大学物理1复习资料(含公式-练习题)
大学物理学(上)复习提纲
dp F dt
惯性和力的概念,惯性系的定义 .
p mv
力学基本单位 m、 kg、 s 量纲:表示导出量是如何由基本量组成的关系式 .
牛 顿 第 二 定 律 的 数 学 表 达 式
一般的表达形式
dp F ma d t F Fxi Fy j Ft et Fn en
三、洛伦兹坐标变换式
x' ( x vt )
正 变 换
z' z v t ' (t 2 x)
c
y' y
逆 变 换
y y'
x ( x' vt ' )
z z' v t (t ' 2 x' )
c
v c
1 1 2
伽利略变换
v c 时,洛伦兹变换
(1) 求刚体转动某瞬间的角加速度,一般应用转动 定律求解. 如质点和刚体组成的系统,对质点列牛顿 运动方程,对刚体列转动定律方程,再列角量和线量 的关联方程,联立求解. (2) 刚体与质点的碰撞、打击问题,在有心力场作 用下绕力心转动的质点问题,考虑用角动量守恒定律.
(3) 在刚体所受的合外力矩不等于零时,比如木杆 摆动,受重力矩作用,一般应用刚体的转动动能定理 或机械能守恒定律求解. 另外,实际问题中常常有多个复杂过程,要分成几 个阶段进行分析,分别列出方程,进行求解.
W保 (Ep Ep0 ) Ep
力学中常见的势能
重力势能
1 2 弹性势能 E p kx 2
Ep mgz
六、功能原理、机械能守恒定律
m' m 引力势能 Ep G r
大学物理复习资料
第1章(上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt)m,y=10sin(0.5πt)m,则质点运动方程的矢量式为r= ,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v= ,加速度 = ,速度的大小为,加速度的大小为,切向加速度的大小为0 ,法向加速度的大小为。
2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI)。
它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。
3、某质点做直线运动规律为x= t2-4t+2(m),在(SI)单位制下,则质点在前5s内通过的平均速度和路程为( C )A、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5mE、2m﹒s-1,13m4、某质点的运动规律为d v/dt=-k v2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是(C )A、v=½k t2+ v0B、v=-½k t2+ v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =k t2∕2- v05、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。
在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?第4章(P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r= cos wt i+b sin wt j,式中 、b、w为正的常量。
大学物理上册公式+复习题附答案
大学物理,上册,习题,复习,答案 重要公式:位矢:k t z j t y i t x t r r)()()()(++== 位移:k z j y i x t r t t r r∆+∆+∆=-∆+=∆)()(一般情况,r r ∆≠∆速度:k z j y i x k dtdz j dtdy i dt dx dt r d t r t∙∙∙→∆++=++==∆∆=0limυ加速度:k z j y i x k dtz d j dt y d i dt x d dtr d dt d t a t∙∙∙∙∙∙→∆++=++===∆∆=222222220limυυ圆周运动角速度:∙==θθωdtd 角加速度:∙∙===θθωα22dtd dt d (或用β表示角加速度) 线加速度:t n a a a+= 法向加速度:22ωυR Ra n == 指向圆心切向加速度:αυR dtd a t ==沿切线方向 线速率:ωυR =弧长:θR s =动量:υm p =冲量:⎰=21t t dt F I动量定理:⎰=21t t dt F p d⎰=-210t t dt F p p 动量守恒定律:若0==∑i i F F ,则常矢量==∑ii p p力矩:F r M⨯=质点的角动量(动量矩):υ⨯=⨯=r m p r L角动量定理:dt Ld M=外力角动量守恒定律:若0==∑外力外力M M ,则常矢量==∑ii L L功:r d F dW ∙= ⎰∙=B AAB r d F W一般地 ⎰⎰⎰++=B AB A B A z z z y y y x x x AB dz F dy F dx F W动能:221υm E k =动能定理:质点, 222121A B AB m m W υυ-=质点系,0k k E E W W -=+内力外力保守力:做功与路程无关的力。
保守内力的功:p p p E E E W ∆-=--=)(12保守内力 功能原理:p k E E W W ∆+∆=+非保守内力外力机械能守恒:若0=+非保守内力外力W W ,则00p k p k E E E E +=+ 转动惯量:离散系统,∑=2ii rm J连续系统,⎰=dm r J 2平行轴定理:2md J J C += 刚体定轴转动的角动量:ωJ L = 刚体定轴转动的转动定律:dtdL J M ==α 刚体定轴转动的角动量定理:021L L Mdt t t -=⎰力矩的功:⎰=θMd W力矩的功率:ωM dt dWP == 转动动能:221ωJ E k =刚体定轴转动的动能定理:20221210ωωθθθJ J Md -=⎰ 库仑定律:r e r q q F221041πε=电场强度:0q FE =带电体的场强:⎰∑==r ii e r dq E E204πε静电场的高斯定理:∑⎰⎰=∙iSqS d E 01ε静电场的环路定理:⎰=∙Ll d E 0电势:⎰∞∙=pp l d E V带电体的电势:∑⎰==rdq V V i 04πε导体静电平衡:电场,○1导体内场强处处为零;○2导体表面处场强垂直表面 电势,○1导体是等势体;○2导体表面是等势面 电介质中的高斯定理:∑⎰⎰=∙i Sq S d D 各向同性电介质:E E D rεεε==0 电容:UQC =电容器的能量:22212121CU QU C Q W ===毕奥-萨伐尔定律:204r e l Id B d r⨯=πμ 磁场高斯定理:⎰⎰=∙SS d B 0 安培环路定理:⎰∑=∙i I l d B 0μ载流长直导线的磁场:)cos (cos 4210θθπμ-=r IB 无限长直导线的磁场:rIB πμ20=载流长直螺线管的磁场:)cos (cos 2210θθμ-=nIB无限长直螺线管的磁场:nI B 0μ=洛仑兹力:B q F⨯=υ安培力:B l Id F d⨯=磁介质中的高斯定理:⎰⎰=∙S S d B 0 磁介质中的环路定理:∑⎰=∙i LI l d H各向同性磁介质:H H B rμμμ==0法拉第电磁感应定律:dt d φε-= 动生电动势:⎰∙⨯=l d B)(υε感生电动势:⎰⎰⎰∙∂-=∙=S k S d dtBl d Eε 自感:LI =φ,dtdIL L -=ε 自感磁能:221LI W m =互感:12MI =φ,dtdI M12-=ε 磁能密度:BH H B w m 21212122===μμ质点运动学及动力学练习题一 判断题1.质点作圆周运动,其加速度一定与速度垂直。
《大学物理》上册复习资料
《⼤学物理》上册复习资料⼩飞说明:本资料纯属个⼈总结,只是提供给⼤家⼀些复习⽅⾯,题⽬均来⾃课件如有不⾜望谅解。
