最新六年级上册数学应用题期末试卷训练经典题目
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新六年级上册数学应用题期末试卷训练经典题目
一、六年级数学上册应用题解答题
1.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图。
(1)加工小齿轮的效率比大齿轮高百分之几?
(2)已知这个车间有工人68人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样安排这68名工人最合理?(请计算说明)
2.一本书共100页,已经看了56页。
剩下的比全书页数的2
5
多4页。
悦悦说的对吗?请通过计算说明理由。
3.学校组织五年级少先队员参加义务植树活动。
全体少先队员分成栽树和挖坑两组,且栽树和挖坑的人数比是3:4,如果从栽树组调2个人到挖坑组,那么栽树组和挖坑组人数的比是2:3,有多少先队员参加了这次植树活动?
4.一张正方形桌子可以围坐4人,同学们吃饭时把正方形桌子拼成一排,每张不留空位.(如图所示)
(1)20人吃饭需要多少张桌子拼在一起才能正好坐下?
(2)10张桌子这样拼成一排,可坐多少人?
(3)发现规律.
多摆1个□,就多出2个〇.如果有n个□,那么一共有2+个〇.
5.下图是由两个正方形和一个圆组成的,已知大正方形的面积是2
36cm,那么阴影部分的面积是多少?(圆周率 取3.14)
6.如图是光明小学的运动场的示意图,阴影部分为跑道.求跑道的占地面积.
7.如图,用两个完全相同的正方形拼成一个长方形,图1是在长方形内所作的最大半圆,图2是长方形外的最小半圆。
我们知道:
①图1中,长方形的面积与半圆的面积比为 4
π。
②图2中,半圆的面积与长方形的面积比为 2
π。
请从上面两个结论中选择一个,写出你的证明过程。
8.4月23日是世界读书日,每年的这一天,世界上百多个国家都会举办各种各样的庆祝和图书宣传活动。
某书店这天在图书定价的基础上降价20%出售某种图书,售价每本19.2元。
已知该图书的进价为图书定价的50%,则降价后每卖一本书可以盈利多少元? 9.工程队挖一条水渠,第一天挖了全长的20%,第二天比第一天多挖72米,这时已挖的部分与未挖部分的比是4∶3,这条水渠长多少米?
10.一个书架,原来上层和下层中书的本数比是8:7,如果从上层取出8本书放放下层,这时上层和下层的比为4:5,原来上层和下层各有图书多少本?
11.赵叔叔加工一批零件,计划每小时加工125个,6小时完成,实际工作效率提高20%。
实际多少时间可以完成? 12.最佳方案。
一辆小汽车与一辆大卡车在一段10000米长的狭路上相遇,必须倒车,才能继续通行。
已
知小汽车的速度是每分钟行800米,大卡车的速度是每分钟行500米,两车倒车的速度是
各自速度的1
4
;小汽车需倒车的路程是大卡车需倒车的路程的4倍。
想想你觉得怎样倒车
比较合理?说出你的理由?
13.某商场一天内销售两种服装的情况是,甲种服装共卖得1560元,乙种服装共卖得1350元,若按两种服装的成本分别计算,甲种服装盈利25%,乙种服装亏本10%,试问该商场这一天是盈利还是亏本?盈或亏多少元?
14.美美服装公司赶制360件演出服。
甲组单独做需要8天,乙组单独做需要10天,丙组单独做需要12天。
(1)甲、乙两组合作,需要几天完成?
(2)如果甲组先完成任务的40%,剩下的任务按5:4分派给乙、丙两组。
甲、乙、丙三个组分别做了多少件演出服?
15.佳惠超市按商品标价的80%进行促销。
光明小学在此超市按促销价购买了200支钢笔,共付2040元。
(1)每支钢笔的标价是多少元?
(2)如果每支钢笔超市的进价是8.5元,问超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的?
16.甲乙两车分别从A、B两地同时相对开出,5小时后相遇。
相遇后两车仍按原来的速度
前进,当它们相距378千米时,甲车行了全程的3
5
,乙车行了全程的75%,A、B两地相距
多少千米?
17.2019年12月新野到郑州的高铁正式开通,现在从新野乘高铁约需1小时30分到郑州,而乘大巴车到郑州约需4.5小时,现在乘高铁到郑州用的时间比乘大巴车到郑州节省百分之几?速度提高了百分之几?
