人教版七年级数学上册:第一章 有理数总复习(包含解析)

合集下载

最新人教版初中七年级《数学》上册第一1章全单元总复习知识点考点重难要点整理复习完整完美精品打印版

最新人教版初中七年级《数学》上册第一1章全单元总复习知识点考点重难要点整理复习完整完美精品打印版

最新人教版初中七年级《数学》上册全册第一章总复习 知识点考点重难点要点整理复习汇总 最新精品完整完美必备复习资料一.知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .。

新人教版初中数学七年级数学上册第一单元《有理数》测试(包含答案解析)(1)

新人教版初中数学七年级数学上册第一单元《有理数》测试(包含答案解析)(1)

一、选择题1.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定2.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位3.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样4.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为()A.109.01510⨯B.39.01510⨯C.29.01510⨯D.109.0210⨯5.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>06.计算11212312341254 2334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值()A.54 B.27 C.272D.07.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|8.当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米9.6-的相反数是()A .6B .-6C .16D .16- 10.下列分数不能化成有限小数的是( ) A .625 B .324 C .412 D .11611.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000 12.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元二、填空题13.把67.758精确到0.01位得到的近似数是__.14.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.15.数轴上A 、B 两点所表示的有理数的和是 ________.16.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.17.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.18.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________. 19.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________. 20.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题21.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.22.计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].23.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+24.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.25.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 26.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.2.C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错D 、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.3.B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】901.5=9.015×102.故选:C.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.7.D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.8.B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.9.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.10.C解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A、625的分母中只含有质因数5,所以625能化成有限小数;B、31248=,18的分母中只含有质因数2,所以324能化成有限小数;C、41123=,13的分母中含有质因数3,所以412不能化成有限小数;D、116的分母中只含有质因数2,所以116能化成有限小数.故选:C.【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.11.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题13.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.14.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.15.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.16.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.17.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y ,3,= -2【分析】首先确定使用的是x y 键,先按底数,再按y x 键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y 、3、=; (2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法. 18.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.19.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题21.数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.22.(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12)=14×(﹣12)﹣13×(﹣12)﹣1×(﹣12)=(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.23.(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12 931212323-÷+⨯-⨯+=-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.24.(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=21 24633⎛⎫⎛⎫-⨯-+⨯-⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.25.(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 26.(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3---=6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+ =1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.。

人教版初一上册数学《有理数》专题讲义(含答案)

人教版初一上册数学《有理数》专题讲义(含答案)

有理数1. 掌握有理数有关分类、数轴、相反数、近似数、有效数字和科学计数法等有关概念 2. 熟练去括号法则,以及有理数的有关运算模块一 正负数与有理数的分类1. 对于正负数的理解不能简单理解为带“+”号的数就是正数,带“-”号的数就是负数。

2. 相反意义的两个量是相互的,也是相对的。

3. 掌握有理数的两种分类:按“定义”分类与按“性质符号”分类☞有理数的分类【例1】 下列说法:①0是整数;②负分数一定是负有理数;③一个数不是整数就是负数;④π-为有理数;⑤最大的负有理数是1-,正确的序号是【难度】2星【解析】考察有理数的分类 【答案】①②【巩固】下列说法:①存在最小的自然数;②存在最小的正有理数;③不存在最大的正有理数;④存在最大的负有理数;⑤不是正整数就不是整数,错误的序号是【难度】2星【解析】考察有理数的分类 【答案】②④⑤模块二 数轴、相反数、倒数1. 数形结合思想是一种重要的数学思想。

数轴就是数形结合的工具。

2. 数轴是条直线,可以向两方无限延伸。

3. 数轴的三要素:原点、正方向、单位长度、三者缺一不可。

4. 所有有理数都可以用数轴上点表示,反过来,不能说数轴上所有的点都表示有理数5. 相反数是成对出现的,不能单独存在。

相反数和为零。

☞数轴例题精讲重难点【例2】 如图所示,小明在写作业时,不慎将两滴墨水滴在数轴上,根据图中的数值,试定墨迹盖住的整数共有几个【难度】1星【解析】考察数轴的有关概念【答案】如图,盖住数中的整数有4-、3-、2-、2、3、4,共有6个【巩固】 数轴上表示整数的点称为整点,某条数轴的单位长度为1cm ,若在数轴上任意画出一条长2006cm 的线段,则线段盖住的整数点共有 个【难度】2星【解析】考察数轴的有关概念 【答案】2006或2007☞相反数与倒数【例3】 已知a 、b 互为相反数,c 、d 互为倒数,1x =±,求2a b x cdx ++-的值 【难度】3星【解析】考察相反数与倒数的有关概念 【答案】解:由相反数、倒数的定义可得 0a b +=,1cd =则当1x =时,原式=01110+-⨯= 当1x =-时,原式=20(1)1(1)2+--⨯-=【巩固】已知a 和b 互为相反数,m 和n 互为倒数,(2)c =-+,求22mna b c++的值 【难度】3星【解析】考察相反数与倒数有关概念 【答案】解:由相反数和倒数的定义可得 0a b +=,1mn =∵(2)c =-+ ∴原式112()022mn a b c =++=+=--【巩固】已知数轴上点A 和点B 分别表示互为相反数的两个数,a 和b ()a b <并且A 、B 两点间的距离是144,求a 、b 【难度】3星【解析】考察相反数有关概念【答案】解:∵a 、b 两数互为相反数 ∴0a b += ∴a b =-∵A 、B 两点间距离有144b a -= ∴1()44b b --=∴178b =,178a =-模块三 有理数的运算1. 在进行有理数加法运算时,优先确定符号,然后在计算绝对值,这样就不容易出错。

第一章有理数总复习 (1)

第一章有理数总复习 (1)

0b
化简:|a-b|-|a+b|+|b-a|=
3.若x+|x|=0,则x一定是( D )
A、正数
B、负数
C、正数或零 D、负数或零
-a+3b
6、乘方
• 求几个相同因数的积的运算叫做乘方。
a· a· a·…· a=an
指数
a 幂
n
底数
正数的任何次幂都是 正数 。 负数的奇数次幂是 负数 ,偶数次幂是 正数 。 0的任何次幂都是 0 。
D.两数互为相反数,则它们的正偶数次幂的值相等
二、有理数的两种分类:
整数
{ 有理数
{ { 分数
正整数
0 负整数 正分数
负分数
注意: 非负整数指正整数和0。
{ {{ 有理数
正有理数 0 负有理数
正整数 正分数 负整数
负分数
注意: 非负数指正数和0。
把下列各数填在相应的大括号内:
π

、0.3、 34、
2 ) 3 、4.7…}
3
7、科学记数法
• 把一个绝对值大于10的数表示成a×10n(其 中1≤∣a∣<10,n为正整数;
• 注意:指数n与原数的整数位数之间的关系。
例如;用科学记数法表示-13040000, 就记作 -1.304×107 。
8、近似数
• 准确数、近似数、精确度
• 如3.1403
若(a 3)4 b 2 0,则(a b)2015 -1
若 1 m 0,则m、m2、1 的大小关系是 m
1 m m2 m
下列说法正确的是( D )
A.任何一个有理数的偶数次幂都是正数
B.(-3)2与32互为相反数

人教版七年级数学上册各章知识点总结(最新最全)

人教版七年级数学上册各章知识点总结(最新最全)

第一章:有理数总复习一、有理数的基本概念1.正数:大于0的数叫做正数;负数:小于0的数叫做负数。

备注:在正数前面加“-”的数是负数;“0”既不是正数,也不是负数。

2.有理数:整数和分数统称有理数。

3.数轴:规定了原点、正方向和单位长度的直线。

性质:(1)在数轴上表示的两个数,右边的数总比左边的数大;(2)正数都大于0,负数都小于0;正数大于一切负数;(3)所有有理数都可以用数轴上的点表示。

4.相反数 :只有符号不同的两个数,其中一个是另一个的相反数。

性质:(1)数a 的相反数是-a (a 是任意一个有理数);(2)0的相反数是0;(3)若a 、b 互为相反数,则a+b=0;若a 、b 互为相反数且a 、b 都不等于零,则1-=ba ; 5.倒数 :乘积是1的两个数互为倒数 。