(若要打印,打印时请删去此⾏)第⼀章质点运动学1.描述运动的主要物理量位置⽮量:位移⽮量:速度⽮量:加速度⽮量:速度的⼤⼩:加速度的⼤⼩:2.平⾯曲线运动的描述切向加速度:法相加速度:(圆周运动半径为R,则a n= )3.圆周运动的⾓量描述⾓位置:⾓速度:⾓加速度:圆周运动的运动⽅程:4.匀⾓加速运动⾓量间的关系ω= θ=5.⾓量与线量间的关系ΔS= V= a t= a n=6.运动的相对性速度相加原理: 加速度相加关系:7. 以初速度v0由地⾯竖直向上抛出⼀个质量为m 的⼩球,若上抛⼩球受到与其瞬时速率成正⽐的空⽓阻⼒,求⼩球能升达的最⼤⾼度是多⼤?8.⼀飞轮以n=1500r/min的转速转动,受到制动⽽均匀地减速,经t=50s后静⽌。
(1)求⾓加速度β和从制动开始到静⽌时飞轮的转数N为多少?(2)求制动开始t=25s时飞轮的⾓速度ω(3)设飞轮的半径R=1m时,求t=25s时,飞轮边缘上⼀点的速度、切向加速度和法向加速度9.⼀带蓬卡车⾼h=2m,它停在马路上时⾬点可落在车内到达蓬后沿前⽅d=1m处,当它以15 km/h 速率沿平直马路⾏驶时,⾬滴恰好不能落⼊车内,求⾬滴相对地⾯的速度及⾬滴相对车的速度。
x x 'yy 'z z 'O O 'S S 'uP ),,(),,(z y x z y x '''第⼆章⽜顿运动定律 1.经典⼒学的时空观(1)(2)(3) 2.伽利略变换 (Galilean transformation ) (1)伽利略坐标变换X ’= Y ’= Z ’= t ’=(2)伽利略速度变换V ’= (3)加速度变换关系 a ’=3.光滑桌⾯上放置⼀固定圆环,半径为R ,⼀物体贴着环带内侧运动,如图所⽰。
大学物理复习资料1
2 3
1 2 3 4
Q
A
B
C
.P
E
1 2 Q S 同理可得: 0 2 3
Q Q Q 1 2 3 4 2S 2S 2S 按电场叠加原理可求得: Q Q Q EB EA EC 2 o S 2 o S 2 o S (2)第二板接地 则 4与大地构成一导体 4 0
qQ U2 U3 4 π 0 R3 4 π 0 R3 4 π 0 R3 q q qQ 4 π 0 R3
R2
R3
U1 U 2
q 4 π 0 R1
q 4 π 0 R2
(2)外壳接地, 电荷分布
U1
q 4 π 0 R1
q 4 π 0 R2
复习课
题型: 选择10题共30分, 填空10题共30分, 计算5题共40分 比例:静电场(第11、12章): 31分; 第13章: 19分; 第14章: 19分; 第15章: 11分; 第16章: 17分; 第17章: 3分。。
11章 真空中的静电场
1、利用场强叠加原理求场强:
E
q q 1 1 i r E ri E dE 3 3 40 r 40 ri 40
R
o
练习题:例11-16、17;习题11-6、7、8、14
例11-16
均匀带电圆环半径为R,带电总量为q
求 圆环轴线上一点的电势 解 建立如图坐标系,选取电荷元 dq
dq dl
dq dV 4 0 r
dq r
R
dl
4 0 R x
2 2
O
P
x
Vp
2 R
《大学物理》综合复习资料
《大学物理(一)》综合复习资料一.选择题1.某人骑自行车以速率V 向西行驶,今有风以相同速率从北偏东300方向吹来,试问人感到风从哪个方向吹来?(A )北偏东300. (B )南偏东300. (C )北偏西300. (D )西偏南300. [ ]2.质点系的内力可以改变(A )系统的总质量.(B )系统的总动量.(C )系统的总动能.(D )系统的总角动量. [ ] 3.一轻绳绕在有水平轮的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. C )变大. ( D )无法判断. [ ]4.一质点作匀速率圆周运动时,则(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断不变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]5.关于刚体对轴的转动惯量,下列说法中正确的是(A) 只取决于刚体的质量,与质量的分布和轴的位置无关.(B )取决于刚体的质量和质量分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关. [ ]6.一小球沿斜面向上运动,其运动方程为245t t S -+=(SI ),则小球运动到最高点的时刻是(A )s 4=t .(B )s 2=t .(C )s 8=t .(D )s 5=t . [ ]7.对功的概念有以下几种说法:(l )保守力作正功时,系统内相应的势能增加.(2)质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零.在上述说法中:(A )(l )、(2)是正确的. (B )(2)、(3)是正确的.(C )只有(2)是正确的. (D )只有(3)是正确的. [ ]8.均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A )角速度从小到大,角加速度从大到小.(B )角速度从小到大,角加速度从小到大.(C )角速度从大到小,角加速度从大到小.(D )角速度从大到小,角加速度从小到大.[ ]9.一弹簧振子作简谐振动,总能量为1E ,如果简谐振动振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量1E 变为(A )4/1E . (B)2/1E . (C)12E . (D)14E . [ ]10.下列说法哪一条正确?(A )加速度恒定不变时,物体运动方向也不变.(B )平均速率等于平均速度的大小.(C )不管加速度如何,平均速率表达式总可以写成:2/)(21v v v +=.(D )运动物体速率不变时,速度可以变化. [ ]11.站在电梯内的一个人,看到用细线连结的质量不同的两个物体跨过固定在电梯内顶棚上得的一个无摩擦的定滑轮而处于“平衡”状态.由此,他断定电梯作加速运动,其加速度为(A )大小为1g ,方向向上. (B )大小为1g ,方向向下.(C )大小为g 21,方向向上. (D )大小为g 21,方向向下. [ ] 12.质量为M 光滑的圆弧形槽于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力.对于这一过程,以下哪种分析是对的:(A )由m 和M 组成的系统动量守恒. (B )由m 和M 组成的系统机械能守恒.(C )由m 、M 和地球组成的系统机械能守恒.(D )M 对m 的正压力恒不作功.[ ]13. 一轻绳绕在有水平轴的定滑轮上,滑轮质量为m ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A )不变. (B )变小. (C )变大. (D )无法判断. [ ]14.一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =(T 为周期)时,质点的速度为(A )φωsin A -.(B )φωsin A .(C )φωcos A -.(D )φωcos A . [ ]15.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量)则该质点作(A )匀速直线运动. (B )变速直线运动.(C )抛物线运动. (D )一般曲线运动. [ ]16.在高台上分别沿45º仰角方向和水平方向,以同样速率投出两颗小石子,忽略空气阻力,则它们落地时速度(A )大小不同,方向不同.(B )大小相同,方向不同.(C )大小相同,方向相同.(D )大小不同,方向相同. [ ]17.质量为m 的木块沿与水平面成θ角的固定光滑斜面下滑,当木块下降高度为h 时,重力的瞬时功率是(A )2/1)2(gh mg . (B )2/1)2(cos gh mg θ. (C )2/1)21(sin gh mg θ. (D)2/1)2(sin gh mg θ. [ ]18.一轻弹簧竖直固定于水平桌面上.如图所示,小球从距离桌面高为h 处以初速度0v 落下,撞击弹簧后跳回到高为h 处时速度仍为0v ,以小球为系统,则在这一整个过程中小球的(A )动能不守恒,动量不守恒. (B )动能守恒,动量不守恒.