2012年河北省初中九年级学业考试数学模拟试题(含答案)

合集下载

2012年初中学生学业考试数学模拟试题

2012年初中学生学业考试数学模拟试题

初中学生学业考试数学模拟试题一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选择出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1. (2011浙江丽水)下列各组数中,互为相反数的是( )[来源:]A .2和-2B .-2和12C .-2和-12D .12和22、(2011贵州安顺,2,3分)已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)( ) A .3.84×104千米B .3.84×105千米 C .3.84×106千米D .38.4×104千米3、(2011山东聊城)下列运算不正确的是( )A .5552a a a +=B .()32622a a -=-C .2122a a a -⋅=D .()322221a a a a -÷=-4、(2011江苏淮安,2,3分)下列交通标志是轴对称图形的是( )A. B. C. D.5、(2011安徽芜湖,9,4分)如图,从边长为(a +4)cm 的正方形纸片中剪去一个边长为()1a +cm 的正方形(0)a >,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( ).A .22(25)cm a a +B .2(315)cm a +C .2(69)cm a +D .2(615)cm a +6. (2011江苏连云港,8,3分)如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉...),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( )A .1 B .2 C .3 D .47、(2010湖北孝感)下列计算正确的是( )A 826-= B.2+3= 5 C.236⨯= D.824÷=8、(2011山东枣庄)如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于()C O ABA .30° B.40° C .60° D.70°9. (2011浙江省)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A.中位数B.众数C.平均数D. 极差 10、(2011浙江绍兴)一条排水管的截面如图所示.已知排水管的截面圆半径10O B =,截面圆圆心O 到水面的距离O C 是6,则水面宽A B 是( )A.16B.10C.8D.6 11、(2011四川凉山州)下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩ C .20135x y x y +=⎧⎪⎨-=⎪⎩D .5723z x y =⎧⎪⎨+=⎪⎩12、(2011内蒙古乌兰察布)将正方体骰子(相对面上的点数分别为 I 和 6 、 2 和 5 、 3 和 4 )放置于水平桌面上 ,如图 ① .在图 ② 中,将骰子向右翻滚90︒,然后在桌面上按逆时针方向旋转90︒,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是( )A CB D EA . 6B . 5C . 3D . 2 13、(2011山东枣庄)如图所示,函数xy =1和34312+=x y 的图象相交于(-1,1),(2,2)两点.当21y y >时,x的取值范围是( )A .x <-1 B.—1<x <2 C .x >2 D . x <-1或x >214、(2011贵州安顺,9,3分)正方形ABCD 边长为1,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 上的点,且AE =BF =CG =DH .设小正方形EFGH 的面积为y ,AE =x . 则y 关于x 的函数图象大致是( )A .B .C .D .[来源:]15、(2011山东聊城)如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形(第18题图)FEDCBA第11题图(-1,1)1y (2,2)2yxyOOABC 面积的14,那么点B ′的坐标是( )A .(3,2)B .(-2,-3)C .(2,3)或(-2,-3)D .(3,2)或(-3,-2)16、(2011山东日照)两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )(A ) 41(B )163(C )43 (D )8317、(2011湖北襄阳)顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形18、2011四川宜宾,)如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( )A .3B .4C .5D .6 19、(2010山东临沂)不等式组320,10x x ->⎧⎨+⎩≥的解集在数轴上表示正确是的是20、(2011山东济宁)已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示: x …… 0[来源:] 1 2 3 4 …… y …… 4 1 0 1 4 …… 点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当112,x <<234x <<时,1y 与2y 的大小关系正确的是A .12y y >B . 12y y <C . 12y y ≥D . 12y y ≤(A ) (B )(C ) (D )第Ⅱ卷(非选择题60)二、填空题(本大题共4小题,满分12分。

2012年河北省初中毕业生升学文化课考试数学模拟试卷

2012年河北省初中毕业生升学文化课考试数学模拟试卷

2012年河北省初中毕业生升学文化课考试数学模拟试卷本卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选题题,共30分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共12个小题,1~6小题,每小题2分;7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. (2011山东烟台)(-2)0的相反数等于()A.1B.-1C.2D.-22.(浙江省2011)如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20o,那么∠2的度数是( )A.30oB.25oC.20oD.15o3.(2011年浙江省舟山)下列计算正确的是()(A)32xxx=⋅(B)2xxx=+(C)532)(xx=(D)236xxx=÷4.(2011江西省)根据2010年第六次全国人口普查主要数据公报,江西省常住人口约为4456万人.这个数据可以用科学计数法表示为().A. 4.456×107人B. 4.456×106人C. 4456×104人D. 4.456×103人5. (2011江西省)已知一次函数y=x+b的图象经过第一、二、三象限,则b的值可以是( ).A .-2 B.-1 C. 0 D. 26、(2011年呼和浩特)将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A B C D7.(2011年河南)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是x甲=610千克,x乙=608千克,亩产量的方差分别是2S甲=29. 6,2S乙=2. 7. 则关于两种小麦推广种植的合理决策是()(A)甲的平均亩产量较高,应推广甲(B)甲、乙的平均亩产量相差不多,均可推广(C)甲的平均亩产量较高,且亩产量比较稳定,应推广甲21第2题图(D )甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙8.(2011年莆田)抛物线26y x =-可以看作是由抛物线265y x =-+按下列何种变换得到( )A .向上平移5个单位B .向下平移5个单位C .向左平移5个单位D .向右平移5个单位9.(2011重庆市)下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为( )A .55 B.42 C.41 D.2910.(2011宁波市)如图,Rt ABC △中,9022ACB AC BC ∠===°,,若把Rt ABC△绕边AB 所在直线旋转一周,则所得几何体的表面积为( ) A .4π B.42π C.8π D.82π11.(2011浙江衢州) 如图,一张半径为1的圆形纸片在边长为(3)a a ≥的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是( ).A .2πa - B.2(4π)a - C.π D.4π-12.(2011湖北省荆门)图①是一瓷砖的图案,用这种瓷砖铺设地面, 图②铺成了一个2×2的近似正方形,其中完整 菱形共有5个;若铺成3×3的近似正方形图案 ③,其中完整的菱形有13个;铺成4×4的近 似正方形图案④,其中完整的菱形有25个; 如此下去,可铺成一个n n ⨯的近似正方形图 案.当得到完整的菱形共181个时,n 的值为 ( ) A ..8.9 D .第12题图图① 图② 图③ 图④ ……(第10题)2012年河北省初中毕业生升学文化课考试数 学 模 拟 试 卷卷Ⅱ(非选择题,共9 0分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ前,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上) 13.(扬州市2011)计算:82-=_______________.14.(2011年浙江省温州市)如图,AB 是O ⊙的直径,点C D ,都在O ⊙上,连结CA CB DC DB ,,,.已知303D BC ∠==°,,则AB 的长是 .15.(2011年芜湖)已知a 、b 为两个连续的整数,且28a b <<,则a b +=________。

2012年河北省中考数学试卷(含答案)

2012年河北省中考数学试卷(含答案)

2012年河北省南初中毕业、升学考试数 学 试 题(满分:120分;考试时间:120分钟)友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效;② 可以携带使用科学计算器,并注意运用计算器进行估算和探究; ③ 未注明精确度、保留有效数字等的计算问题不得采取近似计算. 一、选择题(本大题共9小题,每小题4分,共36分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂) 1.2的相反数是 A .-2 B . 2C .-21 D .212.下列x 的值能使6-x 有意义的是A .1=xB .3=xC .5=xD .7=x3.下列事件中必然发生的是A .随意翻到一本书的某页,这页的页码是奇数B .地球上,抛出的铁球最后总往下落C .购买一张彩票,中奖D .篮球队员在罚球线上投篮一次,投中4.右图是一家商场某品牌运动鞋不同码数的销售情况,你认为这家商场进货最多的运动鞋的码数会是A .40B .41C .42D .435.下图中,左边三视图描述的几何体是右图中的A .B .C .D .6.不等式组⎩⎨⎧<+<-2332x x 的解集是A .x <5B .x <-1C .x <2D .-1<x <57.已知⊙1O 的半径是5cm ,⊙2O 的半径是3cm ,21O O =6cm ,则⊙1O 和⊙2O 的位置关系是 A .外离B .外切C .相交D .内含(第4题)8.某品牌的书包按相同折数打折销售,如果原价200元的书包,现价160元,那么原价150元的书包,现价是A .100元B .110元C .120元D .130元9.观察下列数对:(1,1) , (1,2) , (2,1) , (1,3) , (2,2) , (3,1) , (1,4) , (2,3) , (3,2) , (4,1) , (1,5) ,(2,4) ,……,那么第32个数对是A .(4, 4)B .(4, 5)C . (4, 6)D . (5, 4)二、填空题(本大题共9小题,每小题3分,共27分.请将答案填入答题卡...的相应位置)10.计算:22)(a =_____________. 11.化简:=---111x x x _____________.12.因式分解:x x 22+=_____________.13.只用一种图形能进行平面镶嵌的多边形有_____________.(只要求写出一个) 14.已知),3(),,2(21y B y A 是反比例函数xy 2=图象上的两点,则1y ____2y .(填“﹥”或“﹤”)15.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,连结DE ,若S △ADE =1,则S △ABC =_____________. 16.有5张形状大小完全相同的卡片,分别写有1~5五个数字,将它们背面朝上洗匀后,任意抽出一张,抽到写有数字1的卡片的概率是_____________.17.甲、乙两名战士在相同条件下各射靶6次,每次命中的环数分别是:单位(环)甲:6 7 10 6 9 5 乙:8 9 9 8 7 9那么甲、乙两名战士的射靶成绩中,波动更小的是.18.如图,正方形ABCD 的边长是4cm ,点G 在边AB 上,以BG为边向外作正方形GBFE ,连结AE 、AC 、CE ,则AEC ∆的面积是_____________2cm .三、解答题(本大题共8小题,共87分.请在答题卡...的相应位置作答) 19.(8分)先化简,再求值:))(()1(b a b a b b -+++,其中2,1==b a20.(8分)解方程组:⎩⎨⎧=-=+ 252y x y x(第18题)(第15题)① ②21.(9分)如右图,已知△ABC 中,AB=AC ,DE ⊥AC 于点E ,DE 与半⊙O 相切于点D .求证:△ABC 是等边三角形.22.(10分)我市某中学为调查本校学生使用零花钱的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题: (1)将统计图补充完整;(2)若该校共有1000名学生,根据以上调查结果估计,该校全体学生平均每天用去多少元零花钱?(3)如果将全校1000名学生一周(7天)的零花钱节省下来,全部捐给灾区学校购买课桌椅,每套课桌椅150元,共可以为灾区学校购买多少套这样的课桌椅? 23.(12分)如右图,两建筑物的水平距离BC 是30m ,从A 点测得D 点的俯角α是35°,测得C 点的俯角β为43°,求这两座建筑物的高度.(结果保留整数)24.(12分)2009年,财政部发布了“家电下乡”的政府补贴资金政策,对农民购买手机等四类家电给予销售 价格13﹪的财政补贴,以提高农民的购买力.某公司为促进手机销售,推出A 、B 、C 三款手机,除享受政府补贴,另外每部手机赠送120元话费.手机价格如右表:(1)王强买了一部C 款手机,他共能获得多少优惠? (2)王强买回手机后,乡亲们委托他代买10部手机,设所购手机的总售价为x 元,两项优惠共y 元,请写出y 关于x 的函数关系式;政府最多需付出补贴资金多少元?(3)根据(2)中的函数关系式,在右边图象中填上适当的数据.25.(14分)已知ABC ∆中,AC AB =,D 、E 是BC边上的点,将ABD ∆绕点A 旋转,得到△D AC ',连结E D '.(1)如图1,当︒=∠120BAC ,︒=∠60DAE 时,求证:E D DE '=(2)如图2,当E D DE '=时,DAE ∠与BAC ∠有怎样的数量关系?请写出,并说明理由.(3) 如图3,在(2)的结论下,当︒=∠90BAC ,BD 与DE 满足怎样的数量关系时,EC D '∆是等腰直角三角形?(直接写出结论,不必说明理由)26.(14分)已知抛物线:x x y 22121+-=(1)求抛物线1y 的顶点坐标.(2)将抛物线1y 向右平移2个单位,再向上平移1个单位,得到抛物线2y ,求抛物线2y 的解析式.(3)如下图,抛物线2y 的顶点为P ,x 轴上有一动点M ,在1y 、2y 这两条抛物线上是否存在点N ,使O (原点)、P 、M 、N 四点构成以OP 为一边的平行四边形,若存在,求出N 点的坐标;若不存在,请说明理由.【提示:抛物线c bx ax y ++=2(a ≠0)的对称轴是,ab x 2-=顶点坐标是⎪⎪⎭⎫⎝⎛--a b ac a b 44,22】图1图2图32012年河北省市初中毕业、升学考试数学试题参考答案及评分说明说明:(1) 解答右端所注分数,表示考生正确作完该步应得的累计分数,全卷满分150分. (2) 对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3) 如果考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4) 评分只给整数分.一、选择题(本大题共9小题,每小题4分,共36分)1.A ; 2.D ; 3.B ; 4.C ; 5.A ; 6.B ; 7.C ; 8.C ; 9.B . 二、填空题(本大题共9小题,每小题3分,共27分)10. 4a ; 11.1 ; 12.)2(+x x ; 13.等边三角形、正方形、正六边形、三角形、四边形中任填一个; 14.>; 15.4 ; 16.51; 17.乙 ; 18.8.三、解答题(本大题共8小题,共87分)19.解:原式=222b a b b -++………………………………………………4分 (其中正确去括号运算各给2分) =2a b + ………………………………………………………………5分当2,1==b a 时 原式=212+……………………………………………………………………6分 =3 …………………………………………………………………………8分 20. 解:①-②得:33=y …………………………………………………………………3分 y =1…………………………………………………………………5分把1=y 代入②得:3=x …………………………………………………………………7分 ∴这个方程组的解是 ⎩⎨⎧==13y x …………………………………………………………………8分21.证明:连结OD ………………………………………………1分∵DE 切半⊙O 于D ∴DE OD ⊥ ∴︒=∠90ODE (2)∵AC DE ⊥ ∴︒=∠90DEA ……………………………3∴=∠ODE DEA ∠∴OD ∥AC ……………………………4分 ∴C DOB ∠=∠………………………………………………5∵AC AB = ∴DOB C B ∠=∠=∠……………………6分 ∴OD BD =∵OB OD = ∴BOD ∆是等边三角形……………………………………………7分 ∴︒=∠60B ………………………………………………………………………………8分 ∵AC AB = ∴ABC ∆是等边三角形………………………………………………9分 22.解:(1)正确补全图给2分………………………………………………………………2分(2)由图可知8816126584831621216++++⨯+⨯+⨯+⨯+⨯=x =3(元)…………4分可以估计该校学生平均每人每天的零花钱是3元3×1000=3000(元)所以该校全体学生每天的零花钱共约3000元。

