物理解题方法二极值法

合集下载

高考物理中数学方法

高考物理中数学方法

处理物理问题的数学方法一、极值法1、 利用二次函数求极值:y =ax 2+bx +c =a (x 2+b a x +b 24a 2)+c -b 24a =a (x +b 2a )2+4ac -b 24a(其中a 、b 、c 为实常数),当x =-b2a 时,有极值y m =4ac -b 24a (若二次项系数a >0,y 有极小值;若a <0,y 有极大值).2、 利用三角函数求极值:y =a cos θ+b sin θ=a 2+b 2(a a 2+b 2cos θ+ba 2+b 2sin θ) 令sin φ=a a 2+b 2,cos φ=ba 2+b 2则有:y =a 2+b 2(sin φcos θ+cos φsin θ)=a 2+b 2sin (φ+θ)3、 利用均值不等式求极值:对于两个大于零的变量a 、b ,若其和a +b 为一定值p ,则当a =b 时,其积ab 取得极大值 p 24例题:[2013山东理综 22(15分)]如图所示,一质量m =0.4kg 的小物块,以v 0=2m/s 的初速度,在与斜面成某的角度的拉力F 作用下,沿斜面向上做匀加速运动,经t =2s 的时间物块由A 点运动到B 点,AB 两点间的距离L =10m.已知斜面倾角30=θ,物块与斜面之间的动摩擦因数33=μ,重力加速度g 取10m/s 2. (1)求物块加速度的大小及到达B 点时速度的大小。

(2)拉力F 与斜面夹角多大时,拉力F 最小?拉力F 的最小值是多少? 答:(1)物块加速度的大小为3m/s 2,到达B 点的速度为8m/s ; (2)拉力F 与斜面的夹角30°时,拉力F 最小,最小值是N 53 13=F min解析:(1)物体做匀加速直线运动,根据运动学公式,有:221at L =①, v=at ②联立解得; a=3m/s 2,v=8m/s (2)对物体受力分析 根据牛顿第二定律,有:水平方向:Fcosα-mgsinα-F f =ma 竖直方向:Fsinα+F N -mgcosα=0 其中:F f =μF N 联立解得:α)+sin(60 3 32ma +μcosα)+mg(sin α= sin cos ma +μcosα)+mg(sin α=F ︒+αμα故当α=30°时,拉力F 有最小值,为N 53 13=F min ; 二、几何法利用几何方法求解物理问题时,常用到的有“对称点的性质”、“两点间直线距离最短”、“直角三角形中斜边大于直角边”以及“全等、相似三角形的特性”等相关知识,如:带电粒子在有界磁场中的运动类问题,物体的变力分析时经常要用到相似三角形法、作图法等.与圆有关的几何知识在力学部分和电学部分的解题中均有应用,尤其在带电粒子在匀强磁场中做圆周运动类问题中应用最多,此类问题的难点往往在圆心与半径的确定上常见的几何关系:1.依切线的性质确定.从已给的圆弧上找两条不平行的切线和对应的切点,过切点作切线的垂线,两条垂线的交点为圆心,圆心与切点的连线为半径.2.依垂径定理(垂直于弦的直径平分该弦,且平分弦所对的弧)和相交弦定理(如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项)确定.如图1所示.图1由勾股定理得:R 2=(R -CE )2+EB 2解得:R =EB 22CE +CE2.例题:[2014山东理综 24(20分)]如图-2甲所示,间距为、垂直于纸面的两平行板间存在匀强磁场。

物理竞赛难题及答案

物理竞赛难题及答案

物理竞赛辅导---电学(二)★电学解题的方法:(1)等效法(3)电荷守恒和节点电位(势)法(2)极值法 例题:1、正方形薄片电阻片所示接在电路中,电路中电流为I ;若在该电阻片正中挖去一小正方形,挖去的正方形边长为原电阻片边长的三分之一,然后将带有正方形小孔的电阻片接在同一电源上,保持电阻片两端电压不变,电路中的电流I′变为6/7I.由于薄片两边嵌金属片,将正方形薄片的电阻可等效为图3所示.设每小块的电阻为R ,则薄片总电阻是3个3R 电阻的并联值,其值也是R .现从中挖出一块,此时薄片等效电阻如图4所示.显然其阻值是(7R/6),故I′=U/(7R/6)=(6/7)I.图3 图42、某一网络电路中的部分电路如图所示,已知I =3A ,I 1=2A ,R 1=10Ω,R 2=5Ω,R 3=30Ω,则下列结论正确的是( B )A .通过R 3的电流为0.5A ,方向从a →bB .通过R 3的电流为0.5A ,方向从b →aC .通过电流表的电流为0.5A ,电流表“+”接线柱在右边D .通过电流表的电流为1.5A ,电流表“+”接线柱在左边3、如图所示电路,电源电压恒定,R 1=10Ω, R 2=8Ω,R 3不知道为多少。

