分)19.解:(1)阴影部分的面积为12b 2+12a(a +b).(4分)(2)当a =3,b =5时,12b 2+12a(a +b)=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分)20.解:由题意及图形可知,该包装盒是一个圆柱,此圆柱的直径为20cm ,高为20cm ,(3分)⊙表面积为π×20×20+π×⎝⎛⎭⎫12×202×2=400π+200π=600π(cm 2).(8分) 21.解:(1)4a +b (2分) (2)≠(4分)(3)(a -b)⊙(2a +b)=4(a -b)+(2a +b)=4a -4b +2a +b =6a -3b.(7分)当a =1,b =2时,原式=6×1-3×2=0.(9分)22.解:(1)3 2(2分) (2)4 7 |m -n|(5分)(3)由图可知,当点P 在点E 左边时,x =2-3=-1;(7分)当点P 在点E 右边时,x =2+3=5,故x 的值为-1或5.(9分)23.解:(1)11 14 32(3分)(2)第n 个“T ”字形图案中棋子的个数为(3n +2)个.(8分)(3)当n=20时,3n+2=3×20+2=62(个).所以第20个“T”字形图案共有棋子62个.(12分)。
北师大版数学七年级上册期中考试试题含答案
北师大版数学七年级上册期中考试试题含答案一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)化简﹣2+3的结果是()A.﹣1B.1C.﹣5D.52.(4分)下面几何体截面一定是圆的是()A.圆柱B.圆锥C.球D.圆台3.(4分)一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克4.(4分)在数轴上表示4与﹣3的两个点之间的距离是()A.﹣1B.1C.﹣7D.75.(4分)下列图形中,不是三棱柱的表面展开图是()A.B.C.D.6.(4分)下列说法正确的是()A.两个有理数的和一定大于每一个加数B.互为相反数的两个数的和等于零C.若两个数的和为正,则这两个数都是正数D.若|a|=|b|,则a=b7.(4分)绝对值小于3的所有整数的和是()A.3B.C.6D.﹣68.(4分)一个几何体从上面看是圆,从左面和正面看都是长方形,则该几何体是()A.正方体B.圆锥C.圆柱D.球9.(4分)若有理数x、y满足|x|=1,|y|=2,且x+y为正数,则x+y即是()A.1B.2C.3D.1或310.(4分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)﹣1的相反数是.12.(5分)XXX家冰箱的冷冻室的温度为﹣6℃,调高4℃后的温度为.13.(5分)由两个长方体组合而成的一个立体图形,从两个不同的方向看得到的形状图如图所示,根据图中所标尺寸(单位:mm)可知这两个长方体的体积之和是mm3.14.(5分)将若干个正方体小方块堆放在一起,形成一个几何体,分别从正面看和从上面看,得到的图形如图所示,则这堆小方块共有块.三、(本大题共2小题,每小题8分,共16分)15.(8分)计算:﹣|﹣1|+|﹣|+(﹣2).16.(8分)计算:﹣0.5﹣(﹣3)+2.75﹣7.5.17.(8分)如图所示的是一个正方体纸盒的展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,试写出A、B、C分别表示的数.18.(8分)画数轴表示下列有理数,并用“<”连接各数.2.5.4;﹣1;0.4.五、(本大题共2小题,每题10分,共20分)19.(10分)实数a,b,c在数轴上的位置以下图.1)比较大小:|a|与|b|.2)化简:|c|﹣|a|+|﹣b|+|﹣a|.20.(10分)(2017秋•埇桥区期中)以下图的是一个正方体骰子的表面展开图,将其折叠成正方体骰子,请按照要求回覆问题:1)如果1点在上面,3点在左面,几点在前面?2)假如3点在上面,几点在上面?6、(此题总分值12分)21.(12分)如图所示的是某几何体的三种形状图.2)若从正面看到的形状图长为15cm,宽为4cm的长方形,从左面看到的形状图是宽为3cm的长方形,从上面看到的形状图的最长的边长为5cm,求这个几何体的侧面积(不包括上下底面).七、(本题满分12分)22.(12分)某水果店销售香蕉,前一天未卖完的香蕉会有部分由于不新鲜而损耗,未损耗的水果第二天继续销售,当天结束时,若库存较前一天减少.则记为负数,若库存较前一天增多,则记为正数.10月1日至10月5日的经营情况如下表:日期购进(千克)库存变化(千克)消耗(千克)10月1日10月2日10月3日10月4日5541452450812502210月5日5031(1)10月3日卖出香蕉千克.2)问卖出香蕉最多的一天是哪一天?3)这五天经营结束后,库存是增加了还是减少了?变化了多少?8、(此题总分值14分)23.(14分)如图,半径为1个单位的圆片上有一点Q 与数轴上的原点重合(提示:圆的周长C=2πr,本题中π的取值为3.14)1)把圆片沿数轴向右滚动1周,点Q抵达数轴上点A的位置,点A表示的数是;2)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情形记录以下:+2,﹣1,﹣5,+4,+3,﹣2参考答案与试题解析一、挑选题(本大题共10小题,每题4分,共40分)1.(4分)(2014•温州二模)化简﹣2+3的成效是()A.﹣1B.1C.﹣5D.5分析】按照异号两数相加,取绝对值较大的加数的标记,再用较大的绝对值减去较小的绝对值,可得谜底.解答】解:原式=+(3﹣2)=+1。