性质:(1)a 的倒数是(a ≠0); (2)0没有倒数 ;(3)若a 与b 互为倒数,则ab=1;若a 与b 互为负倒数,则ab=-1。

倒数与相反数的区别和联系:(1)a 与-a 互为相反数; a 与a1(a ≠ 0)互为倒数;(2)符号上:互为相反数(除0外)的两数的符号相反;互为倒数的两数符号相同;(3)a 、b 互为相反数 →→ a+b=0;a 、b 互为倒数 →→ ab=1;(4)相反数是本身的数是0,倒数是本身的数是±1 。

6.绝对值:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

性质:(1)数a 的绝对值记作︱a ︱;(2)若a >0,则︱a ︱= a ;若a <0,则︱a ︱= -a ;若a =0,则︱a ︱=0;(3) 对任何有理数a,总有︱a ︱≥0.7.有理数大小的比较:(1)可通过数轴比较:在数轴上的两个数,右边的数总比左边的数大;正数都大于0,负数都小于0;正数大于一切负数;(2)两个负数,绝对值大的反而小。

即:若a <0,b <0,且︱a ︱>︱b ︱,则a < b.二、有理数的运算1、运算法则:(1)有理数加法法则:① 同号两数相加,取相同的符号,并把绝对值相加;② 异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0; ③ 一个数同0相加,仍得这个数。

七年级数学上册第一章《有理数》测试题1(含解析)(新版)新人教版

七年级数学上册第一章《有理数》测试题1(含解析)(新版)新人教版

第一章《有理数》单元测试题一、选择题(每小题只有一个正确答案)1.﹣的相反数是()A. 4 B.﹣ C. D.﹣42.如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作()A.﹣500元 B.﹣237元 C. 237元 D. 503.下列说法正确的是()A.正数和负数统称有理数 B.正整数和负整数统称为整数C.小数不是分数 D.整数和分数统称为有理数4.在,+7, 0,,中,负数有()A. 4个 B. 3个 C. 2个 D. 1个5.下列说法中错误的是()A.正分数、负分数统称分数 B.零是整数,但不是分数C.正整数、负整数统称整数 D.零既不是正数,也不是负数6.下列各数:,,,,,,…中,有理数的个数有()A. 4个 B. 5个 C. 6个 D. 0个7.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,a,b,c三个数的和为()A.﹣1 B. 0 C. 1 D.不存在8.“厉害了我的国”一档电视节目展示了我国国内生产总值由2006年的3645亿元增长到2017年的82.712万亿元,用科学记数法表示应为()A.0.82712×1014 B.8.2712×1013 C.8.2712×1014 D.8.2712×10129.如果a、b互为相反数,且b≠0,则式子a+b,,|a|﹣|b|的值分别为()A. 0,1,2 B. 1,0,1 C. 1,﹣1,0 D. 0,﹣1,010.数轴上一点表示的有理数为,若将点向右平移个单位长度后,点表示的有理数应为()A. B. C. D.11.京九铁路的全长用四舍五入法得到近似数为,则它精确到( ) A.万位 B.十万位 C.百万位 D.千位12.若,,,的大小关系是()A. B. C. D.二、填空题13.比较大小:________;________;________14.如果定义为与中较大的一个,那么________.15.下列算式中,①,②,③,④,⑤.计算错误的是________.(填序号)16.若m、n互为相反数,x、y互为倒数,则m+n+xy+=__.17.已知|x|=5,|y|=4,且x>y,则2x+y的值为____________.三、解答题18.将下列各数填入相应的集合中:—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪,有理数集合:{ };无理数集合:{ };整数集合:{ };分数集合:{ }19.计算:(1)|-3|-5×(-)+(-4); (2)(-2)2-4÷(-)+(-1)2017.20.计算:(1)-18×;(2)(-1)3-÷3×[2-(-3)2].21.把下列各数表示的点画在数轴上,并用“”把这些数连接起来,然后指出哪些是负数、哪些是分数、哪些是非负整数.,,,,,22.已知a,b互为相反数,且a≠0,c,d为倒数,m的绝对值为3,求m(2a+2b)2015+(cd)2016+()2017-m2的值.23.蜗牛从某点O开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):,,,,,,.通过计算说明蜗牛是否回到起点O.蜗牛离开出发点O最远时是多少厘米?在爬行过程中,如果每爬厘米奖励粒芝麻,则蜗牛一共得到多少粒芝麻?24.阅读下面的解题过程:计算:(-15)÷×6.解:原式=(-15)÷×6(第一步)=(-15)÷(-1)(第二步)=-15.(第三步)回答:(1)上面解题过程中有两处错误,第一处是第________步,错误的原因是________________;第二处是第________,错误的原因是________________.(2)把正确的解题过程写出来.参考答案1.C【解析】【分析】根据只有符号不同的两个数互为相反数,即可得出答案.【详解】解:的相反数是.故答案为:C.【点睛】此题主要考查相反数的意义,熟记相反数的意义是解题的关键.2.B【解析】【分析】根据条件“收入为正、支出为负”进行解答.【详解】依题意,规定收入为正,支出为负,那么支出237元应记作﹣237元,选项B正确. 【点睛】本题考查用正负数表示两个具有相反意义的量,属基础题.3.D【解析】【分析】根据有理数的分类及整数,分数的概念解答即可.【详解】A中正有理数,负有理数和0统称为有理数,故A错误;B中正整数,负整数和0统称为整数,故B错误;C中小数3.14是分数,故C错误;D中整数和分数统称为有理数,故D正确.故选D.【点睛】本题考查了有理数,整数,分数的含义.掌握有理数,整数,分数的含义是解题的关键.4.C【解析】【分析】根据小于0的数即为负数解答可得.【详解】在,+7, 0,,数中,负数有-1,共2个,故选C.【解答】解:在-4,0,-1.5,3,-2,15数中,负数有-4、-1.5、-2这3个,故选:B.【点评】本题主要考查正数和负数,熟练掌握负数的概念是解题的关键.5.C【解析】【分析】根据有理数、分数、整数的含义和分类,逐项判断即可.【详解】:∵正分数、负分数统称分数,∴选项A正确;∵零是整数,但不是分数,∴选项B正确;∵正整数、负整数、0统称整数,∴选项C不正确;∵零既不是正数,也不是负数,∴选项D正确.故选C.【点睛】此题主要考查了有理数、分数、整数的含义和分类,要熟练掌握,解答此题的关键是要明确:0是自然数.6.C【解析】【分析】根据有理数的定义解答即可.【详解】在﹣6,﹣3.14,﹣π,,0.307,4,0.212121…中,有理数有﹣6,﹣3.14,,0.307,4,0.212121…共6个.故选C.【点睛】本题考查了有理数的定义,掌握有理数是有限小数或无限循环小数是解题的关键.7.A【解析】【分析】先根据自然数,整数,有理数的概念分析出a,b,c的值,再进行计算.【详解】∵最小的自然数是0,最大的负整数是﹣1,绝对值最小的有理数是0,∴a+b+c=0+(﹣1)+0=﹣1,故选A.【点睛】本题考查了有理数的加法运算,解题的关键是知道最小的自然数是0,最大的负整数是-1,绝对值最小的有理数是0.8.B【解析】【分析】科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】82.712万亿= 8.2712×1013故选:B【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学记数法意义.9.D【解析】【详解】∵a、b互为相反数,且b≠0,∴a+b=0,=﹣1,|a|﹣|b|=0,则式子a+b,,|a|﹣|b|的值分别为0,﹣1,0.故选D.10.C【解析】【分析】根据平移的性质,进行分析选出正确答案.【详解】﹣2+3=1.故A点表示的有理数应为1.故选C.【点睛】本题考查了数轴,利用点在数轴上左减右加的平移规律是解决问题的关键.11.B【解析】【分析】根据近似数精确到哪一位,应当看末位数字5实际在哪一位,写出原数即可得出答案.【详解】∵2.5×106=2500000,5在十万位,∴2.5×106精确到十万位;故选:B.【点睛】考查近似数的精确度问题,解决问题的关键是正确区分精确度与有效数字的确定方法. 12.A【解析】【分析】根据﹣1<m<0,可得:0<m2<1,<﹣1,据此判断出m,m2,的大小关系即可.【详解】∵﹣1<m<0,∴0<m2<1,<﹣1,∴<m<m2.故选A.【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.【解析】【分析】先根据乘方的定义进行计算,再根据有理数大小比较方法比较即可求解.【详解】解:∵43=64,34=81,64<81,∴43<34;∵(-5)2=25,52=25,∴(-5)2=52;∵-|-3|=-3,-(-3)=3,-3<3,∴-|-3|<-(-3).故答案为:<;=;<.【点睛】考查了有理数大小比较,本题的关键是根据乘方的定义进行计算,求出结果.14.【解析】【分析】根据规则计算出与,比较大小即可得到答案.【详解】∵-(﹣3)×2=6,-(﹣3)+2=5,∴(﹣3)*2=6.故答案为:6.【点睛】本题考查了有理数的乘法,根据规律解题是解题的关键.15.①②③④【解析】【分析】根据有理数的乘方,有理数的除法和乘法的法则,计算得到结果,即可作出判断.【详解】① ﹣(﹣2)2=﹣4,故错误;②﹣5÷×5=﹣125,故错误;③=,故错误;④(﹣3)2×(﹣)=﹣3,故错误;⑤﹣33=﹣27.故错误.故答案为:①②③④.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.16.0【解析】【分析】互为相反数的两个数的和为0,商为-1,互为倒数的两个数的积为1.【详解】∵m、n互为相反数,x、y互为倒数,∴m+n=0,,xy=1∴原式=0+1+(-1)=0.【点睛】本题主要考查的是相反数和倒数的性质,属于中等难度题型.明确互为相反数的两个数的和为零,互为倒数的两个数的积为1是解决这个问题的基础.17.6或14【解析】【分析】根据绝对值的性质可得x=±5,y=±4,再根据x>y,可得①x=5,y=4,②x=5,y=﹣4,然后可得2x+y的值.【详解】∵|x|=5,|y|=4,∴x=±5,y=±4.∵x>y,∴①x=5,y=4,2x+y=14;②x=5,y=﹣4,2x+y=6.故答案为:6或14.【点睛】本题主要考查了有理数的加法和绝对值,关键是掌握绝对值等于一个正数的数有两个.18.—7 , 0,, —2.55555……, 3.01, +9,+10﹪;4.020020002…,;—7 ,0, +9 ;, —2.55555……, 3.01, +10﹪.【解析】【分析】根据有理数,无理数,整数,分数的概念进行分类即可.【详解】有理数集合:{ —7 , 0,, —2.55555……, 3.01, +9,+10﹪ };无理数集合:{ 4.020020002…, };整数集合:{ —7 , 0, +9 };分数集合:{ , —2.55555……, 3.01, +10﹪ }【点睛】考查有理数,无理数,整数,分数的概念,整数和分数统称为有理数;无理数指的是无限不循环小数;整数包含正整数,0和负整数.19.(1)2;(2)9.【解析】【分析】(1)先化简绝对值、进行乘法运算,然后再进行加减法运算即可;(2)先进行乘方运算、再进行乘除运算、最后进行加减运算即可得.【详解】(1) )|-3|-5×(-)+(-4)=3-(-3)-4=3+3-4=2;(2) (-2)2-4÷(-)+(-1)2017=4-(-6)-1=4+6-1=9.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序与运算法则是解题的关键.20.(1)-6;(2) .【解析】分析:(1)运用乘法分配律计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.详解:(1)原式=-9-12+15=-6.(2)原式=-1-××(-7)=-1+=.点睛:本题主要考查有理数的混合运算,熟练掌握有理数的混合运算的顺序和法则是解题的关键.21.见解析.【解析】【分析】首先在数轴上表示各数,再根据在数轴上表示的两个有理数,右边的数总比左边的数大比较大小;再根据负数小于0和有理数的分类找出负数、分数、非负整数.【详解】,负数:,;分数:,,;非负数:,,,.【点睛】考查了有理数的大小比较以及有理数的分类,掌握在数轴上表示的两个有理数,右边的数总比左边的数大是解题的关键.22.-9.【解析】【分析】根据相反数、互为倒数、正整数的性质,推出a+b=0,cd=1,m=1,整体代入即可解决问题. 【详解】由题意得a+b=0,cd=1,=-1,|m|=3,∴m=±3,∴m2=(±3)2=9,∴原式=m[2(a+b)]2015+12016+(-1)2017-9=m(2×0)2015+1+(-1)-9=-9.【点睛】本题考查有理数的混合运算、相反数、互为倒数、正整数的性质等知识,属于中考常考题型. 23.(1)是回到起点O;(2)8厘米;(3)108.【解析】【分析】(1)分别相加,看是否为0,为0则回到了起点O;(2)分别计算绝对值,再比较大小即可;(3)计算绝对值的和,就是总路程,列式可得结论.【详解】(1)﹣6+12﹣10+5﹣3+10﹣8=0.所以蜗牛可以回到起点O.(2)|﹣6|=6,|﹣6+12|=6,|﹣6+12﹣10|=4,|﹣6+12﹣10+5|=1,|﹣6+12﹣10+5﹣3|=2,|﹣6+12﹣10+5﹣3+10|=8,所以蜗牛离开出发点O最远时是8厘米;(3)(6+12+10+5+3+10+8)×2=54×2=108答:蜗牛一共得到108粒芝麻.【点睛】本题考查了正数和负数的意义和有理数的加减法,解题的关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量;相加减时要注意同号相加比较简便.24.第二运算顺序错误第三步符号错误【解析】分析:(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是符号错误.(2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.详解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是符号错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、符号错误.点睛:(1)此题主要考查了有理数除法的运算方法,要熟练掌握,解答此题的关键是要明确:除以一个不等于0的数,等于乘这个数的倒数.(2)此题还考查了有理数乘法的运算方法,要熟练掌握,解答此题的关键是要明确:两数相乘,同号得正,异号得负,并把绝对值相乘.。