2012年河北省初中毕业生升学考试模拟试题(三)

2012年河北省初中毕业生升学考试模拟试题(三)

2012年河北省初中毕业生升学考试数学模拟试卷(三)本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)注意事项:1.答卷I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本题有12小题,每小题2分,共24分)1.如果+3吨表示运入仓库的大米吨数, 那么运出5吨大米表示为( ) A .-5吨B .+5吨C .-3吨D .+3吨2.下列计算中,正确的是( )A .020=B .2a a a =+C .93=±D .623)(a a =3. 由6个大小相同的正方体搭成的几何体如图1所示,则关于它的视图说法正确的是( ) A .主视图的面积最大 B .左视图的面积最大 C .俯视图的面积最大D .三个视图的面积一样大4.下列说法能够表示准确位置的是( )A.北纬31oB.东经103.5oC.西北方向D.北纬31o ,东经103.5o5.某火腿公司有甲、乙、丙三台切割包装机,同时分装质量为500克的火腿心片.现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是( ) A.甲B.乙 C .丙 D.不能确定6.如图2是小明设计用激光笔来测量某古城墙高度的示意图.点P 处 放一水平的平面镜, 光线从点A 出发经平面镜反射后刚好射到 古城墙CD 的顶端C 处,已知 AB ⊥BD ,CD ⊥BD , 且测得包装机 甲 乙 丙 方差(克2)1.702.297.22A BPD图2C图1AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是( ) A. 6米 B. 8米 C. 18米D.24米7.如图3,A ,B ,C 是⊙O 上的三点,∠BAC =45°, 则∠BOC 的大小是( )A .22.5°B .45°C .60°D .90°8. 抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现“一次正面,两次反面”的概率为( )A .18B .14C .38D .12 9. 如图4,四边形ABCD 是正方形,E 是边CD 上一点,若△AFB 经过逆时针旋转角θ后与△AED 重合,则θ的取值可能为( ) A. 90° B .60° C. 45° D. 30°10.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km .如图5是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.411.在同一直角坐标系中,函数y mx m =+和函数222y mx x =-++(m 是常数,且0m ≠)的图象可能..是( )12.在平面直角坐标系中,正方形ABCD 的位置如图6所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为( ) A .2009235⎪⎭⎫⎝⎛B .2010495⎪⎭⎫ ⎝⎛甲队到达小镇用了6小时,途中停顿了1小时甲队比乙队早出发2小时,但他们同时到达乙队出发 2.5小时后追上甲队乙队到达小镇用了4小时,平均速度是6km /h1 2 3 4 5 6 时间(h )24 0 4.5 12路程(km ) AB CD E F 图1图4D CC 1C 2B 2y图5C .2008495⎪⎭⎫ ⎝⎛D .4018235⎪⎭⎫ ⎝⎛卷Ⅱ(非选择题,共96分)二、填空题 (本题有6小题,每小题3分,共18分) 13.已知分式11x x +-的值为0,那么x 的值为 . 14.已知两圆的半径分别为6和8,若使两圆相交,则圆心距x 的的取值范围是 . 15.如果x +y =-4,x -y =8,那么代数式222010x y -+的值是 .16.如图7是某景点6月份1~10日每天的最高温度折线统计图.由图中信息可知该景点这10天最高温度的中位数是 ℃.17. 如图8,AOB ∆中,3=OA cm ,1=OB cm ,将A O B ∆ 绕点O 逆时针转90°到''OB A ∆,那么AB 扫过的区域(图中阴影部分)的面积是 cm 2;18.若101098109810(21)x a x a x a x a x a +=+++++,则a 10-a 9+a 8-a 7+…—a 1+a 0= .三、解答题 (本大题共8个小题,满分78分.解答应写出演算过程或证明过程) 19.(本小题满分8分)化简求值:22224xx x x x x ⎛⎫-÷ ⎪+--⎝⎭,其中x=—2.20.( 本小题满分8分)如图9, CD 切⊙O 于点D ,连结OC , 交⊙O 于点B ,过点B 作弦A B ⊥OD ,点E 为日期2224 26 28 30 温度(℃) 2 3 4 5 1 6 7 8 9 10 图7AB OA ′B ′ 图8垂足,已知⊙O 的半径为10,sin ∠COD =45. 求:(1)弦A B 的长; (2)CD 的长.21.( 本小题满分9分)学习了统计初步知识后,小刚就本班学生的上学方式进行了一次调查统计.图10—1和图10—2是他采集了数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)该班有多少名学生?(2)在条形统计图中,将表示“步行”的部分补充完整;(3)在扇形统计图中,计算出“骑车”的部分所对应的圆心角的度数;(4)如果从该班同学中任意抽出一人,恰好抽到骑车同学的概率是多少?22.( 本小题满分9分)若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数y=xk(x>0)图象上,且正方形OABC 的边长为2,如图11, 求:(1)k 的值; (2)点E 的坐标.乘车50% 步行 图10—120%步行 乘车骑车 04812 16 20 人数上学方式 图10—2xyOC B EA DF图1123.( 本小题满分10分)问题背景(1)如图12-1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点E 作EF ∥AB 交BC 于点F .请按图示数据填空: 四边形DBFE 的面积S= , △EFC 的面积S 1= ,△ADE 的面积S 2= .探究发现(2)在(1)中,若BF=a ,FC=b ,DE 与BC 间的距离为h .请证明S 2=4S 1S 2. 拓展迁移 (3)如图12-2,平行四边形DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为2、5、3,试利用(2)中的 结论求△ABC 的面积.B C D GF E 图12-2 A B C D F E 图12-1 A1S 2S S 3 6 224.( 本小题满分10分)已知正方形ABCD .如图13-1,E 是AD 上一点,过A 作BE 的垂线,交BE 于点O ,交CD 于点H ,通过证明△ABE ≌△ADH ,可得:BE =AH ;(1)如图13-2,E 是AD 上一点,过BE 上一点O 作BE 的垂线,交AB 于点G ,交CD 于点H ,猜想BE 与GH 的数量关系为 ;(2)如图13-3,过正方形ABCD 内任意一点作两条互相垂直的直线,分别交AD 、BC 于点E 、F ,交AB 、CD 于点G 、H ,猜想EF 与GH 的数量关系为 ; (3)当点O 在正方形ABCD 的边上或外部时,过点O 作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图13-4所示,过正方形ABCD 外一点O 作互相垂直的两条直线m 、n ,m 与AD 、BC 的延长线分别交于点E 、F ,n 与AB 、DC 的延长线分别交于点G 、H ,试就该图形对你的结论加以证明.n m图13-4图13-2 图13-3 图13-1 A B C D H E A B C D H E G A B C D HE GF O O O ABC D H E FO G25.(本题12分)小王家是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产出情况如下表:鱼苗投资(元) 饲料支出(元) 收获成品鱼(千克) 成品鱼价格(元/千克)A种鱼230 300 100 10B种鱼400 550 55 40(1)小王有哪几种养殖方式?(2)哪种养殖方案获得的利润最大?(3)根据市场调查分析,当他的鱼上市时,两种鱼的价格会有所变化,A种鱼价格上涨a%(0<a<50),B种鱼价格下降20%,考虑市场变化,哪种方案获得的利润最大?(利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出.)26.(本题12分) 如图14,直角梯形ABCD 中,AB ∥DC ,90DAB ∠=︒,24AD DC ==,6AB =.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C -D -A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与线段CD 的交点为E ,与折线A -C -B 的交点为Q .点M 运动的时间为t (秒).(1)当0.5t =时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值;(3)当t >2时,连接PQ 交线段AC 于点R .请探究CQRQ 是否为定值,若是,试求这个定值;若不是,请说明理由.ABCD(备用图①)ABCD(备用图②)Q ABCDl MP 图14E2012年河北省初中毕业生升学考试数学模拟试卷答案(三)一、选择题(每小题2分,共24分)1.A 2.D 3.C 4.D 5.A 6.B 7.D 8.C 9.A 10.D 11.D 12.D 二、填空题(每小题3分,共18分)13.1- 14.2<x <14 15.1978 16.26 17.2π 18.1 三、解答题 19.解:原式=24(2)(2)4(2)(2)x x x x x x x-+-⨯=-+-. 将x=—2代入上式得:原式=2.20.解:(1)∵半径OD 与弦AB 垂直,∴AE=EB .在Rt △OEB 中,EB=OB×sin ∠COD=8. ∴AB=2EB=16.(2)在Rt △ODC 中,设CD=4x ,OC=5x ,由勾股定理,得:222(5)(4)10x x -=,解得:.x =310 ∴CD=340. 21.解:(1)40人;(2)如图; (3)108°;(4)从该班同学中任意抽出一人,恰好抽到骑车同学的概率是1034012=. 22.解:(1)∵正方形OABC 的边长为2,∴B(2,2),∴k=4.(2)设正方形ADEF 的边长为m ,∵B(2,2),∴A(2,0),∴E(2+m,m), ∵点E 在y=x 4的图象上,∴m=m+24,∴m 1=51+-,m 2=51--(负值,舍去), ∴E(51+,51+-)23.解:(1)6S =,19S =,21S =. (2)证明:∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 为平行四边形,AED C ∠=∠,A CEF ∠=∠.∴△ADE ∽△EFC .步行乘车骑车048121620人数上学方式∴22221()S DE a S FC b ==.∵112S bh =, ∴222122a a h S S b b =⨯=. ∴2212144()22a hS S bh ah b =⨯⨯=.而S ah =, ∴2124S S S =(3)解:过点G 作GH ∥AB 交BC 于H ,则四边形DBHG 为平行四边形. ∴GHC B ∠=∠,BD HG =,DG BH =. ∵四边形DEFG 为平行四边形,∴DG EF = ∴BH EF = ∴BE HF = ∴△DBE ≌△GHF . ∴△GHC 的面积为538+=.由(2)得,平行四边形DBHG 的面积为2288⨯=. ∴△ABC 的面积为28818++=.24.解:(1)BE =GH ; (2)EF =GH ;(3)过点A 作m 的平行线交BC 于点F ′,过点D 作n 的平行线交AB 于点G ′. ∵ABCD 是正方形, ∴AD ∥BC ,AB ∥CD ,∠DAB =∠ABC =90°. ∴四边形AEFF ′是平行四边形,四边形DHGG ′是平行四边形, ∴EF =AF ′,GH =DG ′,且EF ∥AF ′,GH ∥DG ′,又∵EF ⊥GH ∴AF ′⊥DG ′.∴∠BAF ′+∠AG ′D =90°. 又∵∠BAF ′+∠AF ′B =90°,∴∠AG ′D =∠AF ′B . 在△ADG ′和△ABF ′中,⎪⎩⎪⎨⎧='∠='∠︒=∠=∠AB AD B F A D G A ABC DAB 90∴△ADG ′≌△ABF ′ ,∴AF ′=DG ′ ,∴EF =GH . 25.解:(1)总投资y=12000+(230+300)x+(400=550)(80-x)=-420x+88000令70000≤y≤72000,解得21800≤x≤21900,∵x 为正整数,∴x=39,40,41,42, ∴有四种养殖方式:①A 种鱼39箱,B 种鱼41箱;②A 种鱼40箱,B 种鱼40箱;③A 种鱼41箱,B 种鱼39箱;④A 种鱼42箱,B 种鱼38箱;(2)总收入z=100x•10+55(80-x)•40=-1200x+176000利润W=z-y=-1200x+176000-(-420x+88000)=-780x+88000∵-780<0,∴W 随X 的增大而减小,当x 取最小值39时,W 有最大值. 即养殖A 种鱼39箱,B 种鱼41箱时,利润最大.(3)价格变化后,总收入z′=100x•10(1+a%)+55(80-x)•40(1-20%)=(10a-760)x+140800 利润W′=z′-y=(10a-760)x+140800-(-420x+88000)=(10a-340)x+52800当10a-340=0,即a=34时,W′=52800,即四种养殖方式获得的利润均相等; 当10a-340>0,即34<a<50时,W′随x 的增大而增大,养殖A 种鱼42箱,B 种鱼38箱获得的利润最大;BCDGFEA H新世纪教育网 精品资料 版权所有@新世纪教育网新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。

