大学物理公式大全下册
大学普通物理公式大全

1.位置矢量:r,其在直角坐标系中:k z j y i x r ++=;222z y x r ++=角位置:θ2.速度:dtr d V=平均速度:tr V ∆∆=速率:dtds V =(τV V =)角速度:dt d θω=角速度与速度的关系:V=rω3.加速度:dtV d a=或22dt r d a =平均加速度:tV a ∆∆=角加速度:dtd ωβ=在自然坐标系中n a a a n+=ττ其中dtdV a =τ(=rβ),rV n a 2=(=r 2 ω)4.力:F =ma(或F =dtp d ) 力矩:F r M⨯=(大小:M=rFcos θ方向:右手螺旋法则)5.动量:V m p=,角动量:V m r L ⨯=(大小:L=rmvcos θ方向:右手螺旋法则)6.冲量:⎰=dt F I(=FΔt);功:⎰⋅=r d F A(气体对外做功:A=∫PdV )7.动能:mV 2/28.势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:机械能:E=E K +E P9.热量:CRT M Q μ=其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强:ωn tSISF P 32=∆==11. 分子平均平动能:kT 23=ω;理想气体内能:RT s r t M E )2(2++=μ12. 麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔内的分子数所占比率) 13. 平均速率:πμRTNdN dV V Vf VV80)(==⎰⎰∞方均根速率:μRTV22=;最可几速率:μRTpV 3=14. 电场强度:E =F/q 0 (对点电荷:rr q E ˆ420πε=) 15. 电势:⎰∞⋅=aar d E U(对点电荷rq U04πε=);电势能:W a =qU a (A= –ΔW)16. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/217. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。
大学物理公式大全

大学物理公式大全大学物理公式大全物理学是一门探索自然现象的科学,它研究宇宙的运动、力的作用、物质的组成和性质等。
在大学物理学学习中,我们会接触到众多的物理公式。
下面是一份大学物理公式大全,供大家参考。
1. 运动学公式:速度(v)= 位移(s)/ 时间(t)加速度(a)= (末速度(v)- 初速度(u))/ 时间(t)位移(s)= 初速度(u)* 时间(t) + 1/2 * 加速度(a)* 时间(t)^22. 牛顿第一定律(惯性定律):一个物体在没有受到外力作用时,保持静止或匀速直线运动。
3. 牛顿第二定律(力与加速度的关系):力(F)= 质量(m)* 加速度(a)4. 牛顿第三定律(作用与反作用定律):两个物体之间的相互作用力,两个力的大小相等、方向相反。
5. 动能公式:动能(K)= 1/2 * 质量(m)* 速度^26. 动量公式:动量(p)= 质量(m)* 速度(v)7. 转动力矩(扭矩)公式:转动力矩(τ)= 力(F)* 力臂(r)8. 转动惯量公式:转动惯量(I)= 质量(m)* 半径(r)^29. 动量守恒定律:在一个封闭系统中,如果没有外力作用,系统的总动量保持不变。
10. 能量守恒定律:在一个封闭系统中,能量的总量保持不变。
11. 功公式:功(W)= 力(F)* 位移(s)12. 弹性势能公式:弹性势能(E)= 1/2 * 弹性系数(k)* 弹性变形^213. 引力公式:引力(F)= 万有引力常数(G)* (质量1(m1)* 质量2(m2))/ 距离^214. 等离子体温度公式:等离子体温度(T)= 等离子体内电子能量总量(Ee)/ 等离子体内电子数目(Ne)* Boltzmann常数(k)15. 麦克斯韦速度分布公式:概率密度(f)= (质量(m)/ (2 * π * Boltzmann常数(k) * 温度(T)))^(3/2) * e^(-(速度(v)^2)/ (2 * Boltzmann常数(k) * 温度(T)))16. 电场强度公式:电场强度(E)= 电力(F)/ 电荷量(q)17. 电能公式:电能(W)= 电流(I) * 电压(V) * 时间(t)18. 磁场强度公式:磁场强度(B)= 电流(I)* μ0 / (2 *π * r)19. 磁感应强度公式:磁感应强度(B)= 磁场强度(μ0) * 磁化强度(M)20. 麦克斯韦电磁场微分方程组:∇·E = ρ / ε0∇·B = 0∇×E = - ∂B / ∂t∇×B = μ0J + μ0ε0 ∂E / ∂t以上仅是大学物理中的一小部分公式,物理学的知识非常广泛且深入。
