6.4 数列求和、数列的综合应用

合集下载

高三数学考点-数列求和及应用

高三数学考点-数列求和及应用

6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。

2016届新课标高三数学(文)一轮复习习题 §6.4数列求和、数列的综合应用 2年模拟

2016届新课标高三数学(文)一轮复习习题 §6.4数列求和、数列的综合应用 2年模拟

§ 6。

4 数列求和、数列的综合应用A 组 2014-2015年模拟·基础题组限时:35分钟1。

(2014河南安阳二模,6)已知数列{a n }中,a n =—4n+5,等比数列{b n }的公比q 满足q=a n —a n —1(n≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=( )A.1-4n B 。

4n —1 C.1-4n3 D.4n-132。

(2014辽宁五校协作体联考,15)已知数列{a n }满足a n =1+2+3+…+nn,则数列{1a n a n+1}的前n 项和为 。

3.(2014广东揭阳3月模拟,13)对于每一个正整数n,设曲线y=x n+1在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99= 。

4。

(2015河北石家庄调研)在数列{a n }中,已知a 1=14,a n+1a n=14,b n +2=3lo g 14a n (n∈N *). (1)求数列{a n }的通项公式; (2)求证:数列{b n }是等差数列;(3)设数列{c n }满足c n =a n +b n ,求{c n }的前n 项和S n .5.(2014广东湛江二模,19)已知等差数列{a n}的首项a1=1,公差d>0,且a2,a5,a14分别是等比数列{b n}的b2,b3,b4。

(1)求数列{a n}和{b n}的通项公式;(2)设数列{c n}对任意正整数n均有c1b1+c2b2+…+c nb n=a n+1成立,求c1+c2+…+c2 014的值。

B组2014—2015年模拟·提升题组限时:50分钟1.(2015长春外国语学校期中)若数列{a n}满足1a n+1—pa n=0,n∈N*,p为非零常数,则称数列{a n}为“梦想数列”.已知正项数列{1b n}为“梦想数列”,且b1b2b3…b99=299,则b8+b92的最小值是()A。

高中数学-数列综合应用

高中数学-数列综合应用

数列综合应用知识精要一、数列求和数列求和的常用方法1、公式法(1)直接利用等差数列、等比数列的前n 项公式求和;①等差数列的前n 项和公式:②等比数列的前n 项和公式:(2)一些常见的数列的前n 项和:○1(1)12342n n n ++++++=; ○22222(1)(21)1236n n n n ++++++=; ○32462(1)n n n ++++=+; ○4213521n n ++++-=; ○52233332(1)(1)123[]24n n n n n ++++++==。

2、倒序相加法如果一个数列{}n a ,首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的。

3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的;4、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n 项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。

5、分组求和法一个数列的通项公式是由若干个等差或等比或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减;6、并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和。

形如(1)()n n a f n =-类型,可采用两项合并求解。

二、数列的综合应用1、解答数列应用题的步骤:(1)审题——仔细阅读材料,认真理解题意;(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么;(3)求解——求出该问题的数学解;(4)还原——将所求结果还原到实际问题中。

2、数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差;(2)等比数列:如果后一个量与前一个量的比是一个固定的数时,该模型是等比数列模型,这个固定的数就是公比。

6.4 数列求和、数列的综合运用-5年3年模拟北京高考

6.4 数列求和、数列的综合运用-5年3年模拟北京高考

6.4 数列求和、数列的综合应用五年高考考点1 数列求和1.(2012大纲全国.5,5分)已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为 ( )101100.A 10199.B 10099.C 100101.D 2.(2011天津,4,5分)已知}{n a 为等差数列,其公差为-2,且7a 是3a 与9a 的等比中项,n s 为}{n a 的前n 项和,*,N n ∈则10S 的值为( )110.-A 90.-B 90.C 110.D3.(2013辽宁.14,5分)已知等比数列}{n a 是递增数列,n S 是}{n a 的前n 项和,若31,a a 是方程0452=+-x x 的两个根,则=6S4.(2013重庆.12,5分)已知}{n a 是等差数列,,11=a 公差=/d n s ,0为其前n 项和,若521,,a a a 成等比数列,则8s =5.(2013湖南,15,5分)设n s 为数列}{n a 的前n 项和,=n s ,,21)1(⋅∈--N n a nn n则 =3)1(a=+++10021)2(S S S6.(2010上海,10)在n 行n 列矩阵中,记位于第i 行第J 列的数为).,,2,1(n j i a ij =、当n=9时,+++332211a a u =+99a7.(2013四川,16,12分)在等差数列}{n a 中,,831=+a a 且4a 92a a 和为的等比中项,求数列}{n a 的首项、公差及前n 项和.8.(2013浙江,1814分)在公差为d 的等差数列}{n a 中,已知,101=a 且3215,22,a a a +成等比数列. (1)求;,n a d(2)若d<0,求.||||||||321n a a a a ++++智力背景蝴蝶效应(二) 这一天,Lorenz 想更避.步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果当时,电脑处理数据资料的速度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵.回来后,结果出来了,不过令他目瞪口呆,结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯而问题并不出在电脑,问题是他输入的数据差了0:1000127,而这细微的差异却造成天壤之别,所以长期地准确预测天气是不可能的.9.(2012江西.16,12分)已知数列}{n a 的前n 项和221n s n -=kn +(其中*),N k ∈且n s 的最大值为8. (1)确定常数k ,并求,n a (2)求数列}229{nna -的前n 项和⋅n T 10.(2012湖北.18,12分)已知等差数列}{n a 前三项的和为-3,前三项的积为8.(1)求等差数列}{n a 的通项公式;(2)若132,,a a a 成等比数列,求数列|}{|n a 的前n 项和.11.(2011山东.20,12分)等比数列}{n a 中,321,,a a a 分别是下表第一、二、三行中的某一个数,且321,,a a a 中的任何两个数不在下表的同一列.(1)求数列}{n a 的通项公式;(2)若数列}{n b 满足:,ln )1(n n n n a a b -+=求数列}{n b 的前n 项和⋅n s考点2 数列的综合应用1.(2013课标全国112.5分)设n n n C B A ∆的三边长分别为,n a n n n n n C B A c b ∆,,的面积为.,3,2,1, =n s n 若1111,c b c b +>==+11,2n a a ,2,1n n n n a c b a +=+,21nn n a b c +=+则 ( ) }.{n s A 为递减数列 }.{n s B 为递增数列}{1~2n s C ⋅为递增数列,}{2n s 为递减数列}.{12-n s D 为递减数列,}{2n s 为递增数列2.(2012华约联盟自主招生.9)已知数列}{n a 的通项公式为n a ),321lg(2nn ++=n S n ,.2.1 =是数列 }{n a 的前n 项和,则=n S ( )0.A 3lg 31lg+++⋅n n B 2lg 2lg ++⋅n n C 3lg 11lg ++-⋅n n D 3.(2012卓越联盟自主招生.6)设}{n a 是等差数列,}{n b 是等比数列,记}{},{n n b a 的前n 项和分别为⋅n n T S ,若==433,a b a ,4b 且,52435=--T T S s 则=++3535b b a a 4.(2012课标全国.16.5分)数列}{n a 满足=-++n n n a a )1(1,12-n 则}{n a 的前60项和为 5.(2011陕西.14,5分)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米.开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米).6.(2013江西,17,12分)正项数列}{n a 的前n 项和n s 满足:2n S )1(2-+-n n .0)(2=+-n n s n(1)求数列}{n a 的通项公式,n a (2)令,)2(122nn a n n b ++=数列}{n b 的前n 项和为⋅n T 证明:对于任意的*,N n ∈都有⋅<645n T 7.(2013广东,19,14分)设数列}{n a 的前n 项和为⋅n s 已知1a 12,1+==n n a n s ,32312---n n .⋅∈N n(1)求2a 的值;(2)求数列}{n a 的通项公式; (3)证明:对一切正整数n ,有⋅<+++471.111n a a a 8.(2013湖北.22,14分)设n 是正整数,r 为正有理数. (1)求函数)1(1)1()1()(1->-+-+=+x x r x x f r 的最小值;(2)证明:;1)1(1)1(1111+-+<<+--++++r n n n r n n r r r r r 智力背景运筹学(一) 在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马的故事,这个故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效 果.可见,筹划、安排是十分重要的,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决,前者提供模型,后者提供理论和方法.(3)设,R x ∈记[x]为不小于x 的最小整数,例如][,2]2[π=⋅-=-=.1]23[,4 令,1258382813333++++= s 求[S]的值.(参考数据:≈≈≈≈34343434126,3.618124,5.35081,7.34480)7.6319.(2012大纲全国.22,12分)函数.32)(2--=x x x f 定义数列}{n x 如下:11,2+=n x x 是过两点))(,()5,4(n n n x f x Q p 、的直线n PQ 与x 轴交点的横坐标.(1)证明:;321<<≤+n n x x (2)求数列}{n x 的通项公式.10.(2012广东,19,14分)设数列}{n a 的前n 项和为,n s 满足*,,12211N n a S n n n ∈+-=++且321,5,a a a + 成等差数列. (1)求1a 的值;(2)求数列}{n a 的通项公式; (3)证明:对一切正整数n ,有⋅<+++2311121n a a a 11.(2012天津.18,13分)已知}{n a 是等差数列,其前n 项和为}{,n n b S 是等比数列,且,211==b a.10,274444=-=+b S b a(1)求数列}{}{1n n b a 与的通项公式;(2)记*,,1211N n b a b a b a T n n n n ∈+++=- 证明=+12n T ⋅⋅∈+-)(102N n b a n n12.(2012陕西.17,12分)设}{n a 是公比不为1的等比数列,其前n 项和为,n S 且435,,a a a 成等差数列. (1)求数列}{n a 的公比;(2)证明:对任意12,,,++⋅∈k k k S S S N k 成等差数列.13.(2012四川.20,12分)已知数列}{n a 的前n 项和为,n S 且n n s s a a +=22对一切正整数n 都成立.(1)求21,a a 的值;(2)设,01>a 数列}10{lg 1na a的前n 项和为⋅n T 当n 为何值时,n T 最大?并求出n T 的最大值.14.(2010上海,20,13分)已知数列}{n a 的前n 项和为,n S 且n S .*,855N n a n n ∈--=(1)证明:}1{-n a 是等比数列;(2)求数列}{n s 的通项公式.请指出n 为何值时,n S 取得最小值,并说明理由.智力背景运筹学(二) 运筹学的思想在古代就已经产生了,但作为一门数学学科,用纯数学的方法来解决最 优方法的选择安排,却晚多了,可以说,运筹学是在20世纪40年代才开始兴起的一门分支.运筹学主要 研究经济和军事活动中能用数量来表达的有关策划等方面的问题,当然,随着客观实际的发展,运筹学 的内容已经深入到日常生活中去了.运筹学可根据问题,通过数学上的分析、运算,得出各种各样的结 果,最后提出综合性的合理安排,以达到最好的效果.解读探究知识清单1.当已知数列}{n a 满足),(1n f a a n n =-+且++)2()1(f f )(n f + 可求,则可用① 求数列的通项⋅n a2.当已知数列}{n a 满足),(1n f a ann =+且.).2()1( f f ⋅)(n f 可求,则可用② 求数列的通项⋅n a3.等差数列前n 项和③=n s ④= ,推导方法:⑤等比数列前n 项和⎩⎨⎧≠===,1______,)8(_______)7(,1_______6q q S n )(推导方法:错位相减法. 4.常见数列的前n 项和:=++++n 321)1(⑨⑩=++++n 2642)2(=-++++)12(531)3(n=++++2222321)4(n=++++3333321)5(n5.(1)分组求和:把一个数列分成几个可以直接求和的数列;(2)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩有限项再求和;(3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和; (4)倒序相加:例如,等差数列前n 项和公式的推导方法. 6.常见的拆项公式:;111)1(1)1(+-=+n n n n);121121(21)12)(12(1)2(+--=+-n n n n.111)3(n n n n -+=++【知识拓展】数列应用题的求解策略(1)构造等差、等比数列的模型(有时也会是其他较特殊的数列). (2)运用相关概念、性质及求和公式进行运算.(3)通过“归纳一猜想一证明”的思路探索规律,并尝试应用规律解题,等价转化和分类讨论的思想方法在求解中起重要作用,复杂的数列问题总是要通过转化为等差、等比数列或常见的特殊数列问题来解决.·知识清单答案智力背景运筹学(三) 运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以 下几个步骤:确定目标、制订方案、建立模型、制定解法.虽然不大可能存在能处理极其广泛对象的运筹 学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题,随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用,运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了.突破方法万法1错位相减求和例1 (2012吉林延边二模.17,12分)已知数列}{n a 的前n 项和为,3n n S =数列}{n b 满足)12(,111-+=-=+n b b b n n n ().⋅∈N(1)求数列}{n a 的通项公式,n a (2)求数列}{n b 的通项公式;n b (3)若,n b a c nn n ⋅=求数列}{n c 的前n 项和⋅n T解题思路解析 ,3)1(n n s =),2(311≥=∴--n S n n⋅≥⨯=-=-=∴---)2(3233111n s s a n n n n n n (2分)当n=1时, ,32321111===/=⨯-a S⎩⎨⎧≥⨯==∴-.2,32,1,31n n a n n (4分) ),12()2(1-+=+n b b n n.32,,5,3,11342312-=-=-=-=-∴-n b b b b b b b b n n以上各式相加得=-+-=-++++=-2)321)(1()32(5311n n n b b n .)1(2-n.2,121n n b b n -=∴-= (8分)(3)由题意得 ⎩⎨⎧≥⨯-=-=-.2,3)2(2,1,31n n n c n n当n≥2时, +⨯⨯+⨯⨯+⨯⨯+-=3213223123023n T ,3)2(21-⨯-+n n (10分)-++⨯⨯+⨯⨯+⨯⨯+-=∴n T n (232231230293432 ,3)2n ⨯相减得)2(232323262132--⨯++⨯+⨯+=--n T n n .3n⨯)3333(3)2(132-++++-⨯-=∴n n n n T⋅+-=--⨯-=233)52(2333)2(n n nn n⎪⎩⎪⎨⎧≥+-=-=∴.2,233)52(,1,3n n n T n n *).(233)52(N n n T n n ∈+-=∴ (12分)【方法点拨】1.用错位相减法求和时;应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出””与““n n qs s 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出”“n n qs S -的表达式. 2.利用错位相减法求和时,转化为等比数列求和.若公比是个参数(字母),则应先对参数加以讨论,一般情况下分等于1和不等于1两种情况分别求和, 方法2裂项相消求和例 2 (2012陕西西安八校二模,侣.12分)已知等差数列}{n a 的公差为2,其前n 项和*).(22N n n pn s n ∈+=(1)求p 的值及,n a (2)若,)12(2nn a n b -=记数列}{n b 的前n 项和为,n T 求使109>n T 成立的最小正整数n的值.解题思路解析 (1)解法一:}{n a 是公差为2的等差数列,.)1(2221211n a n na d na S n -+=⨯+=+=∴ (2分) 又由已知,3,21,1,2112=∴=-=∴+=a a p n pn S n,12)1(1+=-+=∴n d n a a n .12,1+==∴n a p n (4分)解法二:由已知,44,2211+=+==p S p s a 即.23,44221+=∴+=+p a p a a (2分)又此等差数列的公差为,1,22,2,..212=∴=∴=-p p a a,321=+=∴p a,12)1(1+=-+=∴n d n a a n .12,1+==∴n a p n (4分)解法三:由已知,211+==p S a∴ 当n≥2时,-+--+=-=-n n p n pn s s a n n n (2)1([2221,22)]1+-=p pn,232+=∴p a (2分)由已知 ,1,22,212=∴=∴=-p p a a,12)1(,3211+=-+=∴=+=∴n d n a a p a n .12,1+==∴n a p n (4分)(2)由(1)知,121121)12)(12(2+--=+-=n n n n b n (6分)n n b b b b T ++++=∴ 321++-+-+-= )7151()5131()3111()121121(+--n n (8分) ⋅+=+-=1221211n nn (9分),91820,109122,109+>∴>+∴>n n n n T n (10分)智力背景逻辑学的用处 有个学生请教爱因斯坦逻辑学有什么用.爱因斯坦问他:“两个人从烟囱里爬出去,一个满脸烟灰,一个干干净净,你认为哪一个该去洗澡?” “当然是脏的那个,”学生说.“不对,脏的那个看见对方干干净净,以为自己也不会脏,哪里会去洗澡?”即,,29⋅∈>N n n 又 ∴ 使109>n T 成立的最小正整数n 的值为5. (12分)【方法点拨】 1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,将通项裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.2.-般情况如下,若}{n a 是等差数列,则=+11n n a a ),11(11+-n n a a d ⋅-=++)11(21122n n n n a a d a a 此外,根式在分母上时可考虑利用分母有理化相消求和.3.常见的拆项公式:);11(1)(1)1(kn n k k n n +-=+);21121(21)12)(12(1)2(+--=+-n n n n];)2)(1(1)1(1[21)2)(1(1)3(++-+=++n n n n n n n⋅-+=++)(11)4(n k n kkn n 三年模拟A 组 2011-2013年模拟探究专项基础测试时间:50分钟 分值:60分 一、选择题(每题5分,共10分)1.(2013山东日照一模.10)已知数列}{n a 的前n 项和-=2n s n ,6n 则|}{|n a 的前n 项和=n T ( )26.n n A - 186.2+-n n B ⎩⎨⎧>+-≤≤-)3(186)31(6.22n n n n n n C ⎩⎨⎧>-≤≤-)3(6)31(6.22n n n n n n D2.(2012河南焦作4月模拟.4)已知数列}{n a 满足+=+211n a ,n n a a -且,211=a 则该数列的前2012项的和等于( )23015.A 3015.B 1509.C 2010.D 二、填空越(每题5分,共10分)3.(2013河南商丘二模.13)在等差数列}{n a 中,满足,7374a a =且n S a ,01>是数列}{n a 前n 项的和,若n s 取得最大值,则n=4.(2012江西盟校二联,13)下面给出一个“直角三角形数阵” 41 41,21 163,83,43 ……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为j i j i a ij ,,≥(*),N ∈则83a 等于三、解答题(共40分)5.(2013北京东城高三上学期期末)已知}{n a 为等比数列,其前n 项和为,n s 且*).(2N n a S n n ∈+=(1)求a 的值及数列}{n a 的通项公式;(2)若,)12(n n a n b -=求数列}{n b 的前n 项和⋅n T6.(2013安徽风阳二模,21)已知数列}{n a 的前n 项和为1,a s n -==n n a n S 2,21.,2,1),1( =-n n n (1)证明:数列}1{n s nn +⋅是等差数列,并求,n s (2)设,323n n s b n n +=求证:⋅<+++12521n b b b 7.(2013浙江嘉兴5月.19)已知数列}{n a 的前n 项和为,n S 且*).()12(2N n a n s n n ∈+-= (1)求证:数列}{n an ⋅是等比数列; (2)设数列}2{n n a 的前n 项和为++++= 321111,T T T A T n n ,1n T 试比较n A 与nna 2的大小. 智力背景数学老师收到的短信 忧愁是可微的,快乐是可积的,从现在起到正无穷的日子里,幸福是连续的, 且我对你们祝福的导数是严格大于零的,随着时间的前进趋向于正无穷.B 组 2011-2013年模拟探究专项提升测试时间:40分钟 分值:45分一、选择题(每题5分,共10分)1.(2013江西南昌一模.7)已知等比数列}{n a 的各项均为不等于1的正数,数列}{n b 满足,12,18,lg 63===b b a b n n 则数列}{n b 的前n 项和的最大值等于( )2.(2013青海玉树3月,11)已知数列}{},{n n b a 满足21,1a a =,2,21==b 且对任意的正整数,,,,l k j i 当l k j i +=+时,都有,l k j i b a b a +=+则)(2013120131i i i b a +∑=(注: ++=∑=211a a a i n i )n a +的值为( )2012.A 2013.B 2014.C 2015.D二、填空题(每题5分,共10分)3.(2013北京海淀一模,14)设关于x 的不等式∈<-n nx x x (22*)N 的解集中整数的个数为,n a 数列}{n a 的前n 项和为,n s 则100S 的值为4.(2011四川成都五校联考.14)正项数列}{n a 中,,32=a 且n s *),(422N n p a a n n ∈++=则实数p= 三、解答题(共25分)5.(2013四川攀枝花二模.20)已知数列}{n a 为等比数列,其前n 项和为,n S 已知,16741-=+a a 且对于任意的+∈N n 有,n s 12,++n n s S 成等差数列.(1)求数列}{n a 的通项公式;(2)已知),(+∈=N n n b n 记++++= ||||||332211a b a b a b T n |,|nn a b 若)1()1(2--≤-n T m n n 对于n≥2恒成立,求实数m 的范围.6.(2013山东聊城二模.20)已知函数k x x f k (log )(=为常数,k>0且k≠1),且数列)}({n a f 是首项为4,公差为2的等差数列.(1)求证:数列}{n a 是等比数列;(2)若),(n n n a f a b ⋅=当2=k 时,求数列}{n b 的前n 项和,n s(3)若,lg n n n a a c =问是否存在实数k ,使得}{n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由.智力背景似是而非的数学 父:上次你考了20分,我打了你20下.看这次你考多少分,子:那这次您就别打我了.父:为什么?子:因为我考了0分,父:……——这真是个聪明的儿子,他发现了考试分数与被打数量之间的正比例函数关系.。