人教版七年级数学上册第一章 《有理数》总复习教案

人教版七年级数学上册第一章 《有理数》总复习教案

人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。

第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。

二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。

本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。

三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。

四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。

其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。

在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。

另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。

一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。

2.使学生提高区分概念的能力,正确运用概念解决问题。

3、能正确比较两个有理数的大小。

二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。

三、教学难点:对绝对值概念的理解与应用。

四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。

)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。

人教版七年级上数学总复习资料

人教版七年级上数学总复习资料

第一章:有理数一、有理数的基础知识 1、三个重要的定义(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数,0是一个具有特殊意义的数字,0是正数和负数的分界,不是表示不存在或无实际意义。

概念剖析:①判断一个数是否是正数或负数,不能用数的前面加不加“+”“-”去判断,要严格按照“大于0的数叫做正数;小于0的数叫做负数”去识别。

②正数和负数的应用:正数和负数通常表示具有相反意义的量。

③所有正整数组成正整数集合;所有负整数组成负整数集合;正整数、0、负整数统称为整数, 正整数、0、负整数组成整数集合;④常常有温差、时差、高度差(海拔差)等等差之说,其算法为高温减低温等等;例1 下列说法正确的是( )A 、一个数前面有“-”号,这个数就是负数;B 、非负数就是正数;C 、一个数前面没有“-”号,这个数就是正数;D 、0既不是正数也不是负数; 例2 把下列各数填在相应的大括号中 8,43,0.125,0,31-,6-,25.0-, 正整数集合{} 整数集合{} 负整数集合{} 正分数集合{}例3 如果向南走50米记为是50-米,那么向北走782米记为是 ____________, 0米的意义是______________。

例4 对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么5-克表示_________________________知识窗口:正数和负数通常表示具有相反意义的量,一个记为正数,另一个就记为负数,我们习惯上把向东、向北、上升、盈利、运进、增加、收入、高于海平面等等规定为正,把相反意义的量规定为负。