2012年河北中考数学真题卷含答案解析

2012年河北中考数学真题卷含答案解析

2012年河北省初中毕业生升学文化课考试数学5A(满分:120分 时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(本大题共12个小题,1~6小题,每小题2分;7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数中,为负数的是( )A.0B.-2C.1D.122.计算(ab)3的结果是( ) A.ab 3B.a 3bC.a 3b 3D.3ab3.下图中几何体的主视图是( )4.下列各数中,为不等式组{2x -3>0,x -4<0解的是( )A.-1B.0C.2D.45.如图,CD 是☉O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E,则下列结论正确的是( ) A.AE>BEB.AD⏜=BC ⏜ C.∠D=12∠AEC D.△ADE ∽△CBE6.掷一枚质地均匀的硬币10次,下列说法正确的是( ) A.每2次必有1次正面向上 B .可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上7.如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,FG⏜是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧8.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3B.(x-2)2=3C.(x-2)2=5D.(x+2)2=59.如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D,C分别落在点F,E处(点F,E都在AB所在的直线上),折痕为MN,则∠AMF等于()A.70°B.40°C.30°D.20°10.化简2x2-1÷1x-1的结果是()A.2x-1B.2x3-1C.2x+1D.2(x+1)11.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a-b)等于()A.7B.6C.5D.4第11题图第12题图(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两12.如图,抛物线y1=a(x+2)2-3与y2=12条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC.其中正确结论是()A.①②B.②③C.③④D.①④第Ⅱ卷(非选择题,共90分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.-5的相反数是.14.如图,AB,CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A等于°.15.已知y=x-1,则(x-y)2+(y-x)+1的值为.第14题图第16题图16.在1×2的正方形网格格点上放三枚棋子,按如图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第3位同学报(13+1)……这样得到的20个数的积为.18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图①.用n个全等的正六边形按这种方式拼接,如图②,若围成一圈后中间也形成一个正多边形,则n的值为.三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)计算:|-5|-(√2-3)0+6×(13-12)+(-1)2.20.(本小题满分8分)如图,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD—DC—CB.这两条公路围成等腰梯形ABCD,其中DC∥AB,AB∶AD∶DC=10∶5∶2.(1)求外环公路总长和市区公路长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h.返回时沿外环公路行驶,平均速度是80km/h,结果比去时少用了110h.求市区公路的长.21.(本小题满分8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7=;(1)a=,x乙(2)请完成图中表示乙成绩变化情况的折线;甲、乙两人射箭成绩折线图(3)①观察折线图,可看出的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.5B22.(本小题满分8分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=m(x>0)的图象经过点xD,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P横坐标的取值范围(不必写出过程).23.(本小题满分9分)如图1,点E是线段BC的中点,分别以B,C为直角顶点的△EAB和△EDC均是等腰直角三角形,且在BC的同侧.(1)AE和ED的数量关系为,AE和ED的位置关系为;图1(2)在图1中,以点E为位似中心,作△EGF与△EAB位似,点H是BC所在直线上的一点,连结GH,HD,分别得到了图2和图3.①在图2中,点F在BE上,△EGF与△EAB的相似比是1∶2,H是EC的中点.求证:GH=HD,GH⊥HD.②在图3中,点F在BE的延长线上,△EGF与△EAB的相似比是k∶1,若BC=2,请直接写出CH的长为多少时,恰好使得GH=HD且GH⊥HD(用含k的代数式表示).图2图324.(本小题满分9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例.每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.薄板的边长(cm)2030出厂价(元/张)5070(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润是26元(利润=出厂价-成本价).①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a ,4ac-b24a).25.(本小题满分10分)如图,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB,∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的☉P随点P的运动而变化,当☉P与四边形ABCD的边(或边所在的直线)相切时,求t的值.26.(本小题满分12分).如图1和图2,在△ABC中,AB=13,BC=14,cos∠ABC=513探究如图1,AH⊥BC于点H,则AH=,AC=,△ABC的面积S△ABC=.图1拓展如图2,点D在AC上(可与点A,C重合),分别过点A,C作直线BD的垂线,垂足为E,F.设BD=x,AE=m,CF=n.(当点D与点A重合时,我们认为S△ABD=0)(1)用含x,m或n的代数式表示S△ABD及S△CBD;(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.发现请你确定一条直线,使得A,B,C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.图22012年河北省初中毕业生升学文化课考试一、选择题1.B因为小于零的数是负数,显然-2是负数,故选B.2.C根据积的乘方运算法则:积的乘方,先把积中的每一个因式分别乘方,再把所得的幂相乘即得(ab)3=a3b3,故选C.3.A主视图即从正面看几何体得到的平面图形,根据题意可知A正确.4.C解不等式2x-3>0,得x>32;解不等式x-4<0,得x<4,所以原不等式组的解集为32<x<4,所给选项中满足条件的只有2,故选C.5.D由已知易得AE=BE、AD⏜=BD⏜,又因为AB不是直径,所以BD⏜≠BC⏜,∠D≠12∠AEC,所以AD⏜≠BC⏜,因此A、B、C均错误.因为∠A和∠C是同弧所对的圆周角,所以∠A=∠C,同理∠B=∠D,所以△ADE∽△CBE,故选D.6.B掷一枚均匀的硬币,正面向上和反面向上的事件均为随机事件.A、C、D选项均不对,只有B正确.7.D尺规作图作一个角等于已知角,是利用图形的全等得到的,根据题意可知,若MD=NE,则需要以点E为圆心,DM为半径作弧,故选D.8.A x2+4x+1+3=3,x2+4x+4=3,即(x+2)2=3,故选A.9.B由题目条件易得MN∥EF,∠A=70°,则∠NMD=70°,又因为折叠关系,有∠NMD=∠FMN=70°,所以∠AMF=40°.故选B.评析本题通过图形的折叠考查学生观察、操作及分析问题的能力,由图形折叠找到相等的线段和相等的角是解决问题的关键.题目属中等难度题.10.C2x2-1÷1x-1=2(x+1)(x-1)·x-11=2x+1,故选C.11.A设两个正方形重叠部分的面积为m,则a=16-m,b=9-m,a-b=(16-m)-(9-m)=7,故选A.12.D因为抛物线y2的图象均在x轴的上方,所以无论x取何值,y2的值总是正数,故①正确;将点A的坐标(1,3)代入y1=a(x+2)2-3,可得a=23,故②错误;当x=0时,y1=-13,y2=112,所以y2-y1=112+13=356,故③错误;当y1=3时,x=1或x=-5,所以AB=6,当y2=3时,x=1或x=5,所以AC=4,即2AB=3AC,故④正确.故选D.评析本题考查二次函数的图象和性质,考查根据二次函数的解析式识图的能力.图形复杂,关系众多,属难度较大题.二、填空题13.答案5解析符号不同,绝对值相同的两个数互为相反数,所以-5的相反数是5.14.答案52解析∠AOC和∠BOD是对顶角,故∠AOC=∠BOD,即∠AOC=∠BOD=38°,在Rt△AOC 中,两锐角互余,故∠A=52°.15.答案1解析(x-y)2+(y-x)+1=(y-x)2+(y-x)+1,将y=x-1代入上式可得(x-1-x)2+(x-1-x)+1=1.16.答案34解析由题意可知棋子可能的位置有四个,其中能构成直角三角形的位置有三个,则以这三枚棋子所在格点为顶点的三角形是直角三角形的概率为34.17.答案21解析根据题意得到的20个数的乘积为21×32×43×54×…×2120=21.评析本题以报数游戏为背景,考查学生的阅读能力、交叉约分的计算能力.题目信息量大,计算复杂,属中等难度题.18.答案6解析若使相邻的两个六边形有一条公共边,则两个六边形的边构成了一个120°角,而多个六边形按这种方式拼接,围成的多边形是一个正多边形,且每一个内角均为120°,故此多边形一定是正六边形,需要六个这样的多边形才能拼成,所以n=6.评析本题考查多边形内角和的相关知识,从题目已知条件中获取信息,发现规律,运用发现的规律解决新的问题,考查学生分析、解决问题的能力.三、解答题19.解析|-5|-(√2-3)0+6×(13-12)+(-1)2=5-1+(2-3)+1(5分)=4.(8分)20.解析(1)设AB=10x km,则AD=5x km,CD=2x km.∵四边形ABCD是等腰梯形,DC∥AB,∴BC=AD=5x.∴AD+DC+CB=12x.∴外环公路总长和市区公路长的比为12x ∶10x=6∶5.(3分)(2)由(1)可知,市区公路的长为10x km,外环公路的总长为12x km.由题意,得10x 40=12x 80+110.(6分) 解这个方程,得x=1.∴10x=10.答:市区公路的长为10 km.(8分)21.解析 (1)4;6.(2分)(2)如图.甲、乙两人射箭成绩折线图(3分)(3)①乙.(4分)s 乙2=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.(5分)由于s 乙2<s 甲2,所以上述判断正确.(6分) ②因为两人成绩的平均水平(平均数)相同,乙的成绩比甲稳定,所以乙将被选中.(8分)22.解析 (1)由题意得,AD=BC=2,故点D 的坐标为(1,2).(2分)∵反比例函数y=m x的图象经过点D(1,2), ∴2=m 1,∴m=2. ∴反比例函数的解析式为y=2x.(4分) (2)当x=3时,y=3k+3-3k=3,∴一次函数y=kx+3-3k(k ≠0)的图象一定过点C.(6分)(3)设点P 的横坐标为a,其取值范围为23<a<3.(8分) 详解:过C 分别作CM ⊥x 轴,CN ⊥y 轴,M 、N 分别为垂足,且分别交反比例函数图象于P 1、P 2点.由题意可知P 1(3,23),P 2(23,3).由于一次函数y=kx+3-3k(k ≠0)中y 随x 的增大而增大,∴k>0. ∴点P 的横坐标的取值范围是23<a<3. 评析 本题是一次函数和反比例函数的综合问题,考查学生运用相关函数知识解决问题的能力.23.解析(1)AE=ED;AE⊥ED.(2分)(2)①证明:由题意得,∠B=∠C=90°,AB=BE=EC=DC.∵△EGF与△EAB位似且相似比是1∶2,∴∠GFE=∠B=90°,GF=12AB,EF=12EB.∴∠GFE=∠C.∵EH=HC=12EC,∴GF=HC,FH=FE+EH=12EB+12EC=12BC=EC=CD.∴△HGF≌△DHC.(5分)∴GH=HD,∠GHF=∠HDC.又∵∠HDC+∠DHC=90°,∴∠GHF+∠DHC=90°.∴∠GHD=90°,∴GH⊥HD.(7分)②CH的长为k.(9分)评析本题考查全等三角形、相似(位似)三角形的相关知识.由特殊图形猜想结论,通过推理论证得到一般结论是解决此类问题的基本思路,题目较难.24.解析(1)设一张薄板的边长为x cm,它的出厂价为y元,基础价为n元,浮动价为kx元,则y=kx+n.(2分)由表格中的数据,得{50=20k+n,70=30k+n.解得{k=2,n=10.所以y=2x+10.(4分)(2)①设一张薄板的利润为P元,它的成本价为mx2元,由题意,得P=y-mx2=2x+10-mx2.(5分)将x=40,P=26代入P=2x+10-mx2中,得26=2×40+10-m×402.解得m=125,所以P=-125x2+2x+10.(7分)②因为a=-125<0,所以,当x=-b2a=-22×(-125)=25(在5~50之间)时,P最大值=4ac-b24a =4×(-125)×10-224×(-125)=35.即出厂一张边长为25cm的薄板,获得的利润最大,最大利润是35元.(9分)(注:边长的取值范围不作为扣分点)评析本题通过构建一次函数、二次函数的模型解决实际问题,通过求二次函数解析式,判断函数的最大值,解决题目中最大利润问题,题目中的条件多,信息量大,能够将各数量之间的关系用恰当的函数解析式表示出来是解决问题的关键.25.解析(1)∵∠BCO=∠CBO=45°,∴OC=OB=3.又∵点C在y轴的正半轴上,∴点C的坐标为(0,3).(2分)(2)当点P在点B右侧时,如图1.图1若∠BCP=15°,得∠PCO=30°,故OP=OCtan30°=√3,此时t=4+√3.(4分)当点P在点B左侧时,如图2.图2由∠BCP=15°,得∠PCO=60°,故PO=OCtan60°=3√3.此时t=4+3√3.∴t的值为4+√3或4+3√3.(6分)(3)由题意知,若☉P与四边形ABCD的边相切,有以下三种情况:①当☉P与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP=3,此时t=1.(7分)②当☉P与CD相切于点C时,有PC⊥CD,即点P与点O重合,此时t=4.(8分)③当☉P与AD相切时,由题意,∠DAO=90°,∴点A为切点,如图3.图3PC2=PA2=(9-t)2,PO2=(t-4)2,于是(9-t)2=(t-4)2+32,解得t=5.6.∴t的值为1或4或5.6.(10分)评析本题借助直角坐标系中的动点问题综合考查三角函数、直线与圆相切的位置关系等知识,灵活运用分类讨论思想,通过观察、归纳得到满足条件的所有结论,对学生的分析、推理能力要求较高,属难度较大题目.26.解析探究12;15;84.(3分)拓展(1)由三角形面积公式,得S△ABD=12mx,S△CBD=12nx.(4分)(2)由(1)得m=2S △ABD x ,n=2S △CBD x ,∴m+n=2S △ABD x +2S △CBD x =168x.(5分) 由于AC 边上的高为2S△ABC 15=2×8415=565,∴x 的取值范围是565≤x ≤14. ∵(m+n)随x 的增大而减小,∴当x=565时,(m+n)的最大值为15;(7分) 当x=14时,(m+n)的最小值为12.(8分)(3)x 的取值范围是x=565或13<x ≤14.(10分) 发现 AC 所在的直线,(11分)最小值为565.(12分) 评析 本题是几何图形的探究题,需要根据题目的条件探索发现某种数学关系的存在,并利用探索发现的数学关系解决相应的问题,考查学生多角度、多层次地思考问题的能力,同时考查学生的探究创新能力,属难度较大题.。