北师大版七年级上学期数学期中考试试卷含答案(共3套)
广东省东莞市七年级(上册)期中数学试卷一、选择题1.﹣9的相反数是()A.9 B.﹣9 C.D.﹣2.一天早晨的气温是﹣7℃,中午的气温比早晨上升了11℃,中午的气温是()A.11℃ B.4℃C.18℃ D.﹣11℃3.下列各组运算中,结果为负数的是()A.﹣(﹣3)B.(﹣3)×(﹣2) C.﹣|﹣3| D.(﹣3)24.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,75.长城总长约为6 700 000米,用科学记数法表示正确的是()A.6.7×108米B.6.7×107米C.6.7×106米D.6.7×105米6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元7.已知(1﹣m)2+|n+2|=0,则m+n的值为()A.﹣1 B.﹣3 C.3 D.不能确定8.下列各式成立的是()A.﹣5(x﹣y)=﹣5x+5y B.﹣2(﹣a+c)=﹣2a﹣2cC.3﹣(x+y+z)=﹣x+y﹣z D.3(a+2b)=3a+2b9.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a10.如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.6二、填空题11.若单项式2x2y m与﹣x n y3是同类项,则m= ,n= .12.(1分)比较大小:.13.(1分)用代数式表示“x的2倍与y的差”为.14.(1分)化简﹣x2+x﹣2﹣(﹣x2+1)= .15.(1分)若x2+3x=2,那么多项式2x2+6x﹣8= .16.(1分)规定一种新运算:a⊗b=ab+a﹣b,如2⊗3=2×3+2﹣3,则3⊗5= .三、解答题(共73分)17.(10分)直接写出结果(1)|﹣6|=(2)18.8076≈(精确到0.01)(3)(﹣2)+(﹣3)=(4)(﹣4.2)﹣(﹣7)=(5)(﹣)×3=(6)+(﹣)=(7)﹣÷(﹣4)=(8)(﹣)÷2×(﹣3)=(9)(﹣4)2=(10)﹣24= .18.把下面的有理数填在相应的大括号里:(填编号即可)①﹣5,②1,③0.37,④,⑤,⑥0,⑦﹣0.1,⑧22,⑨7,⑩6%整数集合:{ …}分数集合:{ …}正数集合:{ …}负数集合:{ …}.19.在数轴上表示下列各数:﹣,0,1.5,﹣6,2,﹣5.并按从小到大顺序排列.20.计算(1)14+(﹣4)﹣2﹣(﹣26)﹣3(2)(3)(﹣8)÷4﹣(﹣1)×3(4)2×(﹣3)3﹣4×(﹣3)+15(5)(6)(﹣3)﹣|﹣|+.21.化简下列各式:(1)﹣3x2y+3xy2+2x2y﹣2xy2 (2)2(a﹣1)﹣(2a﹣3)+3(3)3(2x2﹣y2)﹣2(3y2﹣2x2)(4)2a﹣3b﹣[4a﹣(3a﹣b)].22.列式、化简、求值(1)已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,①求﹣A﹣3B,②若x=﹣1,y=时,﹣A﹣3B的值.(2)三角形的三边的长分别是2x+1,3x﹣2,8﹣2x(单位:cm),求这个三角形的周长,(用含x的代数式表示).如果x=3cm,三角形的周长是多少?23.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5问:这8筐白菜一共多少千克?如果每千克白菜能卖5元,问这8筐白菜一共能买多少元?24.飞机的无风航速为a千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?25.数a、b、c在数轴上对应的位置如图所示,化简|a+c|﹣|a|+|﹣b|.广东省东莞市七年级(上)期中数学试卷参考答案与试题解析一、选择题1.﹣9的相反数是()A.9 B.﹣9 C.D.﹣【考点】相反数.【专题】计算题.【分析】理解相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:根据相反数的定义,得﹣9的相反数是9.故选A.【点评】求一个数的相反数,即在这个数的前面加负号.2.一天早晨的气温是﹣7℃,中午的气温比早晨上升了11℃,中午的气温是()A.11℃ B.4℃C.18℃ D.﹣11℃【考点】有理数的加法.【专题】应用题.【分析】根据中午的气温比早晨上升了11℃,可知中午的气温=早晨的气温+11℃.【解答】解:中午的气温是:﹣7+11=4℃.故选B.【点评】本题考查有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②绝对值不相等的异号两数相加,取值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;③一个数同0相加,仍得这个数.3.