(C )机械能不守恒,动量守恒. (D )机械能守恒,动量守恒.[ ]二.填空题1.一质点的运动方程为26t t x -=(SI ),则在t 由0至4s 的时间间隔内,质点的位移大小为 ,在t 由0到4s 的时间间用内质点走过的路程为 .2.一质点作半径为0.1m 圆周运动,其运动方程为:2/4/2t +π=θ,则其切向加速度为t a = .3.一质量为m 的物体,原来以速率v 向北运动,它突然受到外力打击,变为向西运动,速率仍为v ,则外力的冲量大小为 ,方向为 .4.若作用于一力学系统上外力的合力为零,则外力的合力矩.(填一定或不一定) 为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是_ .5.动量矩定理的内容是 .其数学表达式可写成 .动量矩守恒的条件是 .6.一质点沿半径为0.10m 的圆周运动,其角位移θ可用下式表示)(423SI t +=θ.(1)当t=2s 时,切向加速度t a = ;(2)当t a 的大小恰为总加速度a 大小的一半时,=θ .7.质量为M 的物体A 静止于水平面上,它与平面之间的滑动摩擦系数为μ ,另一质量为m 的小球B 以沿水平方向向右的速度v与物体A 发生完全非弹性碰撞.则碰后物体A 在水平方向滑过的距离L = .8.图中所示的装置中,略去一切摩擦力以及滑轮和绳的质量,且绳不可伸长,则质量为1m 的物体的加速度=1a .9.绕定轴转动的飞轮均匀地减速,0=t 时角速度s rad /5=ω,s t 20=时角速度08.0ωω=,则飞轮的角加速度β= ,从0=t 到s t 100=时间内飞轮所转过的角度θ= .10. 如图所示,Ox 轴沿水平方向,Oy 轴竖直向下,在0=t 时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对点O 的力矩M = ;在任意时刻t ,质点对原点O 的角动量L = .11.二质点的质量分别为1m 、2m . 当它们之间的距离由a 缩短到b 时,万有引力所做的功为 .12.动量定理的内容是 ,其数学表达式可写 .动量守恒的条件是 .13.已知质点运动方程为j t t i t t r )314()2125(32++-+=(SI ),当t =2s 时,a = .14.一个以恒定角加速度转动的圆盘,如果在某一时刻的角速度为ωl =20πrad /s ,再转60转后角速度为ω2=30πrad /s ,则角加速度β= ,转过上述60转所需的时间是t = .15.质量分别为m 和2m 的两物体(都可视为质点),用一长为l 的轻质刚性细杆相连,系统绕通过杆且与杆垂直的竖直固定轴O 转动,已知O 轴离质量为2m 的质点的距离为l 31,质量为m 的质点的线速度为v 且与杆垂直,则该系统对转轴的角动量(动量矩)大小为 .16.质量为m 的质点以速度v 沿一直线运动,则它对直线外垂直距离为d 的一点的角动量大小是 .17.若作用于一力学系统上外力的合力为零,则外力的合力矩 (填一定或不一定)为零;这种情况下力学系统的动量、角动量、机械能三个量中一定守恒的量是 .三.计算题1.顶角为2θ的直圆锥体,底面固定在水平面上,如图所示.质量为m 的小球系在绳的一端,绳的另一端系在圆锥的顶点.绳长为l ,且不能伸长,质量不计,圆锥面是光滑的.今使小球在圆锥面上以角速度ω绕OH 轴匀速转动,求(1)锥面对小球的支持力N 和细绳的张力T ;(2)当ω增大到某一值c ω时小球将离开锥面,这时c ω及T 又各是多少?2.一弹簧振子沿x 轴作简谐振动.已知振动物体最大位移为m x =0.4m 最大恢复力为N 8.0=m F ,最大速度为m/s 8.0π=m v ,又知t =0的初位移为+0.2m ,且初速度与所选x 轴方向相反.(1)求振动能量;(2)求此振动的表达式.3.一物体与斜面间的摩擦系数μ=0.20,斜面固定,倾角45=αº.现给予物体以初速率m /s 100=v ,使它沿斜面向上滑,如图所示.求:(l )物体能够上升的最大高度h ;(2)该物体达到最高点后,沿斜面返回到原出发点时的速率v .4.一质量为A m =0.1kg 的物体A 与一轻弹簧相连放在光滑水平桌面上,弹簧的另一端固定在墙上,弹簧的倔强系数k =90N /m .现在用力推A ,从而弹簧被压缩了0x =0.1m .在弹簧的原长处放有质量B m =0.2kg 的物体B ,如图所示,由静止释放物体A 后,A 将与静止的物体B发生弹性碰撞.求碰撞后A 物体还能把弹簧压缩多大距离.5.质量为M =1.5kg 的物体,用一根长为 l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10g 的子弹以0v =500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小m/s 300 v ,设穿透时间极短.求:(l )子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量.6.某弹簧不遵守胡克定律,若施力F ,则相应伸长为x ,力与伸长的关系为F =52.8 x 十38.4x 2(SI )求:(1)将弹簧从定长1x =0.5m 拉伸到定长2x =1.00m 外力所需做的功.(2)将弹簧横放在水平光滑桌面上,一端固定,另一端系一个质量为2.17kg 的物体,然后将弹簧拉伸到一定长2x = 1.00m ,再将物体有静止释放,求当弹簧回到1x =0.5m 时,物体的速率.(3)此弹簧的弹力是保守力吗?7.三个物体A 、B 、C 每个质量都是M . B 、C 靠在一起,放在光滑水平桌面上,两者间连有一段长为0.4m 的细绳,原先放松着.B 的另一侧用一跨过桌边的定滑轮的细绳与A 相连(如图).滑轮和绳子的质量及轮轴上的摩擦不计,绳子不可伸长.问:(l ) A 、 B 起动后,经多长时间C 也开始运动?(2)C 开始运动时速度的大小是多少?(取g =10m/s 2)8.有一轻弹簧,当下端挂一个质量1m =10g 的物体而平衡时,伸长量为4.9cm .用这个弹簧和质量2m =16g 的物体连成一弹簧振子.若取平衡位置为原点,向上为x 轴的正方向.将2m 从平衡位置向下拉 2cm 后,给予向上的初速度0v =5c m/s 并开始计时,试求2m 的振动周期和振动的数值表达式.参考答案一.选择题1.(C ) 2.(C ) 4.(C ) 4.(C ) 5.(C )6.(B ) 7.(C ) 8.(A ) 9.(D )10.(D )11.(B ) 12.(C ) 13.(C )14.(B )15.(B )16.(B )17.(D ) 18.(A )二.填空题l . 8m 10m2. 0.1m/s 23. mv 2 指向正西南或南偏西4504. 不一定 动量5.转动物体所受合外力矩的冲量矩等于在合外力矩作用时间内转动物体动量矩的增量. 112221ω-ω=⎰ J J dt M t t物体所受合外力矩等于零.6. 48m/s 23.15 r a d7. 22)(2)(m M g mv +μ 8. 21242m m g m + 9. -0.05rad/s 250rad10. k mbg k mbgt11. )11(21ba m Gm -- 12. 质点系所受合外力的冲量等于质点系(系统)动量的增量.i i i i t t v m v m dt F 2121 ∑∑⎰-=系统所受合外力等于零.13.)/(4s m j i +-14. 6.54 rad/s 2s 8.4 15. mvl16. mvd17. 不一定; 动量三.计算题1. 解:以r 表示小球所在处圆锥体的水平截面半径.对小球写出牛顿定律方程为r m ma N T 2cos sin ω==θ-θ0cos cos =-θ+θmg N T其中:θ=sin l r联立求解得:(1)θθω-θ=cos sin sin 2l m mg Nθω+θ=22sin cos l m mg T(2)0,=ω=ωN c θ=ωcos /l g cθ=cos /mg T2.解;(l )由题意./,,m m m m x F k x A kA F ===J x F kx E m m m 16.021212=== (2)m m m m x v A v A v //,==ωω=Hz s rad 22/,/2=πω=νπ=ω2.0cos ,00=φ==A x tπ=φ<φω-=31,0sin 0A v 振动方程为)3/2cos(4.0π+π=t y (SI )3.解:(l )根据功能原理,有 mgh mv fs -=2021 mgh mv mghctg mgh Nh fs -=αμ=ααμ=αμ=2021sin cos sin m ctg g v h 25.4)1(220=αμ+=(2)根据功能原理有221mv mgh fs -= αμ-=mghctg mgh mv 221s m ctg gh v /16.8)1(2[2/1=αμ-=4.解:释放物体A 到A 与B 碰撞前,以A 与弹簧为系统,机械能守恒: 2202121v m kx A = A 与B 碰撞过程中以A 、B 为系统,动量守恒,机械能守恒。