18.一辆大巴从广州开往韶关,行了一段路程后,离韶关还有210千米,接着又行了全程的20%,这时已行路程与未行路程的比是3:2。
广州到韶关两地相距多少千米?(用方程解)
19.学校举行庆“六一”男女生大合唱,原计划合唱队中女生人数占合唱队总人数的40%,后来考虑到合唱效果,将其中5名女生换成了5名男生,这时女生与男生人数的比是
3∶7。
合唱队共有男女生多少名?
20.明明和媛媛分别看两本不同页数的故事书.
21.如图,第二个图形是由第一个图形连接三边中点而得到的,第三个图形是由第二个图形中间的一个三角形连接三边中点而得到的,以此类推……分别写出第二个图形、第三个图形和第四个图形中的三角形个数.如果第n个图形中的三角形个数为8057,n是多少?
22.某车间为了能高质量准时完成一批齿轮订单,对车间工人提前进行了加工齿轮效率的测试,经过统计测算,平均每个工人加工齿轮效率情况如图。
(1)加工小齿轮的效率比大齿轮高百分之几?
(2)已知这个车间有工人68人,1个大齿轮和3个小齿轮配为一套,为了使大小齿轮能成套出厂,如果你是车间主任,怎样合理安排这68名工人?请具体说明理由。
23.甲、乙两辆汽车同时从A、B两地相向开出,2小时后在途中相遇,这时甲车正好行了
全程的2
5
,已知乙车每小时行36千米,A、B两地间公路长多少千米?
24.甲乙两车分别从A、B两地相向而行,甲车行驶了1.5小时乙车才开始出发,乙车以80千米/时的速度行2.5小时与甲车相遇。
甲车中途休息了1小时,当两车相遇时,甲所行
驶的路程占AB两地总路程的3
7
,甲车的行驶速度是多少千米?
25.修一段公路,甲队独修要用20天,乙队独修要用24天,现在两队同时从两端开工,结果在距中点750m处相遇。
求这段公路长多少米?
26.涛涛读一本故事书,第一天读了这本书的1
6
,第二天读了这本书的
1
5
,这时还剩95页
没有读。
这本故事书共有多少页?
27.依依从家去外婆家,第一个小时走了全程的3
8,第二个小时走了剩下路程的
1
4
,已知
第一个小时比第二个小时多走了1050米,依依家与外婆家相距多少千米?
28.一个书架上下两层共有图书450本,如果将上层书增加它的5
8
,下层书增加它的3
10
,
这时上、下两层图书的本数就一样多.这个书架原来上、下层各有图书多少本?
29.一个水池早晨放满了水,上午用去这池水的,下午又用去25升,这时水池的水比半池水还多2升,这个水池早晨用去了多少水?
30.根据大数据显示,荔波2016年旅游接待迅速升温,各旅游景区(点)游人如织.全县全年接待游客超700万人,其中大、小七孔景区共接待了游客人数的,小七孔景区比大七孔景区多接待游客,大、小七孔景区各全年接待了游客多少万人?
31.三角形ABC的三条边都是6厘米,高AH为5.2厘米,分别以A、B、C三点为圆心,6厘米长为半径画弧,求这三段弧所围成的图形的面积。
( 取3.14)
32.如图,一只狗被一根12米长的绳子拴在一建筑物的墙角上,这个建筑的平面图是边长为10米的正方形,狗不能进入建筑物内活动.求狗所能活动到的地面部分的面积.(精确到1平方米)
33.一辆快车与一辆慢车分别从甲、乙两站同时相对开出,在距中点5千米处相遇.已知快、慢车的速度比是3:2,甲、乙两站相距多少千米?(用方程解)
34.一个工程队修一条公路,第一天修45米,第二天修全长的1
4
,第二天修的米数又恰
好比第一天多1
5
,这条公路全长多少米?
35.小红、小英和小明三位小朋友储蓄钱数的比是1:3:4,他们储蓄的平均钱数是320元。
小英储蓄了多少钱?
36.一项工程,甲队单独完成需要20天,乙队单独完成需要12天。
现在乙队先工作几天,剩下的由甲队单独完成。
工作中各自的工作效率不变,全工程前后一共用了14天,共得劳务费2万元。
如果按各自的工作量计算,甲、乙各获得多少万元?
