2018年高考数学二轮复习第2部分八大难点突破难点8函数最值恒成立及存在性问题学案
高考数学二轮复习第2部分八大难点突破难点8函数最值恒成立及存在性问题课件【优质ppt版本】
①λ≤1 时,ω′(x)>0,ω(x)递增, 故 h′(x)>0,h(x)递增,不成立; ②λ>1 时,令 ω′(x)=0,解得:x=ln λ, 故 ω(x)在(0,ln λ)递减,在(ln λ,+∞)递增, ∴ω(x)≥ω(ln λ)=λ-λln λ, 令 m(λ)=λ-λln λ(λ>1), 则 m′(λ)=-ln λ<0,故 m(λ)递减,
【例 1】 (2017·盐城市滨海县八滩中学二模)设 f (x)=ex-a(x+1). (1)若 a>0,f (x)≥0 对一切 x∈R 恒成立,求 a 的最大值; (2)设 g(x)=f (x)+eax,A(x1,y1),B(x2,y2)(x1≠x2)是曲线 y=g(x)上任意两点,若 对任意的 a≤-1,直线 AB 的斜率恒大于常数 m,求 m 的取值范围; (3)是否存在正整数 a,使得 1n+3n+…+(2n-1)n<e-e1(an)n 对一切正整数 n 都 成立?若存在,求 a 的最小值;若不存在,请说明理由. 【导学号:56394112】
当 0<a<12时,
1 2a>1.
由(1)有 f
12a<f (1)=0,而 g
12a>0,
所以此时 f (x)>g(x)在区间(1,+∞)内不恒成立.
当 a≥12时,令 h(x)=f (x)-g(x)(x≥1).
当 x>1 时,h′(x)=2ax-1x+x12-e1-x>x-1x+x12-1x=x3-x22x+1>x2-x22x+1>0.
[解] (1)∵f (x)=ex-a(x+1),∴f ′(x)=ex-a, ∵a>0,f ′(x)=ex-a=0 的解为 x=ln a. ∴f (x)min=f (ln a)=a-a(ln a+1)=-aln a. ∵f (x)≥0 对一切 x∈R 恒成立,∴-aln a≥0,∴aln a≤0,∴amax=1.
(江苏专版)18年高考数学二轮复习第2部分八大难点突破难点7函数零点、单调性、极值等综合问题学案
难点七 函数零点、单调性、极值等综合问题(对应学生用书第73页)函数零点、单调性、极值都是高中数学的重要内容,也都是高考的热点和重点,在每年的高考试题中这部分内容所占的比例都很大,函数与导数是高中数学的主线,它们贯穿于高中数学的各个内容,求值的问题就要涉及到方程,求取值范围的问题就离不开不等式,但方程、不等式更离不开函数,函数思想的运用是我们解决问题的重要手段,而导数是我们解决问题的一个行之有效的工具. 1.函数零点函数零点问题主要是研究函数与方程问题,方程f (x )=0的解就是函数y =f (x )的图象与x 轴的交点的横坐标,即零点.函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的. 许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.在高考中重点考查函数零点个数、零点范围以及与零点有关的范围问题,有时添加函数性质进去会使得此类问题难度加大.【例1】 (2017·江苏高考)已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a ;(3)若f (x ),f ′(x )这两个函数的所有极值之和不小于-72,求a 的取值范围.【导学号:56394108】[解] (1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝ ⎛⎭⎪⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0.又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根, 从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1),故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2. 当t ∈⎝⎛⎭⎪⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎪⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .(3)由(1)知,f (x )的极值点是x 1,x 2, 且x 1+x 2=-23a ,x 21+x 22=4a 2-6b9.从而f (x 1)+f (x 2)=x 31+ax 21+bx 1+1+x 32+ax 22+bx 2+1=x 13(3x 21+2ax 1+b )+x 23(3x 22+2ax 2+b )+13a (x 21+x 22)+23b (x 1+x 2)+2=4a 3-6ab 27-4ab 9+2=0.记f (x ),f ′(x )所有极值之和为h (a ), 因为f ′(x )的极值为b -a 23=-19a 2+3a ,所以h (a )=-19a 2+3a ,a >3.因为h ′(a )=-29a -3a 2<0,于是h (a )在(3,+∞)上单调递减. 因为h (6)=-72,于是h (a )≥h (6),故a ≤6.因此a 的取值范围为(3,6].【例2】 已知函数f (x )=a x -1x2-b +ln x (a ,b ∈R ).(1)若函数f (x )在(0,+∞)上单调递增,求实数a 的取值范围; (2)若a =3,函数f (x )有3个零点,求实数b 的取值范围.[解] (1)f (x )的定义域为(0,+∞),f ′(x )=-a x2+2x3+1x.由题意可得f ′(x )≥0在(0,+∞)上恒成立,即-a x2+2x3+1x≥0,所以a x2≤2x3+1x,因为x >0,所以x 2>0,故a ≤2x+x .由基本不等式可得2x +x ≥22(当且仅当2x=x ,即x =2时等号成立),故实数a 的取值范围为(-∞,22].(2)当a =3时,f (x )=3x -1x2-b +ln x ,函数f (x )的定义域为(0,+∞),f ′(x )=-3x 2+2x 3+1x =x 2-3x +2x3=x -x -x3.由f ′(x )=0,解得x 1=1,x 2=2.当x 变化时,f ′(x ),f (x )的变化情况如下表:极小值为f (2)=32-122-b +ln 2=54-b +ln 2.要使函数f (x )有3个零点,则⎩⎪⎨⎪⎧2-b >0,54-b +ln 2<0,解得54+ln 2<b <2.故实数b 的取值范围为⎝ ⎛⎭⎪⎫54+ln 2,2. 2.利用函数的单调区间和极值点研究函数零点函数f (x )的零点,即f (x )=0的根,亦即函数f (x )的图象与x 轴交点横坐标,与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与轴的位置关系(或者转化为两个熟悉函数交点问题).【例3】 (2016-2017学年度江苏苏州市高三期中调研考试)已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f x ,f xg x ,gx ,f x <g x ,(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数. [解] (1)∵函数f (x )=ax 3-3x 2+1, ∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∵a >0,∴x 1<x 2,列表如下:∴f (x )的极大值为f (0)=1,极小值为f ⎝ ⎛⎭⎪⎫a=a2-a 2+1=1-a2.(2)g (x )=xf ′(x )=3ax 3-6x 2,∵存在x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x在x ∈[1,2]上有解,设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∵y ′=-3x 2-3x4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x 在x ∈[1,2]上单调递减,∴当x =1时,y =1x 3+3x的最大值为4,∴2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎝ ⎛⎭⎪⎫2a=1-4a2,①当1-4a2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∴h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.②当1-4a2=0即a =2时,f (x )min =f (1)=0,又g (1)=0,∴h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点.③当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1),∵φ′(x )=3ax 2-6x -1x <6x (x -1)-1x<0,∴φ(x )在(0,1)上单调递减,又φ(1)=a -2<0,φ⎝ ⎛⎭⎪⎫1e =a e 3+2e 2-3e 2>0,∴存在唯一的x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得φ(x 0)=0,Ⅰ.当0<x ≤x 0时,∵φ(x )=f (x )-g (x )≥φ(x 0)=0,∴h (x )=f (x )且h (x )为减函数,又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0,f (0)=1>0,∴h (x )在(0,x 0)上有一个零点;Ⅱ.当x >x 0时,∵φ(x )=f (x )-g (x )<φ(x 0)=0, ∴h (x )=g (x )且h (x )为增函数,∵g (1)=0, ∴h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(x 0,+∞)上有两个零点, 综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点;当a >2时,h (x )无零点.【例4】 (2017·江苏省南京市迎一模模拟)已知函数f (x )=12ax 2+ln x ,g (x )=-bx ,其中a ,b ∈R ,设h (x )=f (x )-g (x ). (1)若f (x )在x =22处取得极值,且f ′(1)=g (-1)-2,求函数h (x )的单调区间; (2)若a =0时,函数h (x )有两个不同的零点x 1,x 2. ①求b 的取值范围; ②求证:x 1x 2e2>1.【导学号:56394109】[解] (1)由已知得f ′(x )=ax +1x(x >0),所以f ′⎝⎛⎭⎪⎫22=22a +2=0,所以a =-2. 由f ′(1)=g (-1)-2, 得a +1=b -2, 所以b =1.所以h (x )=-x 2+ln x +x (x >0).则h ′(x )=-2x +1x +1=2⎝ ⎛⎭⎪⎫x +12x --x(x >0),由h ′(x )>0得0<x <1,h ′(x )<0得x >1. 所以h (x )的减区间为(1,+∞),增区间为(0,1). (2)①由已知h (x )=ln x +bx (x >0). 所以h ′(x )=1x+b (x >0),当b ≥0时,显然h ′(x )>0恒成立,此时函数h (x )在定义域内递增,h (x )至多有一个零点,不合题意.当b <0时,令h ′(x )=0得x =-1b >0,令h ′(x )>0得0<x <-1b;令h ′(x )<0得x >-1b.所以h (x )极大=h ⎝ ⎛⎭⎪⎫-1b =-ln(-b )-1>0,解得-1e <b <0. 且x →0时,ln x <0,x →+∞时,ln x >0.所以当b ∈⎝ ⎛⎭⎪⎫-1e ,0时,h (x )有两个零点.②证明:由题意得⎩⎪⎨⎪⎧ln x 1+bx 1=0,ln x 2+bx 2=0,即⎩⎪⎨⎪⎧e -bx 1=x 1, ①e -bx 2=x 2, ②①×②得e -b (x 1+x 2)=x 1x 2. 因为x 1,x 2>0, 所以-b (x 1+x 2)>0, 所以e -b (x 1+x 2)=x 1x 2>1. 因为0<-b <1e ,所以e -b<1,所以x 1x 2>e -2b x 1x 2>e2x 1x 2>e 2,所以x 1x 2e2>1.【例5】 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x+x +2>0. (2)证明:当a ∈[0,1)时,函数g (x )=e x-ax -ax2(x >0)有最小值.设g (x )的最小值为h (a ),求函数h (a )的值域.[解] (1)f (x )的定义域为(-∞,-2)∪(-2,+∞).f ′(x )=x -x +x-x -xx +2=x 2e xx +2≥0,当且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)上单调递增. 