浦东新区2017学年六年级第二学期期末数学试卷
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
12.在线段 AB 延长线上截取 BC=2AB,分别取 AB、
BC 的中点,分别记为点 M、N,如果 AB=2,那
么 MN=
.
13.如图是用量角器测量角度的结果,如果∠AOB=∠COD,
那么∠AOD 的度数是
.
(第 13 题图)
14.已知∠α 与∠β 互补,∠α=41°25′,那么∠β=
(结果用度、分、秒表示).
且原点 O 与点 A、点 B 的距离分别为 4、1,那么关于点 O 的位置,下列叙述正确的是( )
(A)在点 A 的左边;
(B)介于点 A、点 B 之间;
AB
C
(C)介于点 B、点 C 之间; (D)在点 C 的右边.
5.下列说法中,正确的是……………………………………………………………………( ) (A)长方体中任何一个面都与两个面平行; (B)长方体中任何一个面都与两个面垂直; (C)长方体中与一条棱平行的面只有一个; (D)长方体中与一条棱垂直的平面有两个.
不等式的解集在数轴上表示为:
…………(1 分)
23.解:由①+②,得 9x − 33 = 0 .………………………………………………………(1 分) 9x = 33 .
x = 11 .……………………………………………………………(2 分) 3
把 x = 11 代入①,得 y = − 15 .……………………………………………………(2 分)
解:
(第 27 题图 1)
(第 27 题图 2)
(第 27 题图 3)
—6—
浦东新区 2017 学年度第二学期期末质量抽测 六年级(预备年级)数学参考答案及评分说明
一、选择题(本大题共 6 题,每小题 3 分,满分 18 分)(每题只有一个选项正确) 1.B; 2.C; 3.A; 4.C; 5.D; 6.C.
3x
+
4
y
+
4
=
0.
① ②
解:
x + y = 5, ①
24.解方程组:
y
+
z
=
−2,
②
x + z = 3. ③
解:
四、作图题(本大题 6 分)
25.线段 AB 与射线 AP 有一公共端点 A.
(1) 用直尺和圆规作出∠BAP 的角平分线 AC.(不写作图方法)
(2) 用圆规在射线 AP 上截取线段 AD=AB,联结 BD.
3
8.计算: (−1.2)− 2 1 =
.
8
9.比较大小:如果 a b ,那么 2 − 3a
2 − 3b .(填“>”“<”或“=”)
10.月球的直径约为 3 476 000 米,将 3 476 000 用科学记数法表示是
.
11.将方程 3x − 2 y = 25 变形为用含 x 的式子表示 y 是
(A)42; (B)49; (C) 76 ; (D) 77 .
3.在如图的 2018 年 6 月份的月历表中,任意框出表中竖列上三个相 邻的数,这三个数的和不.可.能.是……………………( ) (A)72; (B)69; (C)51; (D)27.
4.如图,在数轴上点 A、点 B、点 C 三点所表示的数分别是 a、b、c.如果 a − b = 3 , b − c = 5 ,
x = 5,
所以,原方程组的解是
y
=
0,
…………………………………………………(1
分)
z = −2.
四、作图题(本大题 6 分) 25.(1)作图略.……………………………………………………………………………(2 分)
(2)作图略.……………………………………………………………………………(1 分) (3)作图略.……………………………………………………………………………(2 分) (4)AB=BE.……………………………………………………………………………(1 分)
3
4
所以,原方程组的解是
x = 11, y = −315.…………………………………………………(1
分)
4
24.解:由①+②+③,得 x + y + z = 3 . ④…………………………………………(2 分)
④-①,得 z = −2 .…………………………………………………………………(1 分) ④-②,得 x = 5 .…………………………………………………………………(1 分) ④-③,得 y = 0 .…………………………………………………………………(1 分)
= − 11 .…………………………………………………………………………(1 分) 3
20.解:5x = 3(3x − 4) − 2 24 .……………………………………………………………(2 分)
5x = 9x − 12 − 48 .…………………………………………………………………(2 分) − 4x = −60 .
二、填空题(本大题共 12 题,每小题 2 分,满分 24 分)
7. 2 ; 3
12.3; 17.6;
8. − 3.325 ; 9.>;
10. 3.476 106 ;
13.80°; 18.27.
14.13835' ; 15.南偏东 40°;
11. y = 3x − 25 ; 2
16.棱 GC;
三、简答题(本大题共 6 题,每小题 6 分,满分 36 分)
4 费用需要:16 20 = 320 (钱) ………………………(1 分) 如果定 18 间房:其中有四人住、三人住 费用需要18 20 0.8 = 288(钱). ……………………(1 分) 因为 288<320,所以在次入住时定 18 间房更合算.………………………(1 分)
15.如果甲地在乙地的北偏西 40°方向,那么乙地在甲地的
方向.
16.在长方体 ABCD-EFGH 中,与棱 AB 和棱 AD 都异面的棱
H
G
是
.
E
F
D
C
17.如果一根 24 米的铁丝剪开后刚好能搭成一个长方体框架模型,
A
B
这个长方体的长、宽、高的长度均为整数米,且互不相等, (第 16 题图)
那么这个长方体的体积是
浦东新区 2017 学年度第二学期期末质量抽测
六 年 级(预备年级)数 学
题号 得分
一
二
三
四
五
(完卷时间:90 分钟 满分:100 分)
总分
2018.6
一、 选择题(本大题共 6 题,每小题 3 分,满分 18 分)(每题只有一个选项正确)
1.如果 a 与 − 2 互为倒数,那么 a 等于…………………………………………………( )
例如天气预报 5 日下雨,实际没雨,那么 b5 = 1 , a5 = −1 .记录完毕后,小华经过计算,
得出 a1b1 + a2b2 + a3b3 + …+a31b31 = 23 ,那么该月气象台预报准确的总天数是
.