37.王叔叔12月份接到加工一批零件的任务,他第一周加工后,已加工零件个数和剩下零
件个数的比是1∶3,第二周加工了总任务的1
3
,已知两周一共加工了140个零件。
王叔叔
接到的任务是一共要加工多少个零件?
38.在直角三角形ABC中,这个三角形的面积是90平方厘米,D是BC的中点,E是AD 中一点,AE与ED的比是2∶1,求阴影部分的面积?
39.加工一批零件,已完成个数与零件总个数的比是1∶5,如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?
40.一辆客车和一辆货车上午8:00同时分别从甲、乙两地出发相向而行,客车每小时行
驶60千米,当行驶了全程的
7
12
时与货车相遇。
已知货车行驶完全程要8小时,两车相遇
是什么时刻?甲、乙两地间的路程是多少千米?
41.客车和货车同时从甲、乙两地相对开出,相遇时客车和货车所行的路程比是4:3,相遇后货车提高速度,比相遇前每小时多行35千米,客车仍按原速前进,结果两车同时到达目的地。
已知客车从甲地到乙地一共用了6.5小时,甲、乙两地相距多少千米?
42.一辆卡车和一辆客车分别从甲、乙两城同时出发,相向而行,卡车到达乙城后立即返回,客车到达甲城后也立即返回,已知卡车和客车的速度比为4:3,两车第一次相遇地点距离第二次相遇地点24千米,求甲、乙两城相距多少千米?
43.某口罩厂两个车间计划生产相同个数的防尘口罩和医用口罩,当医用口罩完成了2 5
时,防尘口罩刚好完成了3
7。
这时,为了提前完成医用口罩的生产任务,改进了生产工
艺,效率提高了50%。
这样,当医用口罩完成任务时,防尘口罩还有3500个没完成,原计划生产医用口罩多少个?
44.一个周长为12.56厘米的圆在长方形内滚动一周后回到初始位置(如下图所示),圆心所经过的路程是40厘米,已知图中长方形的长和宽之比是5:2,这个长方形的面积是多少平方厘米?
45.甲、乙两车同时从A、B两地相向而行,两车在离中点20千米处相遇,已知甲车每小时行50千米,乙车每小时比甲车多行20%,求A、B两地间的路程。
46.商场有两台冰箱,标价都是4950元,其中一台比进价贵10%,另一台比进价便宜10%,如果两台冰箱全部卖出,那么总体来讲是赚了还是赔了?如果赚了,赚了多少元?如果赔了,赔了多少元?
47.用边长为1厘米的小正方形拼长方形,如下图,图1的周长是4,图2的周长是6,图3的周长是8.
(1)你发现第几幅图和周长之间有什么关系吗?把你的发现写出来.
(2)你的发现对吗?请画出图4和图5验证一下.
(3)按照上面的规律,图20的图形周长是多少?请把你的思考过程写出来.
48.甲商品的价格比乙商品高20%,乙商品的价格比丙商品低25%,甲商品比丙商品便宜了百分之几?
49.修一条公路,已经修完了全程的1
4
,又修了剩余的
1
5
,这时距终点还有6千米,这
条公路全长多少千米.
50.水果店运来一批橘子,第一天卖出总数的40%,第二天卖出140千克,剩下的与卖出的重量比是1:3,这批橘子重多少千克?