数列求和与数列的综合应用

数列求和与数列的综合应用

数列求和与数列的综合应用知识点一数列求和的几种常用方法1.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.2.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.4.倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.5.并项求和法在一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an=(-1)nf(n)类型,可采用两项合并求解.1.判断正误(1)如果已知等差数列的通项公式,则在求其前n项和时使用公式Sn=较为合理.(√)(2)如果数列{an}为等比数列,且公比不等于1,则其前n项和Sn=.(√)(3)求Sn=a+2a2+3a3+…+nan之和时只要把上式等号两边同时乘以a即可根据错位相减法求得.(×)(4)如果数列{an}是周期为k的周期数列,那么Skm=mSk(m,k为大于1的正整数).(√) 2.(2019·益阳、湘潭二模)已知Sn为数列{an}的前n项和,若a1=2且Sn+1=2Sn,设bn=log2an,则++…+的值是(B)A. B.C. D.解析:由Sn+1=2Sn可知,数列{Sn}是首项为S1=a1=2,公比为2的等比数列,所以Sn =2n.当n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1.bn=log2an=当n≥2时,==-,所以++…+=1+1-+-+…+-=2-=.故选B.3.已知数列{an}的前n项和为Sn,且an=n·2n,则Sn=(n-1)2n+1+2.解析:∵an=n·2n,∴Sn=1·21+2·22+3·23+…+n·2n.①∴2Sn=1·22+2·23+…+(n-1)·2n+n·2n+1②①-②,得-Sn=2+22+23+…+2n-n·2n+1=-n·2n+1=2n+1-2-n·2n+1=(1-n)2n+1-2.∴Sn=(n-1)2n+1+2.知识点二数列的综合应用1.等差数列和等比数列的综合等差数列中最基本的量是其首项a1和公差d,等比数列中最基本的量是其首项a1和公比q,在等差数列和等比数列的综合问题中就是根据已知的条件建立方程组求解出这两个数列的基本量解决问题的.2.数列和函数、不等式的综合(1)等差数列的通项公式和前n项和公式是在公差d≠0的情况下关于n的一次或二次函数.(2)等比数列的通项公式和前n项和公式在公比q≠1的情况下是公比q的指数函数模型.(3)数列常与不等式结合,如比较大小、不等式恒成立、求参数范围等,需熟练应用不等式知识解决数列中的相关问题.4.(2019·武汉市调研考试)对任一实数序列A=(a1,a2,a3,…),定义新序列ΔA=(a2-a1,a3-a2,a4-a3,…),它的第n项为an+1-an.假定序列Δ(ΔA)的所有项都是1,且a12=a22=0,则a2=100.解析:令bn=an+1-an,依题意知数列{bn}为等差数列,且公差为1,所以bn=b1+(n-1)×1,a1=a1,a2-a1=b1,a3-a2=b2,……an-an-1=bn-1,累加得an=a1+b1+…+bn-1=a1+(n-1)b1+,分别令n=12,n=22,得解得a1=,a2=100.1.对于等差、等比数列的综合问题,要先分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项,求通项需要先求出首项和公差(公比)等,确定解题的顺序.2.数列与函数的综合问题主要有以下两类:一是已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;二是已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.在解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常用解法有助于该类问题的解决.3.数列与不等式相结合问题的处理方法(1)如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.(2)如果是解不等式问题要使用不等式的各种不同解法,如列表法、因式分解法、穿根法等.总之,解决这类问题,要把数列和不等式的知识巧妙结合起来,综合处理.考向一分组求和法【例1】(1)若数列{an}的通项公式为an=2n+2n-1,则数列{an}的前n项和为()A.2n+n2-1 B.2n+1+n2-1C.2n+1+n2-2 D.2n+n-2(2)已知数列{an}的前n项和为Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),则S15+S22-S31的值是()A.13B.76C.46D.-76【解析】(1)Sn=a1+a2+a3+…+an=(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n+2n-1)=(2+22+…+2n)+2(1+2+3+…+n)-n=+2×-n=2(2n-1)+n2+n-n=2n +1+n2-2.(2)因为Sn=1-5+9-13+17-21+…+(-1)n-1(4n-3),所以S15=(1-5)+(9-13)+…+(49-53)+57=(-4)×7+57=29,S22=(1-5)+(9-13)+(17-21)+…+(81-85)=-4×11=-44,S31=(1-5)+(9-13)+(17-21)+…+(113-117)+121=-4×15+121=61,所以S15+S22-S31=29-44-61=-76.【答案】(1)C(2)D分组转化法求和的常见类型(1)若an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求和法求{an}的前n项和.(2)通项公式为an=的数列,其中数列{bn},{cn}是等比数列或等差数列,可采用分组求和法求和.(1)已知数列{an}的通项公式是an=2n-n,则其前20项和为(C)A.379+ B.399+C.419+ D.439+(2)若数列{an}是22+222+22+23,…,2+22+23+…+2n,…,则数列{an}的前n项和Sn =2n+2-4-2n.解析:(1)令数列{an}的前n项和为Sn,则S20=a1+a2+a3+...+a20=2(1+2+3+ (20)-=420-=419+.(2)an=2+22+23+ (2)==2n+1-2,所以Sn=(22+23+24+…+2n+1)-(2+2+2+…+2)=-2n=2n+2-4-2n.考向二错位相减法求和【例2】(2018·浙江卷)已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1-bn)an}的前n项和为2n2+n.(1)求q的值;(2)求数列{bn}的通项公式.【解】(1)由a4+2是a3,a5的等差中项得a3+a5=2a4+4,所以a3+a4+a5=3a4+4=28,解得a4=8.由a3+a5=20得8(q+)=20,解得q=2或q=,因为q>1,所以q=2.(2)设cn=(bn+1-bn)an,数列{cn}前n项和为Sn.由cn=解得cn=4n-1.由(1)可知an=2n-1,所以bn+1-bn=(4n-1)·()n-1,故bn-bn-1=(4n-5)·()n-2,n≥2,bn-b1=(bn-bn-1)+(bn-1-bn-2)+…+(b3-b2)+(b2-b1)=(4n-5)·()n-2+(4n-9)·()n-3+…+7·+3.设Tn=3+7·+11·()2+…+(4n-5)·()n-2,n≥2,①Tn=3·+7·()2+…+(4n-9)·()n-2+(4n-5)·()n-1,②所以①-②得Tn=3+4·+4·()2+…+4·()n-2-(4n-5)·()n-1,因此Tn=14-(4n+3)·()n-2,n≥2,又b1=1,所以bn=15-(4n+3)·()n-2.用错位相减法求和的三个注意事项:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{an}和{bn}的通项公式;(2)求数列{a2nb2n-1}的前n项和(n∈N*).解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q.由已知b2+b3=12,得b1(q+q2)=12.而b1=2,所以q2+q-6=0.又因为q>0,所以解得q=2,所以bn=2n.由b3=a4-2a1,可得3d-a1=8.①由S11=11b4,可得a1+5d=16.②联立①②,解得a1=1,d=3,由此可得an=3n-2.所以,数列{an}的通项公式为an=3n-2,数列{bn}的通项公式为bn=2n.(2)设数列{a2nb2n-1}的前n项和为Tn,由a2n=6n-2,b2n-1=2×4n-1,有a2nb2n-1=(3n-1)×4n,故Tn=2×4+5×42+8×43+…+(3n-1)×4n,4Tn=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3Tn=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=-4-(3n-1)×4n+1=-(3n-2)×4n +1-8.得Tn=×4n+1+.所以,数列{a2nb2n-1}的前n项和为×4n+1+.考向三裂项相消法求和【例3】(2019·福州市模拟)已知数列{an}中,a1=1,a2=2,an+1=3an-2an-1(n≥2,n∈N*).设bn=an+1-an.(1)证明:数列{bn}是等比数列;(2)设cn=,求数列{cn}的前n项的和Sn.【解】(1)证明:因为an+1=3an-2an-1(n≥2,n∈N*),bn=an+1-an,所以====2,又b1=a2-a1=2-1=1,所以数列{bn}是以1为首项,以2为公比的等比数列.(2)由(1)知bn=1×2n-1=2n-1,因为cn=,所以cn==(-),所以Sn=c1+c2+…+cn=(1-+-+…+-)=(1-)=.裂项相消法求和的实质和解题关键裂项相消法求和的实质是将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止.(2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.正项数列{an}的前n项和Sn满足:S-(n2+n-1)Sn-(n2+n)=0.(1)求数列{an}的通项公式an;(2)令bn=,数列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<.解:(1)由S-(n2+n-1)Sn-(n2+n)=0,得[Sn-(n2+n)](Sn+1)=0.由于{an}是正项数列,所以Sn>0,Sn=n2+n.于是a1=S1=2,当n≥2时,an=Sn-Sn-1=n2+n-(n-1)2-(n-1)=2n.综上,数列{an}的通项公式为an=2n.(2)证明:由于an=2n,故bn===.Tn==<=.。

数列的综合应用

数列的综合应用

数列的综合应用数列是数学中重要的概念之一,它在各个领域中都有着广泛的应用。

数列的综合是数列中各个数值的求和运算,可以帮助我们解决很多实际问题。

本文将探讨数列的综合应用,从数学角度分析其在现实生活中的具体应用。

一、数列的定义和性质在介绍数列的综合应用之前,我们首先需要了解数列的基本定义和性质。

数列是按照一定规律排列的一组数,其中每个数称为数列的项。

根据数列的性质,我们可以将数列分为等差数列和等比数列两种常见类型。

1. 等差数列:等差数列中的任意两个相邻项之差都相等,这个固定的差值称为公差。

等差数列的一般形式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

2. 等比数列:等比数列中的任意两个相邻项之比都相等,这个固定的比值称为公比。

等比数列的一般形式为an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。

二、数列的综合应用数列的综合应用广泛存在于日常生活和各个学科领域中,下面将从几个具体问题场景中介绍数列的应用。

1. 汽车里程计算假设一辆汽车从起点出发,每小时行驶的里程数分别是12公里、15公里、18公里、21公里...... 如果想知道5个小时内总共行驶了多少公里,我们可以使用等差数列的综合公式来计算。

首先确定首项a1=12,公差d=3(每小时增加3公里),然后带入数列综合公式Sn =(n/2)[2a1+(n-1)d],代入n=5进行计算得出结果为75公里。

因此,这辆汽车在5个小时内共行驶了75公里。

2. 学生成绩评估假设某学生在数学考试中的成绩分别是80分、85分、90分、95分......,如果想知道前10次考试的总分,我们可以使用等差数列的综合公式进行计算。

首先确定首项a1=80,公差d=5(每次考试分数增加5分),然后带入数列综合公式Sn = (n/2)[2a1+(n-1)d],代入n=10进行计算得出结果为875分。

因此,这名学生前10次数学考试的总分为875分。

2024年高考数学---数列求和、数列的综合

2024年高考数学---数列求和、数列的综合

例2 (2022海南嘉积中学等四校联考,18)①等比数列{an}的公比为2,且a4 是a3与a5-8的等差中项;②a2=4,S3=14且{an}为递增数列,在①②中任选一 个,补充在下列横线上并解答.
已知等比数列{an}中,Sn为数列{an}的前n项和,若
.
(1)求数列{an}的通项公式;
(2)若bn=(n+1)log2an,记数列
2)以数列为载体,考查不等式的恒成立问题时,可转化为数列的最值问题, 可利用数列单调性或数列对应函数的单调性; 3)解决与数列有关的不等式的证明问题时,可构造函数证明,或利用放缩 法证明.
综合篇
考法一 错位相减法求和 1.当{an}是等差数列,{bn}是等比数列时,求数列{an·bn}的前n项和常采用错 位相减法. 2.用错位相减法求和时,应注意: 1)要善于识别题目类型,特别是等比数列的公比为负数的情形. 2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”, 以便于下一步准确地写出“Sn-qSn”的表达式. 3)应用等比数列求和公式必须注意公比q是否等于1,如果q=1,那么应用公 式Sn=na1.
q2
)
14, 解得aq122,或
a1 8,
q
1 2
,
因为数列{an}是递增数列,所以 aq122,, 所以数列{an}的通项公式是
an=2n.
(2)证明:由(1)知an=2n,则bn=(n+1)log2an=(n+1)log22n=n(n+1),
因此
1 bn
=
1 n(n 1)
=
1 n
-
1 n 1
,于是有Tn=1
1 bn
的前n项和Tn,求证:

数列求和与数列的综合应用

数列求和与数列的综合应用

数列求和与数列的综合应用 一、分组求和法:若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减。

1、已知数列{}n a 的前n 项和*∈+=N n nn S n ,22.(1)求数列{}n a 的通项公式;(2)设()n na n ab n 12-+=,求数列{}n b 的前n 2项和T 2n .2、已知{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)求数列{}n b 的前n 项和S n .二、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。

(2)常见的裂项技巧①1n (n +1)=1n -1n +1②1n(n+2)=12(1n−1n +2) ③1(2n −1)(2n+1)=12(12n−1−12n +1)④1n +n +1=n +1-n 3、设数列{}n a 满足123(21)2n a a n a n +++-= .(1)求{}n a 的通项公式;n .4、已知数列{}n a 是递增的等比数列,且14239,8.a a a a +==(1)求数列{}n a 的通项公式;(2)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .三、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的。

5、已知 a n 是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3(1)求数列 a n 通项公式;(2) b n 为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列 b na n 的前n 项和T n .6、已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列2{}n n a b 的前n 项和T n *()n ∈N .四、分奇数、偶数求和(课后作业)7、设数列{}n a 的前n 项和为n S ,已知121,2a a ==,且(1)证明:23n n a a +=;(2)求n S8、已知数列{}n a 的前n 项和为n S ,若a 1=2,a n +1+a n =2n −1(1) 求数列{}n a 的通项公式(2) 求n S。

第26讲-数列求和及数列的综合应用(解析版)

第26讲-数列求和及数列的综合应用(解析版)

