2016世界初一奥数试题
初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
七年级奥数测试卷(七份及答案)
七年级奥数测试卷一 姓名 班别一.选择题1.a --是( )(A )正数 (B )负数 (C )非正数 (D )0 2.在下面的数轴上(图1)表示数(—2)—(—5)的点是 ( )(A )M (B )N . (C )P. (D )Q. 3.49914991+-----的值的负倒数是( )(A )314. (B )133-(C )1. (D )—1 4.)9187()8176()7165()6154()5143(+++++++++)10198(-+ ( ) (A )0. (B )5.65. (C )6.05 (D )5.855.22)34(34⨯--⨯-等于( )(A )0 (B )72 (C )—180 (D )1086.x 的54与31的差是( )(A )x x 3154- (B )3154-x (C ))31(54-x (D )345+x 7.n 是整数,那么被3整除并且商恰为n 的那个数是( )(A )3n (B )3+n (C )n 3 (D )3n8.如果2:3:=y x 并且273=+y x ,则y x ,中较小的是(A )3 (B )6(C )9(D )129.20°角的余角的141等于( )(A )ο)731( (B )ο)7311( (C )ο)767( (D )5°10.7)71()7(71⨯-÷-⨯等于( )(A )1 (B )49 (C )—7 (D )7二、A 组填空题11.绝对值比2大并且比6小的整数共有__________________个。
12.在一次英语考试中,某八位同学的成绩分别是93,99,89,91,87.81,100,95,则他们的平均分数是__________________。
13.||||1992-1993|-1994|-1995|-1996|=__________________。
14.数:-1.1,-1.01,-1.001,-1.0101,-1.00101中最大的一个数与最小的一个数的比值是__________。
七年级数学奥数竞赛题试卷
一、选择题(每题5分,共25分)1. 下列各数中,哪个数不是正数?A. 0.01B. -0.5C. 3D. -22. 下列各数中,哪个数是整数?A. 2.5B. 3.14159C. 4/3D. -33. 下列哪个运算结果是-8?A. (-2) × (-4)B. (-2) ÷ (-4)C. (-2) + (-4)D. (-2) - (-4)4. 下列哪个图形是正方形?A. 边长为2的正方形B. 边长为3的矩形C. 对角线相等的菱形D. 四边相等的梯形5. 下列哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 1 = 5C. 4x - 2 = 8D. 5x + 1 = 9二、填空题(每题5分,共25分)6. 一个数加上它的倒数等于7,这个数是______。
7. 0.001乘以100等于______。
8. 一个长方形的长是12cm,宽是8cm,它的面积是______平方厘米。
9. 下列数中,最大的偶数是______。
10. 一个分数的分子是5,分母是12,这个分数的值是______。
三、解答题(每题15分,共45分)11. (15分)一个等腰三角形的底边长是8cm,腰长是10cm,求这个三角形的面积。
12. (15分)小明骑自行车从家出发去图书馆,速度是每小时15km。
图书馆距离小明家6km,小明到达图书馆需要多少时间?13. (15分)一个长方体的长、宽、高分别是3cm、2cm、4cm,求这个长方体的体积。
四、附加题(共25分)14. (10分)一个数的平方根是5,求这个数。
15. (10分)一个等腰三角形的底边长是6cm,腰长是8cm,求这个三角形的周长。
答案:一、选择题1. B2. D3. C4. A5. C二、填空题6. 67. 0.18. 969. 9810. 5/12三、解答题11. 面积 = (底边长× 高) ÷ 2 = (8cm × 10cm) ÷ 2 = 40cm²12. 时间 = 距离÷ 速度= 6km ÷ 15km/h = 0.4小时13. 体积 = 长× 宽× 高= 3cm × 2cm × 4cm = 24cm³四、附加题14. 这个数是25,因为5² = 25。
初一奥数练习题及答案解析
初一奥数练习题及答案解析【性质与概念】几何之父欧几里得曾定义角为在平面中两条不平行的直线的相对斜度。
普罗克鲁斯认为角可能是一种特质、一种可量化的量、或是一种关系。
欧德谟认为角是相对一直线的偏差,安提阿的卡布斯认为角是二条相交直线之间的空间。
欧几里得认为角是一种关系,不过他对直角、锐角或钝角的定义都是量化的。
正角和负角以上角的定义均未考虑数值为负的角。
不过在一些应用时,会将角的数值加上正负号,以标明是相对参考物不同方向的旋转。
在二维的笛卡儿坐标系中,角一般是以x轴的正向为基准,若往y轴的正向旋转,则其角为正角,若往y轴的负向旋转,则其角为负角。
若二维的笛卡儿坐标系也是x轴朝右,y轴朝上,则逆时针的旋转对应正角,顺时针的旋转对应负角。
一般而言,?θ角和一圈减去θ所得的角等效。
例如? 45°和360° ? 45°(=315°)等效,但这只适用在用角表示相对位置,不是旋转概念时。
旋转? 45°和旋转315°是不同的。
在三维的几何中,顺时针及逆时针没有绝对的定义,因此定义正角及负角时均需列出其参考的基准,一般会以一个通过角的顶点,和角所在平面垂直的向量为基准。
在导航时,导向是以北方为基准,正向表示顺时针,因此导向45°对应东北方。
导向没有负值,西北方对应的导向为315°。
角的静态定义具有公共端点的两条射线组成的图形叫做角(angle)。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
角的动态定义一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边。