大学物理学复习资料
大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。
大学物理复习资料(超全)(一)
大学物理复习资料(超全)(一)引言概述:大学物理是大学阶段的一门重要课程,涵盖了广泛的物理知识和原理。
本文档旨在为大学物理的复习提供全面的资料,帮助学生回顾和巩固知识,以便更好地应对考试。
本文档将分为五个大点来详细讲解各个方面的内容。
一、力学1. 牛顿力学的基本原理:包括牛顿三定律和作用力的概念。
2. 运动学的基本概念:包括位移、速度和加速度的定义,以及运动的基本方程。
3. 物体的受力分析:重点介绍平衡、力的合成和分解、摩擦力等。
4. 物体的平衡和动力学:详细解析物体在平衡和运动状态下所受的力和力矩。
5. 力学定律的应用:举例说明力学定律在各种实际问题中的应用,如斜面、弹力等。
二、热学和热力学1. 理想气体的性质:通过理想气体方程和状态方程介绍气体的基本性质。
2. 热量和温度:解释热量和温度的概念,并介绍温标的种类。
3. 热传导和热辐射:详细讲解热传导和热辐射的机制和规律。
4. 热力学定律:介绍热力学第一定律和第二定律,并解析它们的应用。
5. 热力学循环和热效率:介绍热力学循环的种类和热效率的计算方法,以及它们在实际应用中的意义。
三、电学和磁学1. 电荷、电场和电势:介绍电荷的基本性质、电场的概念,以及电势的计算方法。
2. 电场和电势的分析:详细解析电场和电势在不同形状电荷分布下的计算方法。
3. 电流和电路:讲解电流的概念和电路中的串联和并联规律。
4. 磁场和电磁感应:介绍磁场的基本性质和电磁感应的原理。
5. 麦克斯韦方程组:简要介绍麦克斯韦方程组的四个方程,解释它们的意义和应用。
四、光学1. 光的传播和光的性质:解释光的传播方式和光的特性,如反射和折射。
2. 光的干涉和衍射:详细讲解光的干涉和衍射现象的产生机制和规律。
3. 光的色散和偏振:介绍光的色散现象和光的偏振现象的产生原因。
4. 光的透镜和成像:讲解透镜的类型和成像规律,包括凸透镜和凹透镜。
5. 光的波粒二象性和相干性:介绍光的波粒二象性和相干性的基本概念和实验现象。
大学物理1复习要点
第一章质点运动学重点:1.两类题目的解法:求导法和积分法2.圆周运动切向加速度和法向加速度的计算和意义主要公式:1.质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()( 2.速度:dt rd v=, 加速度:dt v d a =平均速度:t r v ∆∆= , 平均加速度:t v a ∆∆=3. 角速度:dt d θω=, 角加速度:dtd ωαβ=)( 4. 线速度与角速度关系:r v ω= 5. 切向加速度:βτr dtdva ==——速度大小改变快慢 法向加速度:rv r a n 22==ω——速度方向改变快慢总加速度:22n a a a +=τ第二章牛顿运动定律重点:1. 理解牛顿定律的适用的条件、范围2.两类题目的解法:积分法:力→加速度→速度→位矢(位移)(可能有计算题,例如段考计算第1题)微分法:位矢→速度→加速度→力主要公式:牛顿第二定律:dtP d dt v d m a m F=== 记住牛顿第二定律解题的步骤第三章动量与角动量重点:1. 变力的冲量计算(力对时间积分)、动量定理 2. 质点系的动量定理:内力对总动量无影响。
3. 动量守恒定律:合外力为零、某方向的合外力为零、外力<<内力(碰撞、爆炸等)4. 质心的意义5.角动量的定义:大小、方向、6. 角动量定理:合外力矩对时间的积分等于它的角动量变化7.角动量守恒定律:合外力矩为零:r=0,或F=0,或r 与F 同向或反向,例如有心力情况主要公式:1. 动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3. 力矩:F r M⨯=大小:θsin Fr M =方向:右手螺旋,沿F r⨯的方向。
4.角动量:P r L⨯=大小:θsin mvr L =方向:右手螺旋,沿P r⨯的方向 第四章功和能重点:1. 变力做功的计算(力对位矢积分)、动能定理2. 质点系的动能定理:外力对质点系做的功和内力对质点系做的功之和等于质点系总动能的增量。
大学物理1 复习资料
大学物理1 复习资料一、选择题1.电量为q 的粒子在均匀磁场中运动,下列说法正确的是( B )。
(A )只要速度大小相同,所受的洛伦兹力就一定相同;(B )速度相同,带电量符号相反的两个粒子,它们受磁场力的方向相反,大小相等;(C )质量为m ,电量为q 的粒子受洛伦兹力作用,其动能和动量都不变;(D )洛伦兹力总与速度方向垂直,所以带电粒子的运动轨迹必定是圆。
2.载电流为I ,磁矩为P m 的线圈,置于磁感应强度为B 的均匀磁场中, 若P m 与B 方向相同则通过线圈的磁通Φ与线圈所受的磁力矩M 的大小为( B )。
(A )0,==ΦM IBP m ; (B );0,==ΦM IBP m (C )m m BP M IBP ==Φ, ; (D )m m BP M IBP ==Φ, 3.已知空间某区域为匀强电场区,下面说法中正确的是( C )。
(A )该区域内,电势差相等的各等势面距离不等。
(B )该区域内,电势差相等的各等势面距离不一定相等。
(C )该区域内,电势差相等的各等势面距离一定相等。
(D )该区域内,电势差相等的各等势面一定相交。
4.关于高斯定律得出的下述结论正确的是( D )。
(A )闭合面内的电荷代数和为零,则闭合面上任意点的电场强度必为零。
(B )闭合面上各点的电场强度为零,则闭合面内一定没有电荷。
(C )闭合面上各点的电场强度仅有闭合面内的电荷决定。
(D )通过闭合曲面的电通量仅有闭合面内的电荷决定。
5.一带有电荷Q 的肥皂泡在静电力的作用下半径逐渐变大,设在变大的过程中其球心位置不变,其形状保持为球面,电荷沿球面均匀分布,则在肥皂泡逐渐变大的过程中( B )。
(A )始终在泡内的点的场强变小;(B )始终在泡外的点的场强不变;(C )被泡面掠过的点的场强变大; (D )以上说法都不对。
6.电荷线密度分别为21,λλ 的两条均匀带电的平行长直导线,相距为d ,则每条导线上单位长度所受的静电力大小为 (D )。
最新2020-2021年大学物理上复习资料(1)(1)
一、选择题 1、一运动质点在某瞬时位于矢径 r ( x, y) 的端点处,其速度大小为
dr
(A)
dt
dr
(B)
dt
d |r |
(C)
dt
(D) ( dx )2 ( dy )2
dt
dt
[答案: D] 2、 一质点作直线运动,某时刻的瞬时速度
v 2m / s ,瞬时加速度 a 2m / s2 ,则
( B)动量不变,动能改变。
( C)角动量不变,动量不变。
( D)角动量改变,动量改变。
( E)角动量不变,动能、动量都改变。
[答案: (E)]
10、容器中贮有一定量的理想气体, 气体分子的质量为 m,当温度为 T 时,根据理想气 体的分子模型和统计假设,分子速度在 x 方向的分量平方的平均值是:
(A)
(C) Z 与 T 成反比.