当开关k 扳到位置1时,电压表V 读数为2.0V ,当开关扳到位置2时,电压表读数可能是( BC )A 、2.2VB 、1.9VC 、1.7VD 、1.4V 学以致用1、图所示电路是由十二个不同的电阻组成的,已知R 1=12欧,其余电阻阻值未知,测得A 、B 间总电阻为6欧。

今将R 1换成6欧的电阻,则A 、B 间的总电阻为( B ) (A)6欧。

(B)4欧。

(C)3欧。

a R 1 AR 2 R 3b II 1(D)2欧。

2、把一根电阻为R的均匀电阻丝弯折成一个等边三角形abc(如图所示),d为底边ab的中点,如cd间的电阻R1为9欧,则ab间的电阻R2的阻值应该是( C )A.36欧B.12欧C.8欧D.4欧3、如图所示电路中,电源电压保持不变。

高中物理解题常用思维方法

高中物理解题常用思维方法

高中物理解题常用思维方法高中物理解题常用思维方法一、逆向思维法逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果。

高中物理解题常用思维方法二、对称法对称性就是事物在变化时存在的某种不变性。

自然界和自然科学中,普遍存在着优美和谐的对称现象。

利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤。

从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力。

用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径。

高中物理解题常用思维方法三、图象法图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点。

运用物理图象处理物理问题是识图能力和作图能力的综合体现。

它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效。

高中物理解题常用思维方法四、假设法假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立。

求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径。

在分析弹力或摩擦力的有无及方向时,常利用该法。

高中物理解题常用思维方法五、整体、隔离法物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件。

这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法。

专题极值法-高中物理八大解题方法含解析

专题极值法-高中物理八大解题方法含解析

高中物理解题方法之极值法高中物理中的极值问题,是物理教学研究中的活跃话题。

本文通过例题归纳综合出极值问题的四种主要解法。

一、 二次函数求极值二次函数a ac b a b x a c bx ax y 44)2(222--+=++=,当ab x 2-=时,y 有极值ab ac y m 442-=,若a>0,为极小值,若a<0,为极大值。

例1试证明在非弹性碰撞中,完全非弹性碰撞(碰撞后两物体粘合在一起)动能损失最大。

设第一个物体的质量为1m ,速度为1V 。

第二个物体的质量为2m ,速度为2V 。

碰撞以后的速度分别为'1V 和'2V 。

假使这四个速度都在一条直线上。

根据动量守恒定律有:'+'=+22112211V m V m V m V m (1)如果是完全非弹性碰撞,两物体粘合在一起,(1)则变为V m m V m V m '+=+)(212211,即212211m m V m V m V ++=' (2)现在就是要证明,在满足(1)式的碰撞中,动能损失最大的情况是(2)式。

碰撞中动能损失为ΔE k =()22()22222211222211'+'-+vm v m v m v m (3) 转变为数学问题:ΔE k 为v 的二次函数:由(1)得:v 2ˊ=2112211)(m v m v m v m '-+ (4)将(4)代入(3)得:k =++++-'12221112'1211)(2)(v m v m v m m v m m m m [2222112222112)(22m v m v m v m v m +-+] 二次函数求极值,当v 1ˊ=)()(212211m m v m v m ++ (5) 时∆E k 有极大值。

回到物理问题,将(5)代入(4)得v 2ˊ=)()(212211m m v m v m ++此两式表明,m 1和m 2碰后速度相等,即粘合在一起,此时动能损失(ΔE k )最大。

高中物理:动态平衡问题的几种解法

高中物理:动态平衡问题的几种解法

在有关物体平衡的问题中,有一类涉及动态平衡。

这类问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。

解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。

下面就介绍几种动态平衡问题的解题方法。

方法一:三角形法则。

原理:当物体受三力作用而处于平衡状态时,其合力为零,三个力的矢量依次恰好首尾相连,构成闭合三角形,当物体所受三个力中二个发生变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。

例1. 如图1所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。

今使板与斜面的夹角缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?图1解析:取球为研究对象,球受重力G、斜面支持力F1、挡板支持力F2。

因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形。

挡板逆时针转动时,F2的方向也逆时针转动,F1的方向不变,作出如图2所示的动态矢量三角形。

由图可知,F2先减小后增大,F1随增大而始终减小。

图2说明:三角形法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可以是其它力),另一个力的大小变化,第三个力则大小、方向均发生变化的问题,对变化过程进行定性的分析。

