静电的处理

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“静电”和动电(日常生活中的电),没有本质区别,只是在绝缘强度高,可有电容的地方,电荷聚集形成的,可以摩擦生成,可以感应生成。对电路破坏是很严重的。

电路中,一般措施都是防止外界静电干扰采取的措施。

1焊接:采取生产线接地,人员接地,增湿,等方法减少静电聚集

2电路:线路进线点采取滤波,加放电管,TVS管,压敏电阻,稳压管,电感等,减少由线路引进的高压脉冲干扰。

3元件:采用经过检验的,可以经过高电压实验的元件(集成电路)

4电源:采取初次级加电容,电阻方式,接地等卸放掉聚集的静电。

EMC测试中做的静电抗扰度测试,可是静电测试却不知道对哪些器件进行测试,求指教,像是一些静电敏感器件需要做静电测试吗?还有板件静电测试的时候需要上电吗?板件上有232、485一类的通讯端口时,端口需要做怎么样的静电测试?还有板件上的电容需要在不通电的情况下进行静电测试吗?

静电测试必需在产品正常工作的情况下进行!主要分为接触放电(正负4KV)和空气放电(正负8KV)。金属外壳,按键等人体能触摸到的地方用接触放电,塑料的其它地方用空气放电。本人就在实验室工作,需要的话,交个朋友免费帮你测试

静电敏感元件的静电等级如何检测

据了解尚无专门的权威机构提供该方面的测试,一般是企业按照相关的静电放电模型对元件进行放电试验,再判断元件的失效情况

电子厂里手插零件中哪些是静电敏感元件??

USB既插既用设备,在与电脑连接时在设备电路中注入8KV的静电,电脑找不到该设备,

静电会对FPC(软性电路板)上电子元件造成损伤吗?

静电管制有国际规范,ESD20.20,里面有写了些设施的静电要求参数

FPC上的元件会分ESD敏感等级,容阻件基本没有影响,IC、LED灯等比较容易被静电打死,因IC中有wire bonding(很细的软金线,容易熔断)

静电打死产品就报废了,最怕打的半死不活,检测没问题,批量到装上模组后发现不稳定,到时连带模组索赔那损失可就大了

1.静电成因及其危害

静电是两种介电系数不同的物质磨擦时,正负极性的电荷分别积累在两个特体上而形成。当两个物体接触时,其中一个趋从于另一个吸引电子,因而二者会形成不同的充电电位。就人体而言,衣服与皮肤之间的磨擦发生的静电是人体带电的主要因之一。

静电源与其它物体接触时,依据电荷中和的机理存在着电荷流动,传送足够的电量以抵消电压。在高速电量的传送过程中,将产生潜在的破坏电压、电流以及电磁场,严重时将其中物体击毁,这就是静电放电。国家标准中定义:静电放电是具有不同静电电位的特体互相靠近或直接接触引起的电荷转移

(GB/T4365-1995),一般用ESD表示。ESD会导致电子设备严重损坏或操作失常。

静电对器件造成的损坏有显性和隐性两种。隐性损坏在当时看不出来,但器件变得更脆弱,在过压、高温等条件下极易损坏。

ESD两种主要的破坏机制是:由ESD电流产生热量导致设备的热失效;由ESD感应出过高电压导致绝缘击穿。两种破坏可能在一个设备中同时发生,例如,绝缘击穿可能激发大的电流,这又进一步导致热失效。

除容易造成电路损害外,静电放电也极易对电子电路造成干扰。静电放电对电子电路的干扰有二种方式。一种是传导干扰,另一种是辐射干扰。

2.数码产品的构造及其ESD问题

现在各类数码产品的功能越来越强大,而电路板却越来越小,集成度越来越高。并都或多或少的装有部分接口用于人机交互,这样就存在着人体静电放电的ESD问题。一般数码

产品中需要进行ESD防护的部位有:USB接口、HDMI接口、IEEE1394接口、天线接口、VGA 接口、DVI接口、按键电路、SIM卡、耳机及其他各类数据传输接口。

ESD可能会造成产品工作异常、死机,甚至损坏并引发其他的安全问题。所以在产品上市之前,国内或国外检测部门都要求进行ESD和其它浪涌冲击的测试。其中接触放电需要

达到±8kV,空气放电需要达到±15kV,这就对ESD的设计提出了较高的要求。

3.数码产品中ESD问题解决与防护

3.1 产品的结构设计

如果将释放的静电看成是洪水的话,那么主要的解决方法与治水类似,就是“堵”和“疏”。如果我们设计的产品有一个理想的壳体是密不透风的,静电也就无从而入,当然不会有静电问题了。但实际的壳体在合盖处常有缝隙,而且许多还有金属的装饰片,所以一定要加以注意。