((完整版))大学物理公式大全(大学物理所有的公式应有尽有),推荐文档

2.30 I r 2dm r 2 dv 转动惯量 (dv 为相应质元
m
v
dm 的体积元,p 为体积元 dv 处的密度)
2.31 L I 角动量
2.32 M Ia dL 物体所受对某给定轴的合外力矩等 dt
于物体对该轴的角动量的变化量
2.33 Mdt dL 冲量距
2.34
t
Mdt
v gt
y
1
at 2
v
2
2 2gy
v v0 gt
y
v0t
1 2
gt
2
v 2 v0 2 2gy
1.17
抛体运动速度分量
v
y
vx
v0
v0 cos a sin a gt
x v0 cos a t
1.18
抛体运动距离分量
y
v0 sin a t
1 2
gt 2
1.19 射程 X= v02 sin 2a g
F=ma 牛顿第三定律:若物体 A 以力 F1 作用与物体 B,则同 时物体 B 必以力 F2 作用与物体 A;这两个力的大小相等、 方向相反,而且沿同一直线。
万有引力定律:自然界任何两质点间存在着相互 吸引力,其大小与两质点质量的乘积成正比,与两质点 间的距离的二次方成反比;引力的方向沿两质点的连线
dv d 2r
1.8 瞬时加速度 a= =
dt dt 2
1.11 匀速直线运动质点坐标 x=x0+vt 1.12 变速运动速度 v=v0+at
1
1.13 变速运动质点坐标 x=x0+v0t+ at2
2
1.14 速度随坐标变化公式:v2-v02=2a(x-x0) 1.15 自由落体运动 1.16 竖直上抛运动
大学物理公式总结

引言在大学物理学习的过程中,公式总结是非常重要的。
公式的掌握和运用对于解决物理问题至关重要。
本文将对大学物理学中常见的公式进行总结,帮助读者更好地理解和应用这些公式。
概述一、运动学公式1.位移公式:s=v0t+(1/2)at^22.速度公式:v=v0+at3.加速度公式:a=(vv0)/t4.时间公式:t=(vv0)/a5.加速度与位移公式:s=v0t+(1/2)a(t^2)二、牛顿力学公式1.牛顿第一定律:F=ma2.牛顿第二定律:F=dp/dt=m(dv/dt)3.动量公式:p=mv4.力与位移公式:W=Fdcosθ5.原动力学公式:F=ma=m(dv/dt)三、能量和功的公式1.功公式:W=Fdcosθ2.重力势能公式:PE=mgh3.动能公式:KE=(1/2)mv^24.动能定理:ΔKE=W_net5.功率公式:P=W/t四、电动力学公式1.电流公式:I=Q/t2.电压公式:V=W/Q3.电阻公式:R=V/I4.电功率公式:P=IV=I^2R5.电容公式:C=Q/V五、光学公式1.光速公式:c=λf2.光的折射公式:n1sinθ1=n2sinθ23.焦距公式:1/f=1/v+1/u4.薄透镜成像公式:(1/f)=(1/v)+(1/u)5.杨氏双缝干涉公式:dsinθ=mλ总结通过本文对大学物理学中常见公式的总结,我们可以看到这些公式在解决问题中起到至关重要的作用。
运动学公式帮助我们了解物体的运动,牛顿力学公式帮助我们理解物体受力的原理,能量和功的公式帮助我们理解能量的转化和传递,电动力学公式帮助我们理解电路中的电流、电压和电阻的关系,光学公式帮助我们理解光的传播和成像的原理。
在学习这些公式时,我们需要深入理解它们的物理意义,并能够熟练地运用到实际问题中。
只有通过不断的练习和实践,才能真正掌握这些公式。
希望本文对读者学习大学物理学中的公式有所帮助,能够更好地应用于解决实际问题。
大学物理公式大全(大学物理所有的公式应有尽有)

第一章 质点运动学和牛顿运动定律1。
1平均速度 v =t△△r1。
2 瞬时速度 v=lim 0△t →△t△r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1。
7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1。
8瞬时加速度a=dt dv =22dtrd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1。
13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2—v 02=2a(x —x 0) 1。
15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001。