【参考答案】***试卷处理标记,请不要删除
一、六年级数学上册应用题解答题
1.(1)25%
(2)20名工人生产大齿轮,48名工人生产小齿轮,理由见详解
【分析】
(1)工作总量比=工作效率比,用工作总量差÷大齿轮工作总量即可;
(2)先求出每人每天加工小齿轮和大齿轮的个数,设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x),根据每人每天加工大齿轮的个数×人数=每人每天加工小齿轮的个数×人数÷3,列出方程求出加工小齿轮人数,总人数-加工小齿轮人数=加工大齿轮人数。
【详解】
(1)(50-40)÷40
=10÷40
=25%
答:加工小齿轮的效率比大齿轮高25%。
(2)每人每天加工小齿轮的个数:50÷5=10(个)
每人每天加工大齿轮的个数:40÷5=8(个)
解:设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x)。
8×(68-x)=10×x÷3
1632-24x=10x
34x=1632
x=48
加工大齿轮的人数是:68-x=68-48=20(人);
答: 20名工人生产大齿轮,48名工人生产小齿轮。
【点睛】
求比一个数多/少百分之几用表示单位“1”的量作除数,用方程解决问题关键是找到等量关系。
2.对;理由见详解
【分析】
总页数-已看页数=剩下的页数,将总页数看作单位“1”,总页数×2
5
+4=剩下的页数,通
过两种方式求出的剩下页数一样,说明悦悦说的对,不一样,说明说的不对。
【详解】
100-56=44(页)
100×2
5
+4
=40+4
=44(页)
44=44
答:悦悦说的对。
【点睛】
确定单位“1”,整体数量×部分对应分率=部分数量。
3.70人
【解析】
【分析】
参加的总人数为单位“1”。
开始时,栽树组占总人数的
3
34
+
,调动后,栽树组占总人数的
2
23
+
【详解】
2÷(
32
3423
-
++
)=70(人)
4.(1)9张
(2)22人
(3)2n
【详解】
(1)1张桌子可坐人数:4人
2张桌子可坐人数:4+2=6(人)3张桌子可坐人数:4+2+2=8(人)……
n张桌子可坐人数:
4+2(n﹣1)=(2n+2)人
当能坐20人时,桌子张数:
2n+2=20
2n=18
n=9
答:20人吃饭需要9张桌子拼在一起才能正好坐下.
(2)2×10+2
=20+2
=22(人)
答:10张桌子这样拼成一排,可坐22人.
(3)发现规律:
多摆1个□,就多出2个〇.如果有n个□,那么一共有2+2n个〇.
故答案为:2n.
5.26平方厘米
【分析】
根据图意可得:阴影部分的面积=圆的面积-小正方形的面积,已知大正方形的面积是
36cm,36=6×6,即大正方形的边长是6cm,也正是圆的直径;小正方形的对角线的长度2
是6cm,小正方形的面积是6×6÷2=18(平方厘米)。
据此解答即可。
【详解】
36=6×6
3.14×(6÷2)2-6×6÷2
=3.14×9-18
=28.26-18
=10.26(平方厘米)
答:阴影部分的面积是10.26平方厘米。
【点睛】
本题属于求圆与组合图形面积的问题,这种类型的题目主要明确组合图形是由哪些基本的图形构成的,然后看是求几种图形的面积和还是求面积差,然后根据面积公式解答即可。
6.2750平方米
【详解】
60﹣10×2
=60﹣20
=40(米)
50×10×2+3.14×[(60÷2)2﹣(40÷2)2]
=1000+3.14×[900﹣400]
=1000+3.14×500
=1000+1750
=2750(平方米)
答:跑道的占地面积2750平方米.
7.证明①,设正方形的边长为r ,S
长
=2r×r=2r 2 , S
半
=πr 2×
12 = 12 πr 2 , S 长:S 半=2 2: 1
2
πr 2= 4。
证明②,设半圆的半径为r ,S 半=12πr 2 , S 长=12πr 2×4÷2=r 2 , S 半:S 长=12πr 2:r 2=1
2
π。
【详解】
证明①,设正方形的边长为r ,长方形的面积=长×宽,所以图中S 长=2r×r=2r 2 , 半圆的面积=πr 2×
12 , 所以图中S 半=πr 2×12=12
πr 2 , 然后作比即可; 证明②,设半圆的半径为r ,半圆的面积=πr 2×12 , 所以图中S 半=1
2πr 2 , 内长方形的面
积=半圆的面积×4÷π,所以图中S 长=1
2
πr 2×4÷2=r 2 , 然后作比即可。
8.2元 【分析】
某书店这天在图书定价的基础上降价20%出售某种图书,说明售价是定价的1-20%=80%,每本19.2元,据此求出定价;书的进价为图书定价的50%,求出书的进价,最后求盈利即可。