[答案: C]
(D) Z 与 T 成正比.
15、关于可逆过程和不可逆过程有以下几种说法:
① 可逆过程一定是准静态过程.
② 准静态过程一定是可逆过程.
③ 不可逆过程发生后一定找不到另一过程使系统和外界同时复原.
④ 非静态过程一定是不可逆过程.
以上说法,正确的是:
[]
(A) ①、②、③、④ .
[答案:绝热 ] 17、常温常压下,一定量的某种理想气体,其分子可视为刚性分子,自由度为
压过程中吸热为 Q,对外做功为 A,内能增加为 E ,则 A/ Q=_____________ 。
i,在等
2
[答案:
]
i2
18、一理想卡诺热机在温度为 300 K 和 400 K 的两个热源之间工作。
提高 100 K ,则其效率可提高为原来的 ________倍。
大学物理1复习要点(一)2024
大学物理1复习要点(一)引言概述:大学物理1复习要点(一)是为了帮助大家对大学物理1课程的关键概念和重要知识进行梳理和复习。
本文将围绕着五个主要的大点进行阐述,每个大点又包含五到九个小点,以全面而有条理地梳理大学物理1课程的复习要点。
无论是对学生在课堂上学习的回顾,还是对于即将参加大学物理1考试的考生来说,本文都将为你提供有力的辅助复习帮助。
正文:一、运动和力学1.1 物体的位移和速度1.2 平均速度和瞬时速度1.3 加速度和减速度的概念1.4 牛顿第一定律:惯性1.5 牛顿第二定律:力等于质量乘以加速度1.6 牛顿第三定律:作用力和反作用力1.7 自由体图法1.8 重力和重力加速度1.9 斜面上的运动二、能量和功2.1 功的定义和计算2.2 功和动能的关系2.3 动能的转化和守恒2.4 机械能守恒定律2.5 弹性势能和弹簧势能2.6 重力势能2.7 势能和力的关系2.8 功率的概念和计算2.9 水力功和电功三、运动和速度变化3.1 直线运动的平均速度3.2 瞬时速度和瞬时加速度3.3 直线运动的速度变化图象3.4 匀速直线运动和变速直线运动3.5 加速和减速的图象分析3.6 加速度和速度变化的关系3.7 匀加速直线运动3.8 自由下落3.9 竖直上抛运动四、力和动量4.1 力的定义和计算4.2 冲量和动量4.3 动量守恒定律4.4 弹性碰撞和非弹性碰撞4.5 质心的概念和计算4.6 质心系和实验室系4.7 斜面上的受力分析4.8 正交分解4.9 哈奇定律的应用五、静力学和静电学5.1 静力平衡的条件5.2 对力的分析和计算5.3 牛顿定律和几何分析的应用5.4 力的组合5.5 地面和坡面上物体的平衡5.6 不平衡力和摩擦力5.7 静电力的概念和性质5.8 电场的概念和计算5.9 带电粒子在电场中的受力分析总结:本文通过对大学物理1课程的关键概念和重要知识进行梳理,对运动和力学、能量和功、运动和速度变化、力和动量以及静力学和静电学等五个大点进行了详尽的阐述和解释。
大学物理(上)复习要点及重点试题
刚体复习重点(一)要点质点运动位置矢量(运动方程) r = r (t ) = x (t )i + y (t )j + z (t )k ,速度v = d r/d t = (d x /d t )i +(d y /d t )j + (d z /d t )k ,动量 P=m v加速度 a=d v/d t=(d v x /d t )i +(d v y /d t )j +(d v z /d t )k曲线运动切向加速度 a t = d v /d t , 法向加速度 a n = v 2/r .圆周运动及刚体定轴转动的角量描述 θ=θ(t ), ω=d θ/d t , β= d ω/d t =d 2θ/d t 2,角量与线量的关系 △l=r △θ, v=r ω (v= ω×r ),a t =r β, a n =r ω2力矩 M r F 转动惯量 2i i J r m =∆∑, 2d mJ r m =⎰ 转动定律 t d L M =M J α= 角动量: 质点p r L ⨯= 刚体L=J ω;角动量定理 ⎰tt 0d M =L -L 0角动量守恒 M=0时, L=恒量; 转动动能2k E J ω= (二) 试题一 选择题(每题3分)1.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(答案:C )(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (答案:C )(A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (答案:A )(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.4. 关于刚体对轴的转动惯量,下列说法中正确的是(答案:C )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(答案:D )(A) ω0/3. (B) ()3/1 ω0. (C) 3 ω0. (D) 3ω0.二、填空题1.(本题4分)一飞轮作匀减速运动,在5s 内角速度由40π rad/s 减少到10π rad/s ,则飞轮在这5s内总共转过了 圈,飞轮再经 的时间才能停止转动。
(大学物理上册)复习题前两章
《大学物理(一)》综合复习资料第1章 质点运动学1 一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D) -2 m . (E) -5 m. [ B ]2 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b为常量), 则该质点作 [ C ] (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动.3 一质点沿x 方向运动,其加速度随时间变化关系为a = 3+2 t (SI) ,如果初始时质点的速度v 0为5 m/s ,则当t为3s 时,质点的速度v = 32 ? 23 .4 一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 3 秒瞬时速度为零;在第 3 秒至第 6 秒间速度与加速度同方向.5 质点p 在一直线上运动,其坐标x 与时间t 有如下关系: x =-A sin ω t (SI) (A 为常数)(1) 任意时刻t,质点的加速度 a =____________; (2) 质点速度为零的时刻t =______________.6 一质点沿直线运动,其坐标x 与时间t 有如下关系:t A x tωβcos e-= (SI) (A 、β 皆为常数) (1) 任意时刻t质点的加速度a =____; (2) 质点通过原点的时刻t =___.7 一物体悬挂在弹簧上,在竖直方向上振动,其振动方程为 y = A sin ω t , 其中A 、ω 均为常量,则(1) 物体的速度与时间的函数关系式为________ok___________; (2) 物体的速度与坐标的函数关系式为________________________.8 在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0, 加速度2Ct a =(其中C 为常量),则其速度与时间的关系为=v __________, 运动学方程为=x __________.OK9 质点沿半径为R 的圆周运动,运动学方程为 223t +=θ(SI) ,则t时刻1 4.5432.52-112t (s )v (m /s )Ox (m)t (s)513456O 2质点的法向加速度大小为a n = ;角加速度β= .OK10 一质点从静止出发沿半径R =1 m 的圆周运动,其角加速度随时间t 的变化规 律是β =12t 2-6t (SI), 则质点的角速ω =_________;切向加速度 a t =__________.OK11 一质点沿半径为 0.1 m 的圆周运动,其角位移θ 随时间t 的变化规律是θ = 2 + 4t 2 (SI).在t =2 s 时,它的法向加速度a n =______;切向加速度a t =_______.12 在xy 平面内有一运动质点,其运动学方程为:j t i t r5sin 105cos 10+=(SI )则t 时刻其速度=v;其切向加速度的大小a t = ___;该质点运动的轨迹是___.13 知质点的运动学方程为24t r = i +(2t +3)j (SI),则该质点的轨道方程为____OK___.14 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;第2秒末的瞬时速度; OK (3) 第2秒内的路程. ?