幼儿园教育(心得)之让幼儿在主动探索中学习数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幼儿园教育论文之让幼儿在主动探索中学习数学
导读:在活动中,教师应鼓励幼儿的“求异性”找出与别人不同的方法。

例如学习“等分”活动中,教师可引导幼儿通过操作各种几何图形的纸,探索同一几何图形的不同等分方法,不同几何图形的不同等分方法,最后引导幼儿把各种方法介绍给大家,总结出等分的规律。

在幼儿数学教学的实践工作中,我们以幼儿主动探索为切入口,对幼儿数学教学进行了理论与实践的研究,认为:学数学不光是为了计算和应用,更不是为了无休止的做题;学数学,是在学一种化繁为简,解决问题要有依据的数学思想,是在学一种思维方法。

解决问题应是数学课程的中心,解决问题的过程就是幼儿从生活经验和客观事实出发,通过主动探索,发现数学,学习数学的过程。

一、探索活动在数学学习中的地位
探索是人生重要的品格,也是必须的能力。

涉过时间的长河,回头细看人类文明,无一例外不是人类主动探索的产物。

没有探索就没有今天的一切。

关于探索与数学的关系,《纲要》是这样阐述的:科学探究是数学学习的基础,它们之间有着天然的联系。

皮亚杰称之为“逻辑数理知识”的数概念,是不能直接用语言教的。

儿童对这类知识的获得,不是从客体本身,而是通过摆弄它们和在内心组织自己的动作。

头脑和材料之间的相互作用达到一定的量的积累,才能产生质的飞跃,产生抽象的数概念。

其理论依据是心理学思维发展的“内化说”,即外部动作“内化”为思维活动的理论。

例如:认识数字“2”,幼儿就要接触大量的数目为“2”的物体,知道“2”可以是2块饼干、2只小猫、2个玩具……幼儿在获得了关于“2”的感性经验过程中,产生并逐渐增加了对数量认识的抽象成份,最后幼儿点数数量为“2”的物体后说出总数,这个总数就标志着初步的抽象的数概念,因为这时幼儿说出的总数,已不单指最后的那一个,而是概括了前面已经数过的1个在内,这就意味着幼儿已经开始萌发了对“2”这个数的
抽象认识。

而这个抽象认识是幼儿通过主动探索得到的。

二、引导幼儿通过主动探索学习数学的关键因素
人是一个能动的个体,社会的发展也强烈需要主动性、创造性的人才,因此,承担培养明日栋梁的重担的教育必须成为学生主动探索,主动学习的过程。

幼儿数学教育也是如此,教师应为幼儿提供哪些利于幼儿主动探索的关键因素呢?
(一)创设利于幼儿通过主动探索学习数学的精神环境
幼儿是主动的学习者和探索者,年龄特点决定了他们好奇、好问、好探索,有些行为不合乎成人的逻辑,但在幼儿已有经验和认知结构上却是合理的。

例如:幼儿为了帮山楂树妈妈数数它到底有多少个孩子,而把未成熟的山楂摘了下来,被教师认为是破坏树木;幼儿为了探索青蛙的身高,而把青蛙抻得直直的,被教师认为是残忍……在类似情况下,教师基本看不到幼儿乐于探索的良好动机和通过探索所获得的有益经验,教师的反应是言语激烈、表情可怕,幼儿的反应是委屈、吃惊、哭泣。

因此,若想创设有利于幼儿通过主动探索学习数学的精神环境,教师应做到以下几点:
1、在数学教育中,注意尊重和呵护幼儿对数学的兴趣
幼儿的兴趣常常与教师不同,尊重和呵护幼儿的兴趣会使幼儿有安全感,幼儿做出的回答和解释会真诚的来源于自己对事物的真实感受,而数学的抽象性恰恰缺乏引起幼儿兴趣的有利条件。

因此,教育内容应根据幼儿的兴趣点选择,要相似于幼儿生活,相似于幼儿心理发展,相似于动物
性,相似于幼儿的好模仿、好户外活动、好奇、好合群、好成功、好称赞、好动、好游戏。

例如:小班的数学活动“认识几何图形”,教师为其取名“图形宝宝找妈妈”,亲切,易懂,趣味性较浓,活动中教师为每个幼儿都准备了三个笑容可掬的图形妈妈(三角形、圆形、正方形)和若干图形宝宝,请幼儿按形状特征帮助图形宝宝找妈妈。

妈妈是幼儿最亲近的人,此活动符合幼儿的兴趣点,相似于幼儿的生活,因此,极大地激发了幼儿的探索欲望,让幼儿真切地感受到数学真好玩,数学就在我们身边。

另外,数学教育的内容难易程度要适宜,让幼儿“伸伸手,够得着”,过难过易都会降低幼儿的探索兴趣。

2、尊重幼儿的年龄特点,了解幼儿行为的真正目的,理解幼儿自发的学习数学的良好动机
教师应通过仔细的观察和倾听孩子们的谈话,了解幼儿表面看似错误行为的真正目的,避免误解和伤害幼儿,保持他们永久的乐于探究身边数学现象的欲望。