【详解】
19.2-19.2÷(1-20%)×50% =19.2-12 =7.2(元)
答:降价后每卖一本书可以盈利7.2元。
【点睛】
本题考查百分数,解答本题的关键是理解定价、售价、进价之间的关系。
9.420米 【分析】
第一天挖了全长的20%,第二天比第一天多挖72米,此时两天挖好两个全长的20%多72米,已挖的部分与未挖部分的比是4∶3,已经挖好的部分占全长的4
43+,则72米对应的
分率是全长的4
43
+去掉两个20%,用分量÷分率即可求出全长。
【详解】
72÷(4
43
+-20%-20%)
=72÷635
=72×
356
=420(米)
答:这条水渠长420米。
【点睛】
要分析找准单位“1”的量及72米所对应的分率。
10.上层48本;下层42本
【详解】
8÷(
8
87
+
﹣
4
45
+
)
=8÷(
8
15
﹣
4
9
)
=8÷ 4
45
=90(本)
则原来上层有书:90×
8
87
+
=48(本)
下层有书:90×
7
87
+
=42(本)
答:原来上层有书48本,下层有书42本。
11.5小时
【分析】
计划每小时加工125个,即为工作效率,实际工作效率提高20%,那么每小时完成150个,求出工作总量,然后除以实际的工作效率,得到实际的时间。
【详解】
()
125120%
⨯+
125 1.2
=⨯
150
=(个)
1256150
⨯÷
750150
=÷
5
=(小时)
答:实际5小时可以完成。
【点睛】
本题考查的是工程问题,=÷
工作时间工作总量工作效率,随后也可以按照正反比例求解。
12.大车倒车,理由见解析
【分析】
已知小汽车的速度是每分钟行800米,大卡车的速度是每分钟行500米,则两车倒车的速度比是800:500=8:5,又小汽车需倒车的路程是大卡车需倒车的路程的4倍,即路程比
是4:1,则大车倒回需要时间为1
5
,小车需要
1
2
,比较即可得出结论。
【详解】
两车倒车的速度比是800:500=8:5,小车与大车倒车的路程比是4:1,
4 8=
1
2
>
1
5。
所以大车倒车用时少,所以大车倒车比较合理。
【点睛】
首先根据题意求出两车的速度比与路程比是完成本题的关键。
13.盈利;盈利162元
【分析】
由题意可知,甲种服装盈利25%,就是比成本多了25%,那么卖价就是成本的1+25%=125%;乙种服装亏本10%,就是比成本少了10%,那么卖价就是成本的1-10%=90%;根据“已知一个数的百分之几是多少,求这个数”,用除法计算出甲种服装和乙种服装的成本价,然后把一天的销售总额加起来跟成本总价相比,就知道是盈亏多少了。
【详解】
1560÷(1+25%)
=1560÷1.25
=1248(元)
1350÷(1-10%)
=1350÷90%
=1500(元)
1560+1350=2910(元)
1248+1500=2748(元)
2910-2748=162(元)
答:该商场这一天盈利了,盈利162元。
【点睛】
解答此题的关键是要求出甲乙两种服装的成本价,根据已知一个数的百分之几是多少,求这个数用除法计算。
14.(1)40
9
天
(2)甲:144件
乙:120件
丙:96件
【分析】
(1)工作时间=工作总量÷工作效率,工作效率=工作总量÷工作时间,据此解答即可;(2)甲组先完成任务的40%,剩下的任务占60%,求出剩下的任务;剩下的任务按 5∶4 分派给乙、丙,则乙完成的占剩下任务的九分之五,丙完成的占剩下任务的九分之四。
【详解】
(1)
11 1
810
⎛⎫
÷+
⎪
⎝⎭
9 1
40 =÷
409
=(天) 答:甲、乙两组合作,需要409
天完成。
(2)360×40%=144(件)
()360140%⨯-
3600.6⨯=
216=(件)
521612054
⨯+=(件) 42169654
⨯+=(件) 答:甲、乙、丙三个组分别做了144,120,96件演出服。
【点睛】
本题考查工程问题、百分数、按比例分配,解答本题的关键是掌握按比例分配解决问题的方法。
15.(1)12.75元
(2)20%
【分析】
(1)用总价除以钢笔数量,求出每支钢笔售价,再用每支钢笔的售价除以它占原标价的百分率,求出每支钢笔标价;
(2)先算出每支钢笔的售价,再用售价比进价多的部分除以进价,求出超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的。
【详解】
(1)2040÷200÷80%
=10.2÷80%
=12.75(元)
答:每支钢笔的标价是12.75元。
(2)(2040÷200-8.5)÷8.5
=1.7÷8.5