因此当x ∈(0,+∞)时,f (x )>f (0)=-1. 所以(x -2)e x>-(x +2),即(x -2)e x+x +2>0. (2)证明:g ′(x )=x -x+a x +x3=x +2x 3(f (x )+a ). 由(1)知,f (x )+a 单调递增.对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈(0,2],使得f (x a )+a =0, 即g ′(x a )=0.当0<x <x a 时,f (x )+a <0,g ′(x )<0,g (x )单调递减; 当x >x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为于是h (a )=e x ax a +2. 由⎝ ⎛⎭⎪⎫e x x +2′=x +xx +2>0,得y =exx +2单调递增, 所以,由x a ∈(0,2],得12=e 00+2<h (a )=e x a x a +2≤e 22+2=e 24. 因为y =e xx +2单调递增,对任意λ∈⎝ ⎛⎦⎥⎤12,e 24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24.综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是⎝ ⎛⎦⎥⎤12,e 24. 【例6】 设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e-1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. [解] (1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )ea -x+b .依题设,⎩⎪⎨⎪⎧f=2e +2,f =e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知f (x )=x e 2-x+e x .由f ′(x )=e2-x(1-x +ex -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞),故f (x )的单调递增区间为(-∞,+∞). [方法总结] ①函数性质与方程综合时,要先将函数性质剖析清楚,尤其是单调性和对称性,然后再研究函数零点问题;②函数与不等式综合时,重点是要学会构造函数,利用函数单调性、最值进行研究;③函数、方程与不等式综合在一起时,要注意利用导数这个有利工具进行解答.。
(江苏专版)2018年高考数学二轮复习 第2部分 八大难点突破 专项限时集训7 函数零点、单调性、极
专项限时集训(七)函数零点、单调性、极值等综合问题(对应学生用书第125页)(限时:60分钟)1.(本小题满分14分)已知函数f (x )=ax 2-bx +ln x ,a ,b ∈R .(1)当b =2a +1时,讨论函数f (x )的单调性;(2)当a =1,b >3时,记函数f (x )的导函数f ′(x )的两个零点分别是x 1和x 2(x 1<x 2),求证:f (x 1)-f (x 2)>34-ln 2.【导学号:56394110】[解] (1)因为b =2a +1,所以f (x )=ax 2-(2a +1)x +ln x , 从而f ′(x )=2ax -(2a +1)+1x=2ax 2-a +x +1x=ax -x -x,x >0.2分当a ≤0时,由f ′(x )>0得0<x <1,由f ′(x )<0得x >1, 所以f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.当0<a <12时,由f ′(x )>0得0<x <1或x >12a ,由f ′(x )<0得1<x <12a ,所以f (x )在区间(0,1)和区间⎝ ⎛⎭⎪⎫12a ,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫1,12a 上单调递减.当a =12时,因为f ′(x )≥0(当且仅当x =1时取等号),所以f (x )在区间(0,+∞)上单调递增.当a >12时,由f ′(x )>0得0<x <12a 或x >1,由f ′(x )<0得12a <x <1,所以f (x )在区间⎝ ⎛⎭⎪⎫0,12a 和区间(1,+∞)上单调递增,在区间⎝ ⎛⎭⎪⎫12a ,1上单调递减.综上,当a ≤0时,f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减; 当0<a <12时,f (x )在区间(0,1)和区间⎝ ⎛⎭⎪⎫12a ,+∞上单调递增,在区间⎝ ⎛⎭⎪⎫1,12a 上单调递减;当a =12时,f (x )在区间(0,+∞)上单调递增,无单调递减区间;当a >12时,f (x )在区间⎝ ⎛⎭⎪⎫0,12a 和区间(1,+∞)上单调递增,在区间⎝ ⎛⎭⎪⎫12a ,1上单调递减.8分(2)法一:因为a =1,所以f (x )=x 2-bx +ln x (x >0),从而f ′(x )=2x 2-bx +1x,由题意知x 1,x 2是方程2x 2-bx +1=0的两个根,故x 1x 2=12.记g (x )=2x 2-bx +1,因为b >3,所以g ⎝ ⎛⎭⎪⎫12=3-b 2<0,g (1)=3-b <0, 所以x 1∈⎝ ⎛⎭⎪⎫0,12,x 2∈(1,+∞),且bx 1=2x 21+1,bx 2=2x 22+1,f (x 1)-f (x 2)=(x 21-x 22)-(bx 1-bx 2)+ln x 1x 2=-(x 21-x 22)+ln x 1x 2,因为x 1x 2=12,所以f (x 1)-f (x 2)=x 22-14x 22-ln(2x 22),x 2∈(1,+∞).令t =2x 22∈(2,+∞),φ(t )=f (x 1)-f (x 2)=t 2-12t -ln t .因为当t >2时,φ′(t )=t -22t2>0,所以φ(t )在区间(2,+∞)上单调递增,所以φ(t )>φ(2)=34-ln 2,即f (x 1)-f (x 2)>34-ln 2.14分法二:因为a =1,所以f (x )=x 2-bx +ln x (x >0),从而f ′(x )=2x 2-bx +1x,由题意知x 1,x 2是方程2x 2-bx +1=0的两个根,故x 1x 2=12.记g (x )=2x 2-bx +1,因为b >3,所以g ⎝ ⎛⎭⎪⎫12=3-b 2<0,g (1)=3-b <0, 所以x 1∈⎝ ⎛⎭⎪⎫0,12,x 2∈(1,+∞),且f (x )在(x 1,x 2)上是减函数,所以f (x 1)-f (x 2)>f ⎝ ⎛⎭⎪⎫12-f (1)=⎝ ⎛⎭⎪⎫14-b2+ln 12-(1-b )=-34+b 2-ln 2,因为b >3,所以f (x 1)-f (x 2)>-34+b 2-ln 2>34-ln 2.14分2.(本小题满分14分)(南通、泰州市2017届高三第一次调研测试)已知函数f (x )=ax 2-x -ln x ,a ∈R .(1)当a =38时,求函数f (x )的最小值;(2)若-1≤a ≤0,证明:函数f (x )有且只有一个零点; (3)若函数f (x )有两个零点,求实数a 的取值范围. [解] (1)当a =38时,f (x )=38x 2-x -ln x .所以f ′(x )=34x -1-1x =x +x -4x(x >0).令f ′(x )=0,得x =2,当x ∈(0,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0, 所以函数f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. 所以当x =2时,f (x )有最小值f (2)=-12-ln 2.3分(2)证明:由f (x )=ax 2-x -ln x ,得f ′(x )=2ax -1-1x =2ax 2-x -1x,x >0.所以当a ≤0时,f ′(x )=2ax 2-x -1x<0,函数f (x )在(0,+∞)上单调递减,所以当a ≤0时,函数f (x )在(0,+∞)上最多有一个零点.因为当-1≤a ≤0时,f (1)=a -1<0,f ⎝ ⎛⎭⎪⎫1e =e 2-e +a e 2>0, 所以当-1≤a ≤0时,函数f (x )在(0,+∞)上有零点. 综上,当-1≤a ≤0时,函数f (x )有且只有一个零点.7分(3)法一:由(2)知,当a ≤0时,函数f (x )在(0,+∞)上最多有一个零点. 因为函数f (x )有两个零点,所以a >0.由f (x )=ax 2-x -ln x ,得f ′(x )=2ax 2-x -1x(x >0),令g (x )=2ax 2-x -1.因为g (0)=-1<0,2a >0,所以函数g (x )在(0,+∞)上只有一个零点,设为x 0.当x ∈(0,x 0)时,g (x )<0,f ′(x )<0;当x ∈(x 0,+∞)时,g (x )>0,f ′(x )>0.所以函数f (x )在(0,x 0)上单调递减;在(x 0,+∞)上单调递增. 要使得函数f (x )在(0,+∞)上有两个零点,只需要函数f (x )的极小值f (x 0)<0,即ax 20-x 0-ln x 0<0. 又因为g (x 0)=2ax 20-x 0-1=0,所以2ln x 0+x 0-1>0,又因为函数h (x )=2ln x +x -1在(0,+∞)上是增函数,且h (1)=0, 所以x 0>1,得0<1x 0<1.又由2ax 20-x 0-1=0,得2a =⎝ ⎛⎭⎪⎫1x 02+1x 0=⎝ ⎛⎭⎪⎫1x 0+122-14,所以0<a <1.以下验证当0<a <1时,函数f (x )有两个零点.当0<a <1时,g ⎝ ⎛⎭⎪⎫1a =2a a2-1a -1=1-a a>0,所以1<x 0<1a.因为f ⎝ ⎛⎭⎪⎫1e =a e 2-1e+1=e 2-e -a e 2>0,且f (x 0)<0. 所以函数f (x )在⎝ ⎛⎭⎪⎫1e ,x 0上有一个零点.又因为f ⎝ ⎛⎭⎪⎫2a =4a a2-2a-ln 2a ≥2a -⎝ ⎛⎭⎪⎫2a -1=1>0(因为ln x ≤x -1),且f (x 0)<0.所以函数f (x )在⎝ ⎛⎭⎪⎫x 0,2a 上有一个零点.所以当0<a <1时,函数f (x )在⎝ ⎛⎭⎪⎫1e ,2a 内有两个零点.综上,实数a 的取值范围为(0,1). 下面证明:ln x ≤x -1.设t (x )=x -1-ln x ,所以t ′(x )=1-1x =x -1x(x >0).令t ′(x )=0,得x =1.当x ∈(0,1)时,t ′(x )<0;当x ∈(1,+∞)时,t ′(x )>0. 所以函数t (x )在(0,1)上单调递减,在(1,+∞)上单调递增. 所以当x =1时,t (x )有最小值t (1)=0. 所以t (x )=x -1-ln x ≥0,得ln x ≤x -1成立.14分法二:由(2)知,当a ≤0时,函数f (x )在(0,+∞)上最多有一个零点. 因为函数f (x )有两个零点,所以a >0. 由f (x )=ax 2-x -ln x =0,得关于x 的方程a =x +ln xx 2(x >0)有两个不等的实数解. 又因为ln x ≤x -1, 所以a =x +ln x x 2≤2x -1x 2=-⎝ ⎛⎭⎪⎫1x -12+1(x >0). 因为x >0时,-⎝ ⎛⎭⎪⎫1x-12+1≤1,所以a ≤1.又当a =1时,x =1,即关于x 的方程a =x +ln xx 2有且只有一个实数解. 所以0<a <1. 14分(以下解法同法一)3.(本小题满分14分)(苏北四市(淮安、宿迁、连云港、徐州)2017届高三上学期期中)设函数f (x )=ln x -ax 2+ax ,a 为正实数.(1)当a =2时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求证:f ⎝ ⎛⎭⎪⎫1a≤0; (3)若函数f (x )有且只有1个零点,求a 的值.[解] (1)当a =2时,f (x )=ln x -2x 2+2x ,则f ′(x )=1x-4x +2,所以f ′(1)=-1,又f (1)=0,所以曲线y =f (x )在点(1,f (1))处的切线方程为x +y -1=0. 4分(2)证明:因为f ⎝ ⎛⎭⎪⎫1a =ln 1a -1a+1,设函数g (x )=ln x -x +1,则g ′(x )=1x -1=1-xx,另g ′(x )=0,得x =1,列表如下:所以g (x )所以f ⎝ ⎛⎭⎪⎫1a =ln 1a -1a+1≤0.8分(3)f ′(x )=1x -2ax +a =-2ax 2-ax -1x,x >0,令f ′(x )>0,得a -a 2+8a 4a <x <a +a 2+8a 4a ,因为a -a 2+8a 4a<0,所以f (x )在⎝ ⎛⎭⎪⎫0,a +a 2+8a 4a 上单调递增,在⎝ ⎛⎭⎪⎫a +a 2+8a 4a ,+∞上单调递减.所以f (x )≤f ⎝ ⎛⎭⎪⎫a +a 2+8a 4a .