第26讲-数列求和及数列的综合应用(解析版)第26讲-数列求和及数列的综合应用(解析版)数列是数学中的重要概念,它在各个领域都有广泛的应用。

本文将讨论数列求和的方法以及数列在各个领域中的综合应用。

一、数列求和方法介绍1.1 等差数列求和公式等差数列是数列中最常见的一种类型,它的每一项与前一项之差都相等。

对于一个等差数列a,其中首项为a1,公差为d,一共有n项。

那么等差数列的求和公式为:Sn = (n/2) * (2a1 + (n-1)d)其中Sn表示等差数列的前n项和。

1.2 等比数列求和公式等比数列是另一种常见的数列类型,它的每一项与前一项的比值都相等。

对于一个等比数列b,其中首项为b1,公比为q,一共有n项。

那么等比数列的求和公式为:Sn = b1 * (1 - q^n) / (1 - q)其中Sn表示等比数列的前n项和。

1.3 平方数列求和公式平方数列是指数列中每一项都是前一项的平方。

对于平方数列c,其中首项为c1,一共有n项。

那么平方数列的求和公式为:Sn = (2^(n+1) - 1) * c1其中Sn表示平方数列的前n项和。

二、数列的综合应用2.1 数列在几何问题中的应用数列在几何问题中有着广泛的应用。

比如,在计算几何中,我们经常需要计算等差数列的前n项和来求解某些图形的周长或面积。

在解答这类问题时,我们可以先通过观察找到数列的公差和首项,然后利用等差数列的求和公式求解。

2.2 数列在金融问题中的应用数列在金融问题中也有着重要的应用。

比如,在投资领域,我们经常需要计算等比数列的前n项和来求解复利问题或者计算某种投资的总收益。

同样地,我们可以通过观察数列的首项和公比,然后利用等比数列的求和公式来进行计算。

2.3 数列在自然科学中的应用数列在自然科学中也扮演着重要的角色。

在物理学中,等差数列的前n项和可以用来计算运动物体的位移和速度。

在化学中,平方数列可以用来计算物质的化学计量位移。

三、总结数列求和方法为我们解决各类实际问题提供了有效的工具。

数列求和及其综合应用

数列求和及其综合应用

数列求和及其综合应用1. 掌握数列的求和方法(1) 直接利用等差、等比数列求和公式;(2) 通过适当变形(构造)将未知数列转化为等差、等比数列,再用公式求和;(3) 根据数列特征,采用累加、累乘、错位相减、逆序相加等方法求和;(4) 通过分组、拆项、裂项等手段分别求和;(5) 在证明有关数列和的不等式时要能用放缩的思想来解题(如n(n -1)<n 2<n(n +1),能用函数的单调性(定义法)来求数列和的最值问题及恒成立问题.2. 数列是特殊的函数,这部分内容中蕴含的数学思想方法有:函数与方程思想、分类讨论思想、化归转化思想、数形结合思想等,高考题中所涉及的知识综合性很强,既有较繁的运算又有一定的技巧,在解题时要注意从整体去把握. 1、 若数列{a n }的通项公式是a n =(-1)n -1·(3n-2),则a 1+a 2+…+a 10=________.2.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +5n +3,则a 7b 7=________3.若数列{a n }满足a 2n +1a 2n =p(p 为正常数,n∈N *),则称{a n }为“等方比数列”.则“数列{a n }是等方比数列”是“数列{a n }是等比数列”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)4.已知函数f(x)=x 2+bx 的图象在点(1,f(1))处的切线与直线6x -2y +1=0平行,若数列⎩⎨⎧⎭⎬⎫1f n的前n 项和为S n ,则S 2 012=________.5、已知公差不为零的等差数列{a n }中a 1=2,设a 1、a 3、a 7是公比为q 的等比数列{b n }的前三项.(1) 求数列{a n b n }的前n 项和T n ;(2) 将数列{a n }与{b n }中相同的项去掉,剩下的项依次构成新的数列{c n },设其前n 项和为S n ,求S 2n -n -1-22n -1+3·2n -1的值.6、已知等差数列{a n }满足a 3+a 6=-13,a 1·a 8=-43,a 1>a 8,(1) 求数列{a n }的通项公式;(2) 把数列{a n }的第1项、第4项、第7项、…、第3n -2项、…分别作为数列{b n }的第1项、第2项、第3项、…、第n 项、…,求数列{2b n }的前n 项之和;(3) 设数列{c n }的通项为c n =n·2b n ,比较(n +1)(n +2)c n +n(n +1)c n +2与2n(n +2)c n +1的大小.7、设数列{a n }的前n 项和为S n ,已知ba n -2n=(b -1)S n .(1) 证明:当b =2时,{a n -n·2n -1}是等比数列;(2) 求{a n }的通项公式.8、已知数列{a n }满足a n =2a n -1+2n-1(n≥2),且a 4=81, (1) 求数列{a n }的前三项a 1,a 2,a 3;(2) 求证:数列⎩⎨⎧⎭⎬⎫a n -12n 为等差数列,并求a n .9、已知数列{a n }和{b n }满足:a 1=1,a 2=2,a n >0,b n =a n a n +1(n∈N *),且{b n }是以q 为公比的等比数列. (1) 证明:a n +2=a n q 2;(2) 若c n =a 2n -1+2a 2n ,证明:数列{c n }是等比数列; (3) 求和:1a 1+1a 2+1a 3+1a 4+…+1a 2n -1+1a 2n.10、将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 …记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1. S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n≥2).(1) 证明数列⎩⎨⎧⎭⎬⎫1S n 成等差数列,并求数列{b n }的通项公式;(2) 上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数,当a 81=-491时,求上表中第k(k≥3)行所有项的和.12、已知二次函数y =f(x)的图象经过坐标原点,其导函数为f′(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n∈N *)均在函数y =f(x)的图象上. (1) 求数列{a n }的通项公式; (2) 设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n∈N *都成立的最小正整数m.13、已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=________.14、设函数f(x)=xx +2(x>0),观察:f 1(x)=f(x)=x x +2,f 2(x)=f(f 1(x))=x 3x +4,f 3(x)=f(f 2(x))=x7x +8,f 4(x)=f(f 3(x))=x15x +16,…根据以上事实,由归纳推理可得:当n∈N +且n≥2时,f n (x)=f(f n -1(x))=________.15、函数y =x 2(x>0)的图象在点(a k ,a k 2)处的切线与x 轴的交点的横坐标为a k +1,其中k∈N *.若a 1=16,则a 1+a 3+a 5的值是________.16、已知数列{a n }满足:a 1=m(m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时.若a 6=1,则m 所有可能的取值为________.17、已知数列{a n }的前n 项和为S n ,且S n =n -5a n -85,n∈N *.(1) 证明:{a n -1}是等比数列;(2) 求数列{S n }的通项公式,并求出使得S n +1>S n 成立的最小正整数15<115,5614>11518、设实数数列{a n }的前n 项和S n 满足S n +1=a n +1S n (n∈N *).(1) 若a 1,S 2,-2a 2成等比数列,求S 2和a 3; (2) 求证:对k≥3且k∈N *有0≤a k +1≤a k ≤43.19、数列{a n }、{b n }是各项均为正数的等比数列,设c n =b n a n (n∈N *).(1) 数列{c n }是否为等比数列证明你的结论;(2) 设数列{lna n }、{lnb n }的前n 项和分别为S n ,T n .若a 1=2,S n T n =n2n +1,求数列{c n }的前n 项和.20、两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x 2a 2-y2b 2=1的离心率e 等于________.21、在等比数列{a n }中,前n 项和为S n ,若S m ,S m +2,S m +1成等差数列,则a m ,a m +2,a m +1成等差数列.(1) 写出这个命题的逆命题; (2) 判断逆命题是否为真并给出证明.数列求和及其综合应用1. 掌握数列的求和方法(1) 直接利用等差、等比数列求和公式;(2) 通过适当变形(构造)将未知数列转化为等差、等比数列,再用公式求和;(3) 根据数列特征,采用累加、累乘、错位相减、逆序相加等方法求和;(4) 通过分组、拆项、裂项等手段分别求和;(5) 在证明有关数列和的不等式时要能用放缩的思想来解题(如n(n -1)<n 2<n(n +1),能用函数的单调性(定义法)来求数列和的最值问题及恒成立问题.2. 数列是特殊的函数,这部分内容中蕴含的数学思想方法有:函数与方程思想、分类讨论思想、化归转化思想、数形结合思想等,高考题中所涉及的知识综合性很强,既有较繁的运算又有一定的技巧,在解题时要注意从整体去把握. 1、 若数列{a n }的通项公式是a n =(-1)n -1·(3n-2),则a 1+a 2+…+a 10=________.-15 解析:a 1+a 2=a 3+a 4=…=a 9+a 10=-3,a 1+a 2+…+a 10=5×(-3)=-15. 2.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +5n +3,则a 7b 7=. 6 解析:a 7b 7=a 1+a 13b 1+b 13=A 13B 13=7×13+513+3=6. 3.若数列{a n }满足a 2n +1a 2n =p(p 为正常数,n∈N *),则称{a n }为“等方比数列”.则“数列{a n }是等方比数列”是“数列{a n }是等比数列”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 3. 必要不充分4.已知函数f(x)=x 2+bx 的图象在点(1,f(1))处的切线与直线6x -2y +1=0平行,若数列⎩⎨⎧⎭⎬⎫1f n 的前n 项和为S n ,则S 2 012=________. 4. 2 0122 013 解析:f′(x)=2x +b,2+b =3,b =1,f(n)=n 2+n =n(n +1),S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 5、已知公差不为零的等差数列{a n }中a 1=2,设a 1、a 3、a 7是公比为q 的等比数列{b n }的前三项.(1) 求数列{a n b n }的前n 项和T n ;(2) 将数列{a n }与{b n }中相同的项去掉,剩下的项依次构成新的数列{c n },设其前n 项和为S n ,求S 2n -n -1-22n -1+3·2n -1的值.解:(1) 设等差数列{a n }的公差为d ,则(2+2d)2=2×(2+6d),又d≠0,∴ d=1,a n =n +1,b n =2n ,a n b n =(n +1)·2n ,用错位相减法可求得T n =n·2n +1.(2) ∵ 新的数列{c n }的前2n-n -1项和为数列{a n }的前2n-1项的和减去数列{b n }前n 项的和,∴ S 2n -n -1=2n-12+2n2-22n-12-1=(2n -1)(2n -1-1).∴ S 2n -n -1-22n -1+3·2n -1=1.6、已知等差数列{a n }满足a 3+a 6=-13,a 1·a 8=-43,a 1>a 8,(1) 求数列{a n }的通项公式;(2) 把数列{a n }的第1项、第4项、第7项、…、第3n -2项、…分别作为数列{b n }的第1项、第2项、第3项、…、第n 项、…,求数列{2b n }的前n 项之和;(3) 设数列{c n }的通项为c n =n·2b n ,试比较(n +1)(n +2)c n +n(n +1)c n +2与2n(n +2)c n +1的大小.解: (1) {a n }为等差数列,a 3+a 6=a 1+a 8=-13,又a 1·a 8=-43,且a 1>a 8,求得a 1=1,a 8=-43,公差d =a 8-a 18-1=-13,∴ a n =1-13(n -1)=-13n +43(n∈N *).(2) b 1=a 1=1,b 2=a 4=0, ∴ b n =a 3n -2=-13(3n -2)+43=-n +2,∴ 2b n +12b n =2-n +1+22-n +2=12, ∴ {2b n }是首项为2,公比为12的等比数列,∴ {2b n }的前n 项之和为2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4-⎝ ⎛⎭⎪⎫12n -2.(3) c n =n·2b n ,∴ (n +1)(n +2)c n +n(n +1)c n +2-2n(n +2)c n +1=n(n +1)(n +2)2b n +n(n +1)(n +2)·2b n +2-2n(n +1)(n +2)·2b n +1 =n(n +1)(n +2)(2b n +2b n +2-2×2b n +1)=n(n +1)(n +2)2b n (1+2b n +2-b n -2×2b n +1-b n ) =n(n +1)(n +2)·2b n (1+2-2-2×2-1)=n(n +1)(n +2)2b n (1+14-1)>0,其中b n +2-b n =-(n +2)+2-(-n +2)=-2,b n +1-b n =-(n +1)+2-(-n +2)=-1,∴ (n+1)(n +2)c n +n(n +1)c n +2>2n(n +2)c n +1. 7、设数列{a n }的前n 项和为S n ,已知ba n -2n=(b -1)S n .(1) 证明:当b =2时,{a n -n·2n -1}是等比数列;(2) 求{a n }的通项公式.解:由题意知a 1=2,且ba n -2n=(b -1)S n ,ba n +1-2n +1=(b -1)S n +1,两式相减得b(a n +1-a n )-2n=(b -1)a n +1,即a n +1=ba n +2n.① (1) 当b =2时,由①知a n +1=2a n +2n于是a n +1-(n +1)·2n=2a n +2n-(n +1)·2n=2(a n -n·2n -1),又a 1-1·21-1=1≠0, ∴ a n -n·2n -1≠0, ∴ a n +1-n +1·2na n -n·2n -1=2, ∴ {a n -n·2n -1}是首项为1,公比为2的等比数列.(2) 当b =2时,由(1)知a n -n·2n -1=2n -1,即a n =(n +1)2n -1,当b≠2时,由①得a n +1-12-b ·2n +1=ba n +2n -12-b ·2n +1=ba n -b 2-b·2n=b ⎝ ⎛⎭⎪⎫a n -12-b ·2n . 因此a n +1-12-b ·2n +1=b ⎝ ⎛⎭⎪⎫a n -12-b ·2n ,又a 1-12-b ×2=21-b 2-b , 故a n =⎩⎪⎨⎪⎧2,n =1,12-b[2n +21-b b n -1],n≥2,n∈N *.∴ a n =⎩⎪⎨⎪⎧n +12n -1,b =2,12-b[2n +21-b b n -1],b≠2.8、已知数列{a n }满足a n =2a n -1+2n-1(n≥2),且a 4=81,(1) 求数列{a n }的前三项a 1,a 2,a 3; (2) 求证:数列⎩⎨⎧⎭⎬⎫a n -12n 为等差数列,并求a n . 解: (1) 由a n =2a n -1+2n-1(n≥2), 得a 4=2a 3+24-1=81,∴ a 3=33. 同理a 2=13,a 1=5.(2) 由a n =2a n -1+2n-1(n≥2), 得a n -12n =2a n -1+2n -22n=a n -1-12n -1+1, ∴ a n -12n -a n -1-12n -1=1,∴ ⎩⎨⎧⎭⎬⎫a n -12n 是等差数列. ∵ ⎩⎨⎧⎭⎬⎫a n -12n 的公差d =1, ∴ a n -12n =a 1-121+(n -1)×1=n +1,∴ a n =(n +1)×2n+1.9、已知数列{a n }和{b n }满足:a 1=1,a 2=2,a n >0,b n =a n a n +1(n∈N *),且{b n }是以q 为公比的等比数列.(1) 证明:a n +2=a n q 2;(2) 若c n =a 2n -1+2a 2n ,证明:数列{c n }是等比数列; (3) 求和:1a 1+1a 2+1a 3+1a 4+…+1a 2n -1+1a 2n .(解法1)(1) 证明:由b n +1b n =q ,有a n +1a n +2a n a n +1=a n +2a n=q, ∴ a n +2=a n q 2(n∈N *) . (2) 证明:∵ a n =a n -2q 2,∴ a 2n -1=a 2n -3q 2=…=a 1q 2n -2,a 2n =a 2n -2q 2=…=a 2q2n -2,∴ c n =a 2n -1+2a 2n =a 1q2n -2+2a 2q2n -2=(a 1+2a 2)q2n -2=5q 2n -2.∴ {c n }是首项为5,以q 2为公比的等比数列. (3) 解:由(2)得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n,于是1a 1+1a 2+…+1a 2n =⎝ ⎛⎭⎪⎫1a 1+1a 3+…+1a 2n -1+⎝ ⎛⎭⎪⎫1a 2+1a 4+…+1a 2n =1a 1⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2+1a 2⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2.由题知q>0,当q =1时,1a 1+1a 2+…+1a 2n =32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32n.当q≠1时,1a 1+1a 2+…+1a 2n =32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1-q -2n1-q -2=32⎣⎢⎡⎦⎥⎤q 2n-1q 2n -2q 2-1.故1a 1+1a 2+…+1a 2n=⎩⎪⎨⎪⎧32n ,q =1,32⎣⎢⎡⎦⎥⎤q 2n-1q 2n -2q 2-1,q≠1.(解法2) (1) 同解法1(1).(2) 证明:c n +1c n =a 2n +1+2a 2n +2a 2n -1+2a 2n =q 2a 2n -1+2q 2a 2n a 2n -1+2a 2n=q 2(n∈N *),又c 1=a 1+2a 2=5,∴ {c n }是首项为5,以q 2为公比的等比数列.(3) 解:由(2)的类似方法得a 2n -1+a 2n =(a 1+a 2)q2n -2=3q2n -2,1a 1+1a 2+…+1a 2n =a 1+a 2a 1a 2+a 3+a 4a 3a 4+…+a 2n -1+a 2n a 2n -1a 2n ,∵ a 2k -1+a 2k a 2k -1a 2k =3q 2k -22q 4k -4=32q -2k +2,k =1,2,…,n. ∴ 1a 1+1a 2+…+1a 2k =32(1+q -2+q -4…+q -2n +2)(下面同上).10、将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 …记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1. S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n≥2).(1) 证明数列⎩⎨⎧⎭⎬⎫1S n 成等差数列,并求数列{b n }的通项公式;(2) 上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数,当a 81=-491时,求上表中第k(k≥3)行所有项的和.(1) 证明:由已知,2b nb n S n -S 2n=1,又S n =b 1+b 2+b 3+…+b n ,n≥2,b n =S n -S n -1,∴ 2b n b n S n -S 2n =1即2(S n -S n -1)=S n (S n -S n -1)-S 2n ,2S n -1-2S n =S n S n -1, 又S 1=1≠0,∴ S n S n -1≠0,∴ 1S n -1S n -1=12,∴ 数列⎩⎨⎧⎭⎬⎫1S n 成等差数列,且1S n =1+(n -1)·12,S n =2n +1,∴ b n =⎩⎪⎨⎪⎧1,n =1,-2n n +1,n≥2,n∈N *.(2) 解:设上表中从第三行起,每行的公比都为q ,且q >0. 因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项,故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k(k≥3)行所有项的和为S ,则S =b k1-q k1-q=-2k k +1·1-2k1-2=2kk +1(1-2k)(k≥3). 12、已知二次函数y =f(x)的图象经过坐标原点,其导函数为f′(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n∈N *)均在函数y =f(x)的图象上.(1) 求数列{a n }的通项公式; (2) 设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n∈N *都成立的最小正整数m.解: (1) 设这二次函数f(x)=ax 2+bx (a≠0) ,则f′(x)=2ax +b ,由于f′(x)=6x -2,得a =3 , b =-2, 所以f(x)=3x 2-2x.又因为点(n ,S n )(n∈N *)均在函数y =f(x)的图象上,所以S n =3n 2-2n. 当n≥2时,a n =S n -S n -1=(3n 2-2n)-[3(n -1)2-2(n -1)]=6n -5. 当n =1时,a 1=S 1=3×12-2=6×1-5,所以,a n =6n -5 (n∈N *). (2) 由(1)得知b n =3a n a n +1=36n -5[6n +1-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =∑ni =1b i。

数列数列求和数列的综合应用课件

数列数列求和数列的综合应用课件
涉和衍射现象。
量子力学
数列在量子力学中用于描述微 观粒子的波函数和能量级。
数列在计算机科学中的应用
数据结构
数列是计算机科学中常见的数 据结构之一,用于存储有序的
元素集合。
算法设计
数列在算法设计中用于实现排 序、搜索和图算法等。
加密技术
数列在加密技术中用于生成加 密密钥和实现加密算法。
积的数列。
02
数列的求和
数列求和的定义
数列求和是对数列中所有项进行加法运算的过程。
数列求和是数学中一个重要的概念,它是对数列中所有项进行加法运算的过程。 通过数列求和,我们可以得到数列的和,从而了解数列的整体性质和特点。
等差数列的求和
等差数列是一种常见的数列,其求和 方法有多种。
等差数列是一种常见的数列,其特点 是每项与前一项的差是一个常数。等 差数列的求和方法有多种,其中最常 用的是利用等差数列的通项公式和项 数进行计算。
等比数列的应用实例解析
总结词
等比数列在金融、经济、生物等领域中有着 广泛的应用,如复利计算、人口增长等。
详细描述
等比数列是一种常见的数列,其相邻两项之 间的比是一个常数。在金融和经济领域中, 很多问题需要用到等比数列的知识,例如复 利计算、股票价格等。通过等比数列的应用 ,我们可以更好地理解这些问题的本质,从 而更好地进行决策。
本质,从而更好地进行预测和建模。
THANKS
谢谢您的观看
等比数列的求和
等比数列是一种常见的数列,其求和方法有多种。
等比数列是一种常见的数列,其特点是每项与前一项的比值是一个常数。等比数列的求和方法有多种,其中最常用的是利用 等比数列的通项公式和项数进行计算。
幂数列的求和