例5 若0>a,则a 是 ;若0<a ,则a 是 ;若b a <,则b a -是 ;若b a >,则b a -是 ;(填正数、负数或0)2、有理数的概念及分类整数和分数统称为有理数。

人教版初中数学有理数知识点总复习附答案解析

人教版初中数学有理数知识点总复习附答案解析

人教版初中数学有理数知识点总复习附答案解析一、选择题1.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.2.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x -1=0,2y +1=0,解得:x =1,y =12-,∴x +y =11122-=.故选A . 点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.3.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【答案】A【解析】 试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.4.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.5.下列四个数中,是正整数的是( )A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C .【点睛】考查正整数概念,解题主要把握既是正数还是整数两个特点.6.16的绝对值是( ) A .﹣6B .6C .﹣16D .16【答案】D【解析】【分析】 利用绝对值的定义解答即可.【详解】16的绝对值是16, 故选D .【点睛】本题考查了绝对值得定义,理解定义是解题的关键.7.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.8.已知235280x y x y +--+=则xy 的值是( )96【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵235280x y x y +-+-+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |.由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.下列各数中,最大的数是( )24【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<,则最大的数是14,故选B.【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.11.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【答案】C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.12.若(x+y﹣1)2+|x﹣y+5|=0,则x=()A.﹣2 B.2 C.1 D.﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x即可.【详解】解:∵(x+y﹣1)2+|x﹣y+5|=0,∴1050 x yx y+-=⎧⎨-+=⎩,解得:23x y =-⎧⎨=⎩, 故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.13.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤【答案】D【解析】【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤.故选D .【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键.14.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n ﹣2)2互为相反数,∴|m+3|+(n ﹣2)2=0,∴m+3=0,n ﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4【答案】C【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.16.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.17.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a=-+=--+=-,545253a a=-+=--+=-,656363a a=-+=--+=-,767374a a=-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a=-,故选:D.【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.18.小麦做这样一道题“计算()3-+W”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A.5 B.-5 C.11 D.-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.。

人教版七年级数学上学期《有理数》复习课件

人教版七年级数学上学期《有理数》复习课件
任何数同0相乘,都得0.
①几个不等于0的数相乘,积的符号 由负因数的个数决定,当负因数有奇 数个时,积为负;当负因数有偶数个 时,积为正.
②几个数相乘,有一个因数为0, 积就为0.
用数学语言描述有理数乘法法则:
①同号相乘
若a>0,b>0,则 ab = + ︱a︱×︱b︱
若a<0,b<0,则 ab = +︱a︱×︱b︱
负分数
有理数
正有理数 零 负有理数
正整数 正分数 负整数 负分数
3.数 轴
规定了原点、正方向和单位长度的直线.
-3 –2 –1 0 1 2 3 4
1)在数轴上表示的两个数, 右边的数总比左边的数大
2)正数都大于0,负数都小于0; 正数大于一切负数
3)所有有理数都可以用数轴上 的点表示
1、使教育过程成为一种艺术的事业。 2、教师之为教,不在全盘授予,而在相机诱导。2021/10/222021/10/222021/10/2210/22/2021 4:26:18 PM 3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 5、教育是一个逐步发现自己无知的过程。 6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/222021/10/222021/10/2210/22/2021
二、有理数的运算
加、减、乘、除、乘方运算
一、有理数的基本概念
1.负数:在正数前面加“—”的数;
0既不是正数,也不是负数.
判断: 1)a一定是正数 × 2)-a一定是负数 × 3)-(-a)一定大于0 × 4)0是正整数 ×
2.有理数: 整数和分数统称有理数.

新人教版七年级上册第1章:有理数复习与习题

新人教版七年级上册第1章:有理数复习与习题

第一章 有理数及其运算总复习一、【知识点归纳】(1)负数的应用,有理数的分类1、负数的意义:引入负数是我们实际的需要,我们通常用正、负来表示一对相反意义的量。

Eg1. 上升1m 表示为+1m ,则下降2m 表示为 。

生活中有很多这样的相反的量:前进-后退,向东-向西,等等。

Eg2:“某种机器零件规定其直径误差不得超过±0.8mm ”这是什么意思?2、 和 统称为有理数。

按数的符号,我们将有理数分为: 有理数 ⎪⎩⎪⎨⎧ 按有理数定义,我们将有理数分为: 有理数 ⎪⎩⎪⎨⎧ 注意:有限小数和无限循环小数都属于有理数。

例1.将下列各数填到相应的括号内:-7.2,34,-9,1.4,0,3.14,π,1245,-2.5,20% 整数集合:正分数集合:非负数集合: 分数集合:例2. a 一定是正数,-a 一定是负数吗?回答并举例:(2)数轴1、数轴的三要素: 、 、 。

在数轴上,右边的数总比左边的数大。

最小的正整数是 ,最大的负整数是 。

2、△相反数:两个数只有符号不同,我们称一个是另一个的相反数。

Eg 。

2和-2,a 和-a 。

本质:只有符号不同,其它不变。

特别的:0的相反数是 。

※ x +y 的相反数是( ),a -b 的相反数是( )。

牢记:正数的相反数是 ,负数的相反数是 ,相反数等于它本身的数是 。

3、相反数的代数意义:a>0时,-a 0; a<0时,-a 0; a =0时,-a 0.(a 可以代表任意有理数)相反数的几何意义: 表示互为相反数的两个点位于原点的 ,且到原点的 相等。

4、会进行符号的化简:例:-(-2)= ;+[-(+2)]= ;-(x +y )= ;特别提醒:相反数的学习对绝对值的化简至关重要。

一定要把握住相反数的本质。

△※(3)绝对值1、概念:在数轴上,一个数所对应的点到原点的 叫做该数的绝对值。

记作:△任何数的绝对值一定 0,即:|a| 0.0 -222、代数意义:( a>0) 正数的绝对值等于|a|= (a=0) 0的绝对值是(a<0) 负数的绝对值等于例:绝对值等于本身的数是;绝对值等于它的相反数的数是;3、几何意义:△绝对值等于正数的数有两个,它们。

人教版2022~2023学年七年级上册数学期末复习 知识点归纳(含练习)【含答案】

人教版2022~2023学年七年级上册数学期末复习 知识点归纳(含练习)【含答案】

人教版2022~2023学年七年级上册数学期末复习:知识点归纳(含练习)第一章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:1.正数(position number):大于0的数叫做正数。

2.负数(negation number):在正数前面加上负号“-”的数叫做负数。

3.0既不是正数也不是负数。

4.有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5.数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度。

6.相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。

7.绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8.有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。

表达式:a+b=b+a。

人教版七年级数学上册第章有理数单元复习课件

人教版七年级数学上册第章有理数单元复习课件
五、近似数 1.按照要求取近似数
四舍五入到某一位,就说这个数近似数精确到那一位. 2.由近似数判断精确度
考点一 正、负数的意义
例1 下列各数中,哪些是正数?哪些是负数?
+0.005,-100, 2 3
,-
5 4 ,0.333…,-4,
5,0.
导引:直接根据定义判断即可.
解:正数:+0.005, 2, 0.333, 5; 3
4.相反数 (1)只有符号不同的两个数叫做互为相反数 (2)互为相反数的两个数到原点的距离相等
5.绝对值 (1)一个数在数轴上对应的点到原点的距离 叫做这个数的绝对值 (2)一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数. 0的绝对值是0.
6.有理数大小的比较 (1)数轴上表示的两个数,右边的总比左边的大. (2)正数大于0,0大于负数,正数大于负数;
负数:-100, - 5,-4. 4
考点一 正、负数的意义
注意带单位
例2 如果-4米表示向东走4米,那么向西走2米记作+_2_米___. 【解析】根据题意,可知向东记为负,向西记为正, 故向西走2米记做+2米.
方法总结
根据相反意义合理使用正、负数对实际问题进行表示. 一般情况下,把向北(东)、上升、增加、收入等规定为正, 把它们的相反意义规定为负
⑤ 0℃表示没有温度
( ×)
【解析】①0不带“-”号,但0不是正数,故①错误;
②正数的相反数是负数,故②正确;③同①,故③错
误;④同③,故④错误;⑤0℃并不是表示没有温度,
它是介于正温度与负温度之间,故⑤错误.
方法总结
0既不是正数也不是负数,0的相反数是它本身. 0不仅能表示没有,而且表示正、负之间的分界值.