设x 0=a +a 2+8a4a,因为函数f (x )只有1个零点,而f (1)=0,所以1是函数f (x )的唯一零点.当x 0=1时,f (x )≤f (1)=0,f (x )有且只有1个零点,此时a +a 2+8a 4a=1,解得a =1.下证,当x 0≠1时,f (x )的零点不唯一.若x 0>1,则f (x 0)>f (1)=0,此时a +a 2+8a 4a >1,即0<a <1,则1a>1.由(2)知,f ⎝ ⎛⎭⎪⎫1a <0,又函数f (x )在以x 0和1a为端点的闭区间上的图象不间断,所以在x 0和1a之间存在f (x )的零点,则f (x )共有2个零点,不符合题意;若x 0<1,则f (x 0)>f (1)=0,此时a +a 2+8a 4a <1,即a >1,则0<1a<1.同理可得,要1a和x 0之间存在f (x )的零点,则f (x )共有2个零点,不符合题意.因此x 0=1,所以a 的值为1. 14分4.(本小题满分16分)(扬州市2017届高三上学期期末)已知函数f (x )=g (x )·h (x ),其中函数g (x )=e x ,h (x )=x 2+ax +a .(1)求函数g (x )在(1,g (1))处的切线方程;(2)当0<a <2时,求函数f (x )在x ∈[-2a ,a ]上的最大值;(3)当a =0时,对于给定的正整数k ,问函数F (x )=e·f (x )-2k (ln x +1)是否有零点?请说明理由.(参考数据e≈2.718,e ≈1.649,e e ≈4.482,ln 2≈0.693)【导学号:56394111】[解] (1)g ′(x )=e x,故g ′(1)=e ,g (1)=e , 所以切线方程为y -e =e(x -1),即y =e x .2分(2)f (x )=e x ·(x 2+ax +a ), 故f ′(x )=(x +2)(x +a )e x, 令f ′(x )=0,得x =-a 或x =-2.①当-2a ≥-2,即0<a ≤1时,f (x )在[-2a ,-a ]上递减,在[-a ,a ]上递增, 所以f (x )max =max{f (-2a ),f (a )}, 由于f (-2a )=(2a 2+a )e -2a,f (a )=(2a 2+a )e a,故f (a )>f (-2a ),所以f (x )max =f (a );②当-2a <-2,即1<a <2时,f (x )在[-2a ,-2]上递增,[-2,-a ]上递减,在[-a ,a ]上递增,所以f (x )max =max{f (-2),f (a )},由于f (-2)=(4-a )e -2,f (a )=(2a 2+a )e a,故f (a )>f (-2), 所以f (x )max =f (a );综上得,f (x )max =f (a )=(2a 2+a )e a.6分(3)结论:当k =1时,函数F (x )无零点;当k ≥2时,函数F (x )有零点. 理由如下:①当k =1时,实际上可以证明:e x 2e x-2ln x -2>0.F ′(x )=(x 2+2x )e x +1-2x ,显然可证F ′(x )=(x 2+2x )e x +1-2x在(0,+∞)上递增,所以存在x 0∈⎝ ⎛⎭⎪⎫1e ,12,使得F ′(x 0)=0,所以当x ∈(0,x 0)时,F (x )递减;当x ∈(x 0,+∞)时,F (x )递增,所以F (x )min =F (x 0)=2⎝ ⎛⎭⎪⎫1x 0+2-ln x 0-1,其中x 0∈⎝ ⎛⎭⎪⎫1e ,12,而φ(x )=2⎝⎛⎭⎪⎫1x +2-ln x -1递减,所以φ(x )>φ⎝ ⎛⎭⎪⎫12=2⎝⎛⎭⎪⎫ln 2-35>0,所以F (x )min >0,所以命题得证.10分下面证明F (e k )>0,可借助结论e x >x 2(x ≥2)处理,首先证明结论e x >x 2(x ≥2): 令φ(x )=e x -x 2(x ≥2),则φ′(x )=e x -2x ,故φ′(x )=e x-2x >0, 所以φ′(x )=e x-2x 在[2,+∞)上递增, 所以φ′(x )>φ′(2)>0,所以φ(x )=e x -x 2在[2,+∞)上递增, 所以φ(x )>φ(2)>0,得证.借助结论得ee k+2k +1>e k 2+2k +1>(k 2+2k +1)2=(k +1)4=(k +1)(k +1)3>2k (k +1),所以F (e k)>0,又因为函数F (x )连续,所以F (x )在⎝ ⎛⎭⎪⎫12,e k 上有零点. 16分5.(本小题满分16分)(扬州市2017届高三上学期期中)已知函数f (x )=a e xx+x .(1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值; (2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在 ,求出所有负整数a 的值;若不存在,请说明理由;(3)设a >0,求证:函数f (x )既有极大值,又有极小值.[解] (1)∵f ′(x )=a e x x -+x2x 2,∴f ′(1)=1,f (1)=a e +1,∴函数f (x )在(1,f (1))处的切线方程为:y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得:a =-1e.4分(2)若a <0,f ′(x )=a e x x -+x2x 2,当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值; 当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值;法一:在(1,+∞)上,若 f (x )在x 0处取得符合条件的极大值 f (x 0),则⎩⎪⎨⎪⎧x 0>1,f x 0>0,fx 0=0,则⎩⎪⎨⎪⎧x 0>1, ①a e x 0x0+x 0>0, ②a e x 0x 0-+x20x20=0, ③由③得:a e x 0=-x 20x 0-1,代入②得:-x 0x 0-1+x 0>0,结合①可 解得:x 0>2,再由f (x 0)=a e x 0x 0+x 0>0得:a >-x 20e x 0,设h (x )=-x 2ex ,则h ′(x )=x x -ex,当x >2时,h ′(x )>0,即h (x )是增函数,所以a >h (x 0)>h (2)=-4e2,又a <0,故当极大值为正数时,a ∈⎝ ⎛⎭⎪⎫-4e 2,0,从而不存在负整数a 满足条件.8分 法二:在x ∈(1,+∞)时,令H (x )=a e x(x -1)+x 2,则H ′(x )=(a e x+2)x , ∵x ∈(1,+∞),∴e x∈(e ,+∞),∵a 为负整数, ∴a ≤-1,∴a e x≤a e≤-e ,∴a e x+2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减,又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0, 且1<x <x 0时,H (x )>0,即f ′(x )>0;x >x 0时,H (x )<0,即f ′(x )<0; ∴f (x )在x 0处取得极大值f (x 0)=a e x 0x 0+x 0,(*)又H (x 0)=a e x 0(x 0-1)+x 20=0,∴a e x 0x 0=-x 0x 0-1代入(*)得:f (x 0)=-x 0x 0-1+x 0=x 0x 0-x 0-1<0,∴不存在负整数a 满足条件.8分(3)证明:设g (x )=a e x(x -1)+x 2,则g ′(x )=x (a e x+2), 因为a >0,所以,当x >0时,g ′(x )>0,g (x )单调递增; 当x <0时,g ′(x )<0,g (x )单调递减;故g (x )至多有两个零点. 又g (0)=-a <0,g (1)=1>0,所以存在x 1∈(0,1), 使g (x 1)=0再由g (x )在(0,+∞)上单调递增知, 当x ∈(0,x 1)时,g (x )<0,故f ′(x )=g xx 2<0,f (x )单调递减; 当x ∈(x 1,+∞)时,g (x )>0,故f ′(x )=g xx 2>0,f (x )单调递增; 所以函数f (x )在x 1处取得极小值. 当x <0时,e x<1,且x -1<0,所以g (x )=a e x (x -1)+x 2>a (x -1)+x 2=x 2+ax -a ,函数y =x 2+ax -a 是关于x 的二次函数,必存在负实数t ,使g (t )>0,又g (0)=-a <0,故在(t,0)上存在x 2,使g (x 2)=0, 再由g (x )在(-∞,0)上单调递减知, 当x ∈(-∞,x 2)时,g (x )>0,故f ′(x )=g xx 2>0,f (x )单调递增; 当x ∈(x 2,0)时,g (x )<0,故f ′(x )=g xx 2<0,f (x )单调递减; 所以函数f (x )在x 2处取得极大值. 综上,函数f (x )既有极大值,又有极小值.16分本文档仅供文库使用。
2018大二轮高考总复习理数文档:解答题8 第1课时 函数的单调性与导数、极值与最值、导数与不等式问题
第二单元 高考压轴大题冲关 解答题08:函数与导数2017 Ⅰ卷导数的运算,利用导数判定函数的单调性,求极值点、最值点,零点的存在性定理·T 211.解答题第21题压轴题一般考查利用导数研究函数的有关性质,年Ⅱ卷导数的运算及导数的应用,函数的单调性,函数的零点·T 21Ⅲ卷导数在解决函数单调性、函数与数列不等式的综合运用·T 21第一课时 函数的单调性与导数、极值与最值、导数与不等式问题基本考点——函数的单调性与导数、极值与最值考向01:函数的导数与单调性(2017·宁夏大学附中二模)设函数f (x )=a ln x +x -1x +1,其中a 为常数.阿凡题1083971(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.[思路点拨] (1)将a 的值代入,求导得f ′(1),再求出f (1)的值,利用点斜式求出切线方程.(2)求导得 f ′(x )=ax 2+(2a +2)x +ax (x +1)2. 依据a 的取值范围分类讨论f ′(x )取值的正负确定函数的单调性.【解】 (1)由题意知a =0时,f (x )=x -1x +1,x ∈(0,+∞).此时f ′(x )=2(x +1)2. 可得f ′(1)=12,又f (1)=0, 所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0. (2)函数f (x )的定义域为(0,+∞). f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增. 当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1),①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减.③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a,由于x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a>0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减,x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增,x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,常需依据以下标准分类讨论:(1)二次项系数为0、为正、为负,目的是讨论开口方向; (2)判别式的正负,目的是讨论对应二次方程是否有解; (3)讨论两根差的正负,目的是比较根的大小;(4)讨论两根与定义域的关系,目的是根是否在定义域内.另外,需优先判断能否利用因式分解法求出根.考向02:函数的极值与最值问题(2017·北京卷)已知函数f (x )=e x cos x -x .阿凡题1083972(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 【解】 (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0,所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2有h (x )<h (0)=0,即f ′(x )<0. 所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1,最小值为f ⎝⎛⎭⎫π2=-π2.含参数的函数的极值(最值)问题常在以下情况下需要分类讨论: (1)导数为零时自变量的大小不确定需要讨论;(2)导数为零的自变量是否在给定的区间内不确定需要讨论; (3)端点处的函数值和极值大小不确定需要讨论;(4)参数的取值范围不同导致函数在所给区间上的单调性的变化不确定需要讨论.1.