第2章 动力学基本定律一、选择题1. 设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为 [ B ] (A) 2v (B) v 2 (C)v 21 (D)2v3. 如图2-1-54所示,一被压缩的弹簧, 两端分别连接A 、B 两个不同的物体, 放置在光滑水平桌面上, 设m A = 2m B , 由静止释放. 则物体A 的动能与物体B 的动能之比为 [ C ] (A) 1 1 (B) 2 1 (C) 1 2 (D) 1 44关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是 [ C ] (A) 不受力作用的系统,其动量和机械能必然守恒(B) 所受合外力为零、内力都是保守力的系统,其机械能必然守恒(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒 (D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒 5. 一质量为0m 的弹簧振子,水平放置静止在平衡位置,如图所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如水平面光滑,此后弹簧的最大势能为图2-1-54[ B ] (A)221v m(B))(2022m m m +v(C) 22202)(v m mm m + (D)222v m m6一个圆锥摆的摆线长为l ,摆线与竖直方向的夹角恒为θ,如图所示.则摆锤转动的周期为 (A)gl . (B)gl θcos .(C) gl π2. (D) gl θπcos 2 . [ ]二、填空题1. 质量为0.25 kg 的质点, 受力i t F =N 的作用, 当t =0时质点以-1s m 2⋅=j v 的速度通过坐标原点, 则该质点任意时刻的位置矢量是 (m).2. 质量为m 的质点在外力作用下运动, 其运动方程为t A x ωcos =,t B y ωcos =, 式中A 、B 、 都是正常数.则在t = 0到ω2π=t 这段时间内外力所作的功为 .3 一长为l ,质量为m 的匀质链条,放在光滑的桌面上,若其长度的51悬挂于桌边下,将其慢慢拉回桌面,需做功 .4. 一质量为m 的质点在指向圆心的力2rk F-=的作用下,作半径为r 的圆周运动,此质点的速度=v OK .若取距圆心无穷远处为势能零点,它的机械能=E ? .5 如果一个箱子与货车底板之间的静摩擦系数为μ,当这货车爬一与水平方向成θ角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度a max =_______OK__________. 6假如地球半径缩短 1%,而它的质量保持不变,则地球表面的重力加速度g 增大的百分比是____OK____.7 倾角为30°的一个斜面体放置在水平桌面上.一个质量为2 kg 的物体沿斜面下滑,下滑的加速度为 3.0 m/s 2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力f =____________.三、计算题θl第5题图m Bv1. 高为h 的光滑桌面上,放一质量为m 的木块.质量为0m 的子弹以速率v 0沿图示方向( 图中θ 角已知)射入木块并与木块一起运动.求: (1) 木块落地时的速率OK ;(2) 木块给子弹的冲量的大小.2 两物块分别固结在一轻质弹簧两端, 放置在光滑水平面上.先将两物块水平拉开,使弹簧伸长 l ,然后无初速释放.已知:两物块质量分别为m 1,m 2,弹簧的劲度系数为k ,求释放后两物块的最大相对速度.第1章 质点运动学(1) B (3) 23m/s (4) 3,3,6 (5) 2sin A t ωω-,()ωπ+1221n (n = 0,1,… )(6) ()[]t t A tωβωωωββsin 2cos e22+-- ,()ωπ/1221+n (n = 0, 1, 2,…)(7) t A t y ωωcos d /d ==v 22cos y At A -==ωωωv(8)3/30Ct+v ,400121Ct t x ++v (9)16 R t 2 , 4 rad /s 2(10)4t 3-3t 2(rad/s), 12t 2-6t (m/s 2) (11) 25.6 m/s 2 , 0.8 m/s 2(12))5cos 5sin (50j t i t+- m/s , 0 , 圆 (13)x = (y -3)2计算题14 解:(1) 5.0/-==∆∆t x v m/s (2) v = d x /d t = 9t - 6t 2 ,v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m第2章 动力学基本定律一、选择题 1. B 2 D 3 C 4. C 5. B 6 D二、填空题1. j t i t 2323+ 2. )(21222B A m -ω 3. mgl 501 4.mrk ,rk 2-5 g )sin cos (θθμ-6 2%7 5.2 N0mv θhm第3题图形1m 2m x lk三、计算题1 解:(1) 0m 和m 完全非弹性碰撞, 水平方向无外力,系统水平动量守恒v v )(c o s 000m m m +=θ (1)0m 和m 一起由桌边滑下至落地,无外力,只受重力(保守内力)作用,系统机械能守恒.以地面为重力势能零点,得20020)(21)()(21u m m gh m m m m +=+++v (2)由(1)、(2)式得0m 和m 落地的速率gh mm m gh u 2)cos (220002++=+=θv v(2) 对0m 用质点的动量定理,m 对0m 的冲量的两个分量为 m m m m m m I x +-=-=000000cos cos θθv v vθθs i n )s i n (00000v v m m I y =--=m 对0m 的冲量的大小为20020022)sin ()cos (θθv v m mm m I I I y x ++=+=2 解:选地面参考系,考查(m 1、m 2、弹簧)系统无水平外力,系统动量守恒 设两物块相对速度最大时,两物块的速度分别为1v 、2v ,则在x 向有02211=+v v m m (1)无非保守内力,系统机械能守恒,最大相对速度对应其初势能全部转化为动能,有2222112212121v v m m kl+=(2)联立(1)、(2)式可得)(211221m m m klm +=v )(212212m m m klm +=v两物块的最大相对速度的大小为21221122121)(m m klm m m m m +=+=-v v v解图2-3-14 O m yx∙θvm 0v m I。
大学物理总复习 知识点与典型习题..
Wbc P1 4(Vc Vb ) ca是等温过程有,
PaVa PcVc , 求得: Vc 4Va
a c
Wbc 3 p1V1 4
a c
ca 为等温压宿过程: Wca V PdV V RT dV RT1 ln4 P1V1 ln4 V V
解:(1) ab 是等容升温过程;
bc过程:从图知有斜率k=v/T
其体积与温度成正比。
bc为等压降温过程;
(2) p-v图 如右图示. (3) 是逆循环.
ca 为等温膨胀过程.
(4)该循环作的功不等于直角三角形面积,因为 直角三角形不是在p-v图中的图形. (5) 因为是逆循环,所以对应的是 制冷系数。系统从低温热源 中吸热为 Q2 ,则有:
地位相当
4、 角动量
对一个质点: 对刚体:
5、 角动量定理
6、 角动量守恒定律
七. 相对运动
1、伽利略变换式
力学相对性 角位移 角速度w d/ dt
对应关系
位移 r 速度v=dr/dt
加速度a=dv/dt 角加速度 =dw /dt
① 只有对可逆过程,熵的变化 dS 才等于其 热温比 。 ② 对不可逆过程:
即,在不可逆过程中的“热温比”小于熵变 ! 计算熵时先设计一个始末状态相同的可逆过程来代
替。然后再应用热温比进行熵变的计算
(3)熵增原理:
孤立系统内不论进行什么过程,系统的熵不会减少.
1.一循环过程如右图所示,试指出: (1)各是什么过程; (2)画出对应的(p-V)图; (3)该循环是否是正循环? (4)该循环作的功是否等于直角三角形面积 ? (5)用图中的热量表述其热机效率或致冷系数.