人教版七年级数学上册第一章有理数总复习课件

人教版七年级数学上册第一章有理数总复习课件
2. 一个近似数,从左边第一个不是0 的数字起到,到精确到的数位止,所 有的数字,都叫做这个数的有效数字。
一只苍蝇的腹内细菌多达2800万个, 你能用科学记数法表示吗?
2800万个=2.8×103(万个)
或 2800万个=28 000 000个=2.8×107个
1.03×106有几位整数?(1有073位0 整00数0)) 3.0×10n(n是正整数)有几位整数? (n+1位整数)
非负整数集有
• [基础练习]
• 1☆把下列各数填在相应额大括号内:
• 1,-0.1,-789,25,0,-20,-3.14,-590,6/7
• ·正整数集{
…}; ·正有理数集{ …};
• ·负有理数集{
…};·负整数集{
…};
• ·自然数集{
…}; ·正分数集{
…}
• ·负分数集{
…}
• 2☆ 某种食用油的价格随着市场经济的变化涨落,规定
• 4、蜗牛在井里距井口1米处它每天白天向 上爬30cm,晚上又下滑20cm,则蜗牛爬出井口 需要的天数为 ( )
3、| 7 |=(7 ),|- 7 |=7( ) 绝对值是7的数是(±7)
4、若|3-|+|4- |=1_______
5、已知|x|=3,|y|=2,且x<y,则x+-y1=或__-_5_ ∵|x|=3,|y|=2 ∴x=±3,y=±2 ∵ x<y ∴x不能为3 ∴x=-3,y=2 或 x=-3,y=-2 ∴x+y=-3+2=-1 或 x+y=-3-2=-5
判断:
①带“-”号的数都是负数
②-a一定是负数
③不存在既不是正数,也不是负数的数
④0℃表示没有温度

(常考题)人教版初中数学七年级数学上册第一单元《有理数》测试(包含答案解析)(2)

(常考题)人教版初中数学七年级数学上册第一单元《有理数》测试(包含答案解析)(2)

一、选择题1.13-的倒数的绝对值()A.-3 B.13-C.3 D.132.一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍3.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定4.计算:11322⎛⎫⎛⎫-÷-÷-⎪ ⎪⎝⎭⎝⎭的结果是()A.﹣3 B.3 C.﹣12 D.125.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有()A.4个B.3个C.2个D.1个6.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样7.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,38.下列结论错误的是( )A .若a ,b 异号,则a ·b <0,ab <0 B .若a ,b 同号,则a ·b >0,a b>0 C .a b -=a b-=-a bD .a b--=-ab9.6-的相反数是( ) A .6B .-6C .16D .16-10.已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2± B .±1 C .2±或0 D .±1或0 11.把实数36.1210-⨯用小数表示为() A .0.0612B .6120C .0.00612D .61200012.下列计算结果正确的是( ) A .-3-7=-3+7=4 B .4.5-6.8=6.8-4.5=2.3 C .-2-13⎛⎫-⎪⎝⎭=-2+13=-213 D .-3-12⎛⎫-⎪⎝⎭=-3+12=-212 二、填空题13.3-的平方的相反数的倒数是___________. 14.若230x y ++-= ,则x y -的值为________. 15.数轴上A 、B 两点所表示的有理数的和是 ________.16.在括号中填写题中每步的计算依据,并将空白处补充完整: (-4)×8×(-2.5)×(-125) =-4×8×2.5×125 =-4×2.5×8×125______ =-(4×2.5)×(8×125)______ =____×____ =____.17.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0. 18.气温由﹣20℃下降50℃后是__℃.19.一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ . 20.绝对值小于4.5的所有负整数的积为______.三、解答题21.计算 (1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯ 22.计算:()22131********⎛⎫-+--⨯--⎪⎝⎭. 23.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭24.某超市对2020年下半年每月的利润用下表作了记录: 月份 7月 8月 9月 10月 11月 12月 盈亏(万元) 盈12盈16盈8亏6亏4盈14正、负数表示(2)计算该商场下半年6个月的总利润额. 25.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 26.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯-【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3, 故答案为:C . 【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.2.A解析:A 【分析】根据题意列出乘法算式,计算即可. 【详解】设一个因数为a ,另一个因数为b ∴两数乘积为ab 根据题意,得1110202a b ab = 故选A . 【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.3.B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h > 故选B . 【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.4.C解析:C 【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案. 【详解】原式﹣3×(﹣2)×(﹣2) =﹣3×2×2 =﹣12, 故选:C . 【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.5.B解析:B 【分析】根据有理数的减法运算法则对各小题分析判断即可得解. 【详解】①减去一个数等于加上这个数的相反数,故本小题正确; ②互为两个相反数的两数相加得零,故本小题正确; ③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个. 故选B . 【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键.6.B解析:B 【解析】 【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为53.1810,所以B选项正确;C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.7.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.8.D解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.9.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.10.C解析:C【分析】根据题意得到a与b同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=; 当0a >,0b >时,原式112=+=; 当0a <,0b <时,原式112=--=-; 当0a <,0b >时,原式110=-+=. 故选:C . 【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.11.C解析:C 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】6.12×10−3=0.00612, 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.D解析:D 【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误. 【详解】A 选项:3710--=-,故错误;B 选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C 选项:1122()21333---=-+=-,故错误; D 选项运算正确. 故选:D . 【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.二、填空题13.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:19-【分析】根据倒数,相反数,平方的概念可知. 【详解】−3的平方是9,9的相反数是-9,-9的倒数是19- 故答案为19-. 【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.14.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性 解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可. 【详解】 解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =, ∴235-=--=-x y , 故答案为: 5.- 【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.15.-1【解析】由数轴得点A 表示的数是﹣3点B 表示的数是2∴AB 两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1 【解析】由数轴得,点A 表示的数是﹣3,点B 表示的数是2, ∴ A ,B 两点所表示的有理数的和是﹣3+2=﹣1, 故答案为-1.16.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律 乘法结合律 -10 1000 -10000 【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可. 【详解】 (-4)×8×(-2.5)×(-125) =-4×8×2.5×125=-4×2.5×8×125(乘法交换律) =-(4×2.5)×(8×125)(乘法结合律) =-10×1000 =-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000. 【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.17.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < > 【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可. 【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<-> 故答案为:<,<,<,> 【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.18.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70 【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算. 【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.20.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.三、解答题21.(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.22.13【分析】运用乘法的分配律去括号,再按有理数混合运算的顺序计算.【详解】解:原式()19692=-+---()85=--13=【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.23.(1)6;(2)58. 【分析】(1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.24.(1)填表见解析;(2)40万元.【分析】(1)根据“盈利记为正,则亏损就记为负”直接写出答案即可;(2)把该商场下半年6个月的利润相加即可.【详解】解:(1)盈利记为正,亏损就记为负,填表如下:=36-10+14=40(万元)∴该商场下半年6个月的总利润额为40万元.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.同时 还考查了有理数的加法运算.25.(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦=[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 26.(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.。

初一数学上册第一章有理数总复习资料

初一数学上册第一章有理数总复习资料

第一章有理数总复习一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。

有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。

在数的研究上它起着重要的作用。

它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。

但要注意数轴上的所有点并不是都有有理数和它对应。

借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。

2、相反数是指只有符号不同的两个数。

零的相反数是零。

互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。

有了相反数的概念后,有理数的减法运算就可以转化为加法运算。

3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。

对于任何有理数a,都有≥0。

4、倒数可以这样理解:如果a与b是非零的有理数,并且有a×b=1,我们就说a与b互为倒数。

有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。

5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示|a|的范围是0<|a|<10。

7、近似数与有效数字:近似数:一个与实际数很接近的数,称为近似数;有效数字:从左边第一个不为0的数字起,到精确到的数位止,这些数字都是这个数的有效数字。

(1)有效数字越多,近似数就越精确;(2)由四舍五入得到的近似数0.003206,左边第一个不是零的数是3,最后一位四舍五入所得到的数是6,从3到6中间的所有的数字是3、2、0、6,左边的三0个不算,但2和6之间的0要算,这个近似数有4个有效数字。