(2016·北京高考)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. 解:(1)f (x )的定义域为R .∵f ′(x )=e a -x -x e a -x +b =(1-x )e a -x +b .依题设,⎩⎪⎨⎪⎧ f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e . (2)由(1)知f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x-1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞), 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞). 2.(2017·日照二模)已知f (x )=ax -ln x ,a ∈R .(1)若f (x )在x =1处有极值,求f (x )的单调递增区间;(2)是否存在实数a ,使f (x )在区间(0,e]上的最小值是3,若存在,求出a 的值;若不存在,说明理由.解:(1)由题意知f ′(1)=0,∴a -1=0,∴a =1. 经检验a =1,f (x )在x =1处有极值, 所以f (x )=x -ln x ,令f ′(x )=1-1x >0,解得x >1或x <0,又f (x )的定义域为(0,+∞), 所以f (x )的单调递增区间为(1,+∞).(2)假设存在实数a ,使f (x )=ax -ln x ,(x ∈(0,e])有最小值3. ①当a ≤0时,因为x ∈(0,e],所以f ′(x )<0, 所以f (x )在(0,e]上单调递减,f (x )min =f (e)=a e -1=3,解得a =4e(舍去);②当0<1a <e 时,f (x )在(0, 1a )上单调递减,在(1a ,e]上单调递增,∴f (x )min =f (1a )=1+ln a =3,解得a =e 2,满足条件;③当1a ≥e 时,因为x ∈(0,e],所以f ′(x )<0,∴f (x )在(0,e]上单调递减,∴f (x )min =f (e)=a e -1=3.解得a =4e,舍去.综上,存在实数a =e 2,使得当x ∈(0,e]时,f (x )有最小值3.常考热点——导数与不等式问题在高考压轴题中,函数与不等式的交汇是考查热点,常以含指数、对数函数为载体考查不等式的证明、比较大小、范围等问题,以及不等式的恒成立与能成立问题.考向01:利用导数证明不等式常见构造辅助函数的四种方法(1)直接构造法:证明不等式f (x )>g (x )(f (x )<g (x ))的问题转化为证明f (x )-g (x )>0(f (x )-g (x )<0),进而构造辅助函数h (x )=f (x )-g (x ).(2)构造“形似”函数:稍作变形后构造.对原不等式同解变形,如移项、通分、取对数,把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数.(3)适当放缩后再构造:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.(4)构造双函数:若直接构造函数求导,难以判断符号,导数的零点也不易求得,因此单调性和极值点都不易获得,从而构造f (x )和g (x ),利用其最值求解.(2017·全国卷Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x .阿凡题1083973(1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-34a-2. (1)【解】 f (x )的定义域为(0,+∞), f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x .若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈⎝⎛⎭⎫0,-12a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-12a ,+∞时,f ′(x )<0. 故f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)【证明】 由(1)知,当a <0时,f (x )在x =-12a 处取得最大值,最大值为f ⎝⎛⎭⎫-12a =ln ⎝⎛⎭⎫-12a -1-14a. 所以f (x )≤-34a -2等价于ln ⎝⎛⎭⎫-12a -1-14a ≤-34a -2,即ln ⎝⎛⎭⎫-12a +12a +1≤0. 设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0; 当x ∈(1,+∞)时,g ′(x )<0,所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝⎛⎭⎫-12a +12a +1≤0, 即f (x )≤-34a-2.(1)证明f (x )≥g (x )或f (x )≤g (x ),可通过构造函数h (x )=f (x )-g (x ),将上述不等式转化为求证h (x )≥0或h (x )≤0,从而利用求h (x )的最小值或最大值来证明不等式.或者,利用f (x )min ≥g (x )max 或f (x )max ≤g (x )min 来证明不等式.(2)在证明不等式时,如果不等式较为复杂,则可以通过不等式的性质把原不等式变换为简单的不等式,再进行证明.考向02:利用导数解决不等式的恒成立问题利用导数解决不等式恒成立问题的“两种”常用方法(1)分离参数后转化为函数最值问题:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,f (x )≥a 恒成立,只需f (x )min ≥a 即可;f (x )≤a 恒成立,只需f (x )max ≤a 即可.(2)转化为含参函数的最值问题:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),伴有对参数的分类讨论,然后构建不等式求解.(2017·全国卷Ⅲ)已知函数f (x )=x -1-a ln x .(1)若f (x )≥0,求a 的值;阿凡题1083974(2)设m 为整数,且对于任意正整数n ,1+121+122·…·1+12n <m ,求m 的最小值.【解】 (1)f (x )的定义域为(0,+∞),①若a ≤0,因为f 12=-12+a ln 2<0,所以不满足题意.②若a >0,由f ′(x )=1-a x =x -ax知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增. 故x =a 是f (x )在(0,+∞)的唯一最小值点. 因为f (1)=0,所以当且仅当a =1时,f (x )≥0, 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0. 令x =1+12n ,得ln1+12n <12n ,从而ln1+12+ln1+122+…+ln1+12n<12+122+…+12n =1-12n <1.故1+121+122·…·1+12n <e .而1+121+1221+123>2,所以m 的最小值为3.(1)利用最值法解决恒成立问题的基本思路是:先找到准确范围,再说明“此范围之外”不适合题意(着眼于“恒”字,寻找反例即可).(2)对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.考向03:利用导数解决能成立问题不等式的恒成立与能成立问题(1)f (x )>g (x )对一切x ∈[a ,b ]恒成立⇔[a ,b ]是f (x )>g (x )的解集的子集⇔[f (x )-g (x )]min>0(x ∈[a ,b ]).(2)f (x )>g (x )对x ∈[a ,b ]能成立⇔[a ,b ]与f (x )>g (x )的解集的交集不是空集⇔[f (x )-g (x )]max >0(x ∈[a ,b ]).(3)对∀x 1,x 2∈[a ,b ]使得f (x 1)≤g (x 2)⇔f (x )max ≤g (x )min .(4)对∀x 1∈[a ,b ],∃x 2∈[a ,b ]使得f (x 1)≥g (x 2)⇔f (x )min ≥g (x )min .已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x .阿凡题1083975(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.【解】 (1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x 2.①若a ≤1,当x ∈[1,e]时,f ′(x )≥0,则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a . ②若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数; 当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数. 所以f (x )min =f (a )=a -(a +1)ln a -1.③若a ≥e ,当x ∈[1,e]时,f ′(x )≤0,f (x )在[1,e]上为减函数,f (x )min =f (e)=e -(a +1)-a e.综上,当a ≤1时,f (x )min =1-a ;当1<a <e 时,f (x )min =a -(a +1)ln a -1;当a ≥e 时,f (x )min =e -(a +1)-ae.(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值. 由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae .g ′(x )=(1-e x )x .当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数, g (x )min =g (0)=1,所以e -(a +1)-ae<1,即a >e 2-2e e +1,所以a 的取值范围为(e 2-2e e +1, 1) .存在性问题和恒成立问题的区别与联系存在性问题和恒成立问题容易混淆,它们既有区别又有联系:若g (x )≤m 恒成立,则g (x )max ≤m ;若g (x )≥m 恒成立,则g (x )min ≥m ;若g (x )≤m 有解,则g (x )min ≤m ;若g (x )≥m 有解,则g (x )max ≥m .1.(2017·马鞍山三模)已知函数f (x )=(x -1)ln x -(x -a )2(a ∈R ). (1)若f (x )在(0,+∞)上单调递减,求a 的取值范围; (2)若f (x )有两个极值点x 1,x 2,求证:x 1+x 2>54.解:(1)由已知f ′(x )=ln x +x -1x -2(x -a )=ln x -1x-2x +1+2a ≤0恒成立,令g (x )=ln x -1x-2x +1+2a ,则g ′(x )=1x +1x 2-2=-2x 2+x +1x 2=-(2x +1)(x -1)x 2(x >0),-(2x +1)<0,令g ′(x )>0,解得:0<x <1, 令g ′(x )<0,解得:x >1,故g (x )在(0,1)递增,在(1,+∞)递减, ∴g (x )max =g (1)=2a -2, ∴由f ′(x )≤0恒成立可得a ≤1.即当f (x )在(0,+∞)上单调递减时,a 的取值范围是(-∞,1]. (2)若f (x )有两个极值点x 1,x 2,不妨设0<x 1<x 2.由(1)可知a ≤1,且f ′(x 1)=ln x 1-1x 1-2x 1+1+2a ①,f ′(x 2)=ln x 2-1x 2-2x 2+1+2a②,由①-②得:lnx 1x 2+x 1-x 2x 1x 2-2(x 1-x 2)=0, ∴(x 1-x 2)⎝⎛⎭⎫1x 1x 2-2=-ln x1x 2>0, ∴1x 1x 2<2,即x 1x 2>12>1e, 由①+②得:ln(x 1x 2)+2-x 1+x 2x 1x 2-2(x 1x 2)+4a =0,∴x 1+x 2=ln (x 1x 2)+2+4a 1x 1x 2+2>-1+2+42+2=54.2.设函数f (x )=1-x 2+ln(x +1). (1)求函数f (x )的单调区间; (2)若不等式f (x )>kxx +1-x 2(k ∈N *)在(0,+∞)上恒成立,求k 的最大值. 解:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=1x +1-2x ,由f ′(x )>0,得-1<x <3-12;由f ′(x )<0,得x >3-12. 