2012年河北省中考数学试卷含答案-答案在前

2012年河北省中考数学试卷含答案-答案在前

河北省2012年初中毕业生升学文化课考试数学答案解析卷Ⅰ一、选择题 1.【答案】B【解析】A .既不是正数,也不是负数,故选项错误 B .是负数,故选项正确 C .是正数,故选项错误 D .是正数,故选项错误 故选:B .【提示】根据负数就是正数前面带负号的数即可判断 【考点】正数和负数 2.【答案】C 【解析】333()ab a b =【提示】由积的乘方:()n n n ab a b =(n 是正整数),即可求得答案 【考点】幂的乘方与积的乘方 3.【答案】A【解析】从正面观察所给几何体,得到的图形如下:【提示】主视图是从正面看所得到的图形,结合所给几何体及选项即可得出答案 【考点】简单组合体的三视图【提示】分别求出两个不等式的解集,再找到其公共部分即可 【考点】不等式的解集,解一元一次不等式组 5.【答案】D是O 的直径,不是圆心角,D ∠∴,DAE ∠【提示】根据垂径定理及相似三角形的判定定理对各选项进行逐一判断即可 【考点】垂径定理,圆周角定理,相似三角形的判定 6.【答案】B【解析】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,所以掷一枚质地均匀的硬币10次,可能有5次正面向上【提示】这是一道列举法求概率的问题,可以直接应用求概率的公式 【考点】可能性的大小 7.【答案】D【解析】根据题意,所作出的是BCN AOB ∠=∠,根据作一个角等于已知角的作法,FG 是以点E 为圆心,DM 为半径的弧,故选:D .【提示】根据同位角相等两直线平行,要想得到CN OA ∥,只要作出BCN AOB ∠=∠即可,然后再根据作一个角等于已知角的作法解答 【考点】作图—基本作图 8.【答案】A【解析】方程移项得:241x x +=-,配方得:2443x x ++=,即2(2)3x +=,故选A . 【提示】方程常数项移到右边,两边加上4变形后,即可得到结果 【考点】解一元二次方程﹣配方法 9.【答案】B【解析】∵四边形ABCD 是平行四边形,AB CD ∴∥,根据折叠的性质可得:MN AE ∥,FMN DMN ∠=∠,AB CD MN ∴∥∥,70A ∠=︒∵,70FMN DMN A ∠=∠=∠=︒∴, 180180707040AMF DMN FMN ∠=︒-∠-∠=︒-︒-︒=︒∴.【提示】由平行四边形与折叠的性质,易得CD MN AB ∥∥,然后根据平行线的性质,即可求得70DMN FMN A ∠=∠=∠=︒,又由平角的定义,即可求得AMF ∠的度数【考点】翻折变换(折叠问题) 10.【答案】C【提示】将分式221x -分母因式分解,再将除法转化为乘法进行计算 【考点】分式的乘除法 11.【答案】A【解析】设重叠部分面积为c ,()()1697a b a c b c -=+-+=-=,故选:A【提示】设重叠部分面积为c ,()a b -可理解为()()a c b c +-+,即两个正方形面积的差 【考点】整式的加减【提示】根据与221(3)12y x =-+的图象在x 轴上方即可得出2y 的取值范围,把(1,3)A 代入抛物线21(2)3y a x =+-即可得出a 的值;由抛物线与y 轴的交点求出,21y y -的值;根据两函数的解析式直接得出AB 与AC 的关系即可 【考点】二次函数的性质卷Ⅱ二、填空题 13.【答案】5【解析】5-的相反数是5【提示】根据相反数的定义直接求得结果【考点】相反数 14.【答案】52︒【解析】38BOD ∠=︒∵,38AOC ∠=︒∴,AC CD ⊥∵于点C ,90903852A AOC ∠=︒-∠=︒-︒=︒∴, 故答案为52︒.【提示】利用对顶角相等得到AOC ∠的度数,然后利用直角三角形两锐角互余求得A ∠即可. 【考点】直角三角形的性质,对顶角,邻补角 15.【答案】1【解析】1y x =-∵,1x y -=∴,22()()11(1)11x y y x -+-+=+-+=∴,故答案为:1 【提示】根据已知条件整理得到1x y -=,然后整体代入计算即可得解 【考点】代数式求值16.【答案】34【提示】首先根据题意可得第三枚棋子有A ,B ,C ,D 共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B ,C ,D ,然后利用概率公式求解即可求得答案 【考点】概率公式 431119⎛⎫+ ⎪⎝⎭20211920⨯⨯⨯,故答案为:21. 【提示】根据已知得出数字变化规律,即可得出这样20个数据,进而得出这样20个数的积分子与分母正好能约分,最后剩下21,即可得出答案【考点】规律型,数字的变化类 18.【答案】6【解析】两个正六边形结合,一个公共点处组成的角度为240︒,故如果要密铺,则需要一个内角为120︒的正多边形,而正六边形的内角为120︒,故答案为:6.【提示】根据正六边形的一个内角为120︒,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数 【考点】平面镶嵌(密铺) 三、解答题 19.【答案】4【解析】原式=51(23)14=-+-+=.【提示】分别运算绝对值,零指数幂,及有理数的混合运算,最后合并即可得出答案1010x =∴,答:市区公路的长为10km【提示】(1)首先根据::10:5:2AB AD CD =设10km AB x =,则5k m A D x =,2km CD x =,再根据等腰梯形的腰相等可得5km BC AD x ==,再表示出外环的总长,然后求比值即可;(2)根据题意可得等量关系:在外环公路上行驶所用时间110h +=在市区公路上行驶所用时间,根据等量关系列出方程,解方程即可 【考点】等腰梯形的性质 21.【答案】(1)46(2)见解析(3)乙,2222221[(76)(56)(76)(46)(76)] 1.6s =-+-+-+-+-=(2)如图所示:②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中【考点】方差,折线统计图,算术平均数22.【答案】(1)2 yx =(2)见解析(3)23a<<【提示】(1)由(3,1)B ,(3,3)C 得到BC x ⊥轴,2BC =,根据平行四边形的性质得2AD BC ==, 而A 点坐标为(1,0),可得到点D 的坐标为(1,2),然后把(1,2)D 代入(0)my x x=>即可得到2m =,从而可确定反比例函数的解析式(2)把3x =代入33(0)y kx k k =+-≠得到3y =,即可说明一次函数33(0)y kx k k =+-≠的图象一定过点C ;【考点】反比例函数综合题 23.【答案】(1)AE ED =AE ED ⊥(2)①见解析②根据题意得出:∵当GH HD =,GH HD ⊥时,90FHG DHC ∠+∠=︒∴,90FHG FGH ∠+∠=︒∵,FGH DHC ∠=∠∴,DH GHFGH DHC DCH GFH =⎧⎪∠=⎨⎪=⎩∴∠∠∠,GFH HCD ∴△≌△,CH FG =∴,EF FG =∵,EF CH =∴,GH=HD ,GH HD ⊥②根据恰好使GH HD =且GH HD ⊥时,得出GFH HCD △≌△,进而得出CH 的长 【考点】位似变换,全等三角形的判定与性质,等腰直角三角形 24.【答案】(1)210y x =+ (2)①2121025p x x =-++即出厂一张边长为25cm 的薄板,获得的利润最大,最大利润是35元. 【提示】(1)利用待定系数法求一次函数解析式即可得出答案;(2)①首先假设一张薄板的利润为p 元,它的成本价为2mx 元,由题意,得:2p y mx =-,进而得出m 的值,求出函数解析式即可;②利用二次函数的最值公式求出二次函数的最值即可 【考点】二次函数的应用25.【答案】(1)点C 的坐标为(0,3) (2)①4t =+②44+【解析】(1)45BCO CBO ∠=∠=︒∵,3OC OB ==∴,又∵点C 在y 轴的正半轴上,∴点C 的坐标为(0,3)(2)①当点P 在点B 右侧时,如图2,若15BCP ∠=︒,得30PCO ∠=︒,故•30PO CO tan =︒=4t =+②当点P 在点B 左侧时,如图3,由15BCP ∠=︒,得30PCO ∠=︒,故•tan60PO CO =︒=,此时,4t =+t ∴的值为4+或4+;(3)由题意知,若P 与四边形ABCD 的边相切时,有以下三种情况:①当P 与BC 相切于点C 时,有90BCP ∠=︒,从而45OCP ∠=︒,得到3OP =,此时1t =;②当P 与CD 相切于点C 时,有PC CD ⊥,即点P 与点O 重合,此时4t =;③当P 与AD 相切时,由题意,得90DAO ∠=︒,∴点A 为切点,如图4,222(9)PC PA t ==-PC ,22(4)PO t =-,于是222(9)(4)3t t -=-+,即2281188169t t t t --+=++,解得: 5.6t =,t ∴的值为1或4或5.6.【提示】(1)由45CBO ∠=︒,BOC ∠为直角,得到BOC △为等腰直角三角形,又3OB =,利用等腰直角三角形AOB 的性质知3OC OB ==,然后由点C 在y 轴的正半轴可以确定点C 的坐标(2)需要对点P 的位置进行分类讨论:①当点P 在点B 右侧时,如图2所示,由45BCO ∠=︒,用BCO BCP ∠-∠求出30PCO ∠=︒,又3OC =,在Rt POC △中,利用锐角三角函数定义及特殊角的三角函数值求出OP 的长,由PQ OQ OP =+求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t ; ②当点P 在点B 左侧时,如图3所示,用BCO BCP ∠+∠求出PCO ∠为60︒,又3OC =,在Rt POC △中,利用锐角三角函数定义及特殊角的三角函数值求出OP 的长,由PQ OQ OP =+求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t(3)当P 与四边形ABCD 的边(或边所在的直线)相切时,分三种情况考虑:①当P 与BC 边相切时,利用切线的性质得到BC 垂直于CP ,可得出90BCP ∠=︒,由45BCO ∠=︒,得到45OCP ∠=︒,即此时COP △为等腰直角三角形,可得出OP OC =,由3OC =,得到3OP =,用OQ O P -求出P 运动的路程,即可得出此时的时间t ;②当P 与CD 相切于点C 时,P 与O 重合,可得出P 运动的路程为OQ 的长,求出此时的时间t ;③当P 与AD 相切时,利用切线的性质得到90DAO ∠=︒,得到此时A 为切点,由PC PA =,且9PA t =-,4PO t =-,在Rt OCP △中,利用勾股定理列出关于t 的方程,求出方程的解得到此时的时间t .综上,得到所有满足题意的时间t 的值【考点】切线的性质,坐标与图形性质,勾股定理,解直角三角形 26.【答案】探究:12AH =,15AC =,84ABC S =△ 拓展:(1)12ABD xm S =△,12CBD xn S =△ (2)168m n x+=;()m n +的最大值为15;()m n +的最小值为12 (3)x 的取值范围是56x =或1314x <≤;最小值为5611 / 11拓展:(1)由三角形的面积公式,得112ABD BD AE xm S ==△,112CBD BD CF xn S ==△()m n +∵随x 的增大而减小,∴当56x =时,()m n +的最大值为15 发现:AC BC AB >>∵,∴过A ,B ,C 三点到这条直线的距离之和最小的直线就是AC 所在的直线,AC 边上的高的长为565. 【提示】探究:先在直角ABH △中,由13AB =,5cos 13ABC ∠=,可得12AH =,5BH =,则9CH =,再解直角ACH △,即可求出AC 的值,最后根据三角形的面积公式即可求出ABC S △的值【考点】反比例函数综合,勾股定理,解直角三角形数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前河北省2012年初中毕业生升学文化课考试数 学本试卷满分120分,考试时间120分钟.卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题,1~6小题,每小题2分,7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数中,为负数的是( )A .0B .2-C .1D .12 2.计算3()ab 的结果是( )A .3abB .3a bC .33a bD .3ab 3.图1中几何体的主视图是( )ABCD4.下列各数中,为不等式组230,40x x -⎧⎨-⎩><解的是( )A .1-B .0C .2D .45.如图2,CD 是O 的直径,AB 是弦(不是直径),AB CD ⊥于点E ,则下列结论正确的是( )A .AE BE >B .AD BC = C .12D AEC ∠=∠D .ADE CBE △∽△6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A .每2次必有1次正面向上B .可能有5次正面向上C .必有5次正面向上D .不可能有10次正面向上7.如图3,点C 在AOB ∠的OB 边上,用尺规作出了CN OA ∥,作图痕迹中,FG 是( ) A .以点C 为圆心,OD 为半径的弧 B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧8.用配方法解方程2410x x ++=,配方后的方程是( )A .2(23)x +=B .2(23)x -=C .2(25)x -=D .2(25)x +=9.如图4,在□ABCD 中,70A ∠=,将□ABCD 折叠,使点D ,C 分别落在点F ,E 处(点F ,E 都在AB 所在的直线上),折痕为MN ,则AMF ∠等于( )A .70B .40C .30D .20 10.化简22111x x ÷--的结果是( )A .21x -B .221x - C .21x +D .2(1)x +11.如图5,两个正方形的面积分别为16,9,两阴影部分的面积分别为a, b (a >b ),则()a b -等于( )A .7B .6C .5D .412.如图6,抛物线21)2(3y a x =+-与221312()y x =-+交于点,过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论: ①无论x 取何值,2y 的值总是正数; ② 1a =;③当0x =时,21 4y y -=; ④23AB AC =.其中正确结论是( ) A .①② B .②③ C .③④D .①④毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------图 3A OBE G N DFCC D MNAF EB图 4图 5abC图 6xyy 1y 2OAB数学试卷 第3页(共6页) 数学试卷 第4页(共6页)卷Ⅱ(非选择题,共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案写在题中横线上) 13.5-的相反数是 .14.如图7,AB ,CD 相交于点O ,AC CD ⊥于点C ,若38BOD ∠=,则A ∠等于 .15.已知1y x =-,则2()(1)x y y x -+-+的值为 .16.在12⨯的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为 .17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(111+),第2位同学报(112+),第3位同学报(113+)……这样得到的20个数的积为 .18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图9-1.用n 个全等的正六边形按这种方式拼接,如图9-2,若围成一圈后中间也形成一个正方形,则n 的值为 .三、解答题(本大题共8小题,,共72分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:0211|5|(23)6()(1)32---+⨯-+-.20.(本小题满分8分)如图10,某市A ,B 两地之间有两条公路,一条是市区公路AB ,另一条是外环公路AD DC CB --.这两条公路围成等腰梯形ABCD ,其中CD AB ∥, 1052AB AD DC =::::. (1)求外环公路总长和市区公路总长的比;(2)某人驾车从A 地出发,沿市区公路去B 地,平均速度是40km/h .返回时沿外环公路行驶,平均速度是80km/h ,结果比去时少用了1h 10.求市区公路总长.21.(本小题满分8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭.他们的 总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表甲、乙两人射箭成绩折线图第1次 第2次 第3次 第4次 第5次 甲成绩 9 4 7 4 6 乙成绩757a7(1)a = ,=x 乙 ;(2)请完成图11中表示乙成绩变化情况的折线; (3)①观察图11,可以看出 的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断. ②请你从平均数和方差的角度分析,谁将被选中.22.(本小题满分8分)如图12,四边形ABCD 是平行四边形,点10A (,),30B (,),33C (,).反比例函数my x=0x (>)的图象经过点D ,点P 是一次函数330y kx k k =+-≠()的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数330y kx k k =+-≠()的图象一定过点C ;(3)对于一次函数330y kx k k =+-≠(),当y 随x 的增大而增大时,确定点P 横坐标的取值范围(不必写出过程).A图12BCD O Pxy图738°A B C DO 图8数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.(本小题满分9分)如图13-1,点E 是线段BC 的中点,分别以B ,C 为直角顶点的EAB △和EDC △均是等腰直角三角形,且在BC 的同侧.(1)AE 和ED 的数量关系为 ,AE 和ED 的位置关系为 ;(2)在图13-1中,以点E 为位似中心,作EGF △与EAB △位似,点H 是BC 所在直线上的一点,连接GH ,HD ,分别得到了图13-2和图13-3.①在图13-2中,点F 在BE 上,EGF △与EAB △的相似比是1:2,H 是EC 的中点.求证:GH HD =,GH HD ⊥.②在图13-3中,点F 在BE 的延长线上,EGF △与EAB △的相似比是:1k ,若2BC =,请直接写出CH 的长为多少时,恰好使得GH HD =且GH HD ⊥(用含k 的代数式表示).24.(本小题满分9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm )在550~之间.每张薄板的成本价(单位:元)与它的面积(单位:2cm )成正比例.每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm 的薄板,获得的利润是26元(利润=出厂价-成本价). ①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线20y ax bx c a =++≠()的顶点坐标是2424b ac b a a -(-,).25.(本小题满分10分)如图14,点50A -(,),30B -(,),点C 在y 轴的正半轴上,45CBO ∠=,CD AB ∥,90CDA ∠=.点P 从点40Q(,)出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1)求点C 的坐标;(2)当15BCP ∠=,求t 的值;(3)以点P 为圆心,PC 为半径的P 随点P的运动而变化,当P 与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.26.(本小题满分12分)如图15-1和图15-2,在ABC △中,13AB =,14BC =,5cos 13ABC ∠=. 探究 如图15-1,AH BC ⊥于点H ,则AH = ,AC = ,ABC △的面积S △ABC = .拓展 如图15-2,点D 在AC 上(可与点A ,C 重合),分别过点A ,C 作直线BD 的垂线,垂足为E ,F .设BD x =,AE m =,CF n =,(当点D 与点A 重合时,我们认为0ABD S =△)(1)用含x ,m 或n 的代数式表示ABD S △及CBD S △; (2)求m n +()与x 的函数关系式,并求m n +()的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围.发现 请你确定一条直线,使得A ,B ,C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.薄板的边长(cm ) 20 30 出厂价(元/张)5070C图13-1DEB AC图13-2DE BAG HC 图13-3DEB AGH图14DAB P OQ Cyx图15-1ABCH图15-2ABCHED F -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________。