二、有理数的运算法则1、同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;一个数同零相加,仍得这个数。

人教版七年级数学上册第一章 有理数 解答题复习(二)解析版

人教版七年级数学上册第一章 有理数 解答题复习(二)解析版

第1章有理数解答题复习(二)1.已知a的相反数是2,b的绝对值是3,c的倒数是﹣1.(1)写出a,b,c的值;(2)求代数式3a(b+c)﹣b(3a﹣2b)的值.2.计算:(﹣5)×(﹣2)+(﹣2)2÷4.3.老师在黑板上写出如图所示的算式(1)嘉嘉在“□”中填入﹣6,请帮他计算“◇”中填入的数字;(2)淇淇说,“□”和“◇”填入的一定是两个不同的数,淇淇的说法对吗?请说明理由.4.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)若点C表示的数为5,求点B、点A表示的数;(3)如果点A、C表示的数互为相反数,求点B表示的数.5.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?6.计算:﹣23+6÷3×圆圆同学的计算过程如下:原式=﹣6+6÷2=0÷2=0请你判断圆圆的计算过程是否正确,若不正确,请你写出正确的计算过程.7.计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.8.观察下列关于自然数的等式:2×0+1=12①,4×2+1=32②,8×6+1=72③,16×14+1=152④,根据上述规律解决下列问题:(1)完成第五个等式:32×+1=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.9.计算:﹣16÷(﹣2)3﹣|﹣|×(﹣8)+[1﹣(﹣3)2].10.计算:(﹣2)3÷+3×|1﹣(﹣2)2|.11.26﹣(﹣+)×(﹣6)2.12.我们知道一个数x的绝对值的几何意义是:在数轴上表示这个数x的点离原点(表示数0)的距离,x的绝对值表示为|x|,也可以写成|x﹣0|,比如|2|=|2﹣0|=2;在数轴上表示两个数x,y的点之间的距离可以表示为|x﹣y|,比如,表示3的点与﹣1的点之间的距离表示为|3﹣(﹣1)|=|3+1|=4;|x+2|+|x﹣1|可以表示点x与点1之间的距离跟点x与﹣2之间的距离的和,根据图示易知:当点X 的位置在点A和点B之间(包含点A和点B)时,点X与点A的距离跟点X和点B的距离之和最小,且最小值为3,即|x+2|+|x﹣1|的最小值是3,且此时x的值为﹣2≤x≤1请根据以上阅读,解答下列问题:(1)|x+1|+|x﹣2|的最小值是,此时x的值为;(2)|x+2|+|x|+|x﹣1|的最小值是,此时x的值为;(3)当|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5时,求出a的值及x的值.13.计算:﹣14÷×(﹣)+[(﹣3)2﹣(1﹣23)×2].14.观察下列式子(1)根据上述规律,请猜想,若n为正整数,则n=(2)证明你猜想的结论.15.(﹣)2÷(﹣)4×(﹣1)6﹣(1+1﹣2)×48.16.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?17.﹣0.52+﹣|﹣32﹣9|﹣(﹣1)3×.18.计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.19.阅读材料,回答下列问题:数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示;在数轴上,有理数3与1对应的两点之间的距离为|3﹣1|=2;在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7;在数轴上,有理数﹣2与3对应的两点之间的距离为|﹣2﹣3|=5;在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;……如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a﹣b|或|b﹣a|,记为|AB|=|a﹣b|=|b﹣a|.(1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于;(2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x.①若点P在点M,N之间,则|x+2|+|x﹣4|=;若|x+2|+|x﹣4|═10,则x=;②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于.20.李阿姨的月工资是7000元(未扣税),扣除5000元免税项目后的部分需要按3%的税率缴纳个人所得税.(1)李阿姨月工资的个人所得税是多少元?(2)李阿姨将实领工资中的5000元存入银行,带着本月工资的余额到一家手机店购买了一部打八折的手机,买完手机后余下500元,这部手机打折前的价格是多少元?(3)李阿姨带着500元来到了另一家正在搞促销活动的商场,李阿姨在该商店购物付款后余下32元,付款后发现商场是这样规定的:购物不超过500元,不打折;购物超过500元但不超过600元,所购全部商品九折销售;购物超过600元,所购商品全部七五折,李阿姨在该商场可能购买了原价多少钱的商品?第1章有理数解答题复习(二)参考答案与试题解析1.【分析】(1)根据a的相反数是2,b的绝对值是3,c的倒数是﹣1,可以求得a、b、c的值;(2)先对题目中的式子化简,然后将(1)a、b、c的值代入即可解答本题.【解答】解:(1)∵a的相反数是2,b的绝对值是3,c的倒数是﹣1,∴a=﹣2,b=±3,c=﹣1;(2)3a(b+c)﹣b(3a﹣2b)=3ab+3ac﹣3ab+2b2=3ac+2b2,∵a=﹣2,b=±3,c=﹣1,∴b2=9,∴原式=3×(﹣2)×(﹣1)+2×9=6+18=24.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.2.【分析】根据有理数的乘法和加减法可以解答本题.【解答】解:(﹣5)×(﹣2)+(﹣2)2÷4=10+4÷4=10+1=11.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.【分析】(1)可设“◇”中填入的数字是x,得到方程7×(﹣6)﹣5x=38,解方程即可求解;(2)可设“□”和“◇”中填入的数字是y,得到方程7y﹣5y=38,解方程即可求解.【解答】解:(1)设“◇”中填入的数字是x,依题意有7×(﹣6)﹣5x=38,解得x=﹣16.故“◇”中填入的数字是﹣16;(2)设“□”和“◇”中填入的数字是y,依题意有7y﹣5y=38,解得y=19.故“□”和“◇”填入的可能是两个相同的数19.【点评】考查了有理数的混合运算,关键是根据题意得到相应的方程,解方程即可求解.4.【分析】(1)依据点A表示的数为0,利用两点间距离公式,可得点B、点C表示的数;(2)依据点C表示的数为5,利用两点间距离公式,可得点B、点A表示的数;(3)依据点A、C表示的数互为相反数,利用两点间距离公式,可得点B表示的数.【解答】解:(1)若点A表示的数为0,∵0﹣4=﹣4,∴点B表示的数为﹣4,∵﹣4+7=3,∴点C表示的数为3;(2)若点C表示的数为5,∵5﹣7=﹣2,∴点B表示的数为﹣2,∵﹣2+4=2,∴点A表示的数为2;(3)若点A、C表示的数互为相反数,∵AC=7﹣4=3,∴点A表示的数为﹣1.5,∵﹣1.5﹣4=﹣5.5,∴点B表示的数为﹣5.5.【点评】本题考查了数轴和有理数的运算,关键是能根据题意列出算式,是一道比较容易出错的题目.5.【分析】利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.【解答】解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.【点评】本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.6.【分析】圆圆的计算过程错误,写出正确的解题过程即可.【解答】解:圆圆的计算过程不正确,正确的计算过程为:原式=﹣8+=﹣.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.【分析】(1)观察已知等式确定出第五个等式即可;(2)归纳总结得到一般性规律,验证即可.【解答】解:(1)根据题意得:32×30+1=312;故答案为:30;312;(2)根据题意得:2n(2n﹣2)+1=(2n﹣1)2,∵左边=22n﹣2n+1+1,右边=22n﹣2n+1+1,∴左边=右边.【点评】此题考查了有理数的混合运算,弄清题中的规律是解本题的关键.9.