所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-1, 3-12,单调递减区间为⎝ ⎛⎭⎪⎫3-12,+∞. (2)法一:由已知f (x )>kxx +1-x 2在(0,+∞)上恒成立, 得k <(x +1)[1+ln (x +1)]x(x >0),令g (x )=(x +1)[1+ln (x +1)]x (x >0),则g ′(x )=x -1-ln (x +1)x 2,设h (x )=x -1-ln(x +1)(x >0), 则h ′(x )=1-1x +1=xx +1>0,所以函数h (x )在(0,+∞)上单调递增. 而h (2)=1-ln 3<0,h (3)=2-ln 4>0,由零点存在定理,知存在x 0∈(2,3),使得h (x 0)=0, 即1+ln(x 0+1)=x 0,又函数h (x )在(0,+∞)上单调递增, 所以当x ∈(0,x 0)时,h (x )<h (x 0)=0; 当x ∈(x 0,+∞)时,h (x )>h (x 0)=0.从而当x ∈(0,x 0)时,g ′(x )=h (x )x 2<0;当x ∈(x 0,+∞)时,g ′(x )=h (x )x 2>0, 所以g (x )在(0,+∞)上的最小值为g (x 0)=(x 0+1)[1+ln (x 0+1)]x 0=x 0+1.因此f (x )>kxx +1-x 2在(0,+∞)上恒成立等价于k <g (x )min =x 0+1. 由x 0∈(2,3),知x 0+1∈(3,4),所以k 的最大值为3. 法二:由题意,1+ln(x +1)>kxx +1在(0,+∞)上恒成立. 设g (x )=1+ln(x +1)-kxx +1(x >0),则g ′(x )=1x +1-k(x +1)2=x -(k -1)(x +1)2, (ⅰ)当k =1时,则g ′(x )=x(x +1)2>0, 所以g (x )单调递增,g (0)=1>0,即g (x )>0恒成立.(ⅱ)当k >1时,则g (x )在(0,k -1)上单调递减,在(k -1,+∞)上单调递增, 所以g (x )的最小值为g (k -1),只需g (k -1)>0即可, 即ln k -k +2>0.设h (k )=ln k -k +2(k >1),h ′(k )=1-kk<0,则h (k )单调递减,因为h (2)=ln 2>0,h (3)=ln 3-1>0,h (4)=ln 4-2<0,所以k 的最大值为3. 3.已知函数f (x )=ax +x ln x 的图象在点x =e(e 为自然对数的底数)处的切线斜率为3. (1)求实数a 的值;(2)若k ∈Z ,且k <f (x )x -1对任意x >1恒成立,求k 的最大值.解:(1)因为f (x )=ax +x ln x , 所以f ′(x )=a +ln x +1.因为函数f (x )=ax +x ln x 的图象在点x =e 处的切线斜率为3,所以f ′(e)=3, 即a +ln e +1=3,所以a =1. (2)由(1)知,f (x )=x +x ln x ,又k <f (x )x -1=x +x ln x x -1对任意x >1恒成立,令g (x )=x +x ln x x -1,则g ′(x )=x -ln x -2(x -1)2,令h (x )=x -ln x -2(x >1),则h ′(x )=1-1x =x -1x>0,所以函数h (x )在(1,+∞)上单调递增. 因为h (3)=1-ln 3<0,h (4)=2-2ln 2>0,所以方程h (x )=0在(1,+∞)上存在唯一实根x 0,且满足x 0∈(3,4). 当1<x <x 0时,h (x )<0,即g ′(x )<0; 当x >x 0时,h (x )>0,即g ′(x )>0,所以函数g (x )=x +x ln xx -1在(1,x 0)上单调递减,在(x 0,+∞)上单调递增,所以[g (x )]min =g (x 0)=x 0(1+ln x 0)x 0-1=x 0(1+x 0-2)x 0-1=x 0,所以k <[g (x )]min =x 0∈(3,4),故整数k 的最大值是3.1.(2017·贵阳模拟)已知函数f (x )=x ln x . (1)求函数f (x )的单调区间和最小值;(2)若函数F (x )=f (x )-a x 在[1,e]上的最小值为32,求a 的值.解:(1)因为f ′(x )=ln x +1(x >0), 令f ′(x )≥0,即ln x ≥-1=ln e -1,所以x ≥e -1=1e ,所以x ∈⎣⎡⎭⎫1e ,+∞. 同理令f ′(x )≤0,可得x ∈⎝⎛⎦⎤0, 1e . 所以f (x )的单调递增区间为⎣⎡⎭⎫1e ,+∞,单调递减区间为⎝⎛⎦⎤0, 1e .由此可知 f (x )min =f ⎝⎛⎭⎫1e =-1e.(2)F ′(x )=x +ax2,当a ≥0时,F ′(x )>0,F (x )在[1,e]上单调递增, F (x )min =F (1)=32,所以a =-32∉[0,+∞),舍去.当a <0时,F (x )在(0,-a )上单调递减,在(-a ,+∞)上单调递增. ①当a ∈(-1,0),F (x )在[1,e]上单调递增, F (x )min =F (1)=-a =32,所以a =-32∉(-1,0),舍去.②若a ∈[-e ,-1],F (x )在[1,-a ]上单调递减,在[-a ,e]上单调递增, 所以F (x )min =F (-a )=ln(-a )+1=32,a =-e ∈[-e ,-1];③若a ∈(-∞,-e),F (x )在[1, e]上单调递减, F (x )min =F (e)=1-a e =32,所以a =-e2∉(-∞,-e),舍去.综上所述a =-e .2.已知函数f (x )=ln x +x 2-ax (a 为常数). (1)若x =1是函数f (x )的一个极值点,求a 的值; (2)当0<a ≤2时,试判断f (x )的单调性;(3)若对任意的a ∈(1,2),x 0∈[1,2],不等式f (x 0)>m ln a 恒成立,求实数m 的取值范围. 解:f ′(x )=1x+2x -a .(1)由已知得:f ′(1)=0,所以1+2-a =0,所以a =3. (2)当0<a ≤2时,f ′(x )=1x+2x -a =2x 2-ax +1x=2⎝⎛⎭⎫x -a 42+1-a 28x.因为0<a ≤2,所以1-a 28>0,而x >0,即f ′(x )=2x 2-ax +1x >0,故f (x )在(0,+∞)上是增函数.(3)当a ∈(1,2)时,由(2)知,f (x )在[1,2]上的最小值为f (1)=1-a ,故问题等价于:对任意的a ∈(1,2),不等式1-a >m ln a 恒成立,即m <1-aln a 恒成立.记g (a )=1-a ln a (1<a <2),则g ′(a )=-a ln a -1+aa ln 2a .令M (a )=-a ln a -1+a ,则M ′(a )=-ln a <0, 所以M (a )在(1,2)上单调递减, 所以M (a )<M (1)=0,故g ′(a )<0, 所以g (a )=1-aln a 在a ∈(1,2)上单调递减,所以m ≤g (2)=1-2ln 2=-log 2e ,即实数m 的取值范围为(-∞,-log 2e].3.(2017·邯郸二模)已知函数f (x )=ax -ln x ,F (x )=e x +ax ,其中x >0,a <0.(1)若f (x )和F (x )在区间(0,ln 3)上具有相同的单调性,求实数a 的取值范围;(2)若a ∈⎝⎛⎦⎤-∞,-1e 2,且函数g (x )=x e ax -1-2ax +f (x )的最小值为M ,求M 的最小值. 解:(1)求导,f ′(x )=a -1x =ax -1x,F ′(x )=e x +a ,x >0,a <0,f ′(x )<0在(0,+∞)上恒成立,即f (x )在(0,+∞)上单调递减, 当-1≤a <0时,F ′(x )>0,即F (x )在(0,+∞)上单调递增,不合题意; 当a <-1时,由F ′(x )>0,得x >ln(-a ),由F ′(x )<0,得0<x <ln(-a ), ∴F (x )的单调减区间为(0,ln(-a )),单调增区间为(ln(-a ),+∞). ∵f (x )和F (x )在区间(0,ln 3)上具有相同的单调性, ∴ln(-a )≥ln 3,解得a ≤-3, 综上,a 的取值范围是(-∞,-3]; (2)g ′(x )=e ax -1+ax e ax -1-a -1x=(ax +1)(e ax -1-1x),令e ax -1-1x =0,解得:a =1-ln x x ,设p (x )=1-ln xx ,则p ′(x )=ln x -2x 2,当x >e 2时,p ′(x )>0,当0<x <e 2,p ′(x )<0, 从而p (x )在(0,e 2)上单调递减,在(e 2,+∞)上单调递增, p (x )min =p (e 2)=-1e2,当a ≤-1e 2,a ≤1-ln x x ,即e ax -1-1x≤0,在⎝⎛⎭⎫0,-1a 上,ax +1>0,g ′(x )≤0,g (x )单调递减, 在⎝⎛⎭⎫-1a ,+∞上,ax +1<0,g ′(x )≥0,g (x )单调递增, ∴g (x )min =g ⎝⎛⎭⎫-1a =M , 设t =-1a ∈(0,e 2],M =h (t )=te 2-ln t +1,(0<t ≤e 2),h ′(t )=1e 2-1t ≤0,h (t )在(0,e 2]上单调递减,∴h (t )≥h (e 2)=0, ∴M 的最小值为0.4.(2017·梅州一模)已知函数f (x )=a ln x -x -ax +2a (其中a 为常数,a ∈R ).(1)求函数f (x )的单调区间;(2)当a >0时,是否存在实数a ,使得当x ∈[1,e]时,不等式f (x )>0恒成立?如果存在,求a 的取值范围;如果不存在,说明理由(其中e 是自然对数的底数,e =2.71828…).解:(1)由于f (x )=a ln x -x -ax +2a ,(x >0),f ′(x )=-x 2+ax +ax 2,①a ≤0时,f ′(x )<0恒成立,于是f (x )的递减区间是(0,+∞), ②a >0时,令f ′(x )>0,解得0<x <a +a 2+4a2,令f ′(x )<0,解得x >a +a 2+4a2,故f (x )在⎝ ⎛⎭⎪⎫0,a +a 2+4a 2递增,在⎝ ⎛⎭⎪⎫a +a 2+4a 2,+∞递减;(2)a >0时,①若a +a 2+4a 2≤1,即0<a ≤12,此时f (x )在[1,e]递减,f (x )min =f (e)=3a -e -ae =⎝⎛⎭⎫3-1e a -e ≤⎝⎛⎭⎫3-1e ×12-e <0, ∵f (x )>0恒成立,∴不合题意,②若a +a 2+4a 2>1,a +a 2+4a 2<e ,即12<a <e 2e +1时,此时f (x )在⎝ ⎛⎭⎪⎫1,a +a 2+4a 2递增,在⎝ ⎛⎭⎪⎫a +a 2+4a 2,e 递减,要使在[1,e]恒有f (x )>0恒成立,则必有⎩⎪⎨⎪⎧f (1)>0f (e )>0,则⎩⎪⎨⎪⎧a -1>03a -e -ae>0,解得:a >e 23e -1综上可得:e 23e -1<a <e 2e +1;③若a +a 2+4a 2≥e ,即a ≥e 2e +1时,f (x )在[1,e]递增,令f (x )min =f (1)=a -1>0,解得a ≥e 2e +1,综上,存在实数a ∈⎝⎛⎭⎫e23e -1,+∞,使得f (x )>0恒成立.5.(2017·新乡二模)已知函数f (x )=2ln x -3x 2-11x . (1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若关于x 的不等式f (x )≤(a -3)x 2+(2a -13)x -2恒成立,求整数a 的最小值;(3)若正实数x 1,x 2满足f (x 1)+f (x 2)+4(x 21+x 22)+12(x 1+x 2)=4,证明:x 1+x 2≥2.解:(1)∵f ′(x )=2x -6x -11,f ′(1)=-15,f (1)=-14,∴切线方程是:y +14=-15(x -1),即y =-15x +1;(2)令g (x )=f (x )-(a -3)x 2-(2a -13)x +2=2ln x -ax 2+(2-2a )x +2, ∴g ′(x )=2x -2ax +(2-2a )=-2ax 2+(2-2a )x +2x ,a ≤0时,∵x >0,∴g ′(x )>0,g (x )在(0,+∞)递增, ∵g (1)=-a +2-2a +2=-3a +4>0,∴关于x 的不等式f (x )≤(a -3)x 2+(2a -13)x -2不能恒成立, a >0时,g ′(x )=-2a ⎝⎛⎭⎫x -1a (x +1)x ,令g ′(x )=0,得x =1a,∴x ∈⎝⎛⎭⎫0,1a 时,g ′(x )>0,x ∈⎝⎛⎭⎫1a ,+∞时,g ′(x )<0, 故函数g (x )在⎝⎛⎭⎫0,1a 递增,在⎝⎛⎭⎫1a ,+∞递减, 故函数g (x )的最大值是g ⎝⎛⎭⎫1a =2ln 1a +1a =1a -2ln a ≤0, 令h (a )=1a -2ln a ,则h (a )在(0,+∞)递减,∵h (1)=1>0,h (2)=12-2ln 2<12-2ln e <0,∴a ≥2时,h (a )<0,故整数a 的最小值是2;(3)证明:由f (x 1)+f (x 2)+4(x 21+x 22)+12(x 1+x 2)=4, 得2ln(x 1x 2)+(x 21+x 22)+(x 1+x 2)=4,从而(x 1+x 2)2+(x 1+x 2)=2x 1x 2-2ln(x 1x 2)+4, 令t =x 1·x 2,则由φ(t )=2t -2ln t +4,得φ′(t )=2(t -1)t ,可知φ(t )在区间(0,1)递减,在(1,+∞)递增,故φ(t )≥φ(1)=6, ∴(x 1+x 2)2+(x 1+x 2)≥6, 又x 1+x 2>0,故x 1+x 2≥2成立.6.