方法二:解析法。

原理:物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,根据具体情况引入参量,建立平衡方程,求出应变参量与自变参量的一般函数关系,然后根据自变量的变化确定应变量的变化。

例2. 如图3所示,小船用绳索拉向岸边,设船在水中运动时所受水的阻力不变,那么小船在匀速靠岸过程中,下面说法哪些是正确的()图3A. 绳子的拉力F不断增大B. 绳子的拉力F不变C. 船所受的浮力不断减小D. 船所受的浮力不断增大解析:小船共受四个力作用:重力G、浮力、水的阻力、绳子拉力F。

谈初中物理中常用的数学方法

谈初中物理中常用的数学方法

初中物理中常用的数学方法数学计算是指人们根据利用已有的知识,对一定的现象、规律进行数学计算,发现各个量之间的数学关系,从深一层次去认识新的事物的方法。

数学计算是研究性学习中必备的手段,是初中物理研究性学习中进一步认识事物中最可靠的工具。

通过数学计算,学生可以从定性认识事物发展到定量认识事物,使感性认识上升到理性认识,从而更准确地认识事物各个量之间的内在规律。

以下所列是初中物理中常用的一些数学方法:1、代入法“代入法”是指在研究物理问题中,已知因变量与自变量之间关系公式,将物理量直接代入公式进行计算的方法。

学会利用公式直接进行计算是学生解决问题的基本能力之一,它可以促进学生掌握物理量之间的来龙去脉,熟悉物理量在日常生活中的应用。

例:质量为0.5kg 的水,温度从 60℃降至40℃,会放出______J 的热量。

若将这部分热量全部被初温为10℃、质量为0.7kg 的酒精吸收,则酒精的温度将上升______℃。

[酒精的比热容为2.4×103J /(kg ·℃),水的比热容为 4.2 ×103J /(kg ·℃)]解:物体升、降温时吸、放的热量计算公式为:Q=c ·m ·Δt应用“代入法”进行解题时,可以根据公式用自变量求因变量,也可以根据公式用因变量求自变量,但要注意在计算过程中,物理单位必统一。

2、比例法“比例法”是指用两个已知的物理量的比值来表示第三个物理量的方法。

比值法可以充分体现出在两个物理量同时变化的条件下影响物理过程的真正因素。

例:现有两杯质量不同的液体酒精和水,若两者的质量之比为2∶3,求两种液体的体积比?(ρ酒精= 0.8×103kg/m 3,ρ水= 1.0×103kg/m 3) 解:658.0132=⋅=⋅==酒水水酒水水酒酒水酒ρρρρm m m m V V 另外,初中物理中的许多物理量是通过比值来介绍的,如:速度、密度、热值、电阻等等。

初中物理计算题解题方法技巧

初中物理计算题解题方法技巧

初中物理计算题解题方法技巧初中物理的解题需要掌握一些方法,不然的话每一道题都要花费大量的时间去计算,将会得不偿失,小编在这里整理了相关资料,希望能帮助到您。

初中物理计算题解题方法技巧1.分析法:把从所求结论追溯到已知条件的方法称为分析法。

用分析法探求解题思路是初中解题中用得较多得的方法,也称为反推法。

当遇到一个问题不知如何入手时,可从“结论”出发,一步步往回探索,这样就会摸清路子。

分析法解题的程序为:(1)反复读题找条件:找出题目给出的直接条件、间接条件及隐含条件;(2)确定对象作简图;(3)分析过程找规律:在分析过程中,找出解题所需要的物理概念、定律、公式等;(4)返回列式求答案:按分析过程的顺序,一步步返回结论。

分析法解物理题的好处:目标集中,方向明确,过程严密,由果索因,步步为营,理论根据充分,很容易成功,并有利于培养学生的逻辑思维能力。

2.假设法:在解答某些物理习题时,若能针对问题进行一些合理而又巧妙的假设,就会使问题易于理解,易于分析和求解,收到化难为易的功效。

有时对于某些习题的题设条件明显不足,给解题造成困难时,若能假设一些合理的条件,则会使问题迎刃而解。

3.整体思维法:就是把彼此独立而又有一定联系的物体或物理过程作为一个整体来分析处理的方法。

4.简化法这种方法是把题目中的复杂情境或复杂现象进行梳理,找出题目中的相关环节或相关点,使要解决的复杂的问题突出某个物理量的关系或某个规律特点.这样使复杂得到简化,可以在计算解答的过程中减少一些混淆和混乱,把要解答的问题解决.例如电路中的电流表可以当作导线,电压表当作断路对电路进行简化,判断电路是并联还是串联。