=20%
答:超市是在进价基础上加价百分之二十将这200支钢笔卖给光明小学的。
【点睛】
本题考查百分数,解答本题的关键是理解按80%进行促销是指售价占标价的百分之八十。
16.1080千米
【分析】
由题可知,甲乙相遇并且拉开378千米的距离,相当于走了一个全程加378米,所以378
米占全程的75%+35-1,用378÷(75%+35
-1)即可求出全程。
【详解】
378÷(75%+35
-1) =378÷(0.75+0.6-1)
=378÷0.35
=1080(千米)
答:A 、B 两地相距1080千米。
【点睛】
解决问题的关键在于求出378米相当于全程的几分之几,用分量÷分率=总量求出全程的长度。
17.67%;200%
【分析】
①要求现在乘高铁到郑州用的时间比乘大巴车到郑州节省百分之几,可用乘大巴的时间减去乘高铁的时间,再用这个差除以乘大巴的时间,即(大-小)÷大,就是所求;
②可以把路程看作单位“1”,则乘高铁的速度就是11.5
、乘大巴的速度是14.5,依据(大-小)÷小,可计算出速度提高了百分之几。
【详解】
①1小时30分=1.5小时
(4.5-1.5)÷4.5
=3÷4.5
≈66.67% ②(11.5-14.5)÷14.5 222399
⎛⎫=-÷ ⎪⎝⎭ 4299
=÷ 200%=
答:现在乘高铁到郑州用的时间比乘大巴车到郑州节省66.67%;速度提高了200%。
【点睛】
本题分别考查了一个数比另一个数多百分之几、一个数比另一个数少百分之几。
其中第二小问还要调动有关单位“1”的知识。
18.350千米
【分析】
分析题干,根据这时已行路程与未行路程的比是3∶ 2,则未行路程占全程的25
,而全程的25
与全程的20%的和是210千米,可得到等量关系广州、韶关两地相距多少千米×(20%+25
)=210,据此列出方程解答即可。
【详解】
解:设广州到韶关两地相距x 千米。
220%2105x ⎛⎫+= ⎪⎝⎭ 32105
x = 333210555
x ÷=÷ 350x =
答:广州到韶关两地相距350千米。
【点睛】
本题考查列方程解决问题、百分数、比的意义,解答本题的关键是根据题意找到等量关
系:广州、韶关两地相距多少千米×(20%+25
)=210。
19.50名
【分析】
通过女生与男生人数的比是3∶7,求出女生占总人数的分率,单位“1”是总人数,用少了的5名女生÷对应分率=总人数。
【详解】
女生与男生人数的比是3∶7,那么女生占总人数的337+=310
5÷(40%-310
) =5÷110
=50(名)
答:合唱队共有男女生50名。
【点睛】
本题考查了比的意义,百分数和分数复合应用题,关键是确定单位“1”,找到部分和对应分率。
20.明明184页;媛媛140页
【详解】
92÷12
=184(页) (92+13)÷75%=140(页)
21.解:第一个图形中三角形个数:1个;
第二个图形中三角形个数:1×4+1=5(个);
第三个图形中三角形个数:2×4+1=9(个);
第四个图形中三角形个数:3×4+1=13(个);
第n 个图形中三角形个数:
(n-1)×4+1=(4n-3)(个)
4n-3=8057,n=2015.
答:n是第2015个图形.
【解析】
【详解】
由已知图形中三角形个数推出三角形个数与图形个数之间的数量关系式,再根据题意代入数据计算即可解答.
22.(1)25%
(2)20名工人生产大齿轮,48名工人生产小齿轮,理由见详解
【分析】
(1)工作总量比=工作效率比,用工作总量差÷大齿轮工作总量即可;
(2)先求出每人每天加工小齿轮和大齿轮的个数,设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x),根据每人每天加工大齿轮的个数×人数=每人每天加工小齿轮的个数×人数÷3,列出方程求出加工小齿轮人数,总人数-加工小齿轮人数=加工大齿轮人数。
【详解】
(1)(50-40)÷40
=10÷40
=25%
答:加工小齿轮的效率比大齿轮高25%。
(2)每人每天加工小齿轮的个数:50÷5=10(个)
每人每天加工大齿轮的个数:40÷5=8(个)
解:设加工小齿轮的人数是x人,则加工大齿轮的人数为(68-x)。
8×(68-x)=10×x÷3
1632-24x=10x
34x=1632
x=48
加工大齿轮的人数是:68-x=68-48=20(人);
答: 20名工人生产大齿轮,48名工人生产小齿轮。
【点睛】
求比一个数多/少百分之几用表示单位“1”的量作除数,用方程解决问题关键是找到等量关系。
23.120km
【详解】
2 3621120
5km
⨯÷-=
()()
答:A、B两地间公路长120千米.