下列各组运算中,结果为负数的是()A.﹣(﹣3)B.(﹣3)×(﹣2) C.﹣|﹣3| D.(﹣3)2【考点】正数和负数;有理数的混合运算.【专题】计算题.【分析】先根据相反数、绝对值的意义及有理数的乘法、乘方运算法则化简各式,再根据小于0的数是负数进行选择.【解答】解:A、﹣(﹣3)=3>0,结果为正数;B、(﹣3)×(﹣2)=6>0,结果为正数;C、﹣|﹣3|=﹣3<0,结果为负数;D、(﹣3)2=9>0,结果为正数;故选:C.【点评】此题考查的知识点是正数和负数,注意:两数相乘,同号得正,异号得负,并把绝对值相乘;乘方是乘法的特例,因此乘方运算可转化成乘法法则,由乘法法则又得到了乘方符号法则,即正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶数次幂是正数.0的任何次幂都是0.4.单项式﹣3πxy2z3的系数和次数分别是()A.﹣π,5 B.﹣1,6 C.﹣3π,6 D.﹣3,7【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,单项式﹣3πxy2z3的系数和次数分别是﹣3π,6.故选C.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意π是数字,应作为系数.5.长城总长约为6 700 000米,用科学记数法表示正确的是()A.6.7×108米B.6.7×107米C.6.7×106米D.6.7×105米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6 700 000用科学记数法表示为:6.7×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()A.(7m+4n)元B.28mn元C.(4m+7n)元D.11mn元【考点】列代数式.【专题】经济问题.【分析】总价格=足球数×足球单价+篮球数×篮球单价,把相关数值代入即可.【解答】解:∵4个足球需要4m元,7个篮球需要7n元,∴买4个足球、7个篮球共需要(4m+7n)元,故选C.【点评】考查列代数式,得到买4个足球、7个篮球共需要的价钱的等量关系是解决本题的关键,用到的知识点为:总价=单价×数量.7.已知(1﹣m)2+|n+2|=0,则m+n的值为()A.﹣1 B.﹣3 C.3 D.不能确定【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】本题可根据非负数的性质得出m、n的值,再代入原式中求解即可.【解答】解:依题意得:1﹣m=0,n+2=0,解得m=1,n=﹣2,∴m+n=1﹣2=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当非负数相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.8.下列各式成立的是()A.﹣5(x﹣y)=﹣5x+5y B.﹣2(﹣a+c)=﹣2a﹣2cC.3﹣(x+y+z)=﹣x+y﹣z D.3(a+2b)=3a+2b【考点】去括号与添括号.【分析】直接利用去括号法则分别计算化简得出答案.【解答】解:A、﹣5(x﹣y)=﹣5x+5y,正确;B、﹣2(﹣a+c)=2a﹣2c,故此选项错误;C、3﹣(x+y+z)=3﹣x﹣y﹣z,故此选项错误;D、3(a+2b)=3a+6b,故此选项错误;故选:A.【点评】此题主要考查了去括号法则,正确掌握去括号法则是解题关键.9.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a【考点】有理数大小比较.【分析】利用有理数大小的比较方法可得﹣a<b,﹣b<a,b>0>a进而求解.【解答】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.【点评】有理数大小的比较方法:正数大于0;负数小于0;正数大于一切负数;两个负数,绝对值大的反而小.10.如果整式x n﹣2﹣5x+2是关于x的三次三项式,那么n等于()A.3 B.4 C.5 D.6【考点】多项式.【专题】计算题.【分析】根据题意得到n﹣2=3,即可求出n的值.【解答】解:由题意得:n﹣2=3,解得:n=5.故选:C【点评】此题考查了多项式,熟练掌握多项式次数的定义是解本题的关键.二、填空题11.若单项式2x2y m与﹣x n y3是同类项,则m= 3 ,n= 2 .【考点】单项式;同类项.【分析】直接利用同类项法则得出m,n的值,进而得出答案.【解答】解:∵单项式2x2y m与﹣x n y3是同类项,∴m=3,n=2.故答案为:3,2.【点评】此题主要考查了单项式,正确把握同类项的定义是解题关键.12.比较大小:>.【考点】有理数大小比较.【专题】计算题.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.13.用代数式表示“x的2倍与y的差”为2x﹣y .【考点】列代数式.【分析】根据题意可以用代数式表示出x的2倍与y的差.