5.隐含条件法这种方法是通过审题,从题目中所叙述的物理现象或给出的物理情境及元件设备等各个环节中,挖掘出解答问题所需要的隐含在其中的条件,这种挖掘隐含条件能使计算环节减少,而且所得到的答案误差也小.6.极值法这种方法也叫端点法.它对不定值问题和变化范围问题的解答有重要的实用价值.用这种方法解答问题时,应改弄清要研究的是哪个变化的物理量的值或者是哪个物理量的变化范围,然后确定变化的规律或方向,最后用相对应的物理规律或物理概念,一个对应点一个对应点地计算取值.例如:连接有滑动变阻器的电路,当滑片P从a端移到b 端时,求电路的电流表(或电压表)的示数变化范围,或者反过来告诉你某个表的示数变化范围,让你利用这些数据求某个未知物理量等。

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结高中物理中,求极值是一个重要的数学应用问题。

很多物理问题都需要通过求极值来进行分析和解决,因此掌握求极值方法和常用结论是十分重要的。

下面将为你总结高中物理求极值的方法和常用结论。

一、求极值的方法1.寻找最值法:通过寻找物理问题的最大值或最小值来求出极值。

2.解析法:通过建立数学模型,对其求导或使用其他数学方法得出极值。

3.几何方法:通过几何图形的性质和分析来求出极值。

二、常用结论1.极大值与极小值:对于一元函数f(x),若在x=a处,f'(a)=0,并且在a点左侧由正变负,在a点右侧由负变正,则a称为f(x)的极大值点;若在x=b处,f'(b)=0,并且在b点左侧由负变正,在b点右侧由正变负,则b称为f(x)的极小值点。

2.拐点与拐点性质:对于函数f(x),若在x=c处f''(c)=0,并且在c点左侧由负变正,在c点右侧由正变负,则c称为f(x)的拐点。

拐点的性质为:由凹变凸的拐点称为极小值点,由凸变凹的拐点称为极大值点。

3.一元二次函数的最值结论:一元二次函数y=ax^2+bx+c(其中a≠0)的最值点可以通过如下结论求得:当a>0时,最小值为:y_min=c-b^2/(4a)当a<0时,最大值为:y_max=c-b^2/(4a)4.相对速度最小值结论:当两个运动着的物体相对于一些静止参考系运动时,它们的相对速度最小值出现在它们的运动方向夹角为0°或者180°时。

5.成千上万法:在解决物理问题中,当数据较多时,可以通过逐个数值代入进行计算。

6.速度为零但加速度不为零时的移动物体:当一个物体在其中一时刻速度为零(静止),但加速度不为零时,可以通过如下结论求出物体在这一时刻的位置:位移s = (1/2)at^2,其中a为加速度,t为时间。

7.物体自由落体的最高点:自由落体的物体在竖直上抛运动中,最高点时速度为零,也就是物体停止上升,准备掉下来。

初中物理的若干解题技巧(经典的完全版)

初中物理的若干解题技巧(经典的完全版)