例如,当教师看到孩子把山楂摘掉后,不应指责他,应去了解他破坏行为背后的真正动机,就会知道原来孩子不是破坏,只是想知道:山楂树妈妈结了那么多果实,可是它到底生了多少个小宝宝?是山楂树妈妈的宝宝多,还是樱桃树妈妈的宝宝多?这是幼儿自发的研究身边数学现象的行为,教师的理解可以保护幼儿善良的愿望,可以支持幼儿的探索行为继续进行。

3、让每一名幼儿在数学探索活动中都有所发现,都有成功的体验
例如:小班幼儿的按物点数的能力还很差,我们可以在日常的小组活动中加强这方面的训练。

幼儿玩建筑游戏时,用积木搭建成功后就会请老师去看,去分享他们的成功与快乐。

表扬幼儿的同时,教师可以借机提出新的要求:“你能告诉我这座房子是用几块积木搭成的吗?”点数积木比点数珠子难得多,因为积木排列的不整齐,颜色也很杂,但因为这是在游戏中,所以孩子们很高兴地一遍遍地点数。

有的孩子不会按顺序数,往往漏掉1—2块积木,这时教师要及时地教会幼儿按从前到后顺序一块一块地数。

幼儿掌握后可以提出新要求:“你还会搭什么?还可以怎样数数?让幼儿继续玩,而幼儿每次搭建的物体都不一样,所用的积木也是时多时少,数的方法也越来越多:可以从后往前数,可以从两头开始对称的数,可以数一个数拿掉一块积木,还可以数一块积木就往这块积木上放一个钮扣……不论幼儿用什么方法,只要数对了就会得到教师的肯定。

在多次的按物点数活动中,幼儿都会有不同的发现,都体验到了成功的快乐。

(二)创设利于幼儿通过主动探索学习数学的物质环境
材料是引发幼儿探索的刺激物,又是幼儿实现对周围世界的认识的”中介“和”桥梁“,即材料引发了幼儿的探索行动,幼儿又借助于对材料的直接操作实现对物质世界的认识。

作为教师,最重要的是在幼儿探索活动中所提供的材料,能既符合幼儿兴趣需
求和原有水平,又蕴含着教育目标的内容。

简言之,材料的提供应是幼儿兴趣需求与教育目标和内容的有机结合。

教师为幼儿提供的材料应具有以下特征:
1.材料符合幼儿兴趣,需求和原有水平,使幼儿对探索活动保持足够兴趣。

为了给幼儿创设良好的学习数学的环境,启发幼儿主动学习与探索,教师应根据幼儿的年龄特点,教学进度,教学目标设置多种探索材料。

例如:小班分类能力的培养的活动材料就可设置按图形、大小、颜色、用途等归类的游戏材料,有趣、新颖与幼儿生活经验接近。

2、提供的材料应该具有艺术性,丰富多样
实践证明,色彩鲜艳、干净、对比度清晰、形象可爱且具有游戏性的材料,能较好的调动幼儿主动探索的兴趣。

因此,应特别强调材料的艺术性。

例如:小班幼儿在体验物体空间关系时,我们制作的各种形象可爱,色彩鲜艳的小动物拼图,有小鸭、小猪、小猫等,形象贴近现实生活,逼真、生动,并穿插一些游戏情节——小动物图片被弄坏了,请小朋友帮他们拼好,激发幼儿正确地将图片摆放在不同位置,构成一个动物整体,从而充分发挥幼儿的智力潜能,使幼儿在数学探索活动中不知不觉地掌握了有关知识。

3、提供的材料应注意体现数学活动目标
教育活动的目标是一切教育工作的出发点和最终归宿,是向幼儿进行教育的依据和准则。

因此,在数学操作活动中材料的提供应从教育的目标和内容出发,充分考虑到它的教育性和科学性,把教师的教育意图和要求溶入材料之中,使幼儿在摆弄材料的过程中达成目标。

例如:数学活动目标中要求小班幼儿学会按物体的某一特征进行分类。

在提供操作材料时就应考虑到操作材料必须具有一个以上的特征,即形状、颜色不同的特征,才能使幼儿按照其中某一特征进行分类,达到教学目的,让幼儿在数学探索活动中实现最佳的发展。

4、材料具有可造性,可组合性
例如:制作不同数量的动物卡片,可以在不同的数学探索活动中应用。

可以用
于按物点数,可以用于分类,可用于学习比较,可用于学习数的分解组成,可用于学习加减法……让幼儿自己选择材料,决定用什么材料做什么,有助于幼儿把自己看成是一个能产生思想、支配时间和材料的人,是一个行动者,是一个解决问题的人。