(2017·芜湖二模)已知函数f (x )=2ln x +x 2-2ax (a >0). (1)讨论函数f (x )的单调性;(2)若函数f (x )有两个极值点x 1,x 2(x 1<x 2),且f (x 1)-f (x 2)≥32-2ln 2恒成立,求a 的取值范围.解:(1)函数f (x )的定义域是(0,+∞),f ′(x )=2(x 2-ax +1)x ,令x 2-ax +1=0,则Δ=a 2-4,①0<a ≤2时,Δ≤0,f ′(x )≥0恒成立, 函数f (x )在(0,+∞)递增;②a >2时,Δ>0,方程x 2-ax +1=0有两根 x 1=a -a 2-42,x 2=a +a 2-42,且0<x 1<x 2,函数f (x )在(0,x 1)上,f ′(x )>0,在(x 1,x 2)上,f ′(x )<0,在(x 2,+∞)上,f ′(x )>0,故函数f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42递增,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42递减,在⎝ ⎛⎭⎪⎫a +a 2-42,+∞递增;(2)由(1)得f (x )在(x 1,x 2)上递减,x 1+x 2=a ,x 1·x 2=1, 则f (x 1)-f (x 2)=2lnx 1x 2+(x 1-x 2)(x 1+x 2-2a )=2ln x 1x 2+x 2x 1-x 1x 2, 令t =x 1x 2,则0<t <1,f (x 1)-f (x 2)=2ln t +1t -t ,令g (t )=2ln t +1t -t ,则g ′(t )=-(t -1)2t <0,故g (t )在(0,1)递减且g ⎝⎛⎭⎫12=32-2ln 2,故g (t )=f (x 1)-f (x 2)≥32-2ln 2=g ⎝⎛⎭⎫12,即0<t ≤12, 而a 2=(x 1+x 2)2=x 1x 2+x 2x 1+2=t +1t +2,其中0<t ≤12,∵⎝⎛⎭⎫t +1t +2′=1-1t 2<0在t ∈⎝⎛⎦⎤0,12恒成立, 故a 2=t +1t +2在⎝⎛⎦⎤0,12递减, 从而a 的范围是a 2≥92,故a ≥322.。
(江苏专版)2018年高考数学二轮复习第2部分八大难点突破难点8函数最值、恒成立及存在性问题学案
难点八 函数最值、恒成立及存在性问题(对应学生用书第75页)恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理. F (x )>a :⎩⎪⎨⎪⎧恒成立⇔f x min >a 有解⇔f x max >a无解⇔f x max ≤a具体方法为将已知恒成立或存在性的不等式或等式由等价原理把参数和变量分离开,转化为一元已知函数的最值问题处理,关键是搞清楚哪个是变量哪个是参数,一般遵循“知道谁的范围,谁是变量;求谁的范围,谁是参数”的原则.参变分离后虽然转化为一个已知函数的最值问题,但是有些函数解析式复杂,利用导数知识无法完成,或者是不易参变分离,故可利用构造函数法.【例1】 (2017·盐城市滨海县八滩中学二模)设f (x )=e x-a (x +1).(1)若a >0,f (x )≥0对一切x ∈R 恒成立,求a 的最大值;(2)设g (x )=f (x )+ae x ,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是曲线y =g (x )上任意两点,若对任意的a ≤-1,直线AB 的斜率恒大于常数m ,求m 的取值范围;(3)是否存在正整数a ,使得1n +3n +…+(2n -1)n <e e -1(an )n对一切正整数n 都成立?若存在,求a 的最小值;若不存在,请说明理由.【导学号:56394112】[解] (1)∵f (x )=e x-a (x +1),∴f ′(x )=e x-a , ∵a >0,f ′(x )=e x -a =0的解为x =ln a . ∴f (x )min =f (ln a )=a -a (ln a +1)=-a ln a .∵f (x )≥0对一切x ∈R 恒成立,∴-a ln a ≥0,∴a ln a ≤0,∴a max =1. (2)∵f (x )=e x-a (x +1), ∴g (x )=f (x )+ae x =e x+ae x -ax -a .∵a ≤-1,直线AB 的斜率恒大于常数m , ∴g ′(x )=e x-aex -a ≥2e x·⎝ ⎛⎭⎪⎫-a e x -a=-a +2-a =m (a ≤-1),解得m ≤3,∴实数m 的取值范围是(-∞,3].(3)设t (x )=e x-x -1,则t ′(x )=e x-1,令t ′(x )=0得:x =0. 在x <0时t ′(x )<0,f (x )递减;在x >0时t ′(x )>0,f (x )递增. ∴t (x )最小值为t (0)=0,故e x≥x +1,取x =-i 2n ,i =1,3,…,2n -1,得1-i 2n ≤e-i 2n ,即⎝ ⎛⎭⎪⎫2n -i 2n n ≤e-i 2,累加得⎝ ⎛⎭⎪⎫12n n +⎝ ⎛⎭⎪⎫32n n +…+⎝ ⎛⎭⎪⎫2n -12n n <e -2n -12+e -2n -32+…+e -12=e -121-e-n1-e -1<ee -1. ∴1n+3n+…+(2n -1)n<e e -1·(2n )n, 故存在正整数a =2.使得1n+3n+…+(2n -1)n<e e -1·(an )n. 【例2】 (2017·江苏省无锡市高考数学一模)已知函数f (x )=(x +1)ln x -ax +a (a 为正实数,且为常数).(1)若f (x )在(0,+∞)上单调递增,求a 的取值范围; (2)若不等式(x -1)f (x )≥0恒成立,求a 的取值范围.[解] (1)f (x )=(x +1)ln x -ax +a ,f ′(x )=ln x +1x+1-a ,若f (x )在(0,+∞)上单调递增,则a ≤ln x +1x+1在(0,+∞)恒成立(a >0),令g (x )=ln x +1x +1(x >0),g ′(x )=x -1x2,令g ′(x )>0,解得:x >1,令g ′(x )<0,解得:0<x <1, 故g (x )在(0,1)递减,在(1,+∞)递增, 故g (x )min =g (1)=2, 故0<a ≤2;(2)若不等式(x -1)f (x )≥0恒成立,即(x -1)[(x +1)ln x -ax +a ]≥0恒成立, ①x ≥1时,只需a ≤(x +1)ln x 恒成立, 令m (x )=(x +1)ln x (x ≥1), 则m ′(x )=ln x +1x+1,由(1)得:m ′(x )≥2,故m (x )在[1,+∞)递增,m (x )≥m (1)=0,故a ≤0,而a 为正实数,故a ≤0不合题意; ②0<x <1时,只需a ≥(x +1)ln x , 令n (x )=(x +1)ln x (0<x <1),则n ′(x )=ln x +1x+1,由(1)知n ′(x )在(0,1)递减,故n ′(x )>n ′(1)=2,故n (x )在(0,1)递增,故n (x )<n (1)=0, 故a ≥0,而a 为正实数,故a >0.【例3】 (2017·江苏省淮安市高考数学二模)已知函数f (x )=1e x ,g (x )=ln x ,其中e为自然对数的底数.(1)求函数y =f (x )g (x )在x =1处的切线方程;(2)若存在x 1,x 2(x 1≠x 2),使得g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)]成立,其中λ为常数,求证:λ>e ;(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立,求实数a 的取值范围.【导学号:56394113】[解] (1)y =f (x )g (x )=ln xe x ,y ′=1x -ln xex, x =1时,y =0,y ′=1e,故切线方程是:y =1e x -1e;(2)证明:由g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)], 得:g (x 1)+λf (x 1)=g (x 2)+λf (x 2), 令h (x )=g (x )+λf (x )=ln x +λe x (x >0),h ′(x )=e x-λxx e x,令ω(x )=e x-λx ,则ω′(x )=e x-λ, 由x >0,得e x >1,①λ≤1时,ω′(x )>0,ω(x )递增, 故h ′(x )>0,h (x )递增,不成立;②λ>1时,令ω′(x )=0,解得:x =ln λ, 故ω(x )在(0,ln λ)递减,在(ln λ,+∞)递增, ∴ω(x )≥ω(ln λ)=λ-λln λ,令m (λ)=λ-λln λ(λ>1), 则m ′(λ)=-ln λ<0,故m (λ)递减, 又m (e)=0,若λ≤e,则m (λ)≥0,ω(x )≥0,h (x )递增,不成立, 若λ>e ,则m (λ)<0,函数h (x )有增有减,满足题意, 故λ>e ;(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立, 即ln xex -a (x -1)≤0在(0,1]恒成立, 令F (x )=ln xe x -a (x -1),x ∈(0,1],F (1)=0,F ′(x )=1x -ln x e x-a ,F ′(1)=1e-a , ①F ′(1)≤0时,a ≥1e,F ′(x )≤1x -ln x -ex -1ex递减,而F ′(1)=0,故F ′(x )≥0,F (x )递增,F (x )≤F (1)=0,成立,②F ′(1)>0时,则必存在x 0,使得F ′(x )>0,F (x )递增,F (x )<F (1)=0不成立,故a ≥1e.【例4】 设函数f (x )=ax 2-a -ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>1x-e 1-x在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).[解] (1)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0,有x =12a.此时,当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)令g (x )=1x -1ex -1,s (x )=e x -1-x ,则s ′(x )=ex -1-1.而当x >1时,s ′(x )>0,所以s (x )在区间(1,+∞)内单调递增. 又由s (1)=0,有s (x )>0, 从而当x >1时,g (x )>0.当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1.由(1)有f ⎝⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立. 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1).当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0. 因此,h (x )在区间(1,+∞)内单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0, 即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞.[点评] 综合构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.。
2018届高考数学二轮复习专题八选做题课件(12张)
(β 为参数)上,对应参数分别为β =α 与
(2)将M到坐标原点的距离d表示为α 的函数,并判断M的轨迹是否过坐标原点.
考点训练
【考点二:不等式选讲】 (1)均值不等式的应用:a+b≥2 ������������(a>0,b>0) (2)利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c 证明不等式的基本方法:比较法、综合法、分析法 11.设函数 f(x)=|2x+1|-|x-4|. (1)解不等式 f(x)>2; (2)求函数 y=f(x)的最小值.