初中物理的若干解题技巧(经典的完全版)初中物理解题技巧根据中考考试说明,选择题、填空题、实验探究题和计算题是常见的题型。

以下将探讨常用题型的解题方法和容易出现的错误。

总的要求:1.审清题意要认真审题,尤其是看似简单的题目也要仔细推敲,避免出现错漏。

关键字和条件也要注意,如声音的高低和大小、温度升高的度数、透镜成像中的物像距离等。

2.规范化答题要使用准确的物理语言表述,避免写错别字或格式不规范。

例如,蒸发与挥发、竖直向下与向下等。

字迹也要整齐干净,以避免丢分。

不同题型解题方法与技巧:1.选择题选择题的解题方法有:直接判断法:运用基本概念和规律,对备选项进行判断。

直接求解法:直接计算结果,对照答案进行选择。

图示法:将物理过程用图像等形象直观地反映出来,通过分析解决问题。

筛选法:逐一筛选符合题意的答案。

排除法:熟练运用物理概念和规律,排除与题干无关或缺乏科学性的选项。

推理判断法:根据物理问题的条件和原因,逐步分析、推理,得出最终结果。

极值法:通过寻找最大或最小值的方法解决问题。

以上是初中物理解题的一些技巧和方法,希望能对同学们有所帮助。

在物理题中,有些题目会涉及到物理量的“变大”、“变小”的情况,通常我们会根据题目中所描述的物理过程,取变化的极端值来考虑,例如将“变小”当作极值零来处理。

使用极值法,可以先讨论滑动变阻器滑动头移动到中点或两端的特殊位置的情况,再来判定某些物理量的变化。

在做选择题时,要注意弄清题目是要求选择正确的选项还是错误的选项。

在填空题中,可以采用直接填空法,回忆物理概念、规律、常数、单位等知识,填空时要做到文字准确、简洁。

还可以使用分析填空法,根据题目给出的已知条件,分析物理现象和过程,利用物理规律或公式,作出定性分析、推论,从而找出答案。

此方法常用来解现象解释型填空题。

另外,还可以使用图示分析填空法,对题目中给出的物理图形、函数图像进行分析,理解它们的物理意义,根据填空的要求,选用合适的规律或作出图线进行解答。

高考中物理学科有关极值问题的处理方法之分析

高考中物理学科有关极值问题的处理方法之分析

v0
O兹 m
v0 方向做直线运动,试求所加匀强电场
的最小值?
v0
试题分析:本题的根本在于确定电
场力沿什么方向有最小值,由题意分析
可得,只有当电场力与重力的合力与初 速度方向在一条直线上,才能达到题中 的要求,又由矢量三角形原理可得当电
兹 Eq mg
场力方向与 v0 方向垂直时有最小值,如右图所示。 解答:如图所示,要保证微粒沿 v0 方向直线运动必须使垂直于
块间用一不可伸长的轻绳相连,木
2
m
A B
块间的最大静摩擦力是 滋mg。现用
- 66 -
mC 2m D
F
水平拉力 F 拉其中一个质量为 2 m 的木块,使四个木块以同一加
速度运动,则轻绳对 m 的最大拉力为
.
试题分析:本题的关键是要想使四个木块一起加速,则任两个
木块间的静摩擦力都不能超过最大静摩擦力。首先要找出 A 和
小值;a约0
时,图像开口向下,y 有最大值。且只有
x=-
b 2a
时,y 有
最值。
例题 3:如图所示,理想变压器输入端接在电动势为 着,内阻
为 r 的交流电压上,输出端接负载 R,则变压
器原副线圈的匝数比为多大时,负载 R 上消
耗的电功率最大?
解答:设原副线圈的匝数分别为 n1,n2, Er
电流分别为 I1,I2,电压分别为 U1,U2, 则:U1=着-I1r 电阻 R 消耗的电功率为 P=
代入
I1,I2
得:n1 n2
=
r R
。当 n1 n2
=
r R
时,电阻
R 消耗功率最大。
第二种方法称之为三角函数法:通过设定角度为一函数变量,