【解答】解:用代数式表示“x的2倍与y的差”为:2x﹣y,故答案为:2x﹣y.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.14.化简﹣x2+x﹣2﹣(﹣x2+1)= x﹣3 .【考点】整式的加减.【专题】计算题;整式.【分析】原式去括号合并即可得到结果.【解答】解:原式=﹣x2+x﹣2+x2﹣1=x﹣3,故答案为:x﹣3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.15.若x2+3x=2,那么多项式2x2+6x﹣8= ﹣4 .【考点】代数式求值.【分析】先把多项式转化为2(x2+3x)﹣8,再代入求值即可解答.【解答】解:2x2+6x﹣8=2(x2+3x)﹣8=2×2﹣8=4﹣8=﹣4.故答案为:﹣4.【点评】本题考查了代数式求值,解决本题的关键是把多项式转化为2(x2+3x)﹣8,利用整体代入的方法解答.16.规定一种新运算:a⊗b=ab+a﹣b,如2⊗3=2×3+2﹣3,则3⊗5= 13 .【考点】有理数的混合运算.【专题】计算题;新定义;实数.【分析】原式利用题中的新定义化简即可得到结果.【解答】解:根据题中的新定义得:3⊗5=3×5+3﹣5=15+3﹣5=13,故答案为:13【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三、解答题(共73分)17.(10分)(2015秋•东莞市校级期中)直接写出结果(1)|﹣6|= 6(2)18.8076≈18.81 (精确到0.01)(3)(﹣2)+(﹣3)= ﹣5(4)(﹣4.2)﹣(﹣7)= 2.8(5)(﹣)×3= ﹣1(6)+(﹣)= ﹣(7)﹣÷(﹣4)=(8)(﹣)÷2×(﹣3)= 2(9)(﹣4)2= 16(10)﹣24= ﹣16 .【考点】有理数的混合运算;绝对值.【专题】计算题;推理填空题.【分析】根据有理数的混合运算顺序,以及绝对值的含义和求法,求出每个算式的值各是多少即可.【解答】解:(1)|﹣6|=6(2)18.8076≈18.81(精确到0.01)(3)(﹣2)+(﹣3)=﹣5(4)(﹣4.2)﹣(﹣7)=2.8(5)(﹣)×3=﹣1(6)+(﹣)=﹣(7)﹣÷(﹣4)=(8)(﹣)÷2×(﹣3)=2(9)(﹣4)2=16(10)﹣24=﹣16.故答案为:6、18.81、﹣5、2.8、﹣1、﹣、、2、16、﹣16.【点评】(1)此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.18.把下面的有理数填在相应的大括号里:(填编号即可)①﹣5,②1,③0.37,④,⑤,⑥0,⑦﹣0.1,⑧22,⑨7,⑩6%整数集合:{ …}分数集合:{ …}正数集合:{ …}负数集合:{ …}.【考点】有理数.【分析】根据有理数的概念和分类方法解答即可.【解答】解:整数集合:{①②⑥⑧}分数集合:{③④⑤⑦⑨⑩}正数集合:{②③④⑧⑨⑩}负数集合:{①⑤⑦}.【点评】本题考查的是有理数的概念及其分类,有理数的概念:整数和分数统称为有理数.按整数、分数的关系分类:有理数{正整数、0、负整数、正分数、负分数};②按正数、负数与0的关系分类:有理数{正整数、正分数、0、负整数、负分数.19.在数轴上表示下列各数:﹣,0,1.5,﹣6,2,﹣5.并按从小到大顺序排列.【考点】有理数大小比较.【专题】作图题;实数.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,﹣6<﹣5<﹣<0<1.5<2.【点评】(1)此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(2)此题还考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.20.(2015秋•东莞市校级期中)计算(1)14+(﹣4)﹣2﹣(﹣26)﹣3(2)(3)(﹣8)÷4﹣(﹣1)×3(4)2×(﹣3)3﹣4×(﹣3)+15(5)(6)(﹣3)﹣|﹣|+.【考点】有理数的混合运算.【分析】按有理数混合运算顺序进行计算,先乘方后乘除,最后算加减,有括号的要先去括号,计算过程中要注意正负符号的变化.【解答】解:(1)14+(﹣4)﹣2﹣(﹣26)﹣3=14﹣4﹣2+26﹣3=40﹣9=31;(2)=﹣15××=﹣50;(3)(﹣8)÷4﹣(﹣1)×3=﹣2+3=1;(4)2×(﹣3)3﹣4×(﹣3)+15=2×(﹣27)+12+15=﹣54+27=﹣27;(5)=﹣×12+×12﹣×12=﹣3+6﹣2=1;(6)(﹣3)﹣|﹣|+=﹣3﹣=﹣3+=﹣2.【点评】本题考查了有理数的混合运算,注意:要正确掌握运算顺序,即乘方运算为三级运算(和以后学习的开方运算),乘法和除法为二级运算,加法和减法为一级运算;在混合运算中要特别注意运算顺序,先三级,再二级,最后算一级,有括号的要先算括号里的,同级运算按从左到右的顺序.21.(2015秋•东莞市校级期中)化简下列各式:(1)﹣3x2y+3xy2+2x2y﹣2xy2(2)2(a﹣1)﹣(2a﹣3)+3(3)3(2x2﹣y2)﹣2(3y2﹣2x2)(4)2a﹣3b﹣[4a﹣(3a﹣b)].【考点】整式的加减.