大一物理知识点及公式大全
大一物理知识点及公式大全在大一物理学的学习过程中,我们会接触到许多重要的知识点和公式。
这些知识点和公式对于我们理解物理世界的规律以及解决问题起着至关重要的作用。
接下来,我将为大家整理并介绍一些大一物理学中常见的知识点和公式。
力学1. 牛顿第一定律(惯性定律):物体静止或匀速直线运动时,受合外力作用力为零。
2. 牛顿第二定律:物体的加速度与作用力成正比,与质量成反比。
F = ma。
3. 牛顿第三定律(作用-反作用定律):任何两个物体之间的作用力与反作用力大小相等,方向相反。
热学1. 热传导:热能从高温物体传导到低温物体,遵循热传导定律。
2. 热容量:物体吸收或释放的热量与其温度变化成正比。
Q = mcΔT。
3. 热膨胀:物体受热后会发生体积的变化。
电磁学1.库仑定律:两个电荷之间的电磁力与电荷间距的平方成反比。
F = k(q1q2/r^2)。
2.电场强度:某点处电场对单位正电荷的作用力。
E = F/q。
3.电势能:电荷在电场中具有的能量。
U = qV。
4.电容:电容器储存电荷的能力。
C = Q/V。
5.欧姆定律:电流与电压成正比,与电阻成反比。
I = V/R。
光学1.光的折射:光从一种介质传播到另一种介质时,会改变传播方向。
2.光程差:光线走过的路程差。
ΔL = n1d1 - n2d2。
3.薄透镜成像:透镜折射所成的像的位置与物的位置满足1/f =1/u + 1/v。
4.解析几何成像:光线经过反射或折射后,可通过几何方法确定成像点。
这些只是大一物理学中的一部分知识点和公式,通过学习和掌握这些基本的物理知识,我们能够更好地理解物理世界的规律,并能够运用公式解决实际问题。
当然,要真正理解和掌握这些知识,需要我们进行大量的实践和练习,培养我们的物理思维能力和解决问题的能力。
希望以上介绍对大家在大一物理学学习中有所帮助。
请大家持续努力学习,深入理解物理学的知识点和公式,为之后的深入学习和应用打下坚实的基础。
大一大学物理复习【精品】资料【推荐】
第一章 第二节、第三节 中相关物理量的定义 第四节 例题1-4 例题1-5 例题1-6P18 习题1-2 习题1-3 习题1-6(重点) 习题1-7 习题1-8 (重点) 第二章 第一节 掌握牛顿第二定律第二节 掌握动量的计算公式P mv =、冲量的计算公式0tt I Fdt =⎰,质点的动量定理 00tt I Fdt P P ==-⎰,质点系的动量定理2121111n n nt i i i i i t i i i F dt m v m v ===⎛⎫=- ⎪⎝⎭∑∑∑⎰外例如:一沿x 方向的力,作用在一质量为3㎏的质点上,质点的运动方程为3243t t t x +-= (SI),则力在最初2秒内的冲量值为_____________。
知道动量守恒的条件以及内力不改变系统的动量 第三节 掌握功的计算公式0x y zx y z x y z WF dx F dy F dz =++⎰⎰⎰例如:P34 例题2-6掌握 瞬时功率的计算公式P F v =•掌握 重力势能、弹性势能的表达式掌握 质点的动能定理2122221111 22k k W E E F dr mv mv =-•=-⎰即例如:P35 例题2-7 掌握机械能守恒的条件知道一对内力所做的功之和一般不为零,但不排斥为零的情况 第四节 掌握角动量的计算公式L r mv r P =⨯=⨯掌握 力矩的计算公式M r F =⨯掌握角动量守恒的条件第五节 知道刚体的转动惯量与那些因素有关 P56 习题2-4 习题 2-6 习题2-7第五章 第一节 掌握库仑定律,例如:P151习题5-2 第二节 电通量的计算公式 e SE dS Φ=•⎰理解、掌握高斯定理0ie SqE dS εΦ=•=∑⎰,并会应用知道通过闭合曲面的电通量只与闭合曲面内的电荷有关,而与闭合曲面外的电荷没有任何关系,但是闭合曲面上的电场是由所有的电荷(包括闭合曲面内的电荷,也包括闭合曲面外的电荷)共同激发的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学重点:求导法和积分法,圆周运动切向加速度和法向加速度。
主要公式:1.质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度3.4.5.线速度与角速度关系6.切向加速度法向加速度 总加速度第二章 质点动力学重点:动量定理、变力做功、动能定理、三大守恒律。
主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律3.4.5.6 动能定理7.机械能守恒定律:当只有保守内力做功时,0=∆E8. 力矩:F r M⨯=大小:θsin Fr M=方向:右手螺旋,沿F r⨯的方向。
9.角动量:P r L⨯=大小:θsin mvr L =方向:右手螺旋,沿P r ⨯的方向。
※ 质点间发生碰撞:完全弹性碰撞:动量守恒,机械能守恒。
完全非弹性碰撞:动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:动量守恒,机械能不守恒。
※行星运动:向心力的力矩为0,角动量守恒。
第三章 刚体重点: 刚体的定轴转动定律、刚体的角动量守恒定律。
主要公式: 1. 转动惯量:⎰=rdm r J2,转动惯性大小的量度。
2. 平行轴定理:2md J Jc +=质点:θsin mvr L =刚体:ωJ L =4.转动定律:βJ M =5.角动量守恒定律:当合外力矩2211:,0,0ωωJ J L M ==∆=即时6. 刚体转动的机械能守恒定律: 转动动能:221ωJ E k =势能:c P mgh E = (c h 为质心的高度。
) ※ 质点与刚体间发生碰撞:完全弹性碰撞:角动量守恒,机械能守恒。
完全非弹性碰撞:角动量守恒,机械能不守恒,且具有共同末速度。
一般的非弹性碰撞:角动量守恒,机械能不守恒。
说明:期中考试前的三章力学部分内容,请大家复习期中试卷,这里不再举例题。
第五章 振动重点:旋转矢量法、 简谐振动的方程、能量和合成。
主要公式: 1.)cos(ϕω+=t A xTπω2=km T π2=单摆:lg =ω,gl Tπ2=2.能量守恒:3.两个同方向、同频率简谐振动的合成:仍为简谐振动:)cos(ϕω+=t A x其中:a.同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。
[例题1] 质量为kg 10103-⨯的小球与轻弹簧组成的系统,按)SI ()328cos(1.0ππ+=x 的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)s 52=t 与s 11=t 两个时刻的位相差;解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t【例题2】 一个沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示.如果0=t 时质点的状态分别是:(1)A x -=0;(2)过平衡位置向正向运动; (3)过2Ax =处向负向运动; (4)过2A x -=处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 ⎩⎨⎧-==000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x )232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x【例题3】 一质量为kg 10103-⨯的物体作谐振动,振幅为cm 24,周期为s 0.4,当0=t 时位移为cm 24+.求:(1)s 5.0=t 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到cm 12=x 处所需的最短时间; (3)在cm 12=x 处物体的总能量.解:由题已知 s 0.4,m 10242=⨯=-T A ∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J101.7)24.0()2(10102121214223222--⨯=⨯⨯⨯===πωA m kA E 【例题4】有一轻弹簧,下面悬挂质量为g 0.1的物体时,伸长为cm 9.4.用这个弹簧和一个质量为g 0.8的小球构成弹簧振子,将小球由平衡位置向下拉开cm 0.1后 ,给予向上的初速度10s cm 0.5-⋅=v ,求振动周期和振动表达式. 