第六章§6.4数列求和、数列的综合应用

第六章§6.4数列求和、数列的综合应用
已知数列{ an } 的前 n 项和为 Sn ꎬa1 = 5ꎬnSn+1 -( n+ 1) Sn = n2 +n.
{ } (1)求证:数列 Sn 为等差数列ꎻ n
������������������������������������������������������������������������������
所以 Tn = 6+(2n-3)2n+1.
二、数列的综合应用问题
������������������������������������������������������������������������������������������������������������������������������
( 3) 倒序相加法求和的特征是首尾相加为定值. (4) 裂项相消法求和一般与不等式相联系ꎬ这类问题要注意 对常见放缩及裂项公式的理解和记忆. 利用裂项相消法求和时ꎬ应注意: ①抵消后并不一定只剩下第一项和最后一项ꎬ也有可能前 面剩两项ꎬ后面也剩两项. ②有些情况下ꎬ裂项时需要调整前面的系数ꎬ使裂开后的两 项之差和系数之积与原项相等.
1 (1) 对 n2 的放缩ꎬ根据不同的要求ꎬ大致有三种情况:
1 n2
< n
1 2-



1 -


1 n
( n≥2) ꎻ
( ) 1
n2

< n




1 2
1-1 n-1 n+1
( n≥2) ꎻ
( ) 1 1
n2
< n2 -
1 4
=2
1-1 2n-1 2n+1
( n≥1) .
1 (2) 对 的放缩ꎬ根据不同的要求ꎬ大致有两种情况:

数列求和和综合应用

数列求和和综合应用

数列求和及其综合应用1. 掌握数列的求和方法(1) 直接利用等差、等比数列求和公式;(2) 通过适当变形(构造)将未知数列转化为等差、等比数列,再用公式求和;(3) 根据数列特征,采用累加、累乘、错位相减、逆序相加等方法求和;(4) 通过分组、拆项、裂项等手段分别求和;(5) 在证明有关数列和的不等式时要能用放缩的思想来解题(如n(n -1)<n 2<n(n +1),能用函数的单调性(定义法)来求数列和的最值问题及恒成立问题.2. 数列是特殊的函数,这部分容中蕴含的数学思想方法有:函数与方程思想、分类讨论思想、化归转化思想、数形结合思想等,高考题中所涉及的知识综合性很强,既有较繁的运算又有一定的技巧,在解题时要注意从整体去把握.1、 若数列{a n }的通项公式是a n =(-1)n -1·(3n-2),则a 1+a 2+…+a 10=________.2.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +5n +3,则a 7b 7=________3.若数列{a n }满足a 2n +1a 2n =p(p 为正常数,n∈N *),则称{a n }为“等方比数列”.则“数列{a n }是等方比数列”是“数列{a n }是等比数列”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)4.已知函数f(x)=x 2+bx 的图象在点(1,f(1))处的切线与直线6x -2y +1=0平行,若数列⎩⎨⎧⎭⎬⎫1f n 的前n 项和为S n ,则S 2 012=________.5、已知公差不为零的等差数列{a n }中a 1=2,设a 1、a 3、a 7是公比为q 的等比数列{b n }的前三项.(1) 求数列{a n b n }的前n 项和T n ;(2) 将数列{a n }与{b n }中相同的项去掉,剩下的项依次构成新的数列{c n },设其前n 项和为S n ,求S 2n -n -1-22n -1+3·2n -1的值. 6、已知等差数列{a n }满足a 3+a 6=-13,a 1·a 8=-43,a 1>a 8,(1) 求数列{a n }的通项公式;(2) 把数列{a n }的第1项、第4项、第7项、…、第3n -2项、…分别作为数列{b n }的第1项、第2项、第3项、…、第n 项、…,求数列{2b n }的前n 项之和;(3) 设数列{c n }的通项为c n =n·2b n ,比较(n +1)(n +2)c n +n(n +1)c n +2与2n(n +2)c n +1的大小.7、设数列{a n }的前n 项和为S n ,已知ba n -2n=(b -1)S n .(1) 证明:当b =2时,{a n -n·2n -1}是等比数列;(2) 求{a n }的通项公式.8、已知数列{a n }满足a n =2a n -1+2n-1(n≥2),且a 4=81, (1) 求数列{a n }的前三项a 1,a 2,a 3;(2) 求证:数列⎩⎨⎧⎭⎬⎫a n -12n 为等差数列,并求a n .9、已知数列{a n }和{b n }满足:a 1=1,a 2=2,a n >0,b n =a n a n +1(n∈N *),且{b n }是以q 为公比的等比数列.(1) 证明:a n +2=a n q 2;(2) 若c n =a 2n -1+2a 2n ,证明:数列{c n }是等比数列; (3) 求和:1a 1+1a 2+1a 3+1a 4+…+1a 2n -1+1a 2n.10、将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6a 7 a 8 a 9 a 10 …记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1. S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n≥2).(1) 证明数列⎩⎨⎧⎭⎬⎫1S n 成等差数列,并求数列{b n }的通项公式;(2) 上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数,当a 81=-491时,求上表中第k(k≥3)行所有项的和.12、已知二次函数y =f(x)的图象经过坐标原点,其导函数为f′(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n∈N *)均在函数y =f(x)的图象上. (1) 求数列{a n }的通项公式; (2) 设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n∈N *都成立的最小正整数m.13、已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=________.14、设函数f(x)=xx +2(x>0),观察:f 1(x)=f(x)=x x +2,f 2(x)=f(f 1(x))=x 3x +4,f 3(x)=f(f 2(x))=x7x +8,f 4(x)=f(f 3(x))=x15x +16,…根据以上事实,由归纳推理可得:当n∈N +且n≥2时,f n (x)=f(f n -1(x))=________.15、函数y =x 2(x>0)的图象在点(a k ,a k 2)处的切线与x 轴的交点的横坐标为a k +1,其中k∈N *.若a 1=16,则a 1+a 3+a 5的值是________.16、已知数列{a n }满足:a 1=m(m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时.若a 6=1,则m 所有可能的取值为________.17、已知数列{a n }的前n 项和为S n ,且S n =n -5a n -85,n∈N *.(1) 证明:{a n -1}是等比数列;(2) 求数列{S n }的通项公式,并求出使得S n +1>S n 成立的最小正整数n.5615<115,5614>11518、设实数数列{a n }的前n 项和S n 满足S n +1=a n +1S n (n∈N *).(1) 若a 1,S 2,-2a 2成等比数列,求S 2和a 3;(2) 求证:对k≥3且k∈N *有0≤a k +1≤a k ≤43.19、数列{a n }、{b n }是各项均为正数的等比数列,设c n =b n a n (n∈N *).(1) 数列{c n }是否为等比数列?证明你的结论;(2) 设数列{lna n }、{lnb n }的前n 项和分别为S n ,T n .若a 1=2,S n T n =n2n +1,求数列{c n }的前n 项和.20、两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x 2a 2-y2b 2=1的离心率e 等于________.21、在等比数列{a n }中,前n 项和为S n ,若S m ,S m +2,S m +1成等差数列,则a m ,a m +2,a m +1成等差数列.(1) 写出这个命题的逆命题;(2) 判断逆命题是否为真?并给出证明.数列求和及其综合应用1. 掌握数列的求和方法(1) 直接利用等差、等比数列求和公式;(2) 通过适当变形(构造)将未知数列转化为等差、等比数列,再用公式求和;(3) 根据数列特征,采用累加、累乘、错位相减、逆序相加等方法求和;(4) 通过分组、拆项、裂项等手段分别求和;(5) 在证明有关数列和的不等式时要能用放缩的思想来解题(如n(n -1)<n 2<n(n +1),能用函数的单调性(定义法)来求数列和的最值问题及恒成立问题.2. 数列是特殊的函数,这部分容中蕴含的数学思想方法有:函数与方程思想、分类讨论思想、化归转化思想、数形结合思想等,高考题中所涉及的知识综合性很强,既有较繁的运算又有一定的技巧,在解题时要注意从整体去把握.1、 若数列{a n }的通项公式是a n =(-1)n -1·(3n-2),则a 1+a 2+…+a 10=________.-15 解析:a 1+a 2=a 3+a 4=…=a 9+a 10=-3,a 1+a 2+…+a 10=5×(-3)=-15. 2.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +5n +3,则a 7b 7=________.2.6 解析:a 7b 7=a 1+a 13b 1+b 13=A 13B 13=7×13+513+3=6.3.若数列{a n }满足a 2n +1a 2n =p(p 为正常数,n∈N *),则称{a n }为“等方比数列”.则“数列{a n }是等方比数列”是“数列{a n }是等比数列”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 3. 必要不充分4.已知函数f(x)=x 2+bx 的图象在点(1,f(1))处的切线与直线6x -2y +1=0平行,若数列⎩⎨⎧⎭⎬⎫1f n 的前n 项和为S n ,则S 2 012=________. 4. 2 0122 013 解析:f′(x)=2x +b,2+b =3,b =1,f(n)=n 2+n =n(n +1),S n =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=n n +1. 5、已知公差不为零的等差数列{a n }中a 1=2,设a 1、a 3、a 7是公比为q 的等比数列{b n }的前三项.(1) 求数列{a n b n }的前n 项和T n ;(2) 将数列{a n }与{b n }中相同的项去掉,剩下的项依次构成新的数列{c n },设其前n 项和为S n ,求S 2n -n -1-22n -1+3·2n -1的值.解:(1) 设等差数列{a n }的公差为d ,则(2+2d)2=2×(2+6d),又d≠0,∴ d=1,a n =n +1,b n =2n ,a n b n =(n +1)·2n ,用错位相减法可求得T n =n·2n +1.(2) ∵ 新的数列{c n }的前2n -n -1项和为数列{a n }的前2n-1项的和减去数列{b n }前n 项的和,∴ S 2n -n -1=2n-12+2n2-22n-12-1=(2n -1)(2n -1-1).∴ S 2n -n -1-22n -1+3·2n -1=1.6、已知等差数列{a n }满足a 3+a 6=-13,a 1·a 8=-43,a 1>a 8,(1) 求数列{a n }的通项公式;(2) 把数列{a n }的第1项、第4项、第7项、…、第3n -2项、…分别作为数列{b n }的第1项、第2项、第3项、…、第n 项、…,求数列{2b n }的前n 项之和;(3) 设数列{c n }的通项为c n =n·2b n ,试比较(n +1)(n +2)c n +n(n +1)c n +2与2n(n +2)c n +1的大小.解: (1) {a n }为等差数列,a 3+a 6=a 1+a 8=-13,又a 1·a 8=-43,且a 1>a 8,求得a 1=1,a 8=-43,公差d =a 8-a 18-1=-13,∴ a n =1-13(n -1)=-13n +43(n∈N *).(2) b 1=a 1=1,b 2=a 4=0, ∴ b n =a 3n -2=-13(3n -2)+43=-n +2,∴ 2b n +12b n =2-n +1+22-n +2=12, ∴ {2b n }是首项为2,公比为12的等比数列,∴ {2b n }的前n 项之和为2⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4-⎝ ⎛⎭⎪⎫12n -2.(3)=n·2b n ,∴ (n +1)(n +2)c n +n(n +1)c n +2-2n(n +2)c n +1=n(n +1)(n +2)2b n +n(n +1)(n +2)·2b n +2-2n(n +1)(n +2)·2b n +1 =n(n +1)(n +2)(2b n +2b n +2-2×2b n +1)=n(n +1)(n +2)2b n (1+2b n +2-b n -2×2b n +1-b n )=n(n +1)(n +2)·2b n (1+2-2-2×2-1) =n(n +1)(n +2)2b n (1+14-1)>0,其中b n +2-b n =-(n +2)+2-(-n +2)=-2,b n +1-b n =-(n +1)+2-(-n +2)=-1,∴ (n+1)(n +2)c n +n(n +1)c n +2>2n(n +2)c n +1.7、设数列{a n }的前n 项和为S n ,已知ba n -2n=(b -1)S n .(1) 证明:当b =2时,{a n -n·2n -1}是等比数列; (2) 求{a n }的通项公式.解:由题意知a 1=2,且ba n -2n =(b -1)S n ,ba n +1-2n +1=(b -1)S n +1,两式相减得b(a n +1-a n )-2n =(b -1)a n +1,即a n +1=ba n +2n.①(1) 当b =2时,由①知a n +1=2a n +2n于是a n +1-(n +1)·2n =2a n +2n -(n +1)·2n =2(a n -n·2n -1), 又a 1-1·21-1=1≠0, ∴ a n -n·2n -1≠0, ∴ a n +1-n +1·2na n -n·2n -1=2, ∴ {a n -n·2n -1}是首项为1,公比为2的等比数列.(2) 当b =2时,由(1)知a n -n·2n -1=2n -1,即a n =(n +1)2n -1, 当b≠2时,由①得a n +1-12-b ·2n +1=ba n +2n -12-b ·2n +1=ba n -b 2-b·2n=b ⎝ ⎛⎭⎪⎫a n -12-b ·2n . 因此a n +1-12-b ·2n +1=b ⎝ ⎛⎭⎪⎫a n -12-b ·2n ,又a 1-12-b ×2=21-b 2-b , 故a n =⎩⎪⎨⎪⎧2,n =1,12-b[2n +21-b b n -1],n≥2,n∈N *.∴ a n =⎩⎪⎨⎪⎧n +12n -1,b =2,12-b[2n +21-b b n -1],b≠2.8、已知数列{a n }满足a n =2a n -1+2n-1(n≥2),且a 4=81,(1) 求数列{a n }的前三项a 1,a 2,a 3;(2) 求证:数列⎩⎨⎧⎭⎬⎫a n -12n 为等差数列,并求a n .解: (1) 由a n =2a n -1+2n-1(n≥2),得a 4=2a 3+24-1=81, ∴ a 3=33.同理a 2=13,a 1=5.(2) 由a n =2a n -1+2n-1(n≥2), 得a n -12n =2a n -1+2n-22n=a n -1-12n -1+1, ∴ a n -12n -a n -1-12n -1=1,∴ ⎩⎨⎧⎭⎬⎫a n -12n 是等差数列. ∵ ⎩⎨⎧⎭⎬⎫a n -12n 的公差d =1, ∴ a n -12n =a 1-121+(n -1)×1=n +1,∴ a n =(n +1)×2n+1.9、已知数列{a n }和{b n }满足:a 1=1,a 2=2,a n >0,b n =a n a n +1(n∈N *),且{b n }是以q 为公比的等比数列.(1) 证明:a n +2=a n q 2;(2) 若c n =a 2n -1+2a 2n ,证明:数列{c n }是等比数列; (3) 求和:1a 1+1a 2+1a 3+1a 4+…+1a 2n -1+1a 2n .(解法1)(1) 证明:由b n +1b n =q ,有a n +1a n +2a n a n +1=a n +2a n=q, ∴ a n +2=a n q 2(n∈N *) . (2) 证明:∵ a n =a n -2q 2,∴ a 2n -1=a 2n -3q 2=…=a 1q 2n -2,a 2n =a 2n -2q 2=…=a 2q2n -2,∴=a 2n -1+2a 2n =a 1q 2n -2+2a 2q 2n -2=(a 1+2a 2)q 2n -2=5q 2n -2.∴ {c n }是首项为5,以q 2为公比的等比数列. (3) 解:由(2)得1a 2n -1=1a 1q 2-2n ,1a 2n =1a 2q 2-2n,于是1a 1+1a 2+…+1a 2n =⎝ ⎛⎭⎪⎫1a 1+1a 3+…+1a 2n -1+⎝ ⎛⎭⎪⎫1a 2+1a 4+…+1a 2n=1a 1⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2+1a 2⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2.由题知q>0,当q =1时,1a 1+1a 2+…+1a 2n =32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32n.当q≠1时,1a 1+1a 2+…+1a 2n =32⎝ ⎛⎭⎪⎫1+1q 2+1q 4+…+1q 2n -2=32⎝ ⎛⎭⎪⎫1-q -2n1-q -2=32⎣⎢⎡⎦⎥⎤q 2n-1q 2n -2q 2-1.故1a 1+1a 2+…+1a 2n=⎩⎪⎨⎪⎧32n ,q =1,32⎣⎢⎡⎦⎥⎤q 2n-1q 2n -2q 2-1,q≠1.(解法2) (1) 同解法1(1).(2) 证明:c n +1c n =a 2n +1+2a 2n +2a 2n -1+2a 2n =q 2a 2n -1+2q 2a 2n a 2n -1+2a 2n=q 2(n∈N *),又c 1=a 1+2a 2=5,∴ {c n }是首项为5,以q 2为公比的等比数列.(3) 解:由(2)的类似方法得a 2n -1+a 2n =(a 1+a 2)q 2n -2=3q 2n -2,1a 1+1a 2+…+1a 2n =a 1+a 2a 1a 2+a 3+a 4a 3a 4+…+a 2n -1+a 2n a 2n -1a 2n ,∵ a 2k -1+a 2k a 2k -1a 2k =3q 2k -22q 4k -4=32q -2k +2,k =1,2,…,n. ∴ 1a 1+1a 2+…+1a 2k =32(1+q -2+q -4…+q -2n +2)(下面同上).10、将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6a 7 a 8 a 9 a 10 …记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1. S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n≥2).(1) 证明数列⎩⎨⎧⎭⎬⎫1S n 成等差数列,并求数列{b n }的通项公式;(2) 上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数,当a 81=-491时,求上表中第k(k≥3)行所有项的和.(1) 证明:由已知,2b nb n S n -S 2n=1,又S n =b 1+b 2+b 3+…+b n ,n≥2,b n =S n -S n -1,∴ 2b n b n S n -S 2n =1即2(S n -S n -1)=S n (S n -S n -1)-S 2n ,2S n -1-2S n =S n S n -1, 又S 1=1≠0,∴ S n S n -1≠0,∴ 1S n -1S n -1=12,∴ 数列⎩⎨⎧⎭⎬⎫1S n 成等差数列,且1S n =1+(n -1)·12,S n =2n +1,∴ b n =⎩⎪⎨⎪⎧1,n =1,-2n n +1,n≥2,n∈N *.(2) 解:设上表中从第三行起,每行的公比都为q ,且q >0. 因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项,故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k(k≥3)行所有项的和为S ,则S =b k1-q k1-q=-2k k +1·1-2k1-2=2kk +1(1-2k)(k≥3). 12、已知二次函数y =f(x)的图象经过坐标原点,其导函数为f′(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n∈N *)均在函数y =f(x)的图象上.(1) 求数列{a n }的通项公式;(2) 设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n∈N *都成立的最小正整数m.解: (1) 设这二次函数f(x)=ax 2+bx (a≠0) ,则f′(x)=2ax +b ,由于f′(x)=6x -2,得a =3 , b =-2, 所以f(x)=3x 2-2x.又因为点(n ,S n )(n∈N *)均在函数y =f(x)的图象上,所以S n =3n 2-2n.当n≥2时,a n =S n -S n -1=(3n 2-2n)-[3(n -1)2-2(n -1)]=6n -5.当n =1时,a 1=S 1=3×12-2=6×1-5,所以,a n =6n -5 (n∈N *).(2) 由(1)得知b n =3a n a n +1=36n -5[6n +1-5]=12⎝ ⎛⎭⎪⎫16n -5-16n +1,故T n =∑ni =1b i =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1 =12⎝ ⎛⎭⎪⎫1-16n +1.因此,要使12(1-16n +1)<m 20(n∈N *)成立的m ,必须且仅须满足12≤m 20,即m≥10,所以满足要求的最小正整数m 为10.13、已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=________.1 解析:S n +S 1=S n +1,a n +1=a 1. 14、设函数f(x)=xx +2(x>0),观察:f 1(x)=f(x)=x x +2,f 2(x)=f(f 1(x))=x 3x +4,f 3(x)=f(f 2(x))=x7x +8,f 4(x)=f(f 3(x))=x15x +16,…根据以上事实,由归纳推理可得:当n∈N +且n≥2时,f n (x)=f(f n -1(x))=________.x 2n -1x +2n15、函数y =x 2(x>0)的图象在点(a k ,a k 2)处的切线与x 轴的交点的横坐标为a k +1,其中k∈N *.若a 1=16,则a 1+a 3+a 5的值是________.3.21 16、已知数列{a n }满足:a 1=m(m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时.若a 6=1,则m 所有可能的取值为________.4,5,32 解析:显然,a n 为正整数,a 6=1,故a 5=2,a 4=4,若a 3为奇数,则4=3a 3+1,a 3=1,若a 3为偶数,则a 3=8,若a 3=1,则a 2=2,a 1=4,若a 3=8,则a 2=16,a 1=5或32.17、已知数列{a n }的前n 项和为S n ,且S n =n -5a n -85,n∈N *.(1) 证明:{a n -1}是等比数列;(2) 求数列{S n }的通项公式,并求出使得S n +1>S n 成立的最小正整数n.5615<115,5614>115(1) 证明:当n =1时,a 1=-14;当n≥2时,a n =S n -S n -1=-5a n +5a n -1+1,所以a n-1=56(a n -1-1),又a 1-1=-15≠0,a n -1a n -1-1=56,所以数列{a n -1}是等比数列;(2) 解:由(1)知:a n -1=-15·⎝ ⎛⎭⎪⎫56n -1,得a n =1-15·⎝ ⎛⎭⎪⎫56n -1,从而S n =n -90+90×⎝ ⎛⎭⎪⎫56n(n∈N *);由S n +1>S n ,得⎝ ⎛⎭⎪⎫56n <115,∵ ⎝ ⎛⎭⎪⎫5615<115,⎝ ⎛⎭⎪⎫5614>115,∴ 使s n +1>s n 成立的最小正整数n =15.18、设实数数列{a n }的前n 项和S n 满足S n +1=a n +1S n (n∈N *).(1) 若a 1,S 2,-2a 2成等比数列,求S 2和a 3;(2) 求证:对k≥3且k∈N *有0≤a k +1≤a k ≤43.(1) 解:由题意⎩⎪⎨⎪⎧S 22=-2a 1a 2,S 2=a 2S 1=a 1a 2,得S 22=-2S 2,由S 2是等比中项知S 2≠0,因此S 2=-2, 由S 2+a 3=S 3=a 3S 2,解得a 3=S 2S 2-1=23. (2) 证明:由题设条件有a n +1S n =a n +1+S n , 故S n ≠1,a n +1≠1,且a n +1=S n S n -1,S n =a n +1a n +1-1, 从而对k≥3有a k =S k -1S k -1-1=a k -1+S k -2a k -1+S k -2-1=a k -1+a k -1a k -1-1a k -1+a k -1a k -1-1-1,①因a 2k -1-a k -1+1=⎝ ⎛⎭⎪⎫a k -1-122+34>0,且a 2k -1≥0,要证a k ≤43,由①知只要证a 2k -1a 2k -1-a k -1+1≤43,即证3a 2k -1≤4(a 2k -1-a k -1+1),即(a k -1-2)2≥0,此式明显成立, 因此a k ≤43(k≥3).最后证a k +1≤a k ,若不然,a k +1=a 2k a 2k -a k +1>a k ,又a k ≥0,故a ka 2k -a k +1>1,即(a k -1)2<0,矛盾,所以a k +1≤a k (k≥3,k∈N ).19、数列{a n }、{b n }是各项均为正数的等比数列,设c n =b n a n(n∈N *).(1) 数列{c n }是否为等比数列?证明你的结论;(2) 设数列{lna n }、{lnb n }的前n 项和分别为S n ,T n .若a 1=2,S n T n =n2n +1,求数列{c n }的前n 项和.解:(1) {c n }是等比数列.(2分)证明:设{a n }的公比为q 1(q 1>0),{b n }的公比为q 2(q 2>0),则c n +1c n =b n +1a n +1·a n b n =b n +1b n ·a n a n +1=q 2q 1≠0,故{c n }为等比数列.(5分) (2) 数列{lna n }和{lnb n }分别是公差为lnq 1和lnq 2的等差数列.由条件得nlna 1+n n -12lnq 1nlnb 1+n n -12lnq 2=n 2n +1,即2lna 1+n -1lnq 12lnb 1+n -1lnq 2=n2n +1.(7分)即(2lnq 1-lnq 2)n 2+(4lna 1-lnq 1-2lnb 1+lnq 2)n +(2lna 1-lnq 1)=0. 上式对n∈N *恒成立.于是⎩⎪⎨⎪⎧2lnq 1-lnq 2=0,4lna 1-lnq 1-2lnb 1+lnq 2=0,2lna 1-lnq 1=0.将a 1=2代入得q 1=4,q 2=16,b 1=8.(10分) 从而有c n =8·16n -12·4n -1=4n.所以数列|c n |的前n 项和为4+42+ (4)=43(4n -1).(12分)20、两个正数a 、b 的等差中项是52,一个等比中项是6,且a >b ,则双曲线x 2a 2-y2b 2=1的离心率e 等于________.【答案】 133 解析:由题有⎩⎪⎨⎪⎧a +b =5,ab =6⎩⎪⎨⎪⎧a =3,b =2或⎩⎪⎨⎪⎧a =2,b =3(舍),e =ca=32+223=133. 21、在等比数列{a n }中,前n 项和为S n ,若S m ,S m +2,S m +1成等差数列,则a m ,a m +2,a m +1成等差数列.(1) 写出这个命题的逆命题;(2) 判断逆命题是否为真?并给出证明.解: (1)在等比数列{a n }中,前n 项和为S n ,若a m ,a m +2,a m +1成等差数列,则S m ,S m +2,S m +1成等差数列.(2) 数列{a n }的首项为a 1,公比为q.由题意知:2a m +2=a m +a m +1,即2a 1q m +1=a 1q m -1+a 1q m,∵ a 1≠0,q≠0, ∴ 2q 2-q -1=0, ∴ q=1或q =-12,当q =1时,有S m =ma 1,S m +2=(m +2)a 1,S m +1=(m +1)a 1, 显然:2S m +2≠S m +S m +1.此时逆命题为假.当q =-12时,有2S m +2=2a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎦⎥⎤-12m +21+12=43a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12m +2,S m +S m +1=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12m 1+12+2a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12m +11+12=43a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12m +2,∴ 2S m +2=S m +S m +1,此时逆命题为真.。