2012年河北省初中毕业数学试题

2012年河北省初中毕业数学试题

2012年河北省初中毕业生文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的倒数是( ) A .8B .8-C .18D .18-2.计算223a a +的结果是( ) A .23aB .24aC .43aD .44a3.把某不等式组中两个不等式的解集表示在数轴上,如图1所示, 则这个不等式组可能是( )A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为( ) A .80.155110⨯ B .4155110⨯C .71.55110⨯D .615.5110⨯5.图2中的两个三角形是位似图形,它们的位似中心是( )A .点PB .点OC .点MD .点N6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.如图3,已知O 的半径为5,点O 到弦AB 的距离为3,则O 上到弦AB 所在直线的距离为2的点有( )A .1个B .2个C .3个D .4个8.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下图1图2 图3列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2 C .两枚骰子朝上一面的点数均为偶数 D .两枚骰子朝上一面的点数均为奇数9.如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )10.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.如图6,直线a b ∥,直线c 与a b ,相交.若170∠=,则2_____∠=.12.当x = 时,分式31x -无意义. 13.若m n ,互为相反数,则555m n +-= .图4 x A . x B . x C . D . 图5-1 图5-2 图5-3 …12 ba图6c14.如图7,AB 与O 相切于点B ,AO 的延长线交O 于点C , 连结BC .若36A ∠=,则______C ∠= .15则这些学生成绩的众数为 .16.图8所示的两架天平保持平衡,且每块巧克力的质量相等, 每个果冻的质量也相等,则一块巧克力的质量是 g .17.点(231)P m -,在反比例函数1y x=的图象上,则m =.18.图9-1是我国古代著名的“赵爽弦图”的示意图,它是由四个 全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 .三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.20.(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.ABC图9-1 图9-2图8A35% B20% C 20% D 各型号种子数的百分比 图10-1 图10-221.(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.22.(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?图11在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(k m )d P A P B =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示). 探索归纳(1)①当4a =时,比较大小:12_______d d (填“>”、“=”或“<”); ②当6a =时,比较大小:12_______d d (填“>”、“=”或“<”); (2)请你参考右边方框中的方法指导, 就a (当1a >时)的所有取值情况进 行分析,要使铺设的管道长度较短, 应选择方案一还是方案二?图13-1 图13-2图13-3如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.25.(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用) (1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式;A (E ) BC (F ) PlllB FC 图14-1图14-2图14-3(2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.26.(本小题满分12分)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是A C AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.图15。

2012年河北省初中学业考试数学模拟试题3

2012年河北省初中学业考试数学模拟试题3

二○一二年河北省初中学业考试模拟试题数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题纸密封线内的项目填写清楚.3.第Ⅰ卷、第Ⅱ卷每小题做出答案后,必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分. 一、选择题:(本题12小题,1-6每小题2分,7-12每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1、sin30°的值等于(A)12 (B) 22 (C) 32(D) 12、下列汽车标志中,可以看作是中心对称图形的是3、我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人。

将665 575 306用科学记数法表示(保留三个有效数字)约为( )(A ). 766.610⨯(B ). 80.66610⨯(C ). 86.6610⨯ (D ). 76.6610⨯A. 32,32B. 32,30C. 30,32D. 31.1,325、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,若1AD =,3BC =,则AOCO的值为( ) (A ). 12(B ). 13 (C ). 14 (D ). 196、已知⊙1O 与⊙2O 的半径分别为3 cm 和4 cm ,若12O O =7 cm ,则⊙1O 与⊙2O 的位置关系是 (A) 相交 (B) 相离 (C) 内切 (D) 外切7、右图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是8、抛物线265y x x =-+的顶点坐标为( )A. (3-,4-)B. (3,4)C. (3,4-)D. (3-,4)9、若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是( )(A)0x y z ++= (B) 20x y z +-= (C) 20y z x +-= (D) 20z x y +-= 10、如图在Rt △ABC 中,90ACB ∠=︒,30BAC ∠=︒,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E 。

2012河北省中考数学模拟一(含答案)

2012河北省中考数学模拟一(含答案)

2012 河北省中考数学模拟一(含答案)2012 年河北省中考数学模拟试卷一卷Ⅰ(本卷不交,答案写在答题纸上)一、选择题(本大题共12 个小题;1-10 每小题2 分,11-12 每小题3 分,共26 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.的绝对值是------------------------------------------------------------------------------ ----------( )A.4 B.C.D.2.下列运算中正确的是------------------------------------------------------------------ ------------()A.B.C.D.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那幺∠3 的度数是------------------------------------------------------- --------------------------------()A.25°B.30°C.60°D.65°4.不等式3x+1≥2x的解集在数轴上表示为----------------------------------------- ------------()5.已知四边形中,,如果添加一个条件,即可推出该四边形是正方形,那幺这个条件可以是----------------------------------------------------------------()A.B.C.D.6.如图,已知⊙O 的直径AB⊥弦CD 于点E.下列结论一定正确的是-----。