解:12311m N 2.0109.48.9100.1---⋅=⨯⨯⨯==x g m k 而0=t 时,-12020s m 100.5m,100.1⋅⨯=⨯-=--v x ( 设向上为正) 又 s 26.12,51082.03===⨯==-ωπωT m k 即m102)5100.5()100.1()(22222220---⨯=⨯+⨯=+=∴ωv x A45,15100.1100.5tan 022000πφωφ==⨯⨯⨯=-=--即x v ∴ m )455cos(1022π+⨯=-t x【例题5】 一轻弹簧的倔强系数为k ,其下端悬有一质量为M 的盘子.现有一质量为m 的物体从离盘底h 高度处自由下落到盘中并和盘子粘在一起,于是盘子开始振动. (1)此时的振动周期与空盘子作振动时的周期有何不同? (2)此时的振动振幅多大? 解:(1)空盘的振动周期为k M π2,落下重物后振动周期为km M +π2,即增大. (2)按(3)所设坐标原点及计时起点,0=t 时,则kmgx -=0.碰撞时,以M m ,为一系统动量守恒,即0)(2v M m gh m +=则有 Mm ghm v +=20于是gM m khk mg M m gh m k mg v x A )(21))(2()()(22222++=++=+=ω【例题6】 有两个同方向、同频率的简谐振动,其合成振动的振幅为m 20.0,位相与第一振动的位相差为6π,已知第一振动的振幅为m 173.0,求第二个振动的振幅以及第一、第二两振动的位相差.解:由题意可做出旋转矢量图如下. 由图知01.02/32.0173.02)2.0()173.0(30cos 222122122=⨯⨯⨯-+=︒-+=A A A A A∴ m 1.02=A 设角θ为O AA 1,则θcos 22122212A A A A A -+=即 01.0173.02)02.0()1.0()173.0(2cos 2222122221=⨯⨯-+=-+=A A A A A θ 即2πθ=,这说明,1A 与2A 间夹角为2π,即二振动的位相差为2π.【例题7】 试用最简单的方法求出下列两组谐振动合成后所得合振动的振幅:(1) ⎪⎩⎪⎨⎧+=+=cm )373cos(5cm )33cos(521ππt x t x (2)⎪⎩⎪⎨⎧+=+=cm)343cos(5cm )33cos(521ππt x t x解: (1)∵ ,233712πππφφφ=-=-=∆ ∴合振幅 cm 1021=+=A A A(2)∵ ,334πππφ=-=∆ ∴合振幅 0=A【例题8】一质点同时参与两个在同一直线上的简谐振动,振动方程为⎪⎩⎪⎨⎧-=+=m)652cos(3.0m )62cos(4.021ππt x t x 试分别用旋转矢量法和振动合成法求合振动的振动幅和初相,并写出谐振方程。
解:∵ πππφ=--=∆)65(6 ∴ m 1.021=-=A A A 合3365cos3.06cos4.065sin3.06sin4.0cos cos sin sin tan 22122211=+-⨯=++=ππππφφφφφA A A A ∴ 6πφ=其振动方程为m )62cos(1.0π+=t x第六章 波动重点:时间推迟法、 波动方程三层物理意义、波的干涉。
主要公式:1⎩⎨⎧取加号向左取负号向右,;,u u或:23.干涉波形成的条件:振动方向相同、频率相同、相位差恒定。
4a.当相位差满足:πϕk 2±=∆时,干涉加强,21A A A MAX +=; b.当相位差满足:πϕ)12(+±=∆k 时,干涉减弱,21A A A MIN -=。
【例题1】一平面简谐波沿x 轴负向传播,波长λ=1.0 m ,原点处质点的振动频率为ν=2. 0 Hz ,振幅A =0.1m ,且在t =0时恰好通过平衡位置向y 轴负向运动,求此平面波的波动方程.解: 由题知0=t 时原点处质点的振动状态为0,000<=v y ,故知原点的振动初相为2π,取波动方程为])(2cos[0φλπ++=xT t A y 则有 ]2)12(2cos[1.0ππ++=x t y)224cos(1.0πππ++=x t m【例题2】 已知波源在原点的一列平面简谐波,波动方程为y =A cos(Cx Bt -),其中A ,B ,C 为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l 处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d 的两点的位相差. 解: (1)已知平面简谐波的波动方程)cos(Cx Bt A y -= (0≥x )将上式与波动方程的标准形式)22cos(λππυxt A y -=比较,可知:波振幅为A ,频率πυ2B =, 波长C πλ2=,波速CB u ==λυ, 波动周期BT πυ21==.(2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -=(3)因任一时刻t 同一波线上两点之间的位相差为 )(212x x -=∆λπφ将d x x =-12,及Cπλ2=代入上式,即得 Cd =∆φ.【例题3】沿绳子传播的平面简谐波的波动方程为y =0.05cos(10x t ππ4-),式中x ,y 以米计,t 以秒计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度; (3)求x =0.2m t =1s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25s 时刻到达哪一点? 解: (1)将题给方程与标准式)22cos(x t A y λππυ-=相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅.(2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m【例题4】 一列机械波沿x 轴正向传播,t =0时的波形如题5-13图所示,已知波速为10 m ·s-1,波长为2m ,求: (1)波动方程;(2) P 点的振动方程及振动曲线; (3) P 点的坐标;(4) P 点回到平衡位置所需的最短时间.解: 由图可知1.0=A m ,0=t 时,0,200<=v A y ,∴ 30πφ=,由题知2=λm , 10=u 1s m -⋅,则5210===λυuHz∴ ππυω102==(1)波动方程为]3)10(10cos[.01ππ+-=x t y m(2)由图知,0=t 时,0,2<-=P P v A y ,∴34πφ-=P (P 点的位相应落后于0点,故取负值)∴P 点振动方程为)3410cos(1.0ππ-=t y p (3)∵ πππ34|3)10(100-=+-=t x t ∴解得 67.135==x m(4)根据(2)的结果可作出旋转矢量图如图(a),则由P 点回到平衡位置应经历的位相角图(a)πππφ6523=+=∆ ∴所属最短时间为121106/5==∆=∆ππωφt s 【例题5】如图所示,有一平面简谐波在空间传播,已知P 点的振动方程为P y =A cos(0ϕω+t ).求:(1)分别就图中给出的两种坐标写出其波动方程; (2)写出距P 点距离为b 的Q 点的振动方程. 解: (1)如图(a),则波动方程为])(cos[0φω+-+=uxu l t A y 如图(b),则波动方程为])(cos[0φω++=uxt A y (2) 如图(a),则Q 点的振动方程为])(cos[0φω+-=ubt A A Q 如图(b),则Q 点的振动方程为])(cos[0φω++=ubt A A Q【例题6】 如图所示,设B 点发出的平面横波沿BP 方向传播,它在B 点的振动方程为t y π2cos 10231-⨯=;C 点发出的平面横波沿CP 方向传播,它在C 点的振动方程为)2cos(10232ππ+⨯=-t y ,本题中y 以m 计,t 以s 计.设BP =0.4m ,CP =0.5 m ,波速u =0.2m ·s -1,求:(1)两波传到P 点时的位相差;(2)当这两列波的振动方向相同时,P 处合振动的振幅;解: (1) )(2)(12BP CP ---=∆λπϕφφ)(BP CP u --=ωπ 0)4.05.0(2.02=--=ππ(2)P 点是相长干涉,且振动方向相同,所以321104-⨯=+=A A A P m=i 第十五章 波动光学重点:杨氏双缝干涉、增透膜增反膜、劈尖干涉、单缝衍射、衍射光栅、光的偏振(马吕斯定理和布儒斯特角) 主要公式:1.光程差与半波损失光程差:几何光程乘以折射率之差:2211r n r n -=δ,另外在薄膜干涉中还要考虑是否因为半波损失而引起附加光程差。