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用(解析版)

2020年高考数学(理)总复习:数列的求和及综合应用题型一 数列求和 【题型要点】(1)分组求和法:分组求和法是解决通项公式可以写成c n =a n +b n 形式的数列求和问题的方法,其中{a n }与{b n }是等差(比)数列或一些可以直接求和的数列.(2)裂项相消法:将数列的通项分成两个代数式子的差,即a n =f (n +1)-f (n )的形式,然后通过累加抵消中间若干项的求和方法.形如1+n n a a c(其中{a n }是各项均不为0的等差数列,c 为常数)的数列等.(3)错位相减法:形如{a n ·b n }(其中{a n }为等差数列,{b n }为等比数列)的数列求和,一般分三步:①巧拆分;②构差式;③求和.(4)倒序求和法:距首尾两端等距离的两项和相等,可以用此法,一般步骤:①求通项公式;②定和值;③倒序相加;④求和;⑤回顾反思.(5)并项求和法:先将某些项放在一起求和,然后再求S n .(6)归纳猜想法:通过对S 1,S 2,S 3,…的计算进行归纳分析,寻求规律,猜想出S n ,然后用数学归纳法给出证明.【例1】已知各项为正数的等比数列{a n }的前n 项和为S n ,数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),若S 3=b 5+1,b 4是a 2和a 4的等比中项. (1)求数列{a n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .【解析】 (1)∵数列{b n }的通项公式b n =⎩⎪⎨⎪⎧n ,n 为偶数,n +1,n 为奇数(n ∈N *),∴b 5=6,b 4=4,设各项为正数的等比数列{a n }的公比为q ,q >0, ∵S 3=b 5+1=7,∴a 1+a 1q +a 1q 2=7,① ∵b 4是a 2和a 4的等比中项,∴a 2·a 4=a 23=16,解得a 3=a 1q 2=4,②由①②得3q 2-4q -4=0,解得q =2,或q =-23(舍),∴a 1=1,a n =2n -1.(2)当n 为偶数时,T n =(1+1)·20+2·2+(3+1)·22+4·23+(5+1)·24+…+[[(n -1)+1]·2n-2+n ·2n -1=(20+2·2+3·22+4·23+…+n ·2n -1)+(20+22+…+2n -2),设H n =20+2·2+3·22+4·23+…+n ·2n -1,①2H n =2+2·22+3·23+4·24+…+n ·2n ,② ①-②,得-H n =20+2+22+23+…+2n -1-n ·2n=1-2n 1-2-n ·2n =(1-n )·2n -1,∴H n =(n -1)·2n +1,∴T n =(n -1)·2n+1+1-4·2n 1-4=⎪⎭⎫ ⎝⎛-32n ·2n +23.当n 为奇数,且n ≥3时,T n =T n -1+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-35n ·2n -1+23+(n +1)·2n -1=⎪⎭⎫ ⎝⎛-322n ·2n -1+23,经检验,T 1=2符合上式, ∴T n =⎪⎪⎩⎪⎪⎨⎧+⋅⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛--为偶数为奇数n n n n n n ,32232,3223221【反思总结】(1)错位相减法适用于求数列{a n ·b n }的前n 项和,其中{a n }为等差数列,{b n }为等比数列. (2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后所得部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n =1,2进行验证.题组训练一 数列求和已知等比数列{a n }的前n 项和为S n ,且6S n =3n +1+a (a ∈N *).(1)求a 的值及数列{a n }的通项公式;(2)设b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2,求{b n }的前n 项和T n .【解析】 (1)∵等比数列{a n }满足6S n =3n +1+a (a ∈N *),n =1时,6a 1=9+a ;n ≥2时,6a n =6(S n -S n -1)=3n +1+a -(3n +a )=2×3n .∴a n =3n -1,n =1时也成立,∴1×6=9+a ,解得a =-3,∴a n =3n -1.(2)b n =(-1)n -1(2n 2+2n +1)(log 3a n +2)2(log 3a n +1)2=(-1)n -1(2n 2+2n +1)n 2(n +1)2=(-1)n -1()⎥⎦⎤⎢⎣⎡++22111n n当n 为奇数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1+1(n +1)2; 当n 为偶数时,T n =+⋅⋅⋅+⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+222231212111()⎥⎦⎤⎢⎣⎡++22111n n =1-1(n +1)2. 综上,T n =1+(-1)n-11(n +1)2. 题型二 数列与函数的综合问题 【题型要点】数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.【例2】已知数列{a n }的前n 项和为S n ,且S n =2n 2+2n . (1)求数列{a n }的通项公式;(2)若点(b n ,a n )在函数y =log 2x 的图象上,求数列{b n }的前n 项和T n . 【解】 (1)当n ≥2时,a n =S n -S n -1=2n 2+2n -[2(n -1)2+2(n -1)]=4n , 当n =1时,a 1=S 1=4=4×1, ∴数列{a n }的通项公式为a n =4n .(2)由点{b n ,a n }在函数y =log 2x 的图象上得a n =log 2b n ,且a n =4n ,∴b n =2an =24n =16n ,故数列{b n }是以16为首项,公比为16的等比数列.T n =16(1-16n )1-16=16n +1-1615.题组训练二 数列与函数的综合问题已知二次函数f (x )=ax 2+bx 的图象过点(-4n,0),且f ′(0)=2n (n ∈N *). (1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′⎪⎪⎭⎫ ⎝⎛na 1,且a 1=4,求数列{a n }的通项公式. 【解】 (1)由f ′(x )=2ax +b ,f ′(0)=2n ,得b =2n ,又f (x )的图象过点(-4n,0),所以16n 2a -4nb =0,解得a =12.所以f (x )=12x 2+2nx (n ∈N *).(2)由(1)知f ′(x )=x +2n (n ∈N *), 所以1a n +1=1a n +2n ,即1a n +1-1a n=2n .所以1a n -1a n -1=2(n -1), 1a n -1-1a n -2=2(n -2),…1a 2-1a 1=2,以上各式相加得1a n -14=n 2-n ,所以a n =1n 2-n +14,即a n =4(2n -1)2(n ∈N *). 题型三 数列与不等式的综合问题 【题型要点】(1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最后利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【例3】设f n (x )=x +x 2+…+x n -1,x ≥0,n ∈N ,n ≥2. (1)求f n ′(2);(2)证明:f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点(记为a n ),且0<a n -12<13n⎪⎭⎫ ⎝⎛32.(1)【解】 方法一 由题设f n ′(x )=1+2x +…+nx n -1,所以f n ′(2)=1+2×2+…+(n -1)2n -2+n ·2n -1,①则2f n ′(2)=2+2×22+…+(n -1)2n -1+n ·2n ,②由①-②得,-f n ′(2)=1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n =(1-n )2n -1, 所以f n ′(2)=(n -1)2n +1.方法二 当x ≠1时,f n (x )=x -x n +11-x-1,则f n ′(x )=[1-(n +1)x n ](1-x )+(x -x n +1)(1-x )2,可得f n ′(2)=-[1-(n +1)2n ]+2-2n +1(1-2)2=(n -1)2n +1.(2)[证明] 因为f n (0)=-1<0,f n ⎪⎭⎫ ⎝⎛32=32132132-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n-1=1-2×n ⎪⎭⎫ ⎝⎛32≥1-2×232⎪⎭⎫ ⎝⎛>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内至少存在一个零点,又f ′n (x )=1+2x +…+nx n -1>0,所以f n (x )在⎪⎭⎫ ⎝⎛32,0内单调递增,因此f n (x )在⎪⎭⎫⎝⎛32,0内有且仅有一个零点a n ,由于f n (x )=x -x n +11-x -1,所以0=f n (a n )=a n -a n +1n1-a n-1,由此可得a n =12+12a n +1n >12,故12<a n <23,所以0<a n -12=12a n +1n <12×132+⎪⎭⎫ ⎝⎛n =13n⎪⎭⎫ ⎝⎛32. 题组训练三 数列与不等式的综合问题1.已知等比数列{a n }满足a n +1+a n =10·4n -1(n ∈N *),数列{b n }的前n 项和为S n ,且b n =log 2a n .(1)求b n ,S n ;(2)设c n =b n +12,证明:c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *).【解】 (1)解 由题意知a 2+a 1=10,a 2+a 3=40,设{a n }的公比为q ,则a 2+a 3a 1+a 2=q (a 1+a 2)a 1+a 2=4,∴q =4.则a 1+a 2=a 1+4a 1=10,解得a 1=2,∴a n =2·4n -1=22n -1.∴b n =log 222n -1=2n -1.∴S n =n (b 1+b n )2=n (1+2n -1)2=n 2.(2)证明 法一∵c n =b n +12=2n -1+12=n ,∴S n +1=(n +1)2.要证明c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1,即证1×2+2×3+…+n ×(n +1)<12(n +1)2,①当n =1时,1×2<12×(1+1)2=2成立.②假设当n =k (k ∈N *)时不等式成立, 即1×2+2×3+…+k ×(k +1)<12(k +1)2,则当n =k +1(k ∈N *)时,要证1×2+2×3+…+k ×(k +1)+(k +1)(k +2)<12(k +2)2,即证(k +1)(k +2)<12(k +2)2-12(k +1)2,即(k +1)(k +2)<k +32,两边平方得k 2+3k +2<k 2+3k +94显然成立,∴当n =k +1(k ∈N *)时,不等式成立. 综上,不等式成立.法二 ∵c n =b n +12=2n -1+12=n ,S n +1=(n +1)2,由基本不等式可知n (n +1)≤n +n +12=n +12,故1×2<1+12,2×3<2+12,…,n (n +1)≤n +12,∴1×2+2×3+3×4+…+n (n +1)<(1+2+3+…+n )+n 2=n 2+2n 2<n 2+2n +12=(n +1)22,即不等式c 1·c 2+c 2·c 3+…+c n ·c n +1<12S n +1(n ∈N *)成立.2.已知数列{a n }满足a 1=1,a n +1=a n 1+a 2n,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和.证明:当n ∈N *时,(1)a n +1<a n ; (2)T n =1a 2n +1-2n -1;(3)2n -1<S n <2n .【证明】 (1)由a 1=1及a n +1=a n1+a 2n 知,a n >0,故a n +1-a n =a n 1+a 2n -a n =-a 3n1+a 2n <0, ∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n +a n ,得1a 2n +1=1a 2n +a 2n +2,从而1a 2n +1=1a 2n +a 2n +2=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又∵a 1=1,∴T n =1a 2n +1-2n -1,n ∈N *. (3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),由此S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)]=1+2(n -1)<2n ,n ≥2,又∵a 1=1,∴S n <2n .另一方面,由a n =1a n +1-1a n ,得S n =1a n +1-1a 1≥2n +2-1>2n -1.综上,2n -1<S n <2n .【专题训练】1.已知数列{a n }的前n 项和为S n ,且a 2=8, S n =a n +12-n -1.(1)求数列{a n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫2×3na n a n +1的前n 项和T n .【解】 (1)因为S n =a n +12-n -1,故当n =1时,a 1=a 22-1-1=2;当n ≥2时,2S n =a n +1-2n -2,2S n -1=a n -2(n -1)-2,两式相减可得a n +1=3a n +2; 经检验,当n =1时也满足a n +1=3a n +2,故a n +1+1=3(a n +1),故数列{a n +1}是以3为首项,3为公比的等比数列,故a n +1=3n ,即a n =3n -1.(2)由(1)可知,2×3n a n a n +1=2×3n(3n -1)(3n +1-1) =13n-1-13n +1-1, 故T n =131-1-132-1+132-1-133-1+…+13n -1-13n +1-1=12-13n +1-1.2.已知数列{a n }的前n 项和为S n ,a 1=2,a n +1=S n +2. (1)求数列{a n }的通项公式;(2)已知b n =log 2a n ,求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .【解析】 (1)∵a n +1=S n +2,∴当n ≥2时,a n =S n -1+2,两式相减得,a n +1-a n =S n -S n -1=a n ,则a n +1=2a n ,所以a n +1a n =2(n ≥2),∵a 1=2,∴a 2=S 1+2=4,满足a 2a 1=2,∴数列{a n }是以2为公比、首项为2的等比数列,则a n =2·2n -1=2n ;(2)由(1)得,b n =log 2a n =log 22n =n , ∴1b n b n +1=1n (n +1)=1n -1n +1, ∴T n =⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =1-1n +1=n n +1. 3.已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n ·a n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a 2n 的前n 项和为T n ,求证:n 4n +4<T n <12.【解析】 (1)∵4S n =a n ·a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2,∴a 2=4.当n ≥2时,4S n -1=a n -1·a n ,得4a n =a n ·a n +1-a n -1·a n .由题意知a n ≠0,∴a n +1-a n -1=4. ①当n =2k +1,k ∈N *时,a 2k +2-a 2k =4,即a 2,a 4,…,a 2k 是首项为4,公差为4的等差数列, ∴a 2k =4+(k -1)×4=4k =2×2k ; ②当n =2k ,k ∈N *时,a 2k +1-a 2k -1=4,即a 1,a 3,…,a 2k -1是首项为2,公差为4的等差数列, ∴a 2k -1=2+(k -1)×4=4k -2=2(2k -1). 综上可知,a n =2n ,n ∈N *.(2)证明:∵1a 2n =14n 2>14n (n +1)=14⎪⎭⎫ ⎝⎛+-111n n ,∴T n =1a 21+1a 22+…+1a 2n>14⎪⎭⎫ ⎝⎛+-⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-1113121211n n =141-1n +1=n 4n +4. 又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎪⎭⎫ ⎝⎛+--121121n n ,∴T n =1a 21+1a 22+…+1a 2n <12⎪⎭⎫ ⎝⎛+--+-+-+-12112171515131311n n =12⎪⎭⎫ ⎝⎛+-1211n <12. 即得n 4n +4<T n <12.4.已知数列{a n }与{b n }的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =2(b n +1-b n )恒成立.(1)若A n =n 2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1<13成立,求正实数b 1的取值范围;(3)若a 1=2,b n =2n ,是否存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由. 【解】 (1)因为A n =n 2,所以a n =⎩⎪⎨⎪⎧1,n =1,n 2-(n -1)2,n ≥2, 即a n =2n -1,故b n +1-b n =12(a n +1-a n )=1,所以数列{b n }是以2为首项,1为公差的等差数列,所以B n =n ·2+12·n ·(n -1)·1=12n 2+32n . (2)依题意B n +1-B n =2(b n +1-b n ),即b n +1=2(b n +1-b n ),即b n +1b n=2, 所以数列{b n }是以b 1为首项,2为公比的等比数列,所以a n =B n =1-2n1-2×b 1=b 1(2n -1), 所以b n +1a n a n +1=2nb 1(2n -1)·(2n +1-1), 因为b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+1211211n n 所以b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+…+b n +1a n a n +1=1b 1⎪⎭⎫ ⎝⎛---+12112111n ,所以1b 1⎪⎭⎫ ⎝⎛---+12112111n <13恒成立,即b 1>3⎪⎭⎫ ⎝⎛--+12111n ,所以b 1≥3.(3)由a n +1-a n =2(b n +1-b n )得:a n +1-a n =2n +1,所以当n ≥2时,a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1=2n +2n -1+…+23+22+2=2n +1-2, 当n =1时,上式也成立,所以A n =2n +2-4-2n , 又B n =2n +1-2,所以A n B n =2n +2-4-2n 2n +1-2=2-n 2n -1, 假设存在两个互不相等的整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t 成等差数列,等价于121-1,s 2s -1,t 2t -1成等差数列, 即2s 2s-1=121-1+t 2t -1,即2s 2s -1=1+t 2t -1,因为1+t 2t -1>1,所以2s 2s -1>1,即2s <2s +1,令h (s )=2s -2s -1(s ≥2,s ∈N *),则h (s +1)-h (s )=2s -2>0所以h (s )递增, 若s ≥3,则h (s )≥h (3)=1>0,不满足2s <2s +1,所以s =2,代入2s 2s -1=121-1+t 2t -1得2t -3t -1=0(t ≥3),当t =3时,显然不符合要求; 当t ≥4时,令φ(t )=2t -3t -1(t ≥4,t ∈N *),则同理可证φ(t )递增,所以φ(t )≥φ(4)=3>0,所以不符合要求.所以,不存在正整数s ,t (1<s <t ),使A 1B 1,A s B s ,A t B t成等差数列.。