2012年河北省中考数学试卷及答案解析

2012年河北省中考数学试卷及答案解析

2012年河北省中考数学试卷一、选择题(本大题12小题,1-6每小题2分,7-12每小题2分,共30分)1.(2分)下列各数中,为负数的是()A.0 B.﹣2 C.1 D.2.(2分)计算(ab)3的结果为()A.ab3B.a3b C.a3b3 D.3ab3.(2分)图中几何体的主视图为()A.B.C.D.4.(2分)下列各数中,为不等式组解的是()A.﹣1 B.0 C.2 D.45.(2分)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.=C.∠D=∠AEC D.△ADE∽△CBE6.(2分)掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上7.(3分)如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧8.(3分)用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=59.(3分)如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF 等于()A.70°B.40°C.30°D.20°10.(3分)化简的结果是()A.B.C. D.2(x+1)11.(3分)如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7 B.6 C.5 D.412.(3分)如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二、填空题(本大题6小题,每小题3分,共18分)13.(3分)﹣5的相反数是.14.(3分)如图,AB、CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A=.15.(3分)已知y=x﹣1,则(x﹣y)2+(y﹣x)+1的值为.16.(3分)在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其它格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是.17.(3分)某数学活动小组的20名同学站成一列做报数游戏,规则是:从前面第一位开始,每位同学依次报自己的顺序数的倒数加1,第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…这样得到的20个数的积为.18.(3分)用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为.三、解答题(本大题8小题,共72分)19.(8分)计算:|﹣5|﹣(﹣3)0+6×(﹣)+(﹣1)2.20.(8分)如图,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD﹣DC﹣CB,这两条公路围成等腰梯形ABCD,其中DC∥AB,AB:AD:CD=10:5:2.(1)求外环公路的总长和市区公路长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h,返回时沿外环公路行驶,平均速度是80km/h,结果比去时少用了h,求市区公路的长.21.(8分)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7(1)a=,=;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.22.(8分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=(x>0)的函数图象经过点D,点P是一次函数y=kx+3﹣3k (k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3﹣3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).23.(9分)如图,点E是线段BC的中点,分别以BC为直角顶点的△EAB和△EDC均是等腰三角形,且在BC同侧.(1)AE和ED的数量关系为;AE和ED的位置关系为;(2)在图1中,以点E为位似中心,作△EGF与△EAB位似,点H是BC所在直线上的一点,连接GH,HD.分别得到图2和图3.①在图2中,点F在BE上,△EGF与△EAB的相似比1:2,H是EC的中点.求证:GH=HD,GH⊥HD.②在图3中,点F在的BE延长线上,△EGF与△EAB的相似比是k:1,若BC=2,请直接写CH的长为多少时,恰好使GH=HD且GH⊥HD(用含k的代数式表示).24.(9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.薄板的边长(cm)2030出厂价(元/张)5070(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)25.(10分)如图,A(﹣5,0),B(﹣3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD 的边(或边所在的直线)相切时,求t的值.26.(12分)如图1和2,在△ABC中,AB=13,BC=14,cos∠ABC=.探究:如图1,AH⊥BC于点H,则AH=,AC=,△ABC的面积S△ABC=;拓展:如图2,点D在AC上(可与点A,C重合),分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为S △ABD=0)(1)用含x,m,n的代数式表示S△ABD 及S△CBD;(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的取值范围.发现:请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.2012年河北省中考数学试卷参考答案与试题解析一、选择题(本大题12小题,1-6每小题2分,7-12每小题2分,共30分)1.(2分)(2012•河北)下列各数中,为负数的是()A.0 B.﹣2 C.1 D.【分析】根据负数就是正数前面带负号的数即可判断.【解答】解:A、既不是正数,也不是负数,故选项错误;B、是负数,故选项正确;C、是正数,故选项错误;D、是正数,故选项错误.故选B.【点评】本题主要考查了负数的定义,是基础题.2.(2分)(2012•河北)计算(ab)3的结果为()A.ab3B.a3b C.a3b3 D.3ab【分析】由积的乘方:(ab)n=a n b n(n是正整数),即可求得答案.【解答】解:(ab)3=a3b3.故选C.【点评】此题考查了积的乘方性质.注意积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.3.(2分)(2012•河北)图中几何体的主视图为()A.B.C.D.【分析】主视图是从正面看所得到的图形,结合所给几何体及选项即可得出答案.【解答】解:从正面观察所给几何体,得到的图形如下:.故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.4.(2分)(2012•河北)下列各数中,为不等式组解的是()A.﹣1 B.0 C.2 D.4【分析】分别求出两个不等式的解集,再找到其公共部分即可.【解答】解:,由①得,x>,由②得,x<4,∴不等式组的解集为<x<4.四个选项中在<x<4中的只有2.故选:C.【点评】本题考查了不等式组的解集和解一元一次不等式,能找到各不等式的解集的公共部分是解题的关键.5.(2分)(2012•河北)如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.=C.∠D=∠AEC D.△ADE∽△CBE【分析】根据垂径定理及相似三角形的判定定理对各选项进行逐一判断即可.【解答】解:∵CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,∴AE=BE,=,故A、B错误;∵∠AEC不是圆心角,∴∠D≠∠AEC,故C错误;∵∠CEB=∠AED,∠DAE=∠BCE,∴△ADE∽△CBE,故D正确.故选D.【点评】本题考查了垂径定理、圆周角定理、相似三角形的判定,难度不大,是基础题.6.(2分)(2012•河北)掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上【分析】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,所以掷一枚质地均匀的硬币10次,可能有5次正面向上;故选B.【点评】本题考查了可能性的大小,明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)(2012•河北)如图,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,是()A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧【分析】根据同位角相等两直线平行,要想得到CN∥OA,只要作出∠BCN=∠AOB 即可,然后再根据作一个角等于已知角的作法解答.【解答】解:根据题意,所作出的是∠BCN=∠AOB,根据作一个角等于已知角的作法,是以点E为圆心,DM为半径的弧.故选D.【点评】本题考查了基本作图,根据题意,判断出题目实质是作一个角等于已知角是解题的关键.8.(3分)(2012•河北)用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=5【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.【点评】此题考查了解一元二次方程﹣配方法,利用配方法解方程时,首先将方程常数项移到右边,二次项系数化为1,然后方程两边加上一次项系数一半的平方,左边化为完全平方式,右边化为非负常数,开方转化为两个一元一次方程来求解.9.(3分)(2012•河北)如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于()A.70°B.40°C.30°D.20°【分析】由平行四边形与折叠的性质,易得CD∥MN∥AB,然后根据平行线的性质,即可求得∠DMN=∠FMN=∠A=70°,又由平角的定义,即可求得∠AMF的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,∠FMN=∠DMN,∴AB∥CD∥MN,∵∠A=70°,∴∠FMN=∠DMN=∠A=70°,∴∠AMF=180°﹣∠DMN﹣∠FMN=180°﹣70°﹣70°=40°.故选B.【点评】此题考查了平行四边形的性质、平行线的性质与折叠的性质.此题难度不大,注意数形结合思想的应用,注意折叠中的对应关系.10.(3分)(2012•河北)化简的结果是()A.B.C. D.2(x+1)【分析】将分式分母因式分解,再将除法转化为乘法进行计算.【解答】解:原式=×(x﹣1)=,故选:C.【点评】本题考查了分式的乘除法,将除法转化为乘法是解题的关键.11.(3分)(2012•河北)如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于()A.7 B.6 C.5 D.4【分析】设重叠部分面积为c,(a﹣b)可理解为(a+c)﹣(b+c),即两个正方形面积的差.【解答】解:设重叠部分面积为c,a﹣b=(a+c)﹣(b+c)=16﹣9=7,故选A.【点评】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.12.(3分)(2012•河北)如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④【分析】根据与y2=(x﹣3)2+1的图象在x轴上方即可得出y2的取值范围;把A(1,3)代入抛物线y1=a(x+2)2﹣3即可得出a的值;由抛物线与y轴的交点求出,y2﹣y1的值;根据两函数的解析式直接得出AB与AC的关系即可.【解答】解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本小题正确;②把A(1,3)代入,抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本小题错误;③由两函数图象可知,抛物线y1=a(x+2)2﹣3解析式为y1=(x+2)2﹣3,当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,故y2﹣y1=+=,故本小题错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3)∴AB=6,AC=4,∴2AB=3AC,故本小题正确.故选D.【点评】本题考查的是二次函数的性质,根据题意利用数形结合进行解答是解答此题的关键.二、填空题(本大题6小题,每小题3分,共18分)13.(3分)(2012•贺州)﹣5的相反数是5.【分析】根据相反数的定义直接求得结果.【解答】解:﹣5的相反数是5.故答案为:5.【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.14.(3分)(2012•河北)如图,AB、CD相交于点O,AC⊥CD于点C,若∠BOD=38°,则∠A=52°.【分析】利用对顶角相等得到∠AOC的度数,然后利用直角三角形两锐角互余求得角A即可.【解答】解:∵∠BOD=38°,∴∠AOC=38°,∵AC⊥CD于点C,∴∠A=90°﹣∠AOC=90°﹣38°=52°.故答案为52°.【点评】本题考查了直角三角形的性质及对顶角的性质,解题的关键是知道直角三角形两锐角互余.15.(3分)(2012•河北)已知y=x﹣1,则(x﹣y)2+(y﹣x)+1的值为1.【分析】根据已知条件整理得到x﹣y=1,然后整体代入计算即可得解.【解答】解:∵y=x﹣1,∴x﹣y=1,∴(x﹣y)2+(y﹣x)+1=12+(﹣1)+1=1.故答案为:1.【点评】本题考查了代数式求值,注意整体思想的利用使运算更加简便.16.(3分)(2012•河北)在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其它格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是.【分析】首先根据题意可得第三枚棋子有A,B,C,D共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B,C,D,然后利用概率公式求解即可求得答案.【解答】解:如图,第三枚棋子有A,B,C,D共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B,C,D,故以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是:.故答案为:.【点评】此题考查了概率公式与直角三角形的定义.此题难度不大,注意概率=所求情况数与总情况数之比.17.(3分)(2012•河北)某数学活动小组的20名同学站成一列做报数游戏,规则是:从前面第一位开始,每位同学依次报自己的顺序数的倒数加1,第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…这样得到的20个数的积为21.【分析】根据已知得出数字变化规律,即可得出这样20个数据,进而得出这样20个数的积分子与分母正好能约分,最后剩下21,即可得出答案.【解答】解:∵第一同学报(+1),第二位同学报(+1),第三位同学报(+1),…∴这样20个数据分别为:(+1)=2,(+1)=,(+1)=…(+1)=,(+1)=,故这样得到的20个数的积为:2×××…××=21,故答案为:21.【点评】此题主要考查了数字变化规律,根据已知得出20个数据,进而得出20个数的积是解题关键.18.(3分)(2012•河北)用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为6.【分析】根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【解答】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【点评】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.三、解答题(本大题8小题,共72分)19.(8分)(2012•河北)计算:|﹣5|﹣(﹣3)0+6×(﹣)+(﹣1)2.【分析】分别运算绝对值、零指数幂、及有理数的混合运算,最后合并即可得出答案.【解答】解:原式=5﹣1+(2﹣3)+1=4.【点评】此题考查了实数的运算及有理数的混合运算,注意掌握零指数幂的运算及有理数的混合运算法则,一定要细心解答.20.(8分)(2012•河北)如图,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD﹣DC﹣CB,这两条公路围成等腰梯形ABCD,其中DC∥AB,AB:AD:CD=10:5:2.(1)求外环公路的总长和市区公路长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h,返回时沿外环公路行驶,平均速度是80km/h,结果比去时少用了h,求市区公路的长.【分析】(1)首先根据AB:AD:CD=10:5:2设AB=10xkm,则AD=5xkm,CD=2xkm,再根据等腰梯形的腰相等可得BC=AD=5xkm,再表示出外环的总长,然后求比值即可;(2)根据题意可得等量关系:在外环公路上行驶所用时间+h=在市区公路上行驶所用时间,根据等量关系列出方程,解方程即可.【解答】解:(1)设AB=10xkm,则AD=5xkm,CD=2xkm,∵四边形ABCD是等腰梯形,∴BC=AD=5xkm,∴AD+CD+CB=12xkm,∴外环公路的总长和市区公路长的比为12x:10x=6:5;(2)由(1)可知,市区公路的长为10xkm,外环公路的总长为12xkm,由题意得:=+.解这个方程得x=1.∴10x=10,答:市区公路的长为10km.【点评】此题主要考查了等腰梯形的性质,以及一元一次方程的应用,关键是理解题意,表示出外环公路与市区公路的长,此题用到的公式是:时间=路程÷速度.21.(8分)(2012•河北)某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7(1)a=4,=6;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出乙的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.【分析】(1)根据他们的总成绩相同,得出a=30﹣7﹣7﹣5﹣7=4,进而得出=30÷5=6;(2)根据(1)中所求得出a的值进而得出折线图即可;(3)①观察图,即可得出乙的成绩比较稳定;②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.【解答】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30﹣7﹣7﹣5﹣7=4,=30÷5=6,故答案为:4,6;(2)如图所示:;(3)①观察图,可看出乙的成绩比较稳定,故答案为:乙;=[(7﹣6)2+(5﹣6)2+(7﹣6)2+(4﹣6)2+(7﹣6)2]=1.6.由于<,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.【点评】此题主要考查了方差的定义以及折线图和平均数的意义,根据已知得出a的值进而利用方差的意义比较稳定性即可.22.(8分)(2012•河北)如图,四边形ABCD是平行四边形,点A(1,0),B (3,1),C(3,3).反比例函数y=(x>0)的函数图象经过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3﹣3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).【分析】(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入y=即可得到m=2,从而可确定反比例函数的解析式;(2)把x=3代入y=kx+3﹣3k(k≠0)得到y=3,即可说明一次函数y=kx+3﹣3k (k≠0)的图象一定过点C;(3)设点P的横坐标为a,由于一次函数y=kx+3﹣3k(k≠0)过C点,并且y 随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由y=得到a>,于是得到a的取值范围.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(3,1),C(3,3),∴BC⊥x轴,AD=BC=2,而A点坐标为(1,0),∴点D的坐标为(1,2).∵反比例函数y=(x>0)的函数图象经过点D(1,2),∴2=∴m=2,∴反比例函数的解析式为y=;(2)当x=3时,y=kx+3﹣3k=3k+3﹣3k=3,∴一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,则a的范围为<a<3.【点评】本题考查了反比例函数综合题:点在函数图象上,则点的横纵坐标满足图象的解析式;利用平行四边形的性质确定点的坐标;掌握一次函数的增减性.23.(9分)(2012•河北)如图,点E是线段BC的中点,分别以BC为直角顶点的△EAB和△EDC均是等腰三角形,且在BC同侧.(1)AE和ED的数量关系为AE=ED;AE和ED的位置关系为AE⊥ED;(2)在图1中,以点E为位似中心,作△EGF与△EAB位似,点H是BC所在直线上的一点,连接GH,HD.分别得到图2和图3.①在图2中,点F在BE上,△EGF与△EAB的相似比1:2,H是EC的中点.求证:GH=HD,GH⊥HD.②在图3中,点F在的BE延长线上,△EGF与△EAB的相似比是k:1,若BC=2,请直接写CH的长为多少时,恰好使GH=HD且GH⊥HD(用含k的代数式表示).【分析】(1)利用等腰直角三角形的性质得出△ABE≌△DCE,进而得出AE=ED,AE⊥ED;(2)①根据△EGF与△EAB的相似比1:2,得出EH=HC=EC,进而得出△HGF ≌△DHC,即可求出GH=HD,GH⊥HD;②根据恰好使GH=HD且GH⊥HD时,得出△GFH≌△HCD,进而得出CH的长.【解答】解:(1)∵点E是线段BC的中点,分别BC以为直角顶点的△EAB和△EDC均是等腰三角形,∴BE=EC=DC=AB,∠B=∠C=90°,∴△ABE≌△DCE,∴AE=DE,∠AEB=∠DEC=45°,∴∠AED=90°,∴AE⊥ED.故答案为:AE=ED,AE⊥ED;(2)①由题意,∠B=∠C=90°,AB=BE=EC=DC,∵△EGF与△EAB的相似比1:2,∴∠GFE=∠B=90°,GF=AB,EF=EB,∴∠GFE=∠C,∴EH=HC=EC,∴GF=HC,FH=FE+EH=EB+EC=BC=EC=CD,∴△HGF≌△DHC.∴GH=HD,∠GHF=∠HDC.∵∠HDC+∠DHC=90°.∴∠GHF+∠DHC=90°∴∠GHD=90°.∴GH⊥HD.②根据题意得出:∵当GH=HD,GH⊥HD时,∴∠FHG+∠DHC=90°,∵∠FHG+∠FGH=90°,∴∠FGH=∠DHC,∴,∴△GFH≌△HCD,∴CH=FG,∵EF=FG,∴EF=CH,∵△EGF与△EAB的相似比是k:1,BC=2,∴BE=EC=1,∴EF=k,∴CH的长为k.【点评】此题主要考查了位似图形的性质和全等三角形的判定与性质,根据全等三角形的性质得出对应角与对应边之间的关系是解题关键.24.(9分)(2012•河北)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.薄板的边长(cm)2030出厂价(元/张)5070(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?参考公式:抛物线:y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)利用待定系数法求一次函数解析式即可得出答案;(2)①首先假设一张薄板的利润为p元,它的成本价为mx2元,由题意,得:p=y﹣mx2,进而得出m的值,求出函数解析式即可;②利用二次函数的最值公式求出二次函数的最值即可.【解答】解:(1)设一张薄板的边长为xcm,它的出厂价为y元,基础价为n元,浮动价为kx元,则y=kx+n.由表格中的数据,得,解得,所以y=2x+10;(2)①设一张薄板的利润为p元,它的成本价为mx2元,由题意,得:p=y﹣mx2=2x+10﹣mx2,将x=40,p=26代入p=2x+10﹣mx2中,得26=2×40+10﹣m×402.解得m=.所以p=﹣x2+2x+10.②因为a=﹣<0,所以,当x=﹣=﹣=25(在5~50之间)时,p最大值===35.即出厂一张边长为25cm的薄板,获得的利润最大,最大利润是35元.【点评】本题考查了二次函数的最值求法以及待定系数法求一次函数解析式,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.25.(10分)(2012•河北)如图,A(﹣5,0),B(﹣3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD 的边(或边所在的直线)相切时,求t的值.【分析】(1)由∠CBO=45°,∠BOC为直角,得到△BOC为等腰直角三角形,又OB=3,利用等腰直角三角形AOB的性质知OC=OB=3,然后由点C在y轴的正半轴可以确定点C的坐标;(2)需要对点P的位置进行分类讨论:①当点P在点B右侧时,如图2所示,由∠BCO=45°,用∠BCO﹣∠BCP求出∠PCO为30°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;②当点P在点B 左侧时,如图3所示,用∠BCO+∠BCP求出∠PCO为60°,又OC=3,在Rt△POC 中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP 求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;(3)当⊙P与四边形ABCD的边(或边所在的直线)相切时,分三种情况考虑:①当⊙P与BC边相切时,利用切线的性质得到BC垂直于CP,可得出∠BCP=90°,由∠BCO=45°,得到∠OCP=45°,即此时△COP为等腰直角三角形,可得出OP=OC,由OC=3,得到OP=3,用OQ﹣OP求出P运动的路程,即可得出此时的时间t;②当⊙P与CD相切于点C时,P与O重合,可得出P运动的路程为OQ的长,求出此时的时间t;③当⊙P与AD相切时,利用切线的性质得到∠DAO=90°,得到此时A为切点,由PC=PA,且PA=9﹣t,PO=t﹣4,在Rt△OCP中,利用勾股定理列出关于t的方程,求出方程的解得到此时的时间t.。