18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1。
19射程 X=gav 2sin 21。
20射高Y=gav 22sin 201。
21飞行时间y=xtga —g gx 21.22轨迹方程y=xtga —av gx 2202cos 21。
23向心加速度 a=Rv 21。
24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1。
25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv 1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1。
31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理公式大全(大学物理所有的公式应有尽有)

第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gyv v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理公式总结

大学物理电磁学公式总结第一章(静止电荷的电场)1.电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。
2. 库仑定律:两个静止的点电荷之间的作用力F =kq 1q 2r 2e r =q 1q 24πε0r 2e r3. 电力叠加原理:F=ΣF i4. 电场强度:E=Fq 0, q 0为静止电荷5. 场强叠加原理:E=ΣE i用叠加法求电荷系的静电场:E =∑q i4πε0r i2e ri i (离散型) E=∫dq4πε0r 2e r q(连续型)6. 电通量:Φe=∫E •dS s7. 高斯定律:∮E •dS s=1ε0Σq int 8. 典型静电场:1) 均匀带电球面:E=0 (球面内)E=q4πε0r 2e r (球面外)2) 均匀带电球体:E=q4πε0R3r =ρ3ε0r (球体内)E=q4πε0r 2e r (球体外)3) 均匀带电无限长直线: E=λ2πε0r ,方向垂直于带电直线4) 均匀带电无限大平面:E=σ2ε0,方向垂直于带电平面9. 电偶极子在电场中受到的力矩:M=p×E第九章 静电场知识点:1、 用积分方法计算连续带电体电场强度,场强叠加是矢量叠加;首先进行矢量分解,再把同方向的相加;2、 运用高斯定理,计算电荷均匀分布、对称带电体周围空间的场强和电势;关键是分析场强分布特点,选好封闭曲面;(1)电荷在表面均匀分布的带电圆筒;(选择一个封闭圆柱曲面) (2)电荷在表面均匀分布的带电球壳;(选择一个封闭球面) (3)电荷均匀分布的无穷大平面;(选择一个封闭圆柱曲面)3、 根据电势定义用积分方法计算连续带电体的激发的电势,要获得积分路径上场强的分布;电势叠加是标量叠加; 4、 电场强度环路定理一些问题辨识:1、理解高斯定理的内容:(1)只有封闭曲面内的电荷,才对该封闭曲面的电通量有贡献;(2)曲面以外的任何电荷,对该封闭曲面的电通量没有贡献;(3)这里强调的是封闭曲面,如果只是一个有限曲面,是封闭曲面的一部分,里外的电荷对该部分是有电通量贡献的:(4)里、外的电荷都对曲面上的各点产生场强;2、场强等于零的空间点,电势可以不为零;电势为零的空间点,场强可以不为零;1、 有关静电场的论述,正确的是( )(1) 只有封闭曲面内的电荷才对该封闭曲面的电通量有贡献;√(2) 无论封闭曲面内的电荷的位置如何改变,只要不离开该封闭曲面,而且电荷代数和不变,该封闭曲面的电通量就不变;√(3) 封闭曲面内部的任何电荷的位置的改变,尽管不离开该封闭曲面,而且电荷代数和不变,该封闭曲面的电通量也要发生改变;×(4) 封闭曲面外的电荷激发的场强对该封闭曲面上的任何面元的电通量的贡献为零;×(5) 如果封闭曲面的电通量为零,则该封闭曲面上任何面元上的电场强度一定为零;×(6) 如果封闭曲面的电通量不为零,则该封闭曲面上任何面元的电通量的一定不为零;×(7) 电场强度为零的空间点,电势一定为零;×(8) 在均匀带电的球壳内部,电场强度为零,但电势不为零;√计算场强的三种方法,按照问题的实际情况选择最方便的方法: (1) 根据连续带电体的积分公式; (2) 采用高斯定理;(3) 先获得电势分布公式,然后计算偏导数;z z y x U E y z y x U E x z y x U E z y x ∂∂-=∂∂-=∂∂-=),,(;),,(;),,(计算电势分布首先计算场强分布,再计算电势分布;➢ 第三章(电势)1. 静电场是保守场:∮E •dr L=0 2. 电势差:φ1 –φ2=∫E •dr (p2)(p1)电势:φp =∫E •dr (p0)(p) (P0是电势零点) 电势叠加原理:φ=Σφi 3. 点电荷的电势:φ=q 4πε0r电荷连续分布的带电体的电势:φ=∫dq4πε0r4. 电场强度E 与电势φ的关系的微分形式:E=-grad φ=-▽φ=-(∂φ∂x i+∂φ∂y j+∂φ∂z k)电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。