数列求和的几种方法、数列的实际应用问题

数列求和的几种方法、数列的实际应用问题

数列求和的⼏种⽅法、数列的实际应⽤问题数列求和的⼏种⽅法、数列的实际应⽤问题⼀. 教学难点:数列的实际应⽤问题⼆. 课标要求:1. 探索并掌握⼀些基本的数列求前n 项和的⽅法;2. 能在具体的问题情境中,发现数列的通项和递推关系,并能⽤有关等差、等⽐数列知识解决相应的实际问题.三. 命题⾛向:数列求和和数列综合及实际问题在⾼考中占有重要的地位,⼀般情况下都是出⼀道解答题,解答题⼤多以数列为⼯具,综合运⽤函数、⽅程、不等式等知识,通过运⽤逆推思想、函数与⽅程、归纳与猜想、等价转化、分类讨论等各种数学思想⽅法,这些题⽬都考查考⽣灵活运⽤数学知识分析问题和解决问题的能⼒,它们都属于中、⾼档题⽬.有关命题趋势:1. 数列是⼀种特殊的函数,⽽不等式则是深刻认识函数和数列的有效⼯具,三者的综合题是对基础和能⼒的双重检验,在三者交汇处设计试题,特别是代数推理题是⾼考的重点;2. 数列推理题将继续成为数列命题的⼀个亮点,这是由于此类题⽬能突出考查学⽣的逻辑思维能⼒,能区分学⽣思维的严谨性、灵敏程度、灵活程度;3. 数列与新的章节知识结合的特点有可能加强,如与解析⼏何的结合等;4. 有关数列的应⽤问题也⼀直备受关注.【教学过程】⼀、基本知识回顾 1. 数列求通项与和(1)数列前n 项和S n 与通项a n 的关系式:a n =--11s s s n n 12=≥n n .(2)求通项常⽤⽅法①作新数列法.作等差数列与等⽐数列.②累差叠加法.最基本的形式是:a n =(a n -a n -1)+(a n -1+a n -2)+…+(a 2-a 1)+a 1.③归纳、猜想法.(3)数列前n 项和①重要公式:等差和等⽐数列的求和公式1+2+…+n =21n (n +1);12+22+…+n 2=61n (n +1)(2n +1);13+23+…+n 3=(1+2+…+n )2=41n 2(n +1)2;②裂项相消法将数列的通项分成两个式⼦的代数和,即a n =f (n +1)-f (n ),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法.⽤裂项法求和,需要掌握⼀些常见的裂项,如:)11(1))((1C An B An B C C An B An a n +-+-=++=、)1(1+n n =n 1-11+n 等.③错位相减法(可⽤于推导等⽐数列前n 项和公式)对⼀个由等差数列及等⽐数列对应项之积组成的数列的前n 项和,常⽤错位相减法.n n n c b a ?=,其中{}n b 是等差数列, {}n c 是等⽐数列,记n n n n n c b c b c b c b S ++?++=--112211,则1211n n n n n qS b c b c b c -+=+??++,…④分组转化求和把数列的某些项放在⼀起先求和,然后再求S n .⑤倒序相加法(可⽤于推导等差数列前n 项和公式) 2. 递归数列数列的连续若⼲项满⾜的等量关系a n +k =f (a n +k -1,a n +k -2,…,a n )称为数列的递归关系.由递归关系及k 个初始值可以确定的⼀个数列叫做递归数列.如由a n +1=2a n +1,及a 1=1,确定的数列}12{-n 即为递归数列.递归数列的通项的求法⼀般说来有以下⼏种:(1)归纳、猜想.(2)迭代法.(3)代换法.包括代数代换,对数代数,三⾓代数.(4)作新数列法.最常见的是作成等差数列或等⽐数列来解决问题.【典型例题】例1. 已知数列{}n a 为等差数列,且公差不为0,⾸项也不为0,求和:∑=+ni i i a a 111.解:⾸先考虑=∑=+n i i i a a 111∑=+-n i i i a a d 11)11(1,则∑=+ni i i a a 111=1111)11(1++=-n n a a na a d .点评:已知数列{}n a 为等差数列,且公差不为0,⾸项也不为0,下列求和11nni i ===也可⽤裂项求和法.例2. 求)(,32114321132112111*N n n ∈+++++++++++++++.解:)1(2211+=+?++=k k k a k , ])1n (n 1321211[2S n ++?+?+?=∴.1n n 21n 1121n 1n 131212112+=??+-= ??+-+?+??-+ -= 点评:裂项求和的关键是先将形式复杂的因式转化的简单⼀些.例3. 设221)(+=x x f ,利⽤课本中推导等差数列前n 项和的⽅法,可求得)6()5()0()4()5(f f f f f ++++-+- 的值为____________解:课本中推导等差数列前n 项和的⽅法为倒序相加法.因为22221221)1()(1=+++=-+-x x x f x f所以22)1()0()5()4()6()5(=+==+-=+-f f f f f f原式=622=23点评:本题曾为上海⾼考题,主要考查考⽣对课本的熟练程度和倒序相加法的应⽤,其中有函数式⼦的变化,计算能⼒的考查.例4. 已知1,0≠>a a ,数列{}n a 是⾸项为a ,公⽐也为a 的等⽐数列,令)(lg N n a a b n n n ∈?=,求数列{}n b 的前n 项和n S .解:,lg n nn n a a b n a a ==? , 232341(23)lg (23)lg n n n n S a a a na a aS a a a na a +∴=++++=++++ ……①……②①-②得:a na a a a S a n n n lg )()1(12+-+++=- ,[]nn ana n a a a S )1(1)1(lg 2-+--=∴点评:设数列{}n a 是等⽐数列,数列{}n b 是等差数列,则对数列{}n n b a 的前n 项和nS 进⾏求解,均可⽤错位相减.例 5. 数列),60cos 1000lg(),...60cos 1000lg(),60cos 1000lg(,1000lg 1n 2-…的前多少项和为最⼤?解:{}3(1)lg2,n n a n a =--是以3为⾸项,以lg 2-为公差的等差数列,2lg 26lg 2[33(1)lg 2],222n n S n n n +=+--=-+对称轴*6lg 210.47,,10,112lg 2n n N +=≈∈⽐较起来10更靠近对称轴∴前10项和为最⼤另法:由100n n a a +≥??点评:求和的最值关键在于找分界点.例6. 求数列1,3+13,32+132,……,3n +13n的各项的和.解:其和为(1+3+ (3))+(13132++…+13n )=3121321n n +--+-=12(3n +1-3-n ).点评:分组转化法求和.例7. (2006年浙江卷20)已知函数()f x =x 3+x 2,数列{x n }.(x n > 0)的第⼀项x 1=1,以后各项按如下⽅式取定:曲线y =()f x 在11(())n n x f x ++?处的切线与经过(0,0)和(x n ,f (x n ))两点的直线平⾏(如图).求证:当n ∈*N 时:(I )221132n n n n x x xx -++=+;(II )1211()()22n n n x --≤≤.解:(I )因为'2 ()32,f x x x =+所以曲线()y f x =在11(,())n n x f x ++处的切线斜率121132.n n n k x x +++=+因为过(0,0)和(,())n n x f x 两点的直线斜率是2,n n x x +所以221132n n n n x x x x +++=+.(II )因为函数2()h x x x =+当0x >时单调递增,⽽221132n n n n x x x x +++=+21142n n x x ++≤+211(2)2n n x x ++=+所以12nn x x +≤,即11,2n n x x +≥ 因此1121211().2n n n n n n x x x x x x x ----=≥⼜因为12212(),n n n n x x x x +++≥+ 令2,n n n y x x =+则11.2n ny y +≤ 因为21112,y x x =+=所以12111()().22n n n y y --≤?=因此221(),2n n n n x x x -≤+≤故1211()().22n n n x --≤≤点评:数列与解析⼏何问题结合在⼀块,数列的通项与线段的长度、点的坐标建⽴起联系.例8. (2005上海⾼考20.)假设某市2004年新建住房400万平⽅⽶,其中有250万平⽅⽶是中低价房.预计在今后的若⼲年内,该市每年新建住房⾯积平均⽐上⼀年增长8%.另外,每年新建住房中,中低价房的⾯积均⽐上⼀年增加50万平⽅⽶.那么,到哪⼀年底,(1)该市历年所建中低价房的累计⾯积(以2004年为累计的第⼀年)将⾸次不少于4750万平⽅⽶?(2)当年建造的中低价房的⾯积占该年建造住房⾯积的⽐例⾸次⼤于85%? 解:(1)设中低价房⾯积形成数列{a n },由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +502)1(?-n n =25n 2+225n ,令25n 2+225n ≥4750,即n 2+9n -190≥0,⽽n 是正整数,∴n ≥10.到2013年底,该市历年所建中低价房的累计⾯积将⾸次不少于4750万平⽅⽶.(2)设新建住房⾯积形成数列{b n },由题意可知{b n }是等⽐数列,其中b 1=400,q =1.08,则b n =400·(1.08)n -1·0.85.由题意可知a n >0.85 b n ,有250+(n -1)·50>400·(1.08)n -1·0.85.由计算器解得满⾜上述不等式的最⼩正整数n =6.到2009年底,当年建造的中低价房的⾯积占该年建造住房⾯积的⽐例⾸次⼤于85%.点评:本题考查等差、等⽐数列的应⽤题,关键是如何把实际问题转化为数列问题,注意解应⽤题的设、列、解、答四个步骤.例9. 某企业进⾏技术改造,有两种⽅案,甲⽅案:⼀次性贷款10万元,第⼀年便可获利1万元,以后每年⽐前⼀年增加30%的利润;⼄⽅案:每年贷款1万元,第⼀年可获利1万元,以后每年⽐前⼀年增加5千元;两种⽅案的使⽤期都是10年,到期⼀次性归还本息.若银⾏两种形式的贷款都按年息5%的复利计算,试⽐较两种⽅案中,哪种获利更多?(取665.575.1,786.133.1,629.105.1101010===)解:甲⽅案是等⽐数列,⼄⽅案是等差数列,①甲⽅案获利:63.423.013.1%)301(%)301(%)301(11092≈-=+++++++ (万元),银⾏贷款本息:29.16%)51(1010≈+(万元),故甲⽅案纯利:34.2629.1663.42=-(万元),②⼄⽅案获利:5.02910110)5.091()5.021()5.01(1??+=+++++++50.32=(万元);银⾏本息和:]%)51(%)51(%)51(1[05.192+++++++? 21.1305.0105.105.110≈-?=(万元)故⼄⽅案纯利:29.1921.1350.32=-(万元);综上可知,甲⽅案更好.点评:这是⼀道⽐较简单的数列应⽤问题,由于本息与利润是熟悉的概念,因此只建⽴通项公式并运⽤所学过的公式求解.例10. (2007⼭东理17)设数列{}n a 满⾜211233333n n na a a a -++++=(Ⅰ)求数列{}n a 的通项;(Ⅱ)设n n nb a =,求数列{}n b 的前n 项和n S .解:(I )2112333...3,3n n na a a a -+++= 221231133...3(2),3n n n a a a a n ---+++=≥1113(2).333n n n n a n --=-=≥1(2).3n n a n =≥验证1n =时也满⾜上式,*1().3n n a n N =∈(II )3nn b n =?,23132333...3n n S n =?+?+?+?231233333n n n S n +-=+++-?11332313n n n S n ++--=-?-,111333244n n n n S ++=?-?+?例11. (2007⼭东⽂18)设{}n a 是公⽐⼤于1的等⽐数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +== ,,,,求数列{}n b 的前n 项和T n .解:(1)由已知得1231327:(3)(4)3.2a a a a a a ++=??+++=,解得22a =.设数列{}n a 的公⽐为q ,由22a =,可得1322a a qq ==,.227q q ++=,即22520q q -+=,解得12122q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=.(2)由于31ln 12n n b a n +== ,,,,由(1)得3312nn a +=3ln 23ln 2n n b n ∴==⼜2ln 3b b n 1n =-+{}n b ∴是等差数列. 12n n T b b b ∴=+++.2ln 2)1n (n 32)2ln n 32ln 3(n 2)b b (n n 1+=+=+=故3(1)ln 22n n n T +=.点评:2007年⼭东⾼考⽂科和理科数列的题⽬都在⼤题的前两题的位置,理科考查的是错位相减法求和,⽂科为等差和等⽐数列公式的应⽤,都考查了考⽣的运算能⼒.例12. (2007福建⽂21)数列{}n a 的前n 项和为n S ,11a =,*12()n n a S n +=∈N .(Ⅰ)求数列{}n a 的通项n a ;(Ⅱ)求数列{}n na 的前n 项和n T .解:(Ⅰ)12n n a S += ,12n n n S S S +∴-=,13n nS S +∴=.⼜111S a == ,∴数列{}n S 是⾸项为1,公⽐为3的等⽐数列,1*3()n n S n -=∈N .当2n ≥时, )2(32221≥?==--n S a n n n ,≥?==∴-2,321,12n n a n n (Ⅱ)12323n n T a a a na =++++ ,当1n =时,11T =;当2n ≥时,2103236341-?++?+?+=n n n T ,…………①12132363433-?++?+?+=n n n T ………………………②-①②得:122132)333(2422--?-+++++-=-n n n n T123231)31(322--?---?+=n n n13)21(1-?-+-=n n . 1113(2)22n n T n n -??∴=+- ≥.⼜111T a == 也满⾜上式,1*113()22n n T n n -??∴=+-∈ N .点评:本⼩题考查数列的基本知识,考查等⽐数列的概念、通项公式及数列的求和,考查分类讨论及化归的数学思想⽅法,以及推理和运算能⼒.满分12分.[思维⼩结]1. 数列求和的常⽤⽅法(1)公式法:适⽤于等差、等⽐数列或可转化为等差、等⽐数列的数列;(2)裂项相消法:适⽤于+1n n a a c 其中{ n a }是各项不为0的等差数列,c 为常数;部分⽆理数列、含阶乘的数列等;(3)错位相减法:适⽤于{}n n b a 其中{ n a }是等差数列,{}n b 是各项不为0的等⽐数列.(4)倒序相加法:类似于等差数列前n 项和公式的推导⽅法. (5)分组求和法 2. 常⽤结论nk k ==∑1+2+3+...+n = 2)1(+n n(2)1(21)nk k =-=∑1+3+5+...+(2n -1)=2n(3)21nk k ==∑)12)(1(613212222++=++++n n n n(4)111)1(1+-=+n n n n )211(21)2(1+-=+n n n n(5))()11(11q p q p p q pq <--=3. 数学思想(1)迭加累加(等差数列的通项公式的推导⽅法)若1(),(2)n n a a f n n --=≥,则……;(2)迭乘累乘(等⽐数列的通项公式的推导⽅法)若1()(2)nn a g n n a -=≥,则……;(3)逆序相加(等差数列求和公式的推导⽅法);(4)错位相减(等⽐数列求和公式的推导⽅法).4. 应⽤题注意审清题意,把实际问题转化为数列中的问题.设、列、解、答四步骤不可少.【模拟试题】1. 数列{}n a 的通项公式11++=n n a n ,则该数列的前()项之和等于9.A. 98B. 99C. 96D. 972. 在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为()A. 9D. 173. 在等差数列{}n a 中,2700...,200...10052515021=+++=+++a a a a a a ,则1a 为()A. 22.5-B. 21.5-C. 20.5-D. 20-4. 已知等差数列n a n 的前}{项和m S a a a m S m m m m n 则且若,38,0,1,12211==-+>-+-等于()A. 38B. 20C. 10D. 95. 等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n n a b =()A. 23B. 2131n n --C. 2131n n ++D. 2134n n -+6. 已知数列的12++=n n S n ,则12111098a a a a a ++++=_____________.7. 在等差数列{}n a 中,公差21=d ,前100项的和45100=S ,则99531...a a a a ++++=_____________.8. 若等差数列{}n a 中,37101148,4,a a a a a +-=-=则13__________.S =9. ⼀个等⽐数列各项均为正数,且它的任何⼀项都等于它的后⾯两项的和,则公⽐q 为_______________.10. (2007北京理)若数列{}n a 的前n 项和210(123)nS n n n =-= ,,,,则此数列的通项公式为;数列{}n na 中数值最⼩的项是第项.11. 已知数列{}n a 的前n 项和nn S 23+=,求n a .170,求此数列的公⽐和项数.13. 数列),60cos 1000lg(),...60cos 1000lg(),60cos 1000lg(,1000lg 1n 2-…的前多少项和为最⼤?14. 已知数列{}n a 的前n 项和)34()1( (139511)--++-+-=-n S n n,求312215S S S -+的值.【试题答案】1. B...n n a S ===+110,99n S n ====2. A 4841,3,S S S =-=⽽48412816122016,,,,,S S S S S S S S S ----成等差数列即1,3,5,7,9,1718192020169a a a a S S +++=-=3. C501505027002005050,1,()2002d d S a a -=?==+=,1501118,2498,241,20.5a a a d a a +=+==-=- 4. C 20,(2)0,2,m m m m m m a a a a a a +-=-==21121221()(21)38,21192m m m m S a a m am --+=-=-=,m =10.5. B 121212112121()22(21)21223(21)131()2n n n n n n n n n a a a a S n n b b T n n b b -----+--=====-+-+6. 100228910111212712121(771)100a a a a a S S ++++=-=++-++= 7. 10 100110011001991100100()45,0.9,0.4,2S a a a a a a a a d =+=+=+=+-="1995050()0.41022S a a =+=?=8.156371011431110471311371312,,12,()132a a a a a a a a a a S a a a +-+-=+=+==+=9.设2212,10,0,n n n n n a a a qa q a q q q q ++=+=++-=>=10. 211n - 3 11. 解:111132,32,2(2)n n n nn n n n S S a S S n ----=+=+=-=≥ ⽽115a S ==,∴≥==-)2(,2)1(,51n n a n n 12. 解:设此数列的公⽐为,(1)q q ≠,项数为2n ,则,170q 1)q 1(a S ,85q 1)q 1(a S 2n 222n 21=--=偶奇2221122,85,2256,28,14n n S a q n S a -======-偶奇∴,2=q 项数为813. 解:{}3(1)lg2,n n a n a =--是以3为⾸项,以lg 2-为公差的等差数列,2lg 26lg 2[33(1)lg 2],222n n S n n n +=+--=-+对称轴*6lg 210.47,,10,112lg 2n n N +=≈∈⽐较起来10更靠近对称轴∴前10项和为最⼤.另法:由100n n a a +≥??14. 解:(4),2,2121,(4)43,2n n nn n n S S n n n n n ??-?-??==??---+-??为偶数为偶数,,为奇数为奇数15223129,44,61,S S S ==-=15223176S S S +-=-。