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结

高中物理求极值方法与常用结论总结高中物理中,求极值方法和常用结论是常见的问题类型,通过总结这些方法和结论,有助于高中物理学习者更好地理解和应用。

一、求极值方法:1.极值定理:对于一个连续函数f(x)在闭区间[a,b]上,必然存在至少一个极大值和极小值,即f(x)在[a,b]上必然取得极值。

2.导数法则:利用导数的相关概念和性质,可以简化极值的求解过程。

(1)极值的必要条件:函数f(x)在x=c处取得极值,必然满足f'(c)=0。

(2)极值的充分条件:若函数f'(x)在x=c的邻域内存在符号变化,且在c处f''(c)存在,则f(x)在x=c处取得极值。

3.端点法:闭区间[a,b]上的函数f(x),当x=a或x=b时,可以直接求解f(a)和f(b),作为极值的候选值。

4.区间内部法:闭区间[a,b]上的函数f(x),通过求解f'(x)=0,得到f(x)的驻点。

然后比较驻点和两个端点的函数值,选取最大和最小值作为极值。

5.辅助线法:即画出函数的图像,观察图像的整体形状,然后根据函数的性质和题目要求,确定极值所在的位置。

二、常用结论:1.函数的单调性:函数在给定的定义域内是递增的还是递减的。

(1)若f'(x)>0,则f(x)在区间上递增。

(2)若f'(x)<0,则f(x)在区间上递减。

2.极值判定:通过一、二阶导数的符号来判断函数的极值。

(1)若f''(x)>0,则f(x)在x处取得极小值。

(2)若f''(x)<0,则f(x)在x处取得极大值。

3.凹凸性:函数图像在其中一区间上是凹向上还是凹向下。

(1)若f''(x)>0,则f(x)在区间上是凹向上的。

(2)若f''(x)<0,则f(x)在区间上是凹向下的。

4.零点定理:对于一个连续函数f(x),若f(a)和f(b)异号,则在开区间(a,b)内至少存在一个实根。

高三物理三轮复习专题二——极值,特殊值方法及其应用

高三物理三轮复习专题二——极值,特殊值方法及其应用

A.当 =0 时,该解给出 a=0,这符合常识,说明该解可能是对的 B.当 =90时,该解给出 a=g,这符合实验结论,说明该解可能是 对的 C.当 M≥m 时,该解给出 a=gsinθ,这符合预期的结果,说明该解 可能是对的 D.当 m≥M 时,该解给出 a= g ,
sin 这符合预期的结果,说明该解可能是 对的
[例5]足球运动员在距球门正前方s处的罚球点,准确地从球门
正中央横梁下边缘踢进一球。横梁下边缘离地面的高度为h,足球
质量为m,空气阻力忽略不计。运动员至少要对足球做的功为W。
下面给出功W的四个表达式中只有一个是合理的,你可能不会求
解W,但是你可以通过一定的物理分析,对下列表达式的合理性
做出判断。根据你的判断,W的合理表达式应为(
举例如下:如图所示,质量为M、倾角为θ的滑块A放于水平地 面上。把质量为m的滑块B放在A的斜面上。忽略一切摩擦,有人求 得B相对地面的加速度 式中g为重力加速度。 对于上述解,某同学首先分析了等号右侧量 的单位,没发现问题。他进一步利用特殊条 件对该解做了如下四项分析和判断,所得结 论都是“解可能是对的”。但是,其中有一项是错误的( )
)
A.
W
1 mg(h 2
h2 s2 )
B. W mgh
D. 可能是先变大后变小
【变式1】(多选)如图所示,真空中A、B两点固定着两等量正 点电荷Q,MN为A、B连线的中垂面,O为A、B连线的中点。现 将一点电荷q从中垂面上一点P沿中垂面向O点移动的过程中,点 电荷q受A、B两点电荷共同作用力大小的变化情况是( CD )
A. 一定是逐渐增大 B. 一定是逐渐减小 C. 可能是逐渐减小 D. 可能是先变大后变小
A.cosα = F mg

物理中求极值的常用方法

物理中求极值的常用方法
R≤Ω,即Rmax=Ω。
[方法四]用均值定理法求解
考虑R= ,设a=2+x;b=8-x。
当a=b时,即2+x=8-x,
即x=3Ω时,Rmax(3)= =Ω。
也可以用上面公式(a+b)max= =25,
Rmax= = =Ω。
以上用四种方法求出Rmax=Ω,下边求伏特计的最大读数。
Imin= = =4(A)。Umax=ε- Iminr= =10(V)。即变阻器的滑动头P滑到R3的中点Ω处,伏特计有最大值,最大值为10伏。
1、利用顶点坐标法求极值
对于典型的一元二次函数y=ax2+bx+c,
若a>0,则当x=- 时,y有极小值,为ymin= ;
若a<0,则当x=- 时,y有极大值,为ymax= ;
2、利用一元二次函数判别式求极值
对于二次函数y=ax2+bx+c,用判别式法
利用Δ=b2-4ac≥0。(式中含y)
若y≥A,则ymin=A。
考虑本题分母:μsinθ+cosθ与a sinθ+b cosθ用比较法,得:a=μ;b=1。
于是tgф= ,则ф=arc tg 。所以,μsinθ+cosθ= sin(θ+arctg )。
要使F最小,则分母μsinθ+cosθ需最大,因此,θ+arc tg = 。
所以有:θ= -arc tg = -arcctgμ=arctgμ。
mgsinθ—μmgcosθ— =0②
②解式得:Vmax= 。
综上所述,求解极值习题常用的方法列举了七种、即均值定理法、顶点坐标法、配方法、判别式法、三角函数中“化一”法、图解法、分析法。针对有些习题所给的条件的“有界性”,运用求极值的方法时要特别注意,求出的极值不能“出界”,要注意定义域和值域的对应关系。

高中物理中的数学方法

高中物理中的数学方法
V1 V2
例题: 平直公路上,汽车以V1=21m/s的
解答提示
设t秒相遇则:
v1t
1 2
1 2
at v2t s
2
整理: at +(v2-v1)t+s=0
2 2 2
=b -4ac 0满足题意 即:(v2-v1) 2as 0 a
2 (v2-v1) 2s
二、几何方法(内涵:三角形的 相似性、圆角关系等几何定理)
V0
解答提示1-2
( m g cos m g sin ) s 0 m v
1 2 2
m gs(sin cos ) m v
1 2
2
2 二次函数求极值
例题:H一定,问当R=?时小球从顶端自由
释放后落地点最远?
R
H
解答提示
y ax bx c
2
当x
B
A
2 、如图所示,一排人站在沿x轴的水平轨道 旁,原点O两侧的人的序号都记为n ( n =1,2 , 3…)。每人只有一个沙袋,x>0一侧的每个沙 袋的质量为m=14kg,x<0一侧的每个沙袋 的质量为m’ =10 kg,一质量为 M=48 kg 的小车以某一速度从原点出发向x正方向滑行。 不计轨道阻力,当车每经过一人身旁时,此人 就把沙袋以水平速度u朝与车相反的方向沿车 面扔到车上,u的大小等于扔此袋之前瞬间车 速大小的2n倍(n是此人的序号数)。 (1)空车出发后,车上堆积了几个沙袋时车就反向 滑行?(3) (2)车上最终有大小沙袋共多少?(11)
b 2a
时,y有极值
(a 0时有极大值; a 0时有极小值)
解答提示2
x v0 t m gR m v0