1 2 ������ +1 ������2 = 3 − 2������1 把点 A 的坐标代入圆 C 的方程得 m2=1,则 m=± 1. ������ 2 +1
������ +1
|������ |
������1 =
������ +1
������ +1
高考数学二轮复习练习:专项限时集训8 函数最值、恒成立及存在性问题 含答案
专项限时集训(八) 函数最值、恒成立及存在性问题(限时:60分钟)1.(本小题满分14分)(镇江市2019届高三上学期期末)已知函数f (x )=x ln x ,g (x )=λ(x 2-1)(λ为常数).(1)若函数y =f (x )与函数y =g (x )在x =1处有相同的切线,求实数λ的值; (2)若λ=12,且x ≥1,证明:f (x )≤g (x );(3)若对任意x ∈[1,+∞),不等式f (x )≤g (x )恒成立,求实数λ的取值范围. [解](1)f ′(x )=ln x +1,则f ′(1)=1且f (1)=0. 所以函数y =f (x )在x =1处的切线方程为:y =x -1, 从而g ′(x )=2λx ,g ′(1)=2λ=1,即λ=12.2分(2)证明:由题意知:设函数h (x )=x ln x -12(x 2-1),则h ′(x )=ln x +1-x ,设p (x )=ln x +1-x ,从而p ′(x )=1x-1≤0对任意x ∈[1,+∞)恒成立,所以p (x )=ln x +1-x ≤p (1)=0,即h ′(x )≤0, 因此函数h (x )=x ln x -12(x 2-1)在[1,+∞)上单调递减,即h (x )≤h (1)=0,所以当x ≥1时,f (x )≤g (x )成立. 6分(3)设函数H (x )=x ln x -λ()x 2-1,从而对任意x ∈[1,+∞),不等式H (x )≤0=H (1)恒成立. 又H ′(x )=ln x +1-2λx ,当H ′(x )=ln x +1-2λx ≤0,即ln x +1x≤2λ恒成立时,函数H (x )单调递减.设r (x )=ln x +1x ,则r ′(x )=-ln x x2≤0, 所以r (x )max =r (1)=1,即1≤2λ⇒λ≥12,符合题意;当λ≤0时,H ′(x )=ln x +1-2λx ≥0恒成立,此时函数H (x )单调递增. 于是,不等式H (x )≥H (1)=0对任意x ∈[1,+∞)恒成立,不符合题意;当0<λ<12时,设q (x )=H ′(x )=ln x +1-2λx ,则q ′(x )=1x -2λ=0⇒x =12λ>1,当x ∈⎝ ⎛⎭⎪⎫1,12λ时,q ′(x )=1x -2λ>0,此时q (x )=H ′(x )=ln x +1-2λx 单调递增,所以H ′(x )=ln x +1-2λx >H ′(1)=1-2λ>0, 故当x ∈⎝ ⎛⎭⎪⎫1,12λ时,函数H (x )单调递增.于是当x ∈⎝ ⎛⎭⎪⎫1,12λ时,H (x )>0成立,不符合题意; 综上所述,实数λ的取值范围为λ≥12.14分2.(本小题满分14分)已知函数f (x )=a ln x -bx 3,a ,b 为实数,b ≠0,e 为自然对数的底数,e≈2.71828.(1)当a <0,b =-1时,设函数f (x )的最小值为g (a ),求g (a )的最大值; (2)若关于x 的方程f (x )=0在区间(1,e]上有两个不同的实数解,求a b的取值范围.【导学号:56394114】[解](1)b =-1时,f (x )=a ln x +x 3,则f ′(x )=a +3x 3x,令f ′(x )=0,解得:x =3-a3,∵a <0,∴3-a3>0, x ,f ′(x ),f (x )的变化如下:故g (a )=f ⎝⎛⎭⎪⎫3-a 3=a 3ln ⎝ ⎛⎭⎪⎫-a 3-a3, 令t (x )=-x ln x +x ,则t ′(x )=-ln x ,令t ′(x )=0,解得:x =1, 且x =1时,t (x )有最大值1, 故g (a )的最大值是1,此时a =-3;8分(2)由题意得:方程a ln x -bx 3=0在区间(1,e]上有2个不同的实数根,故a b =x 3ln x在区间(1,e]上有2个不同实数根, 即函数y 1=a b 的图象与函数m (x )=x 3ln x 的图象有2个不同的交点,∵m ′(x )=x 2 3ln x -1 ln x 2,令m ′(x )=0,得:x =3e , x ,m ′(x ),m (x )的变化如下:∴x ∈(1,3e)时,m (x )∈(3e ,+∞),x ∈(3e ,e]时,m (x )∈(3e ,e 3], 故a ,b 满足的关系式是3e <a b≤e 3,即a b的范围是(3e ,e 3].14分3.(本小题满分14分)(江苏省镇江市丹阳高中2019届高三下学期期中)已知函数f (x )=x -1x,(1)函数F (x )=f (e x)-k ⎝ ⎛⎭⎪⎫x +x 36,其中k 为实数, ①求F ′(0)的值;②对∀x ∈(0,1),有F (x )>0,求k 的最大值;(2)若g (x )=x 2+2ln xa(a 为正实数),试求函数f (x )与g (x )在其公共点处是否存在公切线,若存在,求出符合条件的a 的个数,若不存在,请说明理由. [解](1)由F (x )=e x-1e x -k ⎝ ⎛⎭⎪⎫x +x 36得F ′(x )=e x+1e x -k ⎝ ⎛⎭⎪⎫1+x 22,①F ′(0)=2-k ,②记h (x )=F ′(x ),则h ′(x )=e x-1ex -kx ,记m (x )=h ′(x ),则m ′(x )=e x +1e x -k ,当x ∈(0,1)时,e x+1e x ∈⎝ ⎛⎭⎪⎫2,e +1e .3分(ⅰ)当k ≤2时,m ′(x )>2-k ≥0,x ∈(0,1),即m (x )在(0,1)上是增函数, 又m (0)=0,则h ′(x )>0,x ∈(0,1),即h (x )在(0,1)上是增函数,又F ′(0)=2-k ≥0, 则F ′(x )>0,x ∈(0,1),即F (x )在(0,1)上是增函数,故F (x )>F (0)=0,x ∈(0,1). (ⅱ)当k >2时,则存在x 0∈(0,1),使得m ′(x )在(0,x 0)小于0,即m (x )在(0,x 0)上是减函数,则h ′(x )<0,x ∈(0,x 0), 即h (x )在(0,x 0)上是减函数,又F ′(0)=2-k <0, 则F ′(x )<0,x ∈(0,x 0),又F ′(0)=2-k <0, 即F (x )在(0,x 0)上是减函数, 故F (x )<F (0)=0,x ∈(0,x 0),矛盾. 故k 的最大值为2.8分(2)设函数f (x )与g (x )在其公共点x =x 1处存在公切线,则⎩⎨⎧x 1-1x 1=x 21+2ln x 1a, ①1+1x 21=2x 1+2x 1a , ②由②得(2x 1-a )(x 21+1)=0,即x 1=a2,代入①得8ln a -8ln2-a 2+8=0,记G (a )=8ln a -8ln2-a 2+8,则G ′(a )=8a-2a ,得G (a )在(0,2)上是增函数,(2,+∞)上是减函数, 又G (2)=4>0,G (4)=8ln2-8<0,G ⎝ ⎛⎭⎪⎫2e =-4e 2<0, 得符合条件的a 的个数为2.(未证明小于0的扣2分)14分4.(本小题满分16分)(无锡市2019届高三上学期期末)已知f (x )=x 2+mx +1(m ∈R ),g (x )=e x.(1)当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数,求实数m 的取值范围; (2)若m ∈(-1,0),设函数G (x )=f xg x ,H (x )=-14x +54,求证:对任意x 1,x 2∈[1,1-m ],G (x 1)<H (x 2)恒成立.[解](1)∵F (x )=x 2+mx +1-e x ,∴F ′(x )=2x +m -e x. ∵当x ∈[0,2]时,F (x )=f (x )-g (x )为增函数, ∴F ′(x )≥0即2x +m -e x≥0在[0,2]上恒成立, 即m ≥e x-2x 在[0,2]上恒成立. 令h (x )=e x-2x ,x ∈[0,2],则h ′(x )=e x-2,令h ′(x )=0,则x =ln2.∴h (x )在[0,ln2]上单调递减,在[ln2,2]上单调递增. ∵h (0)=1,h (2)=e 2-4>1, ∴h (x )max =h (2)=e 2-4, ∴m ≥e 2-4.6分(2)证明:G (x )=x 2+mx +1ex,则G ′(x )=-x 2+ 2-m x +m -1e x =- x -1 [x - 1-m ]e x. 要证任给x 1,x 2∈[1,1-m ],G (x 1)≤H (x 2)恒成立,即证G (x )max ≤H (x )min , ∵x ∈[1,1-m ],∴G (x )在[1,1-m ]上单调递增,G (x )max =G (1-m )=2-me 1-m ,∵H (x )在[1,1-m ]上单调递减,H (x )min =H (1-m )=-14(1-m )+54.10分要证G (x )max ≤H (x )min ,即证2-m e 1-m ≤-14(1-m )+54,即证4(2-m )≤e1-m[5-(1-m )].令1-m =t ,则t ∈(1,2).设r (x )=e x(5-x )-4(x +1),x ∈[1,2],即r (x )=5e x-x e x-4x -4.r ′(x )=(4-x )e x -4≥2e x -4>0,∴r (x )=e x(5-x )-4(x +1)在[1,2]上单调递增, ∵r (1)=4e -8>0,∴e x(5-x )≥4(x +1),从而有-14(1-m )+54≥2-m e ,即当x ∈[1,1-m ]时,G (x )max ≤H (x )min 成立.16分5.(本小题满分16分)(苏北四市(徐州、淮安、连云港、宿迁)2019届高三上学期期末)已知函数f (x )=x 22e-ax ,g (x )=ln x -ax ,a ∈R .(1)解关于x (x ∈R )的不等式f (x )≤0; (2)证明:f (x )≥g (x );(3)是否存在常数a ,b ,使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立?若存在,求出a ,b 的值;若不存在,请说明理由.【导学号:56394115】[解](1)当a =0时,f (x )=x 22e,所以f (x )≤0的解集为{0};当a ≠0时,f (x )=x ⎝⎛⎭⎪⎫x 2e -a , 若a >0,则f (x )≤0的解集为[0,2e a ]. 若a <0,则f (x )≤0的解集为[2e a,0]. 综上所述,当a =0时,f (x )≤0的解集为{0};当a >0时,f (x )≤0的解集为[0,2e a ]; 当a <0时,f (x )≤0的解集为[2e a,0].4分(2)证明:设h (x )=f (x )-g (x )=x 22e -ln x ,则h ′(x )=x e -1x =x 2-ee x.令h ′(x )=0,得x =e ,列表如下:所以函数h (x )所以h (x )=x 22e-ln x ≥0,即f (x )≥g (x ).8分(3)假设存在常数a ,b 使得f (x )≥ax +b ≥g (x )对任意的x >0恒成立, 即x 22e≥2ax +b ≥ln x 对任意的x >0恒成立. 而当x =e 时,ln x =x 22e =12,所以12≥2a e +b ≥12,所以2a e +b =12,则b =12-2a e ,所以x 22e -2ax -b =x 22e -2ax +2a e -12≥0(*)恒成立,①当a ≤0时,2a e -12<0,所以(*)式在(0,+∞)上不恒成立;②当a >0时,则4a 2-2e (2a e -12)≤0,即⎝ ⎛⎭⎪⎫2a -1e 2≤0,所以a =12e,则b =-12. 令φ(x )=ln x -1ex +12,则φ′(x )=e -x e x,令φ′(x )=0,得x =e ,当0<x <e 时,φ′(x )>0,φ(x )在(0,e)上单调递增; 当x >e 时,φ′(x )<0,φ(x )在(e ,+∞)上单调递减. 所以φ(x )的最大值为φ(e)=0.所以ln x -1ex +12≤0恒成立.所以存在a =12e,b =-12符合题意.16分6.