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣16÷(﹣8)﹣×(﹣8)+(1﹣9)=2+﹣8=﹣5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.10.【分析】根据有理数混合运算的运算顺序,即可求出结论.【解答】解:原式=﹣8×+3×|1﹣4|,=﹣10+3×3,=﹣10+9,=﹣1.【点评】本题考查了有理数的混合运算,牢记有理数混合运算顺序是解题的关键.11.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=26﹣(﹣+)×36=26﹣28+33﹣6=25.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.【分析】(1)根据绝对值的几何意义,得出|x+1|+|x﹣2|的最小值;(2)根据绝对值的几何意义,得出|x+2|+|x|+|x﹣1|的最小值;(3)画出数轴,分四种情况进行讨论:当a=1.5且0≤x≤1.5或a=﹣1.5且﹣1≤x≤0时,当a =﹣0.5,x=﹣1或a=0.5,x=﹣0.5时,|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5.【解答】解:(1)根据绝对值的几何意义可得,当﹣1≤x≤2时,|x+1|+|x﹣2|的最小值是3,故答案为:3,﹣1≤x≤2;(2)根据绝对值的几何意义可得,当x=0时,|x+2|+|x|+|x﹣1|的最小值是3,故答案为:3,x=0;(3)如图,当a=1.5且0≤x≤1.5或a=﹣1.5且﹣1≤x≤0时,|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5,∴当|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5时,a=1.5且0≤x≤1.5或a=﹣1.5且﹣1≤x≤0.如图,当a=﹣0.5,x=﹣1或a=0.5,x=﹣0.5时,|x+1|+|x|+|x﹣2|+|x﹣a|的最小值是4.5,【点评】本题主要考查了数轴以及绝对值的几何意义的运用,一个数x的绝对值的几何意义是:在数轴上表示这个数x的点离远点(表示数0)的距离,x的绝对值表示为|x|.解题时注意分类思想的运用.13.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1××(﹣)+9+14=23.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.【分析】(1)根据所给的4个算式,可得:若n为正整数,则n=(n+1)+.(2)用数学归纳法证明猜想的结论即可.【解答】(1)解:若n为正整数,则n=(n+1)+.(2)证明:∵右边=(n+1)+=+==n=左边,∴原等式成立.故答案为:(n+1)+.【点评】此题主要考查了探寻规律问题,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.15.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=×16×1﹣(×48+×48﹣×48)=1﹣(66+64﹣132)=1﹣(﹣2)=3.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.【分析】(1)根据题意画出即可;(2)计算2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=路程÷速度即可求出答案.【解答】解:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了36分钟长时间.【点评】本题考查了数轴,有理数的加减运算,正数和负数,绝对值等知识点的应用,此题的关键是能根据题意列出算式,题目比较典型,难度适中,用的数学思想是转化思想,即把实际问题转化成数学问题,用数学知识来解决.17.【分析】根据有理数的乘法和加减法可以解答本题.【解答】解:﹣0.52+﹣|﹣32﹣9|﹣(﹣1)3×=﹣﹣|﹣9﹣9|+=﹣﹣18+2=﹣16.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【解答】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.【点评】此题考查了有理数的除法,用到的知识点是有理数的除法、通分、有理数的加法,关键是掌握运算顺序和结果的符号.19.【分析】(1)根据绝对值的定义:数轴上有理数﹣10与﹣5对应的两点之间的距离等于5;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为|x+5|;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于1或﹣3;(2)①若点P在点M,N之间,则|x+2|+|x﹣4|=6;若|x+2|+|x﹣4|═10,则x=6或﹣4;②|x+2|+|x|+|x﹣2|+|x﹣4|的最小值,这个最小值=4﹣(﹣2)=6.【解答】解:(1)根据绝对值的定义:数轴上有理数﹣10与﹣5对应的两点之间的距离等于5;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为|x+5|;A,B之间的距离|AB|=2,则x等于1或﹣3,(2)①若点P在点M,N之间,则|x+2|+|x﹣4|=6;若|x+2|+|x﹣4|═10,则x=6或﹣4;②|x+2|+|x|+|x﹣2|+|x﹣4|的最小值,即x与4,2,0,﹣4之间距离和最小,这个最小值=4﹣(﹣4)=8.故答案为:5,|x+5|,1或﹣3;6,6或﹣4,8.【点评】本题考查的是绝对值的定义,涉及到数轴、代数式等知识,难度较大.20.【分析】(1)根据题意可以求得李阿姨月工资的个人所得税是多少元;(2)根据题意可以求得部手机打折前的价格是多少元;人教版七年级数学上册第一章有理数解答题复习(二)解析版(3)根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:(1)(7000﹣5000)×3%=60(元),答:李阿姨月工资的个人所得税为60元;(2)(7000﹣60﹣5000﹣500)÷0.8=1800(元),答:这部手机打折前的价格是1800元;(3)若李阿姨带购物不超过500元,则李阿姨购物500﹣32=468元的商品;若李阿姨购物超过500元但不超过600元,则李阿姨购物468÷0.9=520元的商品;若李阿姨购物超过600元,则李阿姨购物468÷75%=624元.【点评】本题考查有理数的混合运算,解答本题的关键是明确题意,列出相应的式子,求出相应问题的结果.- 11 - / 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数1.1 正数和负数技巧1 正确使用正数与负数1.表示相反意义的量(1)如果股票上涨1元记作+1元,那么股票下跌2元记作______元.(2)若钟表的指针逆时针方向旋转30°,记作-30°;则顺时针方向旋转40°,记作______.解析:(1)上涨与下跌意义相反,若上涨用正数表示,则下跌用负数表示.(2)本题规定逆时针方向为负,则顺时针方向为正.解:(1)-2;(2)+40°.2.表示上涨幅度学习了正数、负数后,小明统计了2014年6月份某些粮食的价格,又从网上查到了2013年6月份同种粮食的价格,计算出了价格上涨幅度如下表:(1)哪些种类的粮食实际价格上涨了,哪些种类的粮食实际价格降低了?(2)哪种粮食的价格上涨幅度最大?哪种粮食的价格下降幅度最大?解析:正数、负数表示一对意义相反的量,上涨2.5%就是价格比原来提高了2.5%,而上涨了-2.6%就是价格比原来下降了2.6%.解:(1)从表格可知,小麦、大米的价格上涨了,而玉米、大豆、花生的价格都下降了;(2)小麦的价格上涨幅度最大,花生的价格下降幅度最大.3.表示离“标准”的误差七年级一班第一小组五名同学某次数学测验的平均成绩为85分,一名同学以平均成绩为标准,超过平均分记为正,将五名同学的成绩分別记作―15分,―4分,0分,4分,15分.这五名同学的实际成绩分别是多少分?解析:以平均成绩为标准,负数表示比平均分少;0分表示和平均分相同;正数表示比平均分多.解:―15分表示比平均分85分少15分,即70分;―4分表示比平均分少4分,即81分;0分表示和平均分相同,即85分;4分表示比平均分多4分,即89分;15分表示比平均分多15分,即100分.这五名同学的实际成绩分别是70分,81分,85分,89分,100分.技巧2 分析特例,寻找规律1.正数、负数在有序数列中观察下面依次排列的列数,请你接着写出后面的3个数,你能说出第15个数、第101个数、第2012个数是什么吗?