高中物理-求极值的六种方法

高中物理-求极值的六种方法

高中物理-求极值的六种方法求极值是数学中的重要问题,解决这个问题不仅有助于我们理解函数的性质,还有助于应用于很多实际问题的求解。

下面介绍六种常用的方法求极值:导数法、辅助线法、割线法、牛顿法、拉格朗日乘数法和试探法。

一、导数法:导数法是最常见,也是最基本的求极值方法。

极值点处的导数为零或不存在。

1.求导数:设函数y=f(x),首先求出导数f'(x)。

2.导数为零:令f'(x)=0,得出x的值。

3.导数不存在:检查导数在f'(x)为零的点附近是否存在极值点。

二、辅助线法:辅助线法是通过构造一条辅助线,将函数转化为一个变量的方程,然后通过解方程来求解极值点。

1.构造辅助线:根据函数的特点,选取一个合适的辅助线方程(比如斜率为1或-1),将函数转化为一个变量的方程。

2.解方程:将辅助线方程和原函数方程联立,解得x的值。

3.求解极值点:将x的值代入原函数方程,求出对应的y值。

三、割线法:割线法是通过构造一条割线,通过不断迭代来逼近极值点。

1.选择初始值:选择一个合适的初始值x0。

2.构造割线:构造一条过(x0,f(x0))和(x1,f(x1))两点的割线,其中x1=x0-λf(x0),λ是一个合适的步长。

3.迭代求值:迭代求解极值点,即不断重复步骤2,直到割线趋近于极值点。

四、牛顿法:牛顿法利用函数的导数和二阶导数的信息来逼近极值点,是一种高效的求解极值的方法。

1.选择初始值:选择一个合适的初始值x0。

2.迭代求值:根据牛顿迭代公式x1=x0-f(x0)/f'(x0),不断迭代求解极值点,直到满足结束条件。

五、拉格朗日乘数法:拉格朗日乘数法是一种求解约束条件下极值问题的方法,适用于那些涉及多个变量和多个约束条件的问题。

1. 列出函数和约束条件:设函数为f(x1, x2, ..., xn),约束条件为g(x1, x2, ..., xn)=c。

2. 构造拉格朗日函数:构造拉格朗日函数L(x1, x2, ..., xn, λ) = f(x1, x2, ..., xn) + λ(g(x1, x2, ..., xn)-c),其中λ是拉格朗日乘数。

高考物理一轮复习第2部分极端法、对称法、全过程法、逆向思维法和递推法课件

高考物理一轮复习第2部分极端法、对称法、全过程法、逆向思维法和递推法课件

s= v20-2gh
2gh=2
v02 4g
2
h
v02 4g
2
当 h=4vg20=2.5 m 时,飞行距离最大,为 smax=2vg20=5 m.
对称法 方法简介:由于物质世界存在某些对称性,使得物理学 理论也具有相应的对称性,从而使对称现象普遍存在于各种 物理现象和物理规律中.应用这种对称性不仅能帮助我们认 识和探索物质世界的某些基本规律,而且也能帮助我们去求 解某些具体的物理问题,这种思维方法在物理学中称为对称 法.
(2)要使 A、B 不分离,力 F 应满足什么条件? 图 7-2-4
解:力 F 撤去后,运动具有明显的对称性,该题利用最 高点与最低点的对称性来求解,会简单得多.
(1)最高点与最低点有相同大小的回复力(总是指向平衡 位置的合力),只是方向相反.在最低点,即原来平衡的系统 在撤去力 F 的瞬间,受到的合外力应为 F,方向竖直向上; 当到达最高点时,系统受到的合外力也应为 F,方向竖直向 下,A 受到的合外力为12F,方向向下,考虑到重力的存在, 所以 B 对 A 的弹力为 mg-F2.
极端法在进行某些物理过程的分析时,具有独特作用, 恰当应用极端法能提高解题效率,使问题化难为易,化繁为 简,思路灵活,判断准确.
用极端法分析问题,关键在于是将问题推向什么极端, 采用什么方法处理.具体来说,首先要求待分析的问题有 “极端”的存在,然后从极端状态出发,回过头来再去分析 待分析问题的变化规律,其实质是将物理过程的变化推到极 端,使其变化关系变得明显,以实现对问题的快速判断.通 常可采用极端值、极端过程、特殊值、函数求极值等方法.
物理中对称现象比比皆是,对称的结构、对称的作用、 对称的电路、对称的物像等.一般情况下,对称表现为研究 对象在结构上的对称性、物理过程在时间上和空间上的对称 性、物理量在分布上的对称性及作用效果的对称性等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