【专题】计算题;整式.【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果.【解答】解:(1)原式=﹣x2y+xy2;(2)原式=2a﹣2﹣2a+3+3=4;(3)原式=6x2﹣3y2﹣6y2+4x2=10x2﹣9y2;(4)原式=2a﹣3b﹣4a+3a﹣b=a﹣4b.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.列式、化简、求值(1)已知A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,①求﹣A﹣3B,②若x=﹣1,y=时,﹣A﹣3B的值.(2)三角形的三边的长分别是2x+1,3x﹣2,8﹣2x(单位:cm),求这个三角形的周长,(用含x的代数式表示).如果x=3cm,三角形的周长是多少?【考点】整式的加减—化简求值;代数式求值.【专题】计算题;整式.【分析】(1)①把A与B代入原式,去括号合并即可得到结果;②把x与y的值代入计算即可求出值;(2)表示出三角形周长,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)①∵A=4x2﹣4xy﹣y2,B=﹣x2+xy+7y2,∴﹣A﹣3B=﹣4x2+4xy+y2+3x2﹣3xy﹣21y2=﹣x2+xy﹣20y2;②当x=﹣1,y=时,原式=﹣1﹣﹣5=﹣6;(2)根据题意得:2x+1+3x﹣2+8﹣2x=(3x+7)cm,当x=3时,原式=9+7=16cm.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5问:这8筐白菜一共多少千克?如果每千克白菜能卖5元,问这8筐白菜一共能买多少元?【考点】正数和负数.【专题】探究型.【分析】根据题意可得得到这8筐白菜一共多少千克,再根据求出的白菜的重量和每千克白菜能卖5元,可以求得这8筐白菜一共能买多少元,本题得以解决.【解答】解:由题意可得,这8筐白菜的重量是:25×8+(1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5)=200+(﹣5.5)=194.5(千克),如果每千克白菜能卖5元,这8筐白菜一共能买的钱数是:194.5×5=972.5(元),即这8筐白菜一共194.5千克,如果每千克白菜能卖5元,这8筐白菜一共能买972.5元.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目表示的实际含义.24.飞机的无风航速为a千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?【考点】整式的加减;列代数式.【专题】行程问题.【分析】先根据题意用a表示出飞机顺风飞行4小时的行程与飞机逆风飞行3小时的行程,再求出两个行程的差距即可.【解答】解:∵飞机的无风航速为a千米/时,风速为20千米/时,∴飞机顺风飞行4小时的行程=4(a+20)千米;飞机逆风飞行3小时的行程=3(a﹣20)千米.∴飞机顺风飞行4小时与飞机逆风飞行3小时的行程差=4(a+20)﹣3(a﹣20)=(a+140)千米.【点评】本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.25.数a、b、c在数轴上对应的位置如图所示,化简|a+c|﹣|a|+|﹣b|.【考点】整式的加减;数轴;绝对值.【分析】直接利用数轴得出各式的符号,再利用绝对值的性质化简求出答案.【解答】解:如图所示:a+c>0,a>0,﹣b>0,则|a+c|﹣|a|+|﹣b|=a+c﹣a﹣b=c﹣b.【点评】此题主要考查了整式的加减以及绝对值的性质,正确去绝对值是解题关键.北师大版七年级(上册)期中数学试卷一、选择题(每小题2分,共20分)1.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的()A.B.C.D.2.﹣的倒数是()A.3 B.C.﹣ D.﹣33.如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形A、B、C内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,﹣2,0 B.0,﹣2,1 C.﹣2,0,1 D.﹣2,1,04.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是()A.﹣3℃B.15℃C.﹣10℃D.﹣1℃5.将一个正方体沿着某些棱剪开,展成一个平面图形,至少需要剪的棱的条数是()A.5 B.6 C.7 D.86.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.重的角度看,最接近标准的工件的质量克数表示的是()A.﹣1 B.﹣2 C.1.5 D.2.57.下列各题去括号所得结果正确的是()A.x2﹣(x﹣y+2z)=x2﹣x+y+2z B.