(1)-1,-2,+3,-4,-5,+6,-7,-8,______,______,______,…(2)-1,12,-3,14,-5,16,-7,18,______,______,______,…解析:仔细观察各数的特点,尤其是符号的分布,从变化中发现一般规律,由题(1)所给的依次排列的一列数中的前8个数可知:对于第n个数,当n是3的整数倍时,此数为n;当不是3的整数倍时,此数为-n.由题(2)所给的依次排列的一列数中的前8个数可知:对于第n个数,当n为奇数时,此数为-n;当n为偶数时,此数为1n.解:(1)-1,-2,+3,-4,-5,+6,-7,-8,+9,-10,-11,这数列中的第15个数为+15,第101个数为-101,第2012个数为-2012.(2)-1,12,-3,14,-5,16,-7,18,-9,110,-11这数列中的第15个数为-15,第101个数为-101,第2012个数为1 2012.2.正数、负数在有序数阵中如图,是按一定规律排数阵,请你猜想第10行的第1个数是什么.解析:由图可知,第1行有1个数,第2行有2个数……第10行有10个数,所以第1行到第9行的数的总个数为1+2+3…+9=45(个),所以第10行的第1个数为第46个数,再根据数字的排列规律和正、负数的分布规律知,第10行的第1个数是-46.解:第10行的第1个数是-46.1.2.1 有理数技巧1 有理数的分类1.按定义分类如图1所示大圆覆盖的区域表示有理数的范围,中圆覆盖的区域表示整数的范围,小圆覆盖的区域表示正整数的范围,把下列各数填入它所属于的集合的圆内.15,-19,-5,215,-318,0.1,-5.32,-80,123,2.333.图1 图2 解析:本例考查有理数的定义,根据有理数的分类进行作答.解:如图2所示.2.按符号分类如图1,将下面一组数填入相应的圈内:-12,-7,+2.8,-90,-3.5,913,0,4.图1解析:(1)中重合部分应填负整数,所以只在负数集内的应填其他负数,即负分数,只在整数集圈内的应填除负整数外的整数,即0和正整数.(2)中重合部分应填正整数,所以只在整数集圈内的填0和负整数,只在正数集圈内的填正分数.解:如图2所示.图2技巧2 分析特例,寻找规律观察下列每组数据,按某种规律在横线上填上适当的数.(1)+1,-2,+3,-4,_____,_____,_____;(2)-23,-18,-13,_____,_____,_____;(3)-5,-2,1,4,_____,_____,_____.解析:(1)中遵循正、负的循环规律,按顺序排列为1,-2,3,-4,5,-6,7;(2)中遵循前一个数比后一个数小5的规律;(3)中遵循前一个数比后一个数小3的规律.答案:(1)5,-6,7;(2)-8,-3,2;(3)7,10,13.1.2.2 数轴技巧1 数轴的定义及画法1.在数轴上如何表示有理数画一条数轴,把有理数1.5,-2,2,-2.5用数轴上的点表示出来,解析:用数轴上的点表示有理数,应先确定点在原点左侧还是右侧,再确定点与原点之间有几个单位长度.解:如图所示.2.利用数轴求相邻两数之间的距离如图所示,请指出数轴上相邻两点之间的距离是多少?解析:根据数轴的定义进行作答.解:-3表示的点与-1.5表示的点相距1.5个单位长度,-1.5表示的点与1表示的点相距2.5个单位长度.技巧2 利用数轴解决实际问题某人从A点出发向东走10 m,然后折回向西走3 m,又折回向东走6 m.问:此人此时在A地哪个方向,距离A点多远?解析:我们可以借助数轴来解决.解:如下图所示,设原点为A地,2 m为单位长度,向东为正方向,则此人所走路程可表示为A→B→C→D.观察数轴可得,此人此时正向A地正东方向,距离A地13 m.1.2.3 相反数技巧1 相反数的意义与性质的应用有理数a、b在数轴上的位置如图1所示,试比较a,b,-a,-b的大小,并用“>”把它们连接起来.图1 图2解析:由相反数的意义,可在数轴上把-a、-b表示出来(如图2),利用数轴就可以比较它们的大小了.解:由数轴可知b>-a>a>-b.技巧2 运用相反数概念解题若2x+1是-9的相反数,求x的值.解析:因为任何一个有理数都有相反数,且只有一个相反数,-9的相反数是9.所以,若2x+1是-9的相反数,则2x+1就是9.即2x+1=9,解这个方程即可.解:若2x+1是-9的相反数,则2x+1=9,解得x=4.1.2.4 绝对值技巧1 利用绝对值的定义解题1.已知原数求绝对值-2的绝对值是( ).A.2B.-2C.12D.±2解析:根据绝对值的定义可知:-2的绝对值即是数轴上表示-2的点到原点的距离,即|-2|=2.答案:A.2.已知绝对值求原数已知一个数的绝对值等于2 014,则这个数是_____.解析:根据绝对值的定义,到原点的距离是2 014的点有两个,从原点向左侧移动2 014个单位长度,得到表示数-2 014的点;从原点向右侧移动2 014个单位长度,得到表示数2 014的点.答案:2 014或-2 014.3.求特殊值如果|a|=4,|b|=3,且a<b,则a=_____b=_____.解析:正确解答本题要注意两点:一是绝对值为正数的数有两个,它们互为相反数;二是注意条件a<b.由已知,得a=4或a=-4,b=3或b=-3.∵a<b,∴a只能取-4.∴a=-4,b=3或b=-3.答案:-4,3或-3.技巧2 绝对值在实际生活中的应用某高校从运动员中选拔仪仗队员,规定男仪仗队员的标准身高是175 cm,高于标准身高记为正,低于标准身高记为负.现有5位参选人员A,B,C,D,E,经过测量,这5位参选人员的身高分别记为:+3 cm,-4 cm,+2 cm,-1 cm,-3 cm.如果从这5位参选人员中只选1位队员,那么应该选哪位呢?请说明理由.解析:利用绝对值的意义来解决问题.解:∵|+3|=3,|-4|=4,|+2|=2,|-1|=1,|-3|=3,∴D的绝对值最小,说明他的身高最接近标准身高.∴应该选D为仪仗队员.技巧3 有理数的大小比较方法1.数轴比较法比较下列各数的大小,并用“<”号将它们连接起来:145,-2.8,3,-32,1,-45,0.解析:可以借助数轴比较.解:将各数用数轴上的点一一表示出来,如下图所示:根据“在数轴上,右边的点所表示的数大于左边的点所表示的数”,得到:-2.8<-32<-45<0<1<145<3.2.绝对值法比较大小:-45与-56.解析:这是两个负数比较大小,应先比较它们的绝对值的大小.解:∵|-45|=45=2430,|-56|=56=2530,而2430<2530,∴-45>-56.3.特殊值比较法已知a,b为有理数,且a>0,b<0,a<|b|,则a,b,-a,-b的大小顺序是( ).A.b<-a<a<-b B.-a<a<-b<bC.-a<b<a<-b D.-b<a<-a<b解析:由已知,不妨取a=1,b=-2,则-a=-1,-b=2.∵-2<-1<1<2,∴b<-a<a<-b.答案:A.技巧4 巧用绝对值的非负性求字母的值已知|2-m|+|n-3|=0,试求m-2n的值.解析:根据绝对值的非负性解题.解:∵|2-m|+|n-3|=0,且|2-m|≥0,|n-3|≥0,∴|2-m|=0,|n-3|=0,即2-m=0,n-3=0.∴m=2,n=3.故m-2n=2-2×3=-4.1.3.1 有理数的加法技巧1 灵活运用运算律简化运算计算:(1)(-3)+4+(+2)+(-6)+7+(-5);(2)-1.5+(+2.3)+(-2.1)+3.2+(-3)+(-1).解析:题(1)这六个数中,有三个是负数,三个是正数,先将三个正数、三个负数分别结合求和,然后将它们的和相加.题(2)中有四个负数、两个正数,先分别把它们相加,然后把它们的和相加.解:(1)(-3)+4+(+2)+(-6)+7+(-5)=[(-3)+(-6)+(-5)]+[4+(+2)+7]=(-14+13)=-1;(2)-1.5+(+2.3)+(-2.1)+3.2+(-3)+(-1)=[-1.5+(-2.1)+(-3)+(-1)]+[(+2.3)+3.2]=(-7.6)+5.5=-2.1.技巧2 有理数在实际中的应用某股民上周五买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元):(1)星期三收盘时,每股是多少元?(2)本周内每股最高价是多少元?最低价是多少元?解析:本周内每天的股票价格都是在前一天的基础上涨跌的,如果把涨跌的情况统一成上涨的情形,问题便可列加法算式解答.解:(1)27+(+4)+(+4.5)+(+1)=34.5(元);(2)本周内每股最高价:27+(+4)+(+4.5)=35.5(元);最低价:27+(+4)+(+4.5)+(-1)+(-2.5)+(-4)=28(元).答:(1)周三收盘时,每股是34.5元;(2)本周内每股最高价是35.5元,最低价是28元.1.3.2 有理数的减法技巧1 有理数的加减混合运算1.按相反数(或相加得0的数)分组计算:-3.72-1.23+4.18-2.93-1.25+3.72.解析:观察各个加数,利用分组计算法简便计算。

相关文档
最新文档