数列求和及综合应用

数列求和及综合应用

专题:数列第二讲 数列求和及综合应用必记公式:(自学整理)1.分组求和法:若一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.例如:n n n b a c +=,其中{}n a 和{}n b 可直接求和2.裂项相消法:把数列的通项拆成两个代数式子的差,在求和时中间的一些项可以相互抵消,从而求得其和. 常用的裂项公式:(1)1n (n +1)=________________;____________________)(1=+k n n (2)1(2n -1)(2n +1)=________________;(3)1n +n +1=________________; 3.错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用错位相减法求和;例如:n n n b a c ⋅=,其中{}n a 为等差数列,{}n b 为等比数列。

失分警示:1.公比为字母的等比数列求和时,注意公比是否为1的分类讨论。

2.错位相减法求和时易漏掉减数式的最后一项。

3.裂项相消法求和时易认为只剩下首尾两项。

4.裂项相消法求和时注意所裂式与原式的等价性。

热点考向:考点一:数列求和问题 题型一:分组转化求和 例1:数列}{n a 的通项公式为12+-=n a n n ,求数列}{n a 的的前n 项和S n .题型二:错位相减法求和例2:【2016高考山东】已知数列{}n a 的前n 项和S n =3n 2+8n ,{}n b 是等差数列,且1.n n n a b b +=+(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1).(2)n n n nn a c b ++=+ 求数列{}n c 的前n 项和T n .题型三:裂项相消法求和例3:【2016高考山东】设数列{}n a 的前n 项和为n S ,对任意正整数n 都有n n a S 2-16=(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n n a b 21log = 求11111122221-++-+-=n n b b b T考点二:数列与不等式的综合(选做)例3.【2016广州模拟】(利用单调性证明不等式)设n S 为数列{}n a 的前n 项和,已知,21=a 对任意*N n ∈都有n n a S )1(n 2+=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列⎭⎬⎫⎩⎨⎧+)2(4n n a a 的前n 项和为nT ,求证:121<≤n T高考随堂演练:1.【2008年海南宁夏文13】已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = ____________2.【2015年新课标卷1文13】数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .3.【2015年新课标卷1文7】 已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 4.【2008年海南宁夏理4文8】设等比数列{}n a 的公比q =2,前n 项和为S n ,则24a S =( )A .2B .4C .215D .217 5.【2013年新课标卷1文6】设首项为1,公比为错误!未找到引用源。

高中数学经典解题技巧和方法(数列求和及综合应用)

高中数学经典解题技巧和方法(数列求和及综合应用)

高中数学经典的解题技巧和方法(数列求和及综合应用)【编者按】数列求和及综合应用是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。

因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。

好了,下面就请同学们跟我们一起来探讨下数列求和及综合应用的经典解题技巧。

首先,解答数列求和及综合应用这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.了解数列求和的基本方法。

2.能在具体问题情景中识别数列的等差、等比关系,并能用有关知识解决相应问题。

3.了解等差数列与一次函数、等比数列与指数函数的关系。

好了,搞清楚了数列求和及综合应用的上述内容之后,下面我们就看下针对这两个内容的具体的解题技巧。

一、可转化为等差、等比数列的求和问题考情聚焦:1.可转化为等差或等比数列的求和问题,已经成为高考考查的重点内容之一。

2.该类问题出题背景选择面广,易与函数方程、递推数列等知识综合,在知识交汇点处命题。

3.多以解答题的形式出现,属于中、高档题目。

解题技巧:某些递推数列可转化为等差、等比数列解决,其转化途径有:1.凑配、消项变换——如将递推公式(q、d为常数,q≠0,≠1)。

通过凑配变成;或消常数转化为2.倒数变换—如将递推公式(c、d为非零常数)取倒数得3.对数变换——如将递推公式取对数得4.换元变换——如将递推公式(q、d为非零常数,q≠1,d≠1)变换成,令,则转化为的形式。

例1:(2010·福建高考文科·T17)数列{n a } 中a =13,前n 项和n S 满足1n S +-n S =113n +⎛⎫⎪⎝⎭(n ∈*N ).( I ) 求数列{n a }的通项公式n a 以及前n 项和n S ;(II )若S 1, t ( S 1+S 2 ), 3( S 2+S 3 ) 成等差数列,求实数t 的值。

数列求和及综合应用

数列求和及综合应用

=3n+n2ln 3-1;
题型与方法
专题四 第二讲
当 n 为奇数时,Sn=2×11--33n-(ln 2-ln 3)+n-2 1-nln 3
本 讲
=3n-n-2 1ln 3-ln 2-1.

目 开
3n+n2ln 3-1,
n为偶数,
综上所述,Sn=3n-n-2 1ln 3-ln 2-1, n为奇数.
专题四 第二讲
2.(2012·福建)数列{an}的通项公式 an=ncos n2π,其前 n 项和为
Sn,则 S2 012 等于
()
A.1 006 B.2 012 C.503 D.0
本 解析 用归纳法求解.
讲 栏 目
∵an=ncos n2π,∴a1=0,a2=-2,a3=0,a4=4,a5=0,

a6=-6,a7=0,a8=8,….
目 开
此时一定要查清其项数.
题型与方法
专题四 第二讲
变式训练 2 (2013·山东)设等差数列{an}的前 n 项和为 Sn,且
S4=4S2,a2n=2an+1.
(1)求数列{an}的通项公式;

(2)设数列{bn}的前 n 项和为 Tn,且 Tn+an2+n 1=λ(λ 为常数).
讲 栏
令 cn=b2n,n∈N*,求数列{cn}的前 n 项和 Rn.

栏 目
当 a1=2 时,当且仅当 a2=6,a3=18 时,符合题意;

当 a1=10 时,不合题意.
因此 a1=2,a2=6,a3=18.所以公比 q=3.
故 an=2·3n-1 (n∈N*).
题型与方法
专题四 第二讲
(2)因为bn=an+(-1)nln an