24.50千米/时
【分析】
当甲乙相遇时,甲乙两车的路程和恰好等于AB两地的总路程。
据此先利用减法求出乙路程占总路程的几分之几,再用乙路程除以它占总路程的几分之一求出总路程,从而利用乘
法求出甲路程。
分析题意,甲先是行驶了1.5小时,中途停了1小时,所以后续又是行驶了1.5小时,共行驶了3小时。
用甲路程除以甲行驶的时间,求出甲的速度即可。
【详解】
总路程:
80×2.5÷(1-3
7
)
=200÷4 7
=350(千米)
甲路程:350×3
7
=150(千米)
甲速度:
150÷(1.5+2.5-1)
=150÷3
=50(千米/时)
答:甲车的行驶速度是50千米/时。
【点睛】
本题考查了相遇问题,相遇时甲乙两车的路程和恰好等于总路程。
25.16500米
【分析】
先求出两队合作需要的时间,再求出甲队比乙队多修总路程的几分之几,然后求甲队比乙队多修多少米,在距中点750米处相遇,说明甲队比乙队多修750×2=1500(米),用除法求出这段公路的距离即可。
【详解】
1÷(11 2024
+)
=1÷
11 120
=120
11
(天)
750×2÷(11201120 20112411
⨯-⨯)
=1500÷(
65 1111
-)
=1500×11
=16500(米)
答:这段公路长16500米。
【点睛】
本题考查工程问题和路程问题中的相遇问题,画线段图可以帮助快速理清题意。
26.150页
【分析】
第一天读了这本书的16,第二天读了这本书的15
,都是以这本书为单位 “1”,那么还剩下这本书的1930
,量率对应求 单位“1”。
【详解】
111916530
--= 199515030
÷=(页) 答:这本故事书共有150页。
【点睛】
本题考查的是分数除法应用题,在用量率对应求单位“1”时,量和分率一定要相互对应。
27.8千米
【分析】
第二个小时走了剩下路程的14,也就是58的 14
,求出第一个小时比第二个小时多走了1050米相当于是全程的732
,量率对应求出依依家与外婆家的距离。
【详解】
31184
⎛⎫-⨯ ⎪⎝⎭ 5184
=⨯ 532= 351050832⎛⎫÷- ⎪⎝⎭
7105032
=÷ 4800=(米)
4800米=4.8千米
答:依依家与外婆家相距4.8千米。
【点睛】
本题考查的是分数除法应用题,一个量除以其所占单位“1”的分率,求得单位“1”是多少。
28.上层200本,下层250本
【详解】
解:设上层书架原有x 本书,则下层书架原有(450﹣x )本,得 (1+58
)x =(450﹣x )×(1+310) 138
x =(450﹣x )×1310
13 8x=585﹣
13
10
x
117
40
x=585
x=200
450﹣200=250(本)
答:原来上层书架有图书200本、下层书架有图书250本.
29.18升
【解析】
【分析】
把这池水的体积看作单位“1”,若下午用去25+2=27升,那么此时剩余的水的体积与用去水的体积相等,也就是用去水的体积占这池水体积的,先求出这池水体积的比上午用去水的体积多的分率,也就是27升水占这池水体积的分率,再依据分数除法意义,求出这池水的体积,最后依据分数乘法意义即可解答.
【详解】
(25+2)÷(﹣)×
=27×
=90×
=18(升)
答:这个水池早晨用去了18升水.
30.大七孔景区全年接待了游客250万人,小七孔景区全年接待了游客350万人
【解析】
【详解】
700× =600(万人) 600÷(1+ +1)
=600÷
=250(万人)
600﹣250=350(万人)
答:大七孔景区全年接待了游客250万人,小七孔景区全年接待了游客350万人
31.32平方厘米
【分析】
根据题干三角形ABC是等边三角形,所以每个角的度数都是60°,那么图中就出现了3个半径为6厘米,圆心角为60°的扇形;这三段弧所围成的图形的面积=三个扇形的面积之和﹣2个等边三角形的面积,由此利用扇形的面积公式和三角形的面积公式即可解决问题。
【详解】。