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1C.3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1 D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣28.下列分数中,大于﹣小于﹣的是()A.﹣ B.﹣ C.﹣ D.﹣9.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,P表示的有理数互为相反数,则图中表示绝对值最大的数的点是()A.点M B.点N C.点P D.点Q10.多项式合并同类项后不含xy项,则k的值是()A.B.C.D.0二、填空题(每小题2分,共20分)11.光的速度大约是300 000 000米/秒,将300 000 000用科学记数法表示为.12.计算(﹣1)﹣(﹣9)+(﹣9)﹣(﹣6)的结果是.13.数轴上到原点的距离等于1的点所表示的数是.14.如图是一个正方体骰子的表面展开图,若1点在上面,3点在左面,则点在正面.15.写出2xyz3的一个同类项:.16.一个单项式加上﹣y2+x2后等于x2+y2,则这个单项式为.17.若x=3时,代数式ax3+bx的值为12,则当x=﹣3时,代数式ax3+bx+5的值为.18.在计算机程序中,二叉树是一种表示数据结构一的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7,…,照此规律,六层二叉树的结点总数为.19.纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数),若北京时间19:30,则此时纽约的时间是.20.今年小丽a岁,她的妈妈的年龄比小丽年龄的3倍小3岁,5年后,小丽的妈妈.三、解答题(本题共9小题,共60分)21.把下列各数填在相应的大括号里.32,﹣3,7.7,﹣24,﹣0.08,﹣3.1415,0,正整数集合:{ }负分数集合:{ }.22.计算:﹣14﹣|﹣2|×6+(﹣2)3.23.计算:(1﹣﹣)÷(﹣)+1.24.先化简,再求值:3y2﹣x2+(2x﹣y)﹣(x2+3y2),其中x=1,y=﹣2.25.已知由几个大小相同的小立方块搭成的几何体,从上面观察,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请分别画出从正面、左面看到的这个几何体的形状图.(几何体中每个小立方块的棱长都是1cm)26.根据指令计算,完成如下填空:输入执行操作×(﹣)输出(入)执行操作÷(﹣12)输出(入)执行操作÷(﹣)输出18…a…b…cd ...e...f (1)a=,b=,c=,d=,e=,f=.27.为鼓励市民节约用水,某地推行阶梯式水价计费制,标准如下:每户居民每月用水不超过17立方米的按每立方米a元计费;超过17立方米而未超过30立方米的部分按每立方米b元计费;超过30立方米的部分按每立方米c元计费.(1)若某户居民在一个月内用水15立方米,则该用户这个月应交水费多少元?(2)若某户居民在一个月内用水28立方米,则该用户这个月应交水费多少元?(3)若某户居民在一个月内用水35立方米,则该用户这个月应交水费多少元?28.一架直升飞机从高度为460m的位置开始训练,按要求以20m/s的速度匀速上升,以2m/s 的速度直升机匀速下降.(1)如果直升机先上升60s,再下降120s,求此时直升机所在的高度;(2)假设训炼期间,直升机高度下降至100m或100m以下时,上升至4000m或4000m以上时.都会触发警报,若直升机先下降,触发警报后立即上升,当直升机第一次达到高度为3600m 的位置时,一共要多长时间?29.有理数a,b,c,ab<0,ac>0,且|c|>|b|>|a|,数轴上a,b,c对应的点分别为A,B,C.(1)若a=1,请你在数轴上标出点A,B,C的大致位置;(2)若|a|=﹣a,则a0,b0,c0;(填“>”、“<“或“=”)(3)小明判断|a﹣b|﹣|b+c|+|c﹣a|的值一定是正数,小明的判断是否正确?请说明理由.七年级(上册)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的()A.B.C.D.【考点】点、线、面、体.【分析】根据面动成体结合常见立体图形的形状解答即可.【解答】解:根据面动成体结合常见立体图形的形状得出只有A选项符合,故选A2.﹣的倒数是()A.3 B.C.﹣ D.﹣3【考点】倒数.【分析】根据倒数的定义即可得出答案.【解答】解:﹣的倒数是﹣3;故选D.3.如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形A、B、C内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,﹣2,0 B.0,﹣2,1 C.﹣2,0,1 D.﹣2,1,0【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:由于只有符号不同的两个数互为相反数,由正方体的展开图解题得填入正方形中A,B,C内的三个数依次为1,﹣2,0.故选:A.4.以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是()A.