其一,用“堵”的方法。尽量增加壳体的厚离,即增加外壳到电路板之间的距离,或者通过一些等效方法增加壳体气隙的距离,这样可以避免或者大大减少ESD的能量强度。

通过结构的改进,可以增大外壳到内部电路之间气隙的距离从而使ESD的能量大大减弱。根据经验,8kV的ESD在经过4mm的距离后能量一般衰减为零。

其二,用“疏”的方法,可以用EMI油漆喷涂在壳体的内侧。EMI油漆是导电的,可以看成是一个金属的屏蔽层,这样可以将静电导在壳体上;再将壳体与PCB

(Printed Circuit Board)的地连接,将静电从地导走。这样处理的方法除了可以防止静电,还能有效抑制EMI的干扰。如果有足够的空间,还可以用一个金属屏蔽罩将其中的电路保

护起来,金属屏蔽罩再连接PCB的GND。

总之,ESD设计壳体上需要注意很多地方,首先是尽量不让ESD进入壳体内部,最大限度地减弱其进入壳体的能量。对于进入壳体内部的ESD尽量将其从GND导走,不要让其危害电路的其它部分。壳体上的金属装饰物使用时一定要小心,因为很可能带来意想不到的结果,需要特别注意。

3.2 产品的PCB设计

现在产品的PCB(Printed Circuit Board)都是高密度板,通常为4层板。随着密度的增加,趋势是使用6层板,其设计一直都需要考虑性能与面积的平衡。一方面,越大的空间可以有更多的空间摆放元器件,同时,走线的线宽和线距越宽,对于EMI、音频、ESD等各方面性能都有好处。另一方面,数码产品设计的小巧又是趋势与需要。所以,设计时需要找到平衡点。就ESD问题而言,设计上需要注意的地方很多,尤其是关于GND布线的设计以及线距,很有讲究。有些产品中ESD存在很大的问题,一直找不到原因,通过反复研究与实验,发现是PCB设计中的出现的问题。

为此,这里总结了PCB设计中应该注意的要点:

(1)PCB板边(包括通孔Via边界)与其它布线之间的距离应大于0.3mm; (2)PCB的板边最好全部用GND走线包围;

(3)GND与其它布线之间的距离保持在0.2mm~0.3mm; (4)Vbat与其它布线之间的距离保持在0.2mm~0.3mm;

(5)重要的线如Reset、Clock等与其它布线之间的距离应大于0.3mm; (6)大功率的线与其它布线之间的距离保持在0.2mm~0.3mm; (7)不同层的GND之间应有尽可能多的通孔(VIa)相连; (8)在最后的铺地时应尽量避免尖角,有尖角应尽量使其平滑。

3.3 产品的电路设计

在壳体和PCB的设计中,对ESD问题加以注意之后,ESD还会不可避免地进入到产品的内部电路中,尤其是以下一些端口:USB接口、HDMI接口、IEEE1394接口、天线接口、VGA 接口、DVI接口、按键电路、SIM卡、耳机及其他各类数据传输接口,这些端口很可能将人体的静电引入内部电路中。所以,需要在这些端口中使用ESD防护器件。

以往主要使用的静电防护器件是压敏电阻和TVS器件,但这些器件普遍的缺点是响应速度太慢,放电电压不够精确,极间电容大,寿命短,电性能会因多次使用而变差。所以目前行业中普遍使用专业的“静电抑制器”来取代以往的静电防护器件。“静电抑制器”是专业解决静电问题的产品,其内部构造和工作原理比其他产品更具科学性和专业性。它由Polymer 高分子材料制成,内部菱形分子以规则离散状排列,当静电电压超过该器件的触发电压时,内部分子迅速产生尖端对尖端的放电,将静电在瞬间泄放到地。它最大特点是反应速度快(0.5ns~1ns)、非常低的极间电容(0.05pf~3pf),很小的漏电流(1μA),非常适合各种接口的防护。

因为静电抑制器具有体积小(0603、0402)、无极性、反应速度快等诸多优点,现在的设计中使用静电抑制器作为防护器件的比例越来越多,在使用时

相关文档
最新文档