2012年河北省初中学业考试数学模拟试题试卷八

2012年河北省初中学业考试数学模拟试题试卷八

二○一二年河北省初中学业考试模拟试题数学试题八注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题纸密封线内的项目填写清楚.3.第Ⅰ卷、第Ⅱ卷每小题做出答案后,必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.一、选择题:(本题12小题,1-6每小题2分,7-12每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1、﹣6的绝对值是()A、﹣6B、6C、D、2、2011年4月28日,国家统计局发布2010年第六次全国人口普查主要数据公报,数据显示,大陆31个省、自治区、直辖市和现役军人的人口共1339724852人,大陆总人口这个数据用科学记数法表示(保留3个有效数字)为()A、1.33×109人B、1.34×109人C、13.4×108人D、1.34×1010人3、在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,43,47,45.则这组数据的极差为()A、2B、4C、6D、84、如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是()A、5B、4C、3D、25、分解因式2x2—4x+2的最终结果是 ( )A.2x(x-2) B.2(x2-2x+1) C.2(x-1)2 D.(2x-2)26、一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合...要求的是 ( )7、小玲每天骑自行车或步行上学,她上学的路程为2 800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设步行的平均速度为x米/分.根据题意,下面列出的方程正确的是(A)30428002800=-xx.(B)30280042800=-xx.(C)30528002800=-xx.(D)30280052800=-xx8、如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=54°,则∠1的大小为(A)36°.(B)54°.(C)72°.(D)73°.第8题9、如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A、600mB、500mC、400mD、300m第9题10、小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A、B、C、D、11、如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A、30°B、45°C、90°D、135°12、如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()A、48cmB、36cmC、24cmD、18cm二、填空题(本大题共6个小题,每小题3分,共18分,把答案写在很横线上)13、当x 时,分式有意义14、如图,直尺一边AB与量角器的零刻度线CD平行,若量角器的一条刻度线OF的读数为70°,OF与AB交于点E,那么∠AEF=.第14题15、如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是.第15题16、如果方程x2+2x+a=0有两个相等的实数根,则实数a的值为.17、如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.第17题18、在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=,反比例函数的图象经过AO的中点C,且与AB交于点D,则点D的坐标为.三、解答题(本大题共8个小题,共72分,解答要写出详细的过程)19、(本小题满分8分)(1)计算:|﹣2|﹣(3﹣π)0+2cos45°;(2)化简:.20、(本小题满分8分)某校课外兴趣小组从我市七年级学生中抽取2 000人做了如下问卷调查,将统计结果绘制了如下两幅统计图.根据上述信息解答下列问题: (1)求条形统计图中n 的值.(2)如果每瓶饮料平均3元钱,“少2瓶以上”按少喝3瓶计算.①求这2000名学生一个月少喝饮料能节省多少钱捐给希望工程?②按上述统计结果估计,我市七年级6万学生一个月少喝饮料大约能节省多少钱捐给希望工程?21、(本小题满分8分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C).(1)求y 与x 之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w 最大?最大利润是多少?O4000800022、(本小题满分8分)如图①,在□ABCD的形外分别作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,连结AC、EF.在图中找一个与△FAE全等的三角形,并加以证明.(5分)应用以□ABCD的四条边为边,在其形外分别作正方形,如图②,连结EF、GH、IJ、KL.若□ABCD的面积为5,则图中阴影部分四个三角形的面积和为.(2分)23、(本小题满分9分)为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2011年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.24、(本小题满分9分)如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.25、(本小题满分10分)以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.26、(本小题满分12分)在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA 和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=﹣1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB 上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.二○一二年河北省初中学业考试模拟试题数 学 试 题 八 答 案一、选择题:B BC A CD A C B C C A二、填空题13、≠3 14、70° 15、(5,1) 16、1 17、.18、(8,)三、解答题19、解:(1)原式=,=;(2)原式=,=,=2.20、解:(1)200060%(445470185)100⨯-++=.所以,条形统计图中100n =.(2)①47011852100333420⨯+⨯+⨯⨯=(). 所以,这2 000名学生一个月少喝饮料能节省3 420元钱捐给希望工程.②6000034201026002000⨯=. 所以,我市七年级6万名学生一个月少喝饮料大约能节省102 600元钱捐给希望工程. 21、解:(1) 由图像知y =()()8000 020200120002040x x x <≤-+<≤(2)∵利润=收入-成本=采购价×采购量-成本,即2800w yx x =-∴由(1) 有w=()()()28000 -2800 5200 02020012000280020092002040x x x x x x x xx x =<≤-+-=-+<≤()5200020w x x =<≤是一次函数一段,最大值5200×20=10400022009200w x x =-+()2040x <≤ 是二次函数一段,当920023400x =-=-时,w 有 最大值220023920023105800w =-⨯+⨯=。

2012年河北中考数学试题及标准答案(word)版

2012年河北中考数学试题及标准答案(word)版

2012 年 河 北 省 初 中 毕 业 生 升 学 文 化 课 考 试一、选择题(本大题共12个小题;1~6小题,每小题2分,7~12小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列各数中,为负数的是( )A.0ﻩB .-2ﻩ C .1D .122.计算(ab )3的结果是( )A.ab 3B.a 3b ﻩC.a3b 3ﻩD.3ab3.图1中中几何体的主视图是( )4.下列各数中为不等式组23040x x ->⎧⎨-<⎩,解的是( )A .-1 ﻩB.0 C .2 ﻩD.45.如图2,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于 点E ,则下列结论正确的是( )A.AE >BE B .BC AD =C.∠D =\F (1,2)∠AEC ﻩD.△A DE ∽△CBE6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A.每2次必有1次正面向上 ﻩB.可能有5次正面向上 C.必有5次正面向上ﻩD.不可能有10次正面向上7.如图3,点C在∠AO B的OB 边上,用尺规作出了CN ∥OA ,作图痕迹中,F G是( )A.以点C 为圆心,OD 为半径的弧 B.以点C为圆心,DM 为半径的弧 C.以点E 为圆心,OD 为半径的弧 D .以点E为圆心,D M为半径的弧8.用配方法解方程x2+4x +1=0,配方后的方程是( )A .(x +2)2=3B.(x -2)2=3C.(x -2)2=5 ﻩﻩD.(x +2)2=59.如图4,在□A BCD 中,∠A =70°,将□A BCD 折叠,使点D , C 分别落在点F ,E处(点F ,E 都在AB 所在的直线上),折 痕为MN 则∠AMF 等于( )A.70°B .40°C .30° ﻩﻩD.20°10.化简\F(2,x2-1)÷错误!的结果是( )A .错误! B.错误!图1ABC D图3AOBE G ND FCC DM N AF EB图4 图2DC.错误!D.2(x +1)11.如图5,两个正方形的面积分别为16,9,两个阴影部分的面积分别为a ,b (a > b )( ) A .7ﻩB .6C.5 ﻩﻩD.412.如图6,抛物线y 1=a(x +2)2与y 2=错误!(x -3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B,C .则以下结论: ① 无论x 取何值,y 2的值总是正数;② a =1;③ 当=0时,y 2- y 1=4;④ 2AB =3A C.其中正确结论是( )A.①② B.②③C .③④ﻩﻩD .①④二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在 题中横线上)13.-5的相反数是______________.14.图7,AB ,C D相交于点O,A C⊥CD 于点C ,若∠BOD =38°,则∠A 等于 °. 15.已知y =x -1,则(x -y )2+(y -x )+1的值为__________. 16.在1×2的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上, 则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为_______.17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(错误!+1),第2位同学报(错误!+1),第1位同学报(错误!+1)……这样得到的20个数的积为___________.18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图9-1. 用n个全等的正六边形按这种方式拼接,如图9-2,若围成 一圈后中间也形成一个正方形,则n 的值为____________.三、解答题(本大题共8个小题;共72分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分)计算:|-5|-( 2 -3)0+6×(\F(1,3) - 错误!)+(-1)2.20.(本小题满分8分)如图10 ,某市A,B两地之间有两条公路,一条是市区公路AB ,另一条是外环公路A D-D C-CB 这两条公路围成等腰梯形ABCD ,其中C D∥AB ,AB︰AD ︰DC = 10︰5︰2. (1)求外环公路总长和市区公路总长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h .返回时沿外环公路行驶,平均速度是80km/h.结果比去时少用了\F(1,10)h .求市区公路总长.图5图6图9-1 市区公路。

2012年河北省初中学业考试数学模拟试题(有详解)

2012年河北省初中学业考试数学模拟试题(有详解)

二○一二年河北省初中学业考试模拟试题数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题纸密封线内的项目填写清楚.3.第Ⅰ卷、第Ⅱ卷每小题做出答案后,必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.一、选择题:(本题12小题,1-6每小题2分,7-12每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1、70等于( )A.0 B.1 C.7 D.-72、随着2011年“毒馒头、毒豆芽”等事件的曝光,人们越来越关注健康的话题.关于甲醛污染问题也一直困扰人们.我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为()A、0.75×10﹣4B、7.5×10﹣4C、7.5×10﹣5D、75×10﹣63、下列图形中,既是轴对称图形又是中心对称图形的有()个.A、1B、2C、3D、44、如图,在方格纸上的△ABC经过变换得到△DEF,正确的是()A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕点A顺时针旋转90º,再向右平移6格A BC ED F D .把△ABC 绕点A 逆时针旋转90º,再向右平移6格5、由一些大小相同的小正方体搭成的几何体的主视图与左视图如图所示,则搭成这个几何体的小正方体的个数最少为( )A 、3B 、4C 、5D 、66、一个正多边形,它的每一个外角都等于45°,则该正多边形是( ) A .正六边形 B .正七边形 C .正八边形 D .正九边形7、在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个.“从袋中任意摸出2个球,它们的颜色相同”这一事件是( )A .必然事件B .不可能事件C .随机事件D .确定事件 8、一个圆锥的底面圆的周长为 2,母线长为3,则它的侧面展开图的圆心角等于( )A .150ºB .120ºC .90ºD .60º 9、如图,在梯形ABCD 中,AB ∥CD ,AB =3CD ,对角线AC 、BD 交于点O ,中位线EF 与AC 、BD 分别交于点M 、N ,则图中阴影部分的面积是梯形ABCD 的面积的( ) A . 1 2 B . 1 3 C . 1 4 D . 4 710、如图,双曲线y=错误!未找到引用源。

2012河北省中考数学试卷

2012河北省中考数学试卷

2012河北省中考数学试卷一 选择题(1~6小题,每小题2分,7~12小题,每小题3分,共30分)1.下列各数中,为负数的是( ) A .0 B .-2 C .1 D .1/2 2.计算(ab )3的结果是( ) A .ab 3 B .a 3b C .a 3b 3 D .3ab 3.图1中中几何体的主视图是( )4.下列各数中为不等式组23040x x ->⎧⎨-<⎩,解的是( )A .-1 B .0 C .2 D .45.如图2,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是( )A .AE >BEB .AD=BC C .∠D =12∠AEC D .△ADE ∽△CBE6.掷一枚质地均匀的硬币10次,下列说法正确的是( )A .每2次必有1次正面向上B .可能有5次正面向上C .必有5次正面向上D .不可能有10次正面向上 7.如图3,点C 在∠AOB 的OB 边上,用尺规作出了CN ∥OA ,作图痕迹中, 是( ) A .以点C 为圆心,OD 为半径的弧 B .以点C 为圆心,DM 为半径的弧 C .以点E 为圆心,OD 为半径的弧 D .以点E 为圆心,DM 为半径的弧8.用配方法解方程x 2+4x +1=0,配方后的方程是( )A .(x +2)2=3 B .(x -2)2=3 C .(x -2)2=5 D .(x +2)2=5 9.如图4,在□ABCD 中,∠A =70°,将□ABCD 折叠,使点D ,C 分别落在点F ,E 处(点F ,E 都在AB 所在的直线上),折 痕为MN 则∠AMF 等于( ) A .70° B .40°C .30°D .20°10.化简2x 2-1÷1x -1的结果是( )A .2x -1 B .2x 3-1 C .2x +1D .2(x +1)11.如图5,两个正方形的面积分别为16,9,两个阴影部分的面积分别为a ,b (a > b )( )A .7B .6C .5D .412.如图6,抛物线y 1=a (x +2)2与y 2=12(x -3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:① 无论x 取何值,y 2的值总是正数;② a =1;③ 当=0时,y 2- y 1=4;④ 2AB =3AC . 其中正确结论是( )A .①② B .②③ C .③④ D .①④二 填空题(本大题共6个小题;每小题3分,共18分)13.-5的相反数是______________14.图7,AB ,CD 相交于点O ,AC ⊥CD 于点C ,若∠BOD =38°,则∠A 等于 ° 15.已知y =x -1,则(x -y )2+(y -x )+1的值为__________16.在1×2的正方形网格格点上放三枚棋子,按图8所示的位置已放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为_______17.某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序数的倒数加1,第1位同学报(11+1),第2位同学报(12+1),第1位同学报(13+1)……这样得到的20个数的积为________18.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图9-1.用n 个全等的正六边形按这种方式拼接,如图9-2,若围成一圈后中间也形成一个正方形,则n 的值为__________三解答题(本大题共8个小题;共72分)19.(本小题满分8分)计算:|-5|-( 2 -3)0+6×(1 3-12)+(-1)2.20.(本小题满分8分)如图10 ,某市A,B两地之间有两条公路,一条是市区公路AB,另一条是外环公路AD-DC -CB这两条公路围成等腰梯形ABCD,其中CD∥AB,AB︰AD︰DC=10︰5︰2.(1)求外环公路总长和市区公路总长的比;(2)某人驾车从A地出发,沿市区公路去B地,平均速度是40km/h.返回时沿外环公路行驶,平均速度是80km/h.结果比去时少用了110h.求市区公路总长.21.(本小题满分8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如下尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表(1)a= ,= ,(2)请完成图11中表示乙成绩变化情况的折线;(3)①观察图11,可以看出的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.图10市区公路CD外环外环x乙22.(本小题满分8分)如图12,四边形ABCD是平行四边形,点A(1,0),B(3,0),C(3,3).反比例函数y=mx (x>0)的图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3-3k (k≠0),当y随x的增大而增大时,确定点P横坐标的取值范围(不必谢过程).23.(本小题满分9分)如图13-1,点E是线段BC的中点,分别以B,C为直角顶点的△EAB和△EDC均是等腰直角三角形,且在BC的同侧.(1)AE和ED的数量关系为,AE和ED的位置关系为;(2)在图13-1中,以点E为位似中心,作△EGF与△EAB位似,点H是BC所在直线上的一点,连接GH,HD,分别得到图13-2和图13-3.①在图13-2中,点F在BE上,△EGF与△EAB的相似比是1︰2,H是EC的中点.求证:GH=HD,GH⊥HD.②在图13-3中,点F在BE的延长线上,△EGF与△EAB的相似比是k︰1,若BC=2,请直接写出CH的长为多少时,恰好使得GH=HD且GH⊥HD(用含k的代数式表示).24.(本小题满分9分)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例.每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例.在营销过程中得到了表格中的数据.(1)求一张薄板的出厂价与边长之间满足的函数关系式;(2)已知出场一张边长为40cm 的薄板,获得的利润是26元(利润=出厂价-成本价).①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-b2a,4ac-b24a).薄板的边长(cm)20 30出厂价(元/张)50 7025.(本小题满分10分)如图14,点A (-5,0),B (-3,0),点C 在y 轴的正半轴上,∠CBO =45°,CD ∥AB ,∠CDA =900.点P 从点Q (4,0)出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1)求点C 的坐标;(2)当∠BCP =15°,求t 的值;(3)以点P 为圆心,PC 为半径的⊙P 随点P 的运动而变化,当⊙P 与四边形 ABCD 的边(或边所在的直线)相切时,求t 的值.26.(本小题满分12分)如图15-1和图15-2,在△ABC 中,AB =13,BC =14,cos ∠ABC =513探究 如图15-1,AH ⊥BC 于点H ,则AH= ,AC= ,的面积S △ABC = . 拓展 如图15-2,点D 在AC 上(可与点A ,C 重合),分别过点A ,C 作直线BD 的垂线,垂足为E ,F .设BD=x , AE=m ,CF=n ,(当点D 与A 重合时,我们认为S △ABD =0)(1)用含x ,m 或n 的代数式表示S △ABD 及S △CBD ;(2)求(m +n )与x 的函数关系式,并求(m +n )的 最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围.发现 请你确定一条直线,使得A ,B ,C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.图14图15-1C 图15-2。