﹣3℃B.15℃C.﹣10℃D.﹣1℃【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,两个负数比较大小,绝对值大的负数反而小,可得答案.【解答】解:15℃>﹣1℃>﹣3℃>﹣10℃,故选:C.5.将一个正方体沿着某些棱剪开,展成一个平面图形,至少需要剪的棱的条数是()A.5 B.6 C.7 D.8【考点】几何体的展开图.【分析】如果把一个正方体剪开展平的图画出来,发现最多有5条棱没剪(没剪的棱为两个正方形的公共边),正方体总共12条棱,至少所需剪的棱为12﹣5=7条.【解答】解:把一个正方体沿着某些棱剪开,展成一个平面图形,至少需要剪开1+3+3=7条棱,故选C.6.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.重的角度看,最接近标准的工件的质量克数表示的是()A.﹣1 B.﹣2 C.1.5 D.2.5【考点】正数和负数.【分析】根据正负数的含义,可得绝对值最小的即为最接近标准的.【解答】解:|﹣1|=1,|﹣2|=2,|1.5|=1.5,|2.5|=2.5,∵1<1.5<2<2.5,∴最接近标准的工件的质量克数表示的是﹣1.故选:A.7.下列各题去括号所得结果正确的是()A.x2﹣(x﹣y+2z)=x2﹣x+y+2z B.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1C.3x﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1 D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣2【考点】去括号与添括号.【分析】根据去括号的方法逐一验证即可.【解答】解:根据去括号的方法可知,x2﹣(x﹣y+2z)=x2﹣x+y﹣2z,故A错误;x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1,故B正确;3x﹣[5x﹣(x﹣1)]=3x﹣(5x﹣x+1)=3x﹣5x+x﹣1,故C错误;(x﹣1)﹣(x2﹣2)=x﹣1﹣x2+2,故D错误.故选B.8.下列分数中,大于﹣小于﹣的是()A.﹣ B.﹣ C.﹣ D.﹣【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣<﹣,﹣>﹣,﹣<﹣<﹣,﹣<﹣,∴大于﹣小于﹣的是﹣.故选:C.9.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,P表示的有理数互为相反数,则图中表示绝对值最大的数的点是()A.点M B.点N C.点P D.点Q【考点】有理数大小比较;数轴;相反数;绝对值.【分析】先利用相反数的定义确定原点为线段MP的中点,则可判定点Q到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:∵点M,P表示的数互为相反数,∴原点为线段MP的中点,∴点Q到原点的距离最大,∴点Q表示的数的绝对值最大.故选D10.多项式合并同类项后不含xy项,则k的值是()A.B.C.D.0【考点】合并同类项.【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程,即可求出k 的值.【解答】解:原式=x2+(﹣3k)xy﹣3y2﹣8,因为不含xy项,故﹣3k=0,解得:k=.故选C.二、填空题(每小题2分,共20分)11.光的速度大约是300 000 000米/秒,将300 000 000用科学记数法表示为3×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000 000用科学记数法表示为:3×108.故答案为:3×108.12.计算(﹣1)﹣(﹣9)+(﹣9)﹣(﹣6)的结果是5.【考点】有理数的加减混合运算.【分析】原式利用减法法则变形,计算即可得到结果.【解答】解:原式=﹣1+9﹣9+6=5,故答案为:513.数轴上到原点的距离等于1的点所表示的数是±1.【考点】数轴.【分析】从原点向左数1个单位长度得﹣1,向右数1个单位长度得1,也就是绝对值为1的数是±1.【解答】解:与原点距离为1的点为:|1|,∴这个数为±1.故答案为:±1.14.如图是一个正方体骰子的表面展开图,若1点在上面,3点在左面,则2点在正面.【考点】几何体的展开图.【分析】利用正方体及其表面展开图的特点可知“3点”和“4点”相对,“5点”和“2点”相对,“6点”和“1点”相对,当1点在上面,3点在左面,可知5点在后面,继而可得出2点在正面.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“3点”和面“4点”相对,面“5点”和面“2点”相对,面“6点”和面“1点”相对,如果1点在上面,3点在左面,2点在正面,可知5点在后面.故答案为:2.15.写出2xyz3的一个同类项:3xyz3.【考点】同类项.【分析】根据同类项的定义,含有相同的字母,相同字母的指数相同,可得答案.【解答】解:写出2xyz3的一个同类项3xyz3,故答案为:3xyz3.16.