—2—
三、 简答题(本大题共 6 题,每小题 6 分,满分 36 分)
19.计算: (−2) ( 5 − 1 ) − (−2)2 5 8 . 64
—7—
22.解:由①,得 x 2 .……………………………………………………………………(1 分)
由②,得 3(3x + 1) 2(2x −1) .
9x + 3 4x − 2. 5x −5 . x −1 .………………………………………………………(3 分)
所以,原不等式组的解集是 − 1 x 2 .…………………………………………(1 分)
我问开店李三公,众客都来到店中, 一房七客多七客,一房九客一房空.
诗中后两句的意思是:如果每一间客房住 7 人,那么有 7 人无房可住;如果每一间客房 住 9 人,那么就空出一间房. (1)求该店有客房多少间?房客多少人? (2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费 20 钱,且每
(2)制作时,需要裁剪一块长方形的硬纸板,小华经过设计发现正好将这块硬纸板全部 用完(如图 2),请你求出长方体的长 a 、宽 b 和高 c ;
(3)设计后,小红对制作费用进行了估算,小华的设计方案所需要的硬纸板的价格是每 块 5 元,另外还有一种只有大小不同的硬纸板,价格是每块 3 元,小红根据小华的 设计尺寸也进行了设计(如图 3),发现另一种硬纸板也可以用来制作尺寸相同的长 方体纸盒.同时,经过计算发现,如果用相同的制作费且把材料用足,那么选用小 红的设计比选用小华的设计恰好可以多制作一个纸盒.请问,小红的设计可以制作 出几个纸盒?
19.解:原式= − 5 + 1 − 4 5 8 .…………………………………………………………(3 分) 32
= 1 − 5 − 5 .……………………………………………………………………(1 分) 232
= − 2 − 5 .………………………………………………………………………(1 分) 3
立方米.
18.小华用两组数分别记录某地区 5 月份 31 天中实际下雨和天气预报下雨的情况:
实际下雨情况用 a1, a2 ,……,a31 记录
天气预报下雨的情况用 b1,b2 ,……,b31 记录
当第 k 天下过雨时,记 ak = 1 ;
当预报第 k 天下雨时,记 bk = 1 ;
当第 k 天没下雨时,记 ak = −1(1≤ k ≤31). 当预报第 k 天没雨时,记 bk = −1(1≤ k ≤31).
x = 15 .…………………………………………………………………………(2 分) 所以,原方程的解为 x = 15 .
21.解:5x − 45 ≥15 − 6x + 6 .………………………………………………………………(2 分) 5x + 6x ≥ 21 + 45 .…………………………………………………………………(2 分) x ≥ 6 .………………………………………………………………………(1 分) 所以,原不等式的解集为 x ≥ 6 .…………………………………………………(1 分)
(A) − 2 ;
(B) − 1 ; 2
(C) 1 ; 2
(D) 2 .
2.13 世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有 7 位老妇人,每 人赶着 7 头毛驴,每头驴驮着 7 只口袋,每只口袋里装着 7 个面包,每个面包附有 7 把餐刀,每把餐刀有 7 只刀鞘”,那么刀鞘数是……………………………………( )
—8—
五、解答题(本大题共 2 题,26 题 7 分,27 题 9 分,满分 16 分) 26.解:(1)设有 x 间客房,则房客有(7x+7)人.………………………………………(1 分)
根据题意,得方程: 9( x − 1) = 7x + 7 .……………………………………(1 分) 解这个方程组,得 x = 8 .……………………………………………………(1 分) 答:该店有 8 间客房,63 个房客.…………………………………………(1 分) (2)如果 4 人一间房,因为 63 4 = 15 3 ,所以需客房 16 间
6.用一副(两块)三角尺按照不同位置摆放,在下列摆放方式中,一.定.能.确.定.∠α 与∠β 互余的是………………………………………………………………………………( )
(A);
(B);
(C);
—1—
(D).
二、 填空题(本大题共 12 题,每小题 2 分,满分 24 分)
7. − 2 的相反数是
.
(3) 用直尺和圆规在 BD 右侧作出以点 B 为顶点的∠DBQ, 使∠DBQ=∠BDA,且 BQ 与 AC 相交于点 E.(不写作 图方法)
(4) 你认为线段 AB 和 BE 的大小关系如何?
第 25 题图
—4—
五、解答题(本大题共 2 题,26 题 7 分,27 题 9 分,满分 16 分) 26.某校数学兴趣小组研究我国古代《算法统宗》里这样一首诗:
间客房最多入住 4 人,一次性定客房 18 间以上(含 18 间),房费按 8 折优惠.如 果诗中“众客”再次一起入住,要求订房更合算,请你帮他们做个方案. 解:
—5—
27.小明,小华和红准备用透明胶和硬纸板制作一些长方体纸盒,现在需要你的帮忙:
(1)制作前,要画出长方体纸盒的直观图,小明只画了一部分(如图 1),请你帮他画完 整(不写画法);
解:
20.解方程: 5x = 3x − 4 − 2 . 24 8
解:
21.解不等式: 5( x − 9) ≥15 − 6( x −1) . 解:
2-x 0,
①
22.解不等式组:
3x
+
1
2
2x −1. 3
②
并把它的解集在数轴上表示出来. 解:
—3—
23.解方程组:
6x − 4 y − 37 = 0,