河北省邯郸市2012届九年级数学第二次模拟考试试题(扫描版)

河北省邯郸市2012届九年级数学第二次模拟考试试题(扫描版)

2012年邯郸市初中毕业生升学模拟考试(二)数学试卷参考答案及评分标准一,选择题题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案 ACACDBDABDDB二,填空题13.2)2(-x y ; 14.130; 15.y 2< y 1<y 3 ; 16. 20; 17.5+=x y ; 18.4或724. 三,解答题 19.解:∵111=-x ∴11=-x∴2=x ………………………………………3分 经检验,2=x 是原方程的解 ………………………………………4分∴原式=144122+-+-x x x=x x 452- =5×4-8=12 ……………………………………… 8分 20.解:(1));32,2(),2,3(+A E ……………………………………… 2分 (2)…………………………6分 (3) 3918+ ……………………………………… 8分21.解:(1)列表如下:第二次 第一次-112xOyA B E C D-1 (-1,-1) (-1,0) (-1,1) (-1,2) 0 (0,-1) (0,0) (0,1) (0,2) 1 (1,-1) (1,0) (1,1) (1,2) 2(2,-1)(2,0)(2,1)(2,2)从上表可知一共有16种可能, 其中符合情况的有3种.P (两次摸到的数字之和等于0)=163……………………………………… 6分 (2)解:18(40.561)0.81010⨯+⨯== ……………………………………… 8分 22.(1)解:设甲每天加工x 套,则乙每天加工(1+20℅)x 套,18%)201(160400160=+-+xx ……………………………………… 3分 解得 x =20经检验:x =20是原分式方程的根.答: 甲每天加工服装20套. ……………………………………… 5分 (2)解:设甲加工了y 天,乙加工了(20-y )天,⎩⎨⎧≤-+>-+460)20(2420440)20(2420y y y y 解得:5≤y <10∵y 是正整数,∴y =5,6,7,8,9∴有5种安排方式. ……………………………………… 8分 23.(1)证明: ∵四边形ABCD 是菱形 ∴CB ∥DA∵CG ∥EA CB ∥DA ∴四边形AECG 是平行四边形∴AE =CG ……………………………………… 3分(2)证明:由(1)可知,四边形AECG 是平行四边形 ∴AG =CE∵四边形ABCD 是菱形 ∴AD =CB=CD ∵EC =21BC ∴AG =GD =21CD∵FC =DF =21DC ∴AG =GD =CF =DF∵∠D =∠D∴△ADF ≌△CDG∴∠DAF =∠DCG在△AGH 和△CFH 中∵∠AHG =∠CHF ,∠GAH =∠FCH ,AG =CF∴△AGH ≌△CFH∴AH =CH ………………………………………7分 (3)答:△AHG 与△ADF 的周长比为3:3.…………………………………… 9分24.(1)解:∵直线AB 与反比例函数在第一象限内的图象的交于点B ,在在第一象限内,当一次函数值大于反比例函数值时,则x >4∴点B 横坐标为4设点B 的坐标为(4,n )∵S △AOB =8 OA =4∴21×4n =8 解n =4 设该反比例函数的解析式为y=x k (k ≠0) ∵反比例函数在第一象限内的图象经过点B (4,4)∴k =16 ………………… 3分设直线AB 的解析式为y =ax +b (a ≠0)∵直线AB 经过点A (-4,0),点B (4,4) ∴⎩⎨⎧=+=+-4404b a b a 解得 ⎪⎩⎪⎨⎧==221b a∴该反比例函数的解析式为y=x 16 直线AB 的解析式为y =21x +2 ……………………………………… 6分 (2)直线AB 与y 轴的交点C 坐标为(0,2)S △OCB =21×2×4=4 ……………………………………… 9分25.解:(1)过点P 作PD ⊥AB 于点D ,∵PA = PB ,∴AD = BD ,在Rt △ACB 中,AC = 4,BC = 2,∴AB = 5222=+BC AC ,∴AD =5,∵tan ∠CAB = AC BC AD PD =,∴AD =25>1, ∴⊙P 与直线AB 相离; ………………………………………5分 (2)4±5,5-4<PC<54+; ……………………………………… 7分(3)当⊙P 和线段AB 相交时,过点P 作PH ⊥AB 于点H ,∵△PMN 为正三角形,即△PMN 是边长为1的三角形;∴23=PH ,∵tan ∠CAB = AB CB PA PH =, ∴PA =215,∴PC =4-215; 同理,当⊙P 交在BA 的延长线部分时,PC =4+215. 综上,PC =4-215或 PC =4+215. ……………………………………… 10分 26.(1)答:b =2 c =1 D(2,3) ………………………………………3分 (2)解:当t =2时,AP=22直线AD 与y 轴交点F 的坐标为(0,1)∴OA =OF =1 ∴∠DAB =45°∴PE =AE =2 ∴OE =AE -OA =1 ∴点Q 的横坐标为1∴QE =-12+2×1+3=4 ∴PQ= QE -PE =4-2=2 ………………………………… 8分(3)AP=2t 由(2)知∠DAB =45°∴PE =AE =t ∴点Q 的横坐标为t -1∴QE =-(t -1)2+2(t -1)+3=-t 2+4tPQ= QE -PE =-t 2+4t -t =-t 2+3t =-(t -23)2+49 ∴当t =23时,线段PQ 最长,最大值是49. …………………………………… 10分 (4)t =1或4-3. ……………………………………… 12分此答案仅供参考,有的题目仅列出一种解法,若有不同,请阅卷老师自行处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年河北省初中学业考试数学模拟试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题纸密封线内的项目填写清楚.3.第Ⅰ卷、第Ⅱ卷每小题做出答案后,必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.一、选择题:(本题12小题,1-6每小题2分,7-12每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣3的绝对值是()A、﹣3B、3C、D、2.如图,己知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C的度数是()A、100°B、110°C、120°D、150°3.一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为()A、2πB、C、4πD、8π4.如图,矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为()A、14B、16C、20D、28(第4题) (第9题) (第10题)5.小华在解一元二次方程x2﹣x=0时,只得出一个根x=1,则被漏掉的一个根是()A、x=4B、x=3C、x=2D、x=06.数据2,﹣l,0,1,2的中位数是()A、1B、0C、﹣1D、27.一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限8.若不等式组530xx m-≥⎧⎨-≥⎩有实数解,则实数m的取值范围是()A、m≤B、m<C、m>D、m≥9.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=()A、30°B、45°C、60°D、67.5°10、如图,在△ABC中E是BC上的一点,BC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=()A、1B、2C、3D、411、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A、(4,O)B、(5,0)C、(0,5)D、(5,5)12、根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0 时,②△OPQ的面积为定值.③x>0时,y随x的增大而增大.MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是()A、①②④B、②④⑤C、③④⑤D、②③⑤二、填空题(本大题共6个小题,每小题3分,共18分,把答案写在很横线上)13、分解因式:x2﹣4=.14、如图,已知菱形ABCD,其顶点A,B在数轴上对应的数分别为﹣4和1,则BC=5.15、小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为_____________°.16、若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为.17、已知函数22(1)1(5)1xyx⎧--⎪=⎨--⎪⎩,若使y=k成立的x值恰好有三个,则k的值为.18、如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为三、解答题(本大题共8个小题,共72分,解答要写出详细的过程) 19、(本小题满分8分) 先化简,再求值:221241442a a a a a a a -+⎛⎫⎛⎫-÷- ⎪ ⎪-+-⎝⎭⎝⎭,其中a =2﹣3.20、第十六届亚远会共颁发金牌477枚,如图是不完整的金牌数条形统计图和扇形统计图,根据以上信息.觯答下列问题:(1)请将条形统计图补充完整;(2)中国体育健儿在第十六届亚运会上共夺得金牌199枚;(3)在扇形统计图中,日本代表团所对应的扇形的圆心角约为36°(精确到1°).21、(本小题满分8分)如图,已知反比例函数的图象经过第二象限内的点A(﹣1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).(1)求直线y=ax+b的解析式;(2)设直线y=ax+b与x轴交于点M,求AM的长.22、(本小题满分8分)如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:3(指坡面的铅直高度与水平宽度的比),且AB=20m.身高为1.7m的小明站在大堤A点,测得髙压电线杆顶端点D的仰角为30°.已知地面CB宽30m,求髙压电线杆CD的髙度(结果保留三个有效数字,3≈1.732).23、(本小题满分9分)某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?24、(本小题满分9分)我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投人100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润(万元).(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?(3)根据(1)、(2),该方案是否具有实施价值?25、(本小题满分10分)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).26、(本小题满分12分)如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为A(1,0),B(1,﹣5),D(4,0).(1)求c,b(用含t的代数式表示):(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;②求△MPN的面积S与t的函数关系式,并求t为何值时,;(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.参考答案一、选择题BCCDDADADBBB13、(x+2)(x﹣2)14、515、14416、a<417、318、16三.19、解:原式===•=.当a=时,原式=.20、解:(1)日本的奖牌数是:477﹣199﹣76﹣20﹣134=48.(2)根据条形图可以得到:中国体育健儿在第十六届亚运会上共夺得金牌199枚;故答案是:199.(3)圆心角是:360×≈36°故答案是:36°.21、解:(1)∵点A(﹣1,m)在第二象限内,∴AB=m,OB=1,∴S△ABO=AB•BO=2,即:×m×1=2,解得m=4,∴A(﹣1,4),∵点A(﹣1,4),在反比例函数的图象上,∴4=,解得k=﹣4,∵反比例函数为y=﹣,又∵反比例函数y=﹣的图象经过C(n,﹣2)∴﹣2=,解得n=2,∴C(2,﹣2),∵直线y=ax+b过点A(﹣1,4),C(2,﹣2)∴,解方程组得,∴直线y=ax+b的解析式为y=﹣2x+2;(2)当y=0时,即﹣2x+2=0,解得x=1,∴点M的坐标是M(1,0),在Rt△ABM中,∵AB=4,BM=BO+OM=1+1=2,由勾股定理得AM===.22、解:设大堤的高度h,以及点A到点B的水平距离a,∵,∴坡AB与水平的角度为30°,∴,即得h==10m,,即得a=,∴MN=BC+a=(30+10)m,∵测得髙压电线杆顶端点D的仰角为30°,∴,解得:DN=10+10≈27.32(m),∴CD=DN+AM+h=27.32+1.7+10=39.02≈39.0(m).23、解:(1)设每件T恤和每本影集的价格分别为x元和y元,则,解得.答:每件T恤和每本影集的价格分别为35元和26元.(2)设购买T恤t件,购买影集(50﹣t)本,则1800﹣300≤35t+26(50﹣t)≤1800﹣270解得≤t≤,因为t为正整数,所以t=23,24,25,即有三种方案:第一种方案:购买T恤23件,影集27本,此时余下资金293元;第二种方案:购买T恤24件,影集26本,此时余下资金284元;第三种方案:购T恤25件,影集25本,此时余下资金275元.所以第一种方案用于购买教师纪念品的资金更充足.24、解:(1)∵每投入x万元,可获得利润P=﹣(x﹣60)2+41(万元),∴当x=60时,所获利润最大,最大值为41万元,∴若不进行开发,5年所获利润的最大值是:41×5=205(万元);(2)前两年:0≤x≤50,此时因为P随x的增大而增大,所以x=50时,P值最大,即这两年的获利最大为:2×[﹣(50﹣60)2+41]=80(万元),后三年:设每年获利y,设当地投资额为x,则外地投资额为100﹣x,∴y=P+Q=[﹣(x﹣60)2+41]+[﹣x2+x+160]=﹣x2+60x+165=﹣(x﹣30)2+1065,∴当x=30时,y最大且为1065,∴这三年的获利最大为1065×3=3195(万元),∴5年所获利润(扣除修路后)的最大值是:80+3495﹣50×2=3175(万元).(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值..25、。

相关文档
最新文档