一个单项式加上﹣y2+x2后等于x2+y2,则这个单项式为2y2.【考点】整式的加减.【分析】设出所求单项式为A,根据题意列出关于A的等式,由一个加数等于和减去另外一个加数变形后,并根据去括号法则去括号后,合并同类项即可得到结果.【解答】解:设所求单项式为A,根据题意得:A+(﹣y2+x2)=x2+y2,可得:A=(x2+y2)﹣(﹣y2+x2)=x2+y2+y2﹣x2=2y2.故答案为:2y217.若x=3时,代数式ax3+bx的值为12,则当x=﹣3时,代数式ax3+bx+5的值为﹣7.【考点】代数式求值.【分析】首先把x=3代入ax3+bx,求出27a+3b的值是多少;然后把x=﹣3代入代数式ax3+bx+5求解即可.【解答】解:∵a×33+3b=12,∴27a+3b=12,当x=﹣3时,ax3+bx+5=a×(﹣3)3﹣3b+5=﹣(27a+3b)+5=﹣12+5=﹣7故答案为:﹣7.18.在计算机程序中,二叉树是一种表示数据结构一的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点总数为3,三层二叉树的结点总数为7,…,照此规律,六层二叉树的结点总数为63.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:∵n=1时,有1个,即21﹣1个;n=2时,有3个,即22﹣1个;n=3时,有7个,即23﹣1个;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省那龙镇2017-2018学年七年级数学上学期期中试题
2017—2018学年度第学期
七年级期中教学质量检测数学参考答案
一、选择题(本大题共10小题,每小题3分,共30分)
CBDDD CCCCD
二、填空题(本大题共6小题,每小题4分,共24分)
11. 2 12. > 13. 百万 14. 12 15. 2 16. -6
三、解答题(一)(本大题共3小题,每小题6分,共18分)
17. 解:原式=41………………………………………………………………6分
18. 解:
…………………………………………………………………………6分
19. 解:原式=2a2﹣3b2-4a2+4b2
=﹣2a2+b2. ………………………………………………………6分四、解答题(二)(本大题共3小题,每小题7分,共21分)
20. 解:原式=
1
28
2
+-…………………………………………………………5分
=
1
5
2 -.…………………………………………………………7分
21. 解:(1)阴影部分面积为(2-a)a=2a-a2…………………………4分
(2)依题意得a=1,
∴2a―a2=2―12=1………………………………………………7分
22. 解:(1)根据数轴可知:-1<c<0<b<1<a<2,
∴a-b>0,b-c>0,c-a<0,b+c<0;……………………4分(2)原式=(a-b)+(b-c)+(c-a)-(b-c)
=a-b+b-c+c-a-b+c
=-b-c. ……………………………………………………7分
五、解答题(三)(本大题共3小题,每小题9分,共27分)
23. 解:7a2b+(-4a2b+5ab2)-2(2a2b+3ab2)
=7a2b-4a2b+5ab2-4a2b-6ab2
=-a2b-ab2,……………………………………………………………5分
∵(a-2)2+|b+1|=0,
∴a=2,b=-1,…………………………………………………………7分
∴原式=4-2=2.………………………………………………………9分
24. 解:(1)星期一100+35=135吨;
星期二135-20=115吨;
星期三115-30=85吨;
星期四85+25=110吨;
星期五110-24=86吨;
星期六86+50=136吨;
星期日136-26=110吨.
故星期六最多,是136吨;…………………………………………3分(2)2300×(20+30+24+26)-2000×(35+25+50)
=2300×100-2000×110
=230000-220000
=10000元;………………………………………………………………6分(3)(200-100)÷(35+25+50-20-30-24-26)
=100÷10
=10(周)……………………………………………………………………8分
10-1=9(周)
故再过9周粮库存粮食达到200吨.………………………………………9分
25. 解:(1)数轴上表示5与-2两点之间的距离是|5-(-2)|=|5+2|=7;………1分
(2)数轴上表示x与2的两点之间的距离可以表示为|x-2|;……………2分
(3)∵|x-2|=5,
∴x-2=5或x-2=-5,
解得:x=7或x=-3;……………………………………………………4分(4)∵|x+3|+|x-1|表示数轴上有理数x所对应的点到-3和1所对应的点的距离之和,|x+3|+|x-1|=4,
∴这样的整数有-3、-2、-1、0、1;………………………………7分
(此问全答对时给3分,答对1个给1分,答对2个给2分)
(5)有最小值是3.…………………………………………………………9分。