6.4 数列的综合应用

6.4 数列的综合应用

5
2
4
d
,
19 a1 9d,
解得a1=1,d=2,所以an=2n-1,Sn=n2.
(2)因为bn=
an
1 an1
=
1 (2n-1)(2n
1)
=
1 2
1 2n-1
-
1 2n
1
,Hale Waihona Puke 所以Tn=1 21-
1 3
1 3
-
1 5
?
1 2n-1
-
1 2n 1
=
n 2n 1
.
方法3 分组求和法求和
分组转化求和的常见类型:
②,解得a1=1,d=3,由此可得an=3n-2.
所以,数列{an}的通项公式为an=3n-2,数列{bn}的通项公式为bn=2n.
(2)设数列{a2nb2n-1}的前n项和为Tn,由a2n=6n-2,b2n-1=2×4n-1,有a2nb2n-1=(3n-1)×4n,
故Tn=2×4+5×42+8×43+…+(3n-1)×4n,
4Tn=2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,
上述两式相减,得-3Tn=2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1
=
12
(1-4n 1-4
)
-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得Tn=
3n-2×4n+1+
3
8.
3
(1){an+bn},其中 {{abnn}}是是等等比差数数列列;,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.4 数列求和、数列的综合应用挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.数列求和①掌握非等差、等比数列求和的几种常见方法.②能在具体的问题情境中识别数列的等差关系或等比关系,抽象出数列的模型,并能用有关知识解决相应的问题2017课标Ⅰ,12,5分数列求和等比数列的前n项和公式的应用★★★2017课标Ⅱ,15,5分裂项相消法求和等差数列基本量的计算2015课标Ⅰ,17,12分裂项相消法求和递推关系式及等差数列的通项公式2.数列的综合应用2016课标Ⅱ,17,12分数列的综合应用取整函数分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等.破考点【考点集训】考点一数列求和1.(2017湖南郴州第一次教学质量监测,6)在等差数列{a n}中,a4=5,a7=11.设b n=(-1)n·a n,则数列{b n}的前100项之和S100=( )A.-200B.-100C.200D.100答案 D2.(2018湖北东南省级示范高中联考,15)已知S n为{a n}的前n项和,若a n(4+cosnπ)=n(2-cos nπ),则S88等于.答案23323.(2018江西吉安一中、九江一中等八所重点中学4月联考,13)若{a n},{b n}满足a nb n=1,a n=n2+3n+2,则{b n}的前2018项和为.答案 1 0092 020考点二数列的综合应用1.(2018福建漳州期末调研测试,5)等差数列{a n}和等比数列{b n}的首项均为1,公差与公比均为3,则a b1+a b2+a b3=( )A.64B.32C.38D.33答案 D2.(2017陕西西安铁一中第五次模拟,9)已知数列{a n}满足a n=log(n+1)(n+2)(n∈N*),我们把使乘积a1·a2·a3·…·a n为整数的数n叫做“优数”,则在区间(1,2004)内的所有“优数”的和为( ) A.1024 B.2003 C.2026 D.2048答案 C3.已知a n=3n(n∈N*),记数列{a n}的前n项和为T n,若对任意的n∈N*,(T n+32)k≥3n-6恒成立,则实数k的取值范围是.答案k≥227炼技法【方法集训】方法1 错位相减法求和1.(2018福建闽侯第八中学期末,16)已知数列{na n}的前n项和为S n,且a n=2n,则使得S n-na n+1+50<0的最小正整数n的值为.答案52.(2018河南安阳第二次模拟,17)设等差数列{a n}的前n项和为S n,点(n,S n)在函数f(x)=x2+Bx+C-1(B,C∈R)的图象上,且a1=C.(1)求数列{a n}的通项公式;(2)记b n=a n(a2n-1+1),求数列{b n}的前n项和T n.解析(1)设数列{a n}的公差为d,则S n=na1+n(n-1)2d=d2n2+(a1-d2)n,又S n =n 2+Bn+C-1,两式对照得{d2=1,C -1=0,解得{d =2,C =1,所以a 1=1,所以数列{a n }的通项公式为a n =2n-1(n ∈N *). (2)由(1)知b n =(2n-1)(2·2n-1-1+1)=(2n-1)2n, 则T n =1×2+3×22+…+(2n-1)·2n ,2T n =1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1, 两式相减得T n =(2n-1)·2n+1-2(22+ (2))-2 =(2n-1)·2n+1-2×22(1-2n -1)1-2-2=(2n-3)·2n+1+6.方法2 裂项相消法求和1.(2018湖南株洲醴陵第二中学、第四中学联考,3)数列{√n+1+√n}的前2 017项的和为( )A.√2 018+1B.√2 018-1C.√2 017+1D.√2 017-1 答案 B2.(2018湖南邵阳期末,15)设数列{(n 2+n)a n }是等比数列,且a 1=16,a 2=154,则数列{3na n }的前15项和为 . 答案15163.(2017广东潮州二模,16)已知S n 为数列{a n }的前n 项和,a n =2·3n-1(n ∈N *),若b n =a n+1S n S n+1,则b 1+b 2+…+b n = . 答案 12-13n+1-1过专题 【高考】A 组 统一命题·课标卷题组考点一 数列求和1.(2017课标Ⅱ,15,5分)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k=1n1S k= .答案2nn+12.(2015课标Ⅰ,17,12分)S n 为数列{a n }的前n 项和.已知a n >0,a n 2+2a n =4S n +3.(1)求{a n }的通项公式; (2)设b n =1an a n+1,求数列{b n }的前n 项和.解析 (1)由a n 2+2a n =4S n +3,可知a n+12+2a n+1=4S n+1+3.可得a n+12-a n 2+2(a n+1-a n )=4a n+1,即2(a n+1+a n )=a n+12-a n 2=(a n+1+a n )(a n+1-a n ).由于a n >0,所以a n+1-a n =2.又由a 12+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n+1.(6分) (2)由a n =2n+1可知b n =1an a n+1=1(2n+1)(2n+3)=12(12n+1-12n+3).设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n =12(13-15)+(15-17)+…+(12n+1-12n+3)=n3(2n+3).(12分)思路分析 (1)由a n 2+2a n =4S n +3,得a n+12+2a n+1=4S n+1+3,两式相减得出递推关系,再求出a 1,利用等差数列的通项公式可得通项.(2)利用裂项相消法求T n (b n =12(12n+1-12n+3)).考点二 数列的综合应用1.(2017课标Ⅰ,12,5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A.440 B.330 C.220 D.110 答案 A2.(2016课标Ⅱ,17,12分)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解析 (1)设{a n }的公差为d,据已知有7+21d=28, 解得d=1.所以{a n }的通项公式为a n =n.b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(6分) (2)因为b n ={0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,(9分)所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.(12分)思路分析 (1)先求公差,从而得通项a n ,再根据已知条件求b 1,b 11,b 101.(2)分析出{b n }中项的规律,进而求出数列{b n }的前1 000项和.B 组 自主命题·省(区、市)卷题组考点一 数列求和1.(2018天津,18,13分)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6. (1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *). (i)求T n ; (ii)证明∑k=1n (T k +b k+2)b k (k+1)(k+2)=2n+2n+2-2(n ∈N *).解析 (1)设等比数列{a n }的公比为q.由a 1=1,a 3=a 2+2,可得q 2-q-2=0.因为q>0,可得q=2,故a n =2n-1.设等差数列{b n }的公差为d.由a 4=b 3+b 5,可得b 1+3d=4.由a 5=b 4+2b 6,可得3b 1+13d=16,从而b 1=1,d=1,故b n =n.所以,数列{a n }的通项公式为a n =2n-1,数列{b n }的通项公式为b n =n. (2)(i)由(1),有S n =1-2n1-2=2n-1, 故T n =∑k=1n(2k -1)=∑k=1n2k -n =2×(1-2n )1-2-n=2n+1-n-2.(ii)证明:因为(T k +b k+2)b k (k+1)(k+2)=(2k+1-k -2+k+2)k (k+1)(k+2)=k ·2k+1(k+1)(k+2)=2k+2k+2-2k+1k+1,所以,∑k=1n (T k +bk+2)b k(k+1)(k+2)=(233-222)+(244-233)+…+(2n+2n+2-2n+1n+1)=2n+2n+2-2. 2.(2016山东,18,12分)已知数列{a n }的前n 项和S n =3n 2+8n,{b n }是等差数列,且a n =b n +b n+1. (1)求数列{b n }的通项公式; (2)令c n =(a n +1)n+1(b n +2)n,求数列{c n }的前n 项和T n .解析 (1)由题意知,当n ≥2时,a n =S n -S n-1=6n+5.当n=1时,a 1=S 1=11,所以a n =6n+5.设数列{b n }的公差为d.由{a 1=b 1+b 2,a 2=b 2+b 3,即{11=2b 1+d,17=2b 1+3d,可解得b 1=4,d=3.所以b n =3n+1. (2)由(1)知c n =(6n+6)n+1(3n+3)n=3(n+1)·2n+1.又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n+1)×2n+1],2T n =3×[2×23+3×24+…+(n+1)×2n+2],两式作差,得-T n =3×[2×22+23+24+…+2n+1-(n+1)×2n+2]=3×[4+4(1-2n )1-2-(n +1)×2n+2]=-3n ·2n+2.所以T n =3n ·2n+2.考点二 数列的综合应用1.(2015福建,8,5分)若a,b 是函数f(x)=x 2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于( ) A.6 B.7 C.8 D.9 答案 D2.(2018浙江,20,15分)已知等比数列{a n }的公比q>1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n+1-b n )a n }的前n 项和为2n 2+n. (1)求q 的值;(2)求数列{b n }的通项公式.解析 (1)由a 4+2是a 3,a 5的等差中项得a 3+a 5=2a 4+4,所以a 3+a 4+a 5=3a 4+4=28,解得a 4=8.由a 3+a 5=20得8(q +1q )=20,解得q=2或q=12,因为q>1,所以q=2.(2)设c n =(b n+1-b n )a n ,数列{c n }的前n 项和为S n . 由c n ={S 1,n =1,S n -S n -1,n ≥2,解得c n =4n-1.由(1)可知a n =2n-1,所以b n+1-b n =(4n-1)·(12)n -1,故b n -b n-1=(4n-5)·(12)n -2,n ≥2,b n -b 1=(b n -b n-1)+(b n-1-b n-2)+…+(b 3-b 2)+(b 2-b 1) =(4n-5)·(12)n -2+(4n-9)·(12)n -3+…+7·12+3. 设T n =3+7·12+11·(12)2+…+(4n-5)·(12)n -2,n ≥2,12T n =3·12+7·(12)2+…+(4n-9)·(12)n -2+(4n-5)·(12)n -1,所以12T n =3+4·12+4·(12)2+…+4·(12)n -2-(4n-5)·(12)n -1,因此T n =14-(4n+3)·(12)n -2,n ≥2,又b 1=1,所以b n =15-(4n+3)·(12)n -2.C 组 教师专用题组考点一 数列求和1.(2017天津,18,13分)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).解析 (1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0,解得q=2或q=-3,又因为q>0,所以q=2.所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8①.由S 11=11b 4,可得a 1+5d=16②,联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8. 得T n =3n -23×4n+1+83.所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83.方法总结 (1)等差数列与等比数列中有五个量a 1,n,d(或q),a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和d(或q),问题可迎刃而解.(2)数列{a n }是公差为d 的等差数列,{b n }是公比q ≠1的等比数列,求数列{a n b n }的前n 项和适用错位相减法.2.(2015湖北,18,12分)设等差数列{a n }的公差为d,前n 项和为S n ,等比数列{b n }的公比为q.已知b 1=a 1,b 2=2,q=d,S 10=100. (1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =an b n,求数列{c n }的前n 项和T n .解析 (1)由题意有,{10a 1+45d =100,a 1d =2,即{2a 1+9d =20,a 1d =2,解得{a 1=1,d =2或{a 1=9,d =29.故{a n =2n -1,b n =2n -1或{a n =19(2n +79),b n=9·(29)n -1.(2)由d>1,知a n =2n-1,b n =2n-1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n=3-2n+32n,故T n =6-2n+32n -1.3.(2015天津,18,13分)已知数列{a n }满足a n+2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列. (1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2n a 2n -1,n ∈N *,求数列{b n }的前n 项和.解析 (1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3,所以a 2(q-1)=a 3(q-1).又因为q ≠1,故a 3=a 2=2,由a 3=a 1·q,得q=2.当n=2k-1(k ∈N *)时,a n =a 2k-1=2k-1=2n -12;当n=2k(k ∈N *)时,a n =a 2k =2k=2n 2.所以,{a n }的通项公式为a n ={2n -12,n 为奇数,2n 2,n 为偶数.(2)由(1)得b n =log 2a 2n a 2n -1=n 2n -1.设{b n }的前n 项和为S n ,则S n =1×120+2×121+3×122+…+(n-1)×12n -2+n×12n -1,12S n =1×121+2×122+3×123+…+(n-1)×12n -1+n×12n , 上述两式相减,得12S n =1+12+122+…+12n -1-n2n =1-12n1-12-n 2n =2-22n -n 2n ,整理得,S n =4-n+22n -1.所以,数列{b n }的前n 项和为4-n+22n -1,n ∈N *.4.(2014江西,17,12分)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n+1-a n+1b n +2b n+1b n =0.(1)令c n =an b n,求数列{c n }的通项公式;(2)若b n =3n-1,求数列{a n }的前n 项和S n .解析 (1)因为a n b n+1-a n+1b n +2b n+1b n =0,b n ≠0(n ∈N *),所以a n+1b n+1-an b n=2,即c n+1-c n =2.所以数列{c n }是以1为首项,2为公差的等差数列,故c n =2n-1.(2)由(1)及b n =3n-1知a n =c nb n =(2n-1)3n-1,于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n-1)·3n-1,3S n =1·31+3·32+…+(2n-3)·3n-1+(2n-1)·3n,相减得-2S n =1+2·(31+32+…+3n-1)-(2n-1)·3n =-2-(2n-2)3n ,所以S n =(n-1)3n+1.5.(2014山东,19,12分)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n-14na n a n+1,求数列{b n }的前n 项和T n .解析 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,所以由题意得(2a 1+2)2=a 1(4a 1+12), 解得a 1=1,所以a n =2n-1. (2)b n =(-1)n-14na n a n+1=(-1)n-14n(2n -1)(2n+1)=(-1)n-1(12n -1+12n+1). 当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n+1) =1-12n+1=2n2n+1.当n 为奇数时, T n =(1+13)-(13+15)+…-12n -3+12n -1+12n -1+12n+1=1+12n+1=2n+22n+1. 所以T n ={2n+22n+1,n 为奇数,2n2n+1,n 为偶数.(或T n =2n+1+(-1)n -12n+1)考点二 数列的综合应用1.(2018江苏,14,5分)已知集合A={x|x=2n-1,n ∈N *},B={x|x=2n,n ∈N *}.将A ∪B 的所有元素从小到大依次排列构成一个数列{a n }.记S n 为数列{a n }的前n 项和,则使得S n >12a n+1成立的n 的最小值为 . 答案 272.(2018江苏,20,16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N *,q ∈(1,√2m],证明:存在d ∈R,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示). 解析 (1)由条件知a n =(n-1)d,b n =2n-1.因为|a n -b n |≤b 1对n=1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得73≤d ≤52.因此,d 的取值范围为[73,52].(2)由条件知:a n =b 1+(n-1)d,b n =b 1q n-1.若存在d ∈R,使得|a n -b n |≤b 1(n=2,3,…,m+1)均成立, 即|b 1+(n-1)d-b 1q n-1|≤b 1(n=2,3,…,m+1). 即当n=2,3,…,m+1时,d 满足q n -1-2n -1b 1≤d ≤q n -1n -1b 1.因为q ∈(1,√2m],所以1<q n-1≤q m≤2, 从而q n -1-2n -1b 1≤0,q n -1n -1b 1>0,对n=2,3,…,m+1均成立.因此,取d=0时,|a n -b n |≤b 1对n=2,3,…,m+1均成立. 下面讨论数列{q n -1-2n -1}的最大值和数列{q n -1n -1}的最小值(n=2,3,…,m+1).①当2≤n ≤m 时,q n -2n-q n -1-2n -1=nq n -q n -nq n -1+2n(n -1)=n(q n -q n -1)-q n +2n(n -1),当1<q ≤21m 时,有q n ≤q m≤2,从而n(q n-q n-1)-q n+2>0. 因此,当2≤n ≤m+1时, 数列{q n -1-2n -1}单调递增,故数列{q n -1-2n -1}的最大值为q m -2m.②设f(x)=2x(1-x),当x>0时, f '(x)=(ln 2-1-xln 2)2x<0. 所以f(x)单调递减,从而f(x)<f(0)=1. 当2≤n ≤m 时,q n n q n -1n -1=q(n -1)n≤21n(1-1n )=f (1n)<1.因此,当2≤n ≤m+1时,数列{q n -1n -1}单调递减, 故数列{q n -1n -1}的最小值为q mm.因此,d 的取值范围为[b 1(q m -2)m,b 1q mm].3.(2015安徽,18,12分)设n ∈N *,x n 是曲线y=x 2n+2+1在点(1,2)处的切线与x 轴交点的横坐标.(1)求数列{x n }的通项公式;(2)记T n =x 12x 32…x 2n -12,证明:T n ≥14n .解析 (1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2.从而切线方程为y-2=(2n+2)(x-1).令y=0,解得切线与x 轴交点的横坐标x n =1-1n+1=nn+1.(2)证明:由题设和(1)中的计算结果知T n =x 12x 32…x 2n -12=(12)2(34)2…(2n -12n)2.当n=1时,T 1=14. 当n ≥2时,因为x 2n -12=(2n -12n )2=(2n -1)2(2n)2>(2n -1)2-1(2n)2=2n -22n =n -1n .所以T n >(12)2×12×23×…×n -1n =14n .综上可得对任意的n ∈N *,均有T n ≥14n .4.(2015陕西,21,12分)设f n (x)是等比数列1,x,x 2,…,x n的各项和,其中x>0,n ∈N,n ≥2.(1)证明:函数F n (x)=f n (x)-2在(12,1)内有且仅有一个零点(记为x n ),且x n =12+12x n n+1;(2)设有一个与上述等比数列的首项、末项、项数分别相同的等差数列,其各项和为g n (x),比较f n (x)和g n (x)的大小,并加以证明. 解析 (1)证明: F n (x)=f n (x)-2=1+x+x 2+…+x n-2,则F n (1)=n-1>0,F n (12)=1+12+(12)2+…+(12)n-2=1-(12)n+11-12-2=-12n <0,所以F n (x)在(12,1)内至少存在一个零点.又F'n (x)=1+2x+…+nx n-1>0,故F n (x)在(12,1)内单调递增,所以F n (x)在(12,1)内有且仅有一个零点x n .因为x n 是F n (x)的零点,所以F n (x n )=0,即1-x n n+11-x n-2=0,故x n =12+12x n n+1.(2)由题设知,g n (x)=(n+1)(1+x n )2.设h(x)=f n (x)-g n (x)=1+x+x 2+…+x n-(n+1)(1+x n )2,x>0.当x=1时, f n (x)=g n (x). 当x ≠1时,h'(x)=1+2x+…+nx n-1-n(n+1)x n -12. 若0<x<1,则h'(x)>x n-1+2x n-1+…+nx n-1-n(n+1)2x n-1=n(n+1)2x n-1-n(n+1)2x n-1=0.若x>1,则h'(x)<x n-1+2x n-1+…+nx n-1-n(n+1)2x n-1=n(n+1)2x n-1-n(n+1)2x n-1=0.所以h(x)在(0,1)上递增,在(1,+∞)上递减,所以h(x)<h(1)=0,即f n (x)<g n (x).综上所述,当x=1时, f n (x)=g n (x);当x ≠1时, f n (x)<g n (x).5.(2015重庆,22,12分)在数列{a n }中,a 1=3,a n+1a n +λa n+1+μa n 2=0(n ∈N +).(1)若λ=0,μ=-2,求数列{a n }的通项公式; (2)若λ=1k 0(k 0∈N +,k 0≥2),μ=-1,证明:2+13k 0+1<a k 0+1<2+12k 0+1.解析 (1)由λ=0,μ=-2,得a n+1a n =2a n 2(n ∈N +).若存在某个n 0∈N +,使得a n 0=0,则由上述递推公式易得a n 0-1=0.重复上述过程可得a 1=0,此与a 1=3矛盾,所以对任意n ∈N +,a n ≠0. 从而a n+1=2a n (n ∈N +),即{a n }是一个公比q=2的等比数列. 故a n =a 1q n-1=3·2n-1.(2)证明:若λ=1k 0,μ=-1,则数列{a n }的递推关系式变为a n+1a n +1k 0a n+1-a n 2=0,变形为a n+1(a n +1k)=a n 2(n ∈N +).由上式及a 1=3>0,归纳可得 3=a 1>a 2>…>a n >a n+1>…>0. 因为a n+1=a n2a n +1k 0=a n 2-1k 02+1k 02a n +1k 0=a n -1k 0+1k 0·1k0a n +1,所以对n=1,2,…,k 0求和得a k 0+1=a 1+(a 2-a 1)+…+(a k 0+1-a k 0) =a 1-k 0·1k 0+1k·(1k0a 1+1+1k 0a 2+1+…+1k 0a n +1)>2+1k 0·(13k 0+1+13k 0+1+…+13k 0+1⏟ k 0个)=2+13k 0+1.另一方面,由上已证的不等式知a 1>a 2>…>a k 0>a k 0+1>2,得 a k 0+1=a 1-k 0·1k 0+1k·(1k0a 1+1+1k 0a 2+1+…+1k 0a k 0+1)<2+1k 0·(12k 0+1+12k 0+1+…+12k 0+1⏟ k 0个)=2+12k 0+1.综上,2+13k+1<a k 0+1<2+12k0+1.【三年模拟】一、选择题(每小题5分,共30分)1.(2019届江西抚州七校高三10月联考,11)已知数列{a n }的前n 项和为S n ,且满足a 1=a 2=1,S n =a n+2-1,则下列命题错误的是( ) A.a n+2=a n+1+a n B.a 1+a 3+a 5+…+a 99=a 100 C.a 2+a 4+a 6+…+a 98=a 99 D.S 1+S 2+S 3+…+S 98=S 100-100 答案 C2.(2019届山西太原高三阶段性考试,10)已知集合P={x|x=2n,n ∈N *},Q={x|x=2n-1,n ∈N *},将P ∪Q 中的所有元素从小到大依次排列构成一个数列{a n },记S n 为数列{a n }的前n 项和,则使得S n <1 000成立的n 的最大值为( ) A.9 B.32 C.35 D.61 答案 C3.(2018福建厦门第一学期期末质检,7)已知数列{a n }满足a n+1+(-1)n+1a n =2,则其前100项和为( )A.250B.200C.150D.100 答案 D4.(2018河北衡水中学八模,8)已知函数f(x)=a x+b(a>0,且a ≠1)的图象经过点P(1,3),Q(2,5).当n ∈N *时,a n =f(n)-1f(n)·f(n+1),记数列{a n }的前n 项和为S n ,当S n =1033时,n 的值为( )A.7B.6C.5D.4 答案 D5.(2018四川南充模拟,11)设数列{a n }的前n 项和为S n ,已知a 1=45,a n+1={2a n ,0≤a n ≤12,2a n -1,12<a n ≤1,则S 2 018等于( ) A.5 0445B.5 0475C.5 0485D.5 0495答案 B6.(2018百校联盟TOP20三月联考,12)已知数列{a n }的通项公式为a n ={(12)n -12,n 为奇数,(12)n 2,n 为偶数,则数列{3a n +n-7}的前2n 项和的最小值为( ) A.-514 B.-1854C.-252D.-1058答案 D二、填空题(每小题5分,共15分)7.(2019届山西太原高三上学期阶段性考试,15)在数列{a n }中,a 1=1,a n =n 2n 2-1a n-1(n ≥2),记S n 为数列{ann 2}的前n 项和,若S n =4925,则n= . 答案 498.(2018安徽皖南八校第三次联考,16)已知数列{a n }的前n 项和为S n =2n+1,b n =log 2(a n 2·2a n),数列{b n }的前n 项和为T n ,则满足T n >1 024的n 的最小值为 . 答案 99.(2017河北“五个一名校联盟”二模,16)已知数列{a n }的前n 项和为S n ,S n =n 2+2n,b n =a n a n+1cos[(n+1)π],数列{b n }的前n 项和为T n ,若T n ≥tn 2对n ∈N *恒成立,则实数t 的取值范围是 . 答案 (-∞,-5]三、解答题(共25分)10.(2019届全国I 卷五省优创名校联考,17)设数列{a n }的前n 项和为S n ,a 1=3,且S n =na n+1-n 2-n. (1)求{a n }的通项公式; (2)若数列{b n }满足b n =2n+1n 2(a n+1-1)2,求{b n }的前n 项和T n .解析 (1)由条件知S n =na n+1-n 2-n,① 当n=1时,a 2-a 1=2;当n ≥2时,S n-1=(n-1)a n -(n-1)2-(n-1),② ①-②得a n =na n+1-(n-1)a n -2n, 整理得a n+1-a n =2.综上可知,数列{a n }是首项为3、公差为2的等差数列,故a n =2n+1. (2)由(1)得b n =2n+1n 2(2n+2)2=14[1n 2-1(n+1)2],所以T n =14{(1-122)+(122-132)+…+[1n 2-1(n+1)2]}=14[1-1(n+1)2]=14-14(n+1)2.11.(2018安徽淮南一模,17)已知数列{a n }为等差数列,且a 3=5,a 5=9,数列{b n }的前n 项和为S n =23b n +13.(1)求数列{a n }和{b n }的通项公式; (2)设c n =a n |b n |,求数列{c n }的前n 项和T n . 解析 (1)∵数列{a n }为等差数列,且a 3=5,a 5=9, ∴d=a 5-a 35-3=9-52=2,∴a 1=a 3-2d=5-4=1,∴a n =1+(n-1)×2=2n -1.∵数列{b n }的前n 项和为S n =23b n +13, ∴n=1时,S 1=23b 1+13,由S 1=b 1,解得b 1=1,当n ≥2时,b n =S n -S n-1=23b n -23b n-1,∴b n =-2b n-1,∴{b n }是首项为1,公比为-2的等比数列, ∴b n =(-2)n-1.(2)c n =a n |b n |=(2n-1)·2n-1,∴数列{c n }的前n 项和T n =1×1+3×2+5×22+…+(2n-1)×2n-1, ∴2T n =1×2+3×22+5×23+…+(2n-1)×2n, 两式相减,得:-T n =1+2(2+22+…+2n-1)-(2n-1)·2n=1+2×2-2n1-2-(2n-1)·2n=1+2n+1-4-(2n-1)·2n=-3+(3-2n)·2n, ∴T n =(2n-3)·2n +3.易错警示 在利用错位相减法求和时,注意相减后的项求和.如本题-T n =1+2(2+22+…+2n-1)-(2n-1)·2n中,对于2+22+…+2n-1的求解,利用S n =a 1-a n ·q 1-q(q ≠1)更好一些.。

相关文档
最新文档