四、用二次函数判别式求极值
若所求物理量的表达式为二次函数“Y=ax2+bx+c”的 形式,将该表达式整理得方程“ax2+bx+(c-y)=0”,要 使方程有解,该函数判别式△=b2-4a(c-y)≥0,由此可 解极值。
[例5]一点光源从离凸透镜无限远处沿主轴移到焦点, 移动过程中,点光源和所成的像间距离的变化情况是 : ()

六、用假设推理法求极值
通过假设法使研究对象处于临界状态,然后再利 用物理规律求得极值。(“临界”法)
[例7]如图,能承受最大拉力为10N的细OA与竖直方向成450,能 承受最大拉力为5N的细线OB水平,细线OC能承受足够大的拉力, 为使OA和OB均不被拉断,OC下端所悬挂物体P最重不得超过多 少?
二、利用三角函数法求极值 如果所求物理量表达式中含有三角函数, 可利用三角函数求极值。 1.若所求物理量表达式可化为“y=A sinθ cosθ”形式(即y= sin2θ),则在θ=45o时,y有极 值A/2。
[例2]如图,n个倾角不同的光滑斜面具有共同 的底边AB,当物体沿不同的倾角无初速从顶 端滑到底端,下列哪种说法正确( ) (A)倾角为30o时,所需时间最短。 (B)倾角为45o时,所需时间最短。 (C)倾角为75o时,所需时间最短。 (D)所需时间均相等。

七、用图象法求极值
通过分析物理过程中遵循的物理规律,找到变量间 的函数关系,作出其图象,由图象可求得极值。
[例8]两辆完全相同的汽车,沿水平直路一前一后匀速行驶, 速度均为V0,若前车突然以恒定加速度刹车,在它刚停止 时,后车以前车刹车时的加速度开时刹车,已知前车在刹 车过程中行驶距离为S。在上述过程中要使两车不相撞, 则两车在匀速运动时,报持的距离至少应为:( )
(A)先增大,后减小 (B)先减小,后增大
(C)一直增大
(D)一直减小

五、分析物理过程求极值
有些问题可直接通过分析题中的物理过程及相应的 物理规律,找出极值出现时的隐含条件,从而求解。
[例6]如图,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B上, 质量为M的物体悬挂在绳上O点,O与A、B两滑轮距离相等,在轻 绳两端C、D分别施加竖直向下的拉力F=mg,先拉住物体,使绳处于 水平拉直状态,静止释放物体,在物体下落过程中,保持C、D两端拉 力F不变,求物体下落的最大速度和最大距离
2、若所求物理量表达式形如“y=asinθ +bcosθ ”,则 将该式化为“y=a2+b2 sin(θ +Φ )”从而得出y的极 值a2+b2 。(即“和差化积”法)
[例3]质量为10千克擦因数µ=
3 3
,受到一个与水平方向成角θ斜
向上的拉力F,为使木箱作匀速直线运动,拉力F最小值
为多大?
三、 用不等式法求极值
如果所求物理量表达式可化为“Y=Kab”的 形式,其中均为a、b变量,但a+b=恒量 (a>0、b>0),则可根据不等式性质 ab≤(a+b)2/2求极值。(“定和求积法”)
[例4]一个下端封闭,上端开口的粗细均匀的玻 璃管,竖直放置,管全长90厘米,管中有一段长 20厘米的水银柱,在温度270C时,水银柱下面空 气柱长为60厘米,若外界大气压P0=76cmHg,要 使管中水银全部溢出,温度至少应升到多少?
物理解题方法2--极值法
一、利用配方法求极值 将所求物理量表达式化为 “y=(x-a)2+b” 的形式,从而可得出:当x=a时,y有极值b。 (二次函数求极值法)
[例1] 一矩形线框abcd周长为L,其中通 有电流I,将它置于一匀强磁场B中,且ab 边与磁感线方向平行,该线框所受磁力矩最 大可为多少?
(A)S (B)2S (C)3C (D)4S
小结:
“忘”掉具体题文;升华、归纳、牢记其思维方法。
思考题:根据你见过的题目,给上述七类型各补上 1----3道题,以增强对极值法的理解。
相关文档
最新文档