大学物理 部分公式

1.理想气体物态方程:pV=NkT 变形1:Pv=νRT (R=N A k)变形2:P=nkT (n=N/V为分子数密度)2.理想气体压强公式:P=(1/3)nmv^2 变形:P=2/3nεk (εk分子平均平动动能)3理想气体平均平动动能与温度关系:1/2mv^2=εk=3/2kT4方均根速率: Vrms=(3kT/m)^(1/2)= (3Rt/M)^(1/2)5自由度:单i=3 双刚=5 双非=7 三以上刚=6 ε =i1/2kT6理想气体内能:E=N A i1/2kT =i/2RT7三种统计速率:1)最概然速率V p=(2kT/m)^(1/2)= (2RT/M)^(1/2) 2)平均速率v =(8kT/πm)^(1/2) 3)4 8分子平均碰撞次数:Z,分子连续两次碰撞间的路程均值叫做平均自由程λλ=v/ Z Z =1.41πd ^2 vn 9准静态过程中体积变化做功:ΔW=PΔV=(Sv1v2)pdV10.摩尔定体热容:C v,m=dQ/dT dE=:C v,m* dT11热机效率:η=W/Q1 =(Q1-Q2)/Q1 =1-Q1/Q2 (Q1为吸热量 Q2为热源吸收量)12等体过程中V为常量,即dW=0 dQ=dE 吸收热量全部转化为内能13转动定理:M=Jα常见转动惯量1)中心轴细棒:ml^2 /12 2)圆柱体:mR^2 / 2 3)薄圆环J=mR24)端点轴细棒:J=ml2/14平行轴定理:J=J C+md215电容器电能:W=1/2 QU=1/2 CU216 电场能量密度:w=1/2εΕ217.磁场能量:W=1/2 LI2 密度w=W/V=B2/2μ19.毕奥撒法尔定律:dB=(μ0/4π)*(Idlsinθ/r^2)= (μ0/4π)*(Idl e r/r^2)20.运动电荷磁场:B=(μ0/4π)*(qvr/r^3)21.无限长直导线B=μ0I/2πr022.库伦定律 F=(1/4πε0)(q1q2/r^2)e r23圆形载流导线轴线上一点 B=(μ0/2)(R2I/(R2+x2)3/2) x>>R B=μ0IR2/2x3A-B 等温膨胀内能不变对外做功W1=从T1高温处吸热Q1W1=Q1=vRTT1ln(V2/V1)B-C 绝热膨胀对外做功等于气体减少的内能W2=vCv,m(T1-T2)C-D 等温压缩:外界对气体做功等于气体给低温热源的热量W3=Q2= vRTT2ln(V4/V3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁学
1.定义:
①E 和B :
F =q(E +V ×B
)洛仑兹公式
②电势:⎰
∞
⋅=
r
r d E U
电势差:⎰-+
⋅=l d E U
电动势:⎰
+
-
⋅=
l
d K ε(q
F K 非静电
=) ③电通量:⎰⎰⋅=S d E e
φ磁通量:⎰⎰⋅=S d B B
φ磁通链:
ΦB =N φB 单位:韦伯(Wb ) 磁矩:m
=I S
=IS n
ˆ ④电偶极矩:p
=q l
⑤电容:C=q/U 单位:法拉(F )
*自感:L=Ψ/I 单位:亨利(H ) *互感:M=Ψ21/I 1=Ψ12/I 2 单位:亨利(H ) ⑥电流:I =
dt
dq ; *位移电流:I D =ε0
dt
d e φ 单位:安培(A )
⑦*能流密度: B E S ⨯=
μ
1
2.实验定律
①库仑定律:0
204r r
Qq F πε=
②毕奥—沙伐尔定律:204ˆr r l Id B d πμ⨯= ③安培定律:d F =I l d ×B
④电磁感应定律:ε感= –dt
d B
φ 动生电动势:⎰+
-⋅⨯=
l d B V
)(ε
感生电动势:⎰
-
+
⋅=l d E i
ε(E i 为感生电场)
*⑤欧姆定律:U=IR (E =ρj
)其中ρ为电导率 3.*定理(麦克斯韦方程组) 电场的高斯定理:
⎰⎰
=⋅0εq S d E ⎰⎰
=⋅0
εq S d E 静(E
静是有源场)
⎰⎰=⋅0
S d E
感 (E 感是无源场) 磁场的高斯定理:⎰⎰=⋅0S d B
⎰⎰=⋅0S d B
(B 稳是无源场)
E =F
/q 0 单位:N/C =V/m