5、根据幼儿兴趣和教育目标深度的递增不断扩展和增加材料
尽可能为幼儿提供蕴含着由浅入深的教育目标和内容的材料。

例如:教幼儿按一维、二维、三维的特征分类的活动,插花游戏的材料是按这样的顺序投放的:(1)根据花茎的粗细不同,投放花心大小不同的花朵;
(2)根据花茎的粗细、长短的不同,投放数量不同、花心大小不同的花朵。

(3)根据花茎的粗细、长短、颜色的不同,投放花心大小不同,数量不同及颜色不同的花朵。

这一系列活动材料所蕴含教育目标、内容,所揭示的事物之间的联系,由浅到深,由易到难。

幼儿通过操作材料,使学习和探索不断走向深入,并建立起持久的学习和探索的动机。

三、扎根于幼儿生活经验,引导幼儿在主动探索中,发现数学,学习数学
幼儿需要通过探究和操作,亲身经历”研究过程“,才能真正发现和理解事物间的基本关系,因此,教师要为幼儿的研究和发现铺路搭桥,一般应创设以下几个环节:(一)使幼儿产生疑问,引发幼儿的探索行为
幼儿真正的主动探索和学习是从有问题开始的,幼儿有了疑问和问题,并产生想寻求答案的愿望,主动探索才进入真正的准备状态。

例如:《帮我学数学》第二册第二单元,”1和许多“一课为幼儿提供了这样的问题情景:一只老虎被许多只凶狠的老狼包围了!老虎怎样才能逃脱呢?教师利用这一问题情景,利用幼儿各执一词的不同观点,利用幼儿关心老虎安危的心情,让他们带着各自的问题,在这一问题情景中去寻求答案。

由此,自然的生成了幼儿的研究问题,成功地将幼儿引向了对问题的探索。

(二)引导幼儿通过主动探索,发现规律,主动的学习数学
在活动中,教师应鼓励幼儿的”求异性“找出与别人不同的方法。

例如学习”等分“活动中,教师可引导幼儿通过操作各种几何图形的纸,探索同一几何图形的不同
等分方法,不同几何图形的不同等分方法,最后引导幼儿把各种方法介绍给大家,总结出等分的规律。

再如,大班幼儿在学习数的分解组成时,通过”分两份“、”取物分两份“、”剪格纸“、”填补数“、”盖房顶“、”拼花“等多种数学操作活动,让幼儿探索、体验数的各种组成形式,从而探索出数的分解顺序规律。

这类活动是探索性很强的活动,它变被动接受为主动发现,调动幼儿的探索积极性,发展了幼儿的抽象思维。

(三)教师要为幼儿搭建必要的”台阶“或”支架“,使他们在较短时间内经历探索过程,帮助幼儿取得成功,体验其中乐趣,走向成功。

例如:小班幼儿对空间的感知是模糊不清的,掌握空间定向也比较困难,如果让幼儿通过亲身经历体会这些空间方位,让幼儿用外部动作逐渐内化而引起思维的积极活动,就会取得理想的效果。

教师给每个幼儿一个塑料圈让幼儿在操场上玩”捉迷藏“的游戏,然后教师发出口令:”小朋友真能干,躲到圈里藏起来。

“幼儿很快跳进圈里,这时教师又问:还可以怎样藏?引导幼儿想出不同的方法,如:套在脖子上;背在后背上;抱在胸前等,自然而然地学会里外、前后、上面等方位。

当教师说:”小朋友真能干,躲到圆圈下面去。

“幼儿被难住了,怎么才能到圈下面去呢?总不能钻到土里吧?幼儿的小脑袋积极地思考着。

这时,只要教师稍加点拔幼儿就会取得成功,教师及时提醒:”圆圈在上面,人才能站在它下面,再想想应该怎么做?“幼儿明白了,他们把圆圈高高地举起来,高兴地说:”我躲到圈下面啦!“幼儿玩得开心,学得主动,不知不觉地掌握了难以理解的空间方位。

(四)鼓励并支持幼儿将获得的经验用于解决生活中的实际问题
例如:上文提到的”1和许多“的数学教育活动,当幼儿通过自己的探索终于找到正确答案时,应不失时机的向幼儿提出:”生活中如果你1个人遇到许多坏人怎么办?“将幼儿的注意力引向了将获得的经验用于解决生活中的实际问题。

我们认为,幼儿掌握数学知识固然重要,然而如何获取数学知识对幼儿更为重要。

让幼儿在主动探索中学习数学,将获取知识的过程作为幼儿学习的内容,由于幼儿全身心地参与,主动地学习,知识的获得也就成为一种必然。

相关文档
最新文档