(本小题满分16分)(江苏省南京市、盐城市2019届高三第一次模拟)设函数f (x )=ln x ,g (x )=ax +a -1x-3(a ∈R ). (1)当a =2时,解关于x 的方程g (e x)=0(其中e 为自然对数的底数);(2)求函数φ(x )=f (x )+g (x )的单调增区间;(3)当a =1时,记h (x )=f (x )·g (x ),是否存在整数λ,使得关于x 的不等式2λ≥h (x )有解?若存在,请求出λ的最小值:若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986)[解](1)当a =2时,方程g (e x )=0即为2e x+1e x -3=0,去分母,得2(e x )2-3e x +1=0,解得e x =1或e x=12,故所求方程的根为x =0或x =-ln2. 2分(2)因为φ(x )=f (x )+g (x )=ln x +ax +a -1x-3(x >0), 所以φ′(x )=1x +a -a -1x 2=ax 2+x - a -1 x2= ax - a -1 x +1x2(x >0), ①当a =0时,由φ′(x )>0,解得x >0; ②当a >1时,由φ′(x )>0,解得x >a -1a; ③当0<a <1时,由φ′(x )>0,解得x >0; ④当a =1时,由φ′(x )>0,解得x >0; ⑤当a <0时,由φ′(x )>0,解得0<x <a -1a . 综上所述,当a <0时,φ(x )的增区间为⎝⎛⎭⎪⎫0,a -1a ; 当0≤a ≤1时,φ(x )的增区间为(0,+∞);a >1时,φ(x )的增区间为⎝⎛⎭⎪⎫a -1a ,+∞.6分(3)法一:当a =1时,f (x )=ln x ,g (x )=x -3,h (x )=(x -3)ln x ,所以h ′(x )=ln x +1-3x 单调递增,h ′⎝ ⎛⎭⎪⎫32=ln 32+1-2<0,h ′(2)=ln2+1-32>0, 所以存在唯一x 0∈⎝ ⎛⎭⎪⎫32,2,使得h ′(x 0)=0,即ln x 0+1-3x 0=0,当x ∈(0,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以h (x )min =h (x 0)=(x 0-3)ln x 0=(x 0-3)⎝ ⎛⎭⎪⎫3x 0-1=- x 0-3 2x 0=6-⎝⎛⎭⎪⎫x 0+9x 0,记函数r (x )=6-⎝ ⎛⎭⎪⎫x +9x ,则r (x )在⎝ ⎛⎭⎪⎫32,2上单调递增,所以r ⎝ ⎛⎭⎪⎫32<h (x 0)<r (2),即h (x 0)∈⎝ ⎛⎭⎪⎫-32,-12,由2λ≥-32,且λ为整数,得λ≥0,所以存在整数λ满足题意,且λ的最小值为0. 16分法二:当a =1时,f (x )=ln x ,g (x )=x -3, 所以h (x )=(x -3)ln x ,由h (1)=0得,当λ=0时,不等式2λ≥h (x )有解,下证:当λ≤-1时,h (x )>2λ恒成立,即证(x -3)ln x >-2恒成立. 显然当x ∈(0,1]∪[3,+∞)时,不等式恒成立, 只需证明当x ∈(1,3)时,(x -3)ln x >-2恒成立. 即证明ln x +2x -3<0.令m (x )=ln x +2x -3, 所以m ′(x )=1x -2 x -3 2=x 2-8x +9x x -3 2,由m ′(x )=0,得x =4-7,当x ∈(1,4-7)时,m ′(x )>0;当x ∈(4-7,3)时,m ′(x )<0; 所以m (x )max =m (4-7)=ln(4-7)-7+13<ln(4-2)-2+13=ln2-1<0. 所以当λ≤-1时,h (x )>2λ恒成立.综上所述,存在整数λ满足题意,且λ的最小值为0. 16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点八 函数最值、恒成立及存在性问题
(对应学生用书第75页)
恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.
F (x )>a :⎩⎪⎨⎪⎧ 恒成立⇔f x min >a 有解⇔f x max >a
无解⇔f x max ≤a
具体方法为将已知恒成立或存在性的不等式或等式由等价原理把参数和变量分离开,转化为一元已知函数的最值问题处理,关键是搞清楚哪个是变量哪个是参数,一般遵循“知道谁的范围,谁是变量;求谁的范围,谁是参数”的原则.参变分离后虽然转化为一个已知函数的最值问题,但是有些函数解析式复杂,利用导数知识无法完成,或者是不易参变分离,故可利用构造函数法.
(1)若a >0,f (x )≥0对一切x ∈R 恒成立,求a 的最大值;
(2)设g (x )=f (x )+a e x ,A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是曲线y =g (x )上任意两点,若对任意的a ≤-1,直线AB 的斜率恒大于常数m ,求m 的取值范围;
(3)是否存在正整数a ,使得1n +3n +…+(2n -1)n <e e -1
(an )n 对一切正整数n 都成立?若存在,求a 的最小值;若不存在,请说明理由.
[解] (1)∵f (x )=e x -a (x +1),∴f ′(x )=e x -a ,
∵a >0,f ′(x )=e x -a =0的解为x =ln a .
∴f (x )min =f (ln a )=a -a (ln a +1)=-a ln a .
∵f (x )≥0对一切x ∈R 恒成立,∴-a ln a ≥0,∴a ln a ≤0,∴a max =1.
(2)∵f (x )=e x -a (x +1),
∴g (x )=f (x )+a e =e x +a e
-ax -a . ∵a ≤-1,直线AB 的斜率恒大于常数m ,
∴g ′(x )=e x -a e x -a ≥2e x ·⎝ ⎛⎭⎪⎫
-a e x -a =-a +2-a =m (a ≤-1),解得m ≤3,
∴实数m 的取值范围是(-∞,3].
(3)设t (x )=e x -x -1,则t ′(x )=e x
-1,令t ′(x )=0得:x =0.
在x <0时t ′(x )<0,f (x )递减;在x >0时t ′(x )>0,f (x )递增.
∴t (x )最小值为t (0)=0,故e x
≥x +1, 取x =-i 2n ,i =1,3,…,2n -1,得1-i 2n ≤e-i 2n ,即⎝ ⎛⎭
⎪⎫2n -i 2n n ≤e-i 2, 累加得
⎝ ⎛⎭⎪⎫12n n +⎝ ⎛⎭⎪⎫32n n +…+⎝ ⎛⎭
⎪⎫2n -12n n <e -2n -12+e -2n -32+…+e -12=e -12 1-e -n 1-e -1<e e -1
. ∴1n +3n +…+(2n -1)n <e e -1
·(2n )n , 故存在正整数a =2.使得1n +3n +…+(2n -1)n <e e -1
·(an )n . 【例2】 (2017·江苏省无锡市高考数学一模)已知函数f (x )=(x +1)ln x -ax +a (a 为正实数,且为常数).
(1)若f (x )在(0,+∞)上单调递增,求a 的取值范围;
(2)若不等式(x -1)f (x )≥0恒成立,求a 的取值范围.
[解] (1)f (x )=(x +1)ln x -ax +a ,f ′(x )=ln x +1x
+1-a , 若f (x )在(0,+∞)上单调递增,则a ≤ln x +1x
+1在(0,+∞)恒成立(a >0), 令g (x )=ln x +1x +1(x >0),g ′(x )=x -1x
2, 令g ′(x )>0,解得:x >1,令g ′(x )<0,解得:0<x <1,
故g (x )在(0,1)递减,在(1,+∞)递增,
故g (x )min =g (1)=2,
故0<a ≤2;
(2)若不等式(x -1)f (x )≥0恒成立,即(x -1)[(x +1)ln x -ax +a ]≥0恒成立, ①x ≥1时,只需a ≤(x +1)ln x 恒成立,
令m (x )=(x +1)ln x (x ≥1),
则m ′(x )=ln x +1x
+1, 由(1)得:m ′(x )≥2,
故m (x )在[1,+∞)递增,m (x )≥m (1)=0,
故a ≤0,而a 为正实数,故a ≤0不合题意;
②0<x <1时,只需a ≥(x +1)ln x ,
令n (x )=(x +1)ln x (0<x <1),
则n ′(x )=ln x +1x
+1,由(1)知n ′(x )在(0,1)递减, 故n ′(x )>n ′(1)=2,
故n (x )在(0,1)递增,故n (x )<n (1)=0,
故a ≥0,而a 为正实数,故a >0.
【例3】 (2017·江苏省淮安市高考数学二模)已知函数f (x )=1e x ,g (x )=ln x ,其中e 为自然对数的底数.
(1)求函数y =f (x )g (x )在x =1处的切线方程;
(2)若存在x 1,x 2(x 1≠x 2),使得g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)]成立,其中λ为常数,求证:λ>e ;
(3)若对任意的x ∈(0,1],不等式f (x )g (x )≤a (x -1)恒成立,求实数a 的取值范围.
[解] (1)y =f (x )g (x )=ln x e x ,y ′=1x -ln x e x , x =1时,y =0,y ′=1e ,
故切线方程是:y =1e x -1e
; (2)证明:由g (x 1)-g (x 2)=λ[f (x 2)-f (x 1)],
得:g (x 1)+λf (x 1)=g (x 2)+λf (x 2),
令h (x )=g (x )+λf (x )=ln x +λe x (x >0), λ,
故ω(x )在(0,ln λ)递减,在(ln λ,+∞)递增,
∴ω(x )≥ω(ln λ)=λ-λln λ,
令m (λ)=λ-λln λ(λ>1),
则m ′(λ)=-ln λ<0,故m (λ)递减,
又m (e)=0,
若λ≤e,则m (λ)≥0,ω(x )≥0, x ,其中a ∈R .
(1)讨论f (x )的单调性;
(2)确定a 的所有可能取值,使得f (x )>1x
-e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).
[解] (1)f ′(x )=2ax -1x =2ax 2
-1x
(x >0).
当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.
当a >0时,由f ′(x )=0,有x =
12a . 此时,当x ∈⎝ ⎛⎭⎪⎫0,
12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭
⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)令g (x )=1x -1e
x -1,s (x )=e x -1-x , 则s ′(x )=e x -1-1.
而当x >1时,s ′(x )>0,
所以s (x )在区间(1,+∞)内单调递增.
又由s (1)=0,有s (x )>0,
从而当x >1时,g (x )>0.
当a ≤0,x >1时,f (x )=a (x 2
-1)-ln x <0.
故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0.
当0<a <12时,12a >1. 由(1)有f ⎝ ⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭
⎪⎫12a >0, 所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.
当a ≥12
时,令h (x )=f (x )-g (x )(x ≥1). 当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x >x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x
2>0. 因此,h (x )在区间(1,+∞)内单调递增.
又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,
即f (x )>g (x )恒成立. 综上,a ∈⎣⎢⎡⎭
⎪⎫12,+∞. [点评] 综合构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.。