B=F max /qv ;方向,小磁针指向(S →N );单位:特斯拉(T )=104高斯(G )
Θ ⊕
-q l +q
⎰⎰=⋅0
S d B
(B 感是无源场) 电场的环路定理:⎰
-=⋅dt
d l d E B φ
⎰=⋅0l d E
静
(静电场无旋)
⎰-=⋅dt d l d E B φ 感(感生电场有旋;变化的磁场产生感
生电场)
安培环路定理:d I I l d B 00μμ+=⋅⎰
⎰
=⋅I l d B 0μ
稳 (稳恒磁场有旋) dt
d l d B
e φεμ00⎰=⋅ 感
(变化的电场产生感生磁场)
4.常用公式
①无限长载流导线:r I B πμ20= 螺线管:B=nμ0I
②带电粒子在匀强磁场中:半径qB
mV R =周期qB
m T π2=
磁矩在匀强磁场中:受力F=0;受力矩B m M
⨯=
③电容器储能:W c =21CU 2 *电场能量密度:ωe =21ε0E 2
电磁场能量密度:ω=21ε
0E
2+0
21
μB 2
*电感储能:W L =21LI 2 *磁场能量密度:ωB =0
21μB 2
电磁场能流密度:S=ωV
④ *电磁波:C=
001
εμ=3.0×108m/s 在介质中V=C/n,频率f=ν=
021
εμπ
波动学
1.定义和概念
简谐波方程: x 处t 时刻相位 振幅
简谐振动方程:ξ=Acos(ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′)
相位Φ——决定振动状态的量
振幅A ——振动量最大值 决定于初态 x0=Acos φ 初相φ——x=0处t=0时相位 (x 0,V 0) V 0= –A ωsin φ 频率ν——每秒振动的次数
圆频率ω=2πν 决定于波源如: 弹簧振子ω=m k /
周期T ——振动一次的时间 单摆ω=l g /
波速V ——波的相位传播速度或能量传播速度。
决定于介质如: 绳V=μ/T 光速V=C/n 空气V=ρ/B
波的干涉:同振动方向、同频率、相位差恒定的波的叠加。
光程:L=nx(即光走过的几何路程与介质的折射率的乘积。
相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。
拍:频率相近的两个振动的合成振动。
驻波:两列完全相同仅方向相反的波的合成波。
多普勒效应:因波源与观察者相对运动产生的频率改变的现象。
衍射:光偏离直线传播的现象。
自然光:一般光源发出的光
偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。
部分偏振光:各振动方向概率不等的光。
可看成相互垂直两振幅不同的光的合成。
2.方法、定律和定理 ①旋转矢量法: 如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A
在x方向的投影。
相干光合成振幅: A=φ∆++cos 2212221A A A A
其中:Δφ=φ1-φ2–λπ
2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1)
②惠更斯原理:波面子波的包络面为新波前。
(用来判断波的传播方向) ③菲涅尔原理:波面子波相干叠加确定其后任一
点的振动。
④*马吕斯定律:I 2=I 1cos 2θ ⑤*布儒斯特定律:
当入射光以I p 入射角入射时则反射光为垂直入射面振动的
完全偏振光。
I p 称布儒斯特角,其满足:
tg i p = n 2/n 1
3. 公式
振动能量:E k =mV 2/2=E k (t) E= E k +E p =kA 2/2 E p =kx 2/2= (t) *波动能量:222
1A ρωω= I=V A V 222
1ρωω=∝A 2
*驻波:
波节间距d=λ/2 基波波长λ0=2L
基频:ν0=V/λ0=V/2L; 谐频:ν=nν0
*多普勒效应:
机械波ννs
R V V V V -+='(V R ——观察者速度;V s ——波源速度) 对光波ν
νr
r V C V C +-=
'其中V r 指光源与观察者相对速度。
杨氏双缝: dsin θ=kλ(明纹) θ≈sin θ≈y/D 条纹间距Δy=D/λd
单缝衍射(夫琅禾费衍射)
:
asin θ=kλ(暗纹)
θ≈sin θ≈y
/f
瑞利判据:
θ
min =1/R =1.22λ/D (最小分辨角) 光栅: dsin θ=kλ(明纹即主极大满足条件) tg θ=y/f d=1/n=L/N (光栅常数) 薄膜干涉:(垂直入射)
δ反=2n2t+δ0 δ0= 0 中
λ/2 极
增反:δ反=(2k+1)λ/2
增透:δ反=k λ。