角的符号:∠角的度量方法用量角器的中心对准角的定点,量角器的零刻度线对齐角的一边,角的另一边所指的刻度就是角的大小。
角的性质对称性:角具有对称性,对称轴是角的角平分线所在的直线。
角的定理相等:角平分线上的一点到角两边的距离相等角平分线反向延长线上的点到角两边反向延长线的距离相等【练习题】1、下列关于角的说法正确的是( )A.两条射线组成的图形叫做角B.延长一个角的两边;C.角的两边是射线,所以角不可以度量D.角的大小与这个角的两边长短无关2、下列关于平角、周角的说法正确的是( )A.平角是一条直线B.周角是一条射线C.反向延长射线OA,就形成一个平角D.两个锐角的和不一定小于平角3、25.72°=______°______′_______″4、15°48′36″=_______°5、3600″=______′=______°【参考答案】1.D2.C3.25 43 124.15.815.60 1。
初一数学奥林匹克竞赛题(含标准答案)
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD=S△CND+S△CNP+S△DNP.因此只需证明S△AND=S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP=S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP=S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,②AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m=19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,②BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
2016年世界少年奥林匹克数学竞赛(中国区)选拔赛地方晋级赛七年级试题A卷
答
要
不
∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕
参赛证号
绝密★启用前
世界少年奥林匹克数学竞赛(中国区)选拔赛地方晋级赛
选手须知:
(2016 年 12 月)
1、本卷共三部分,第一部分:填空题,共计 64 分;第二部分:计算题,共计 20 分;第三部分:
解答题,共计 66 分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
题号
一
二
三
总分
核分员
得分
七年级(A 卷)
(本试卷满分 150 分 ,考试时间 120 分钟 )
一、填空题(共 8 题,每题 8 分,共计 64 分)
密
市
ab 0
c
图1
4、定义 a△b=ab+2a+b,若 5△x=x△5,则 x 的值是___
图2 __ 。
abc 5 、 三 个 有 理 数 a, b, c 之 积 是 正 数 , 其 和 是 负 数 , 当 x = + + 时 , 则
abc
x101 − 2016x + 1=
。
6、A、B、C、D、E、F 六足球队进行单循环比赛,当比赛到某一天时,统计出 A、B、C、D、E 五队
得分 评卷人
1、当 x=-3 时, ax3 − bx + 3 的值为 5,则当 x=3 时, ax3 − bx + 3 的值为
。
2、把 14 个棱长为 2 的正方体,在地面上堆叠成如图 1 所示的立体,然后将露出的表面部分染成绿
初一奥林匹克数学竞赛训练试题集(01)word版含答案
初一奥林匹克数学竞赛训练试题集(01)word版含答案初一奥林匹克数学竞赛训练试题集(01)一、选择题(共8小题,每小题4分,满分32分)1.设a、b为正整数(a>b),p是a、b的最大公约数,q 是a、b的最小公倍数,则p,q,a,b的大小关系是()A.p≥q≥a>bB.q≥a>b≥pC.q≥p≥a>bD.p≥a>b≥q2.下列四个等式:ab=0,a=0,a+b=0中,可以断定a必等于的式子共有()A.3个B.2个C.1个3.a为有理数,下列说法中,正确的是()A.B.22(a+)是正数a+是正数C.D.22﹣(a﹣)是﹣a+的值不负数4.a,b,c均为有理数.在下列:甲:若a>b,则ac>bc.乙:若ac>bc,则a>b.两个结论中()A.甲、乙都真B.甲真,乙不真C.甲不真,___D.甲、乙都不真5.若a+b=3,ab=﹣1,则a+b的值是()A.24B.36C.27D.36.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定7.两个10次多项式的和是()A.2次多项式B.1次多项式C.100次多项式D.不高于10次的多项式8.在1992个自然数1,2,3,…,1991,1992的每一个数前面添加“+”或“﹣”号,则其代数和一定是()A.奇数B.偶数C.负整数D.非负整数二、填空题(共8小题,每小题5分,满分40分)9.现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是_________岁.3310.1.2345+0.7655+2.469×0.7655=_________.3.21011.已知方程组abc=_________.1212.若,则=_________.1/413.已知多项式2x﹣3x+ax+7x+b能被x+x﹣2整除,则的值是_________.214.满足的值中,绝对值不超过11的哪些整数之和等于_________.15.若三个连续偶数的和等于1992,则这三个偶数中最大的一个与最小的一个的平方差等于_________.642.(4分)下列四个等式:$a^2+b^2=0$,$ab=0$,$a=0$,$a+b=0$中,可以断定$a$必等于的式子共有()A.3个。
【精品】2016奥林匹克竞赛(中国区)选拔赛试 七年级数学试题(附答案)
2016中国区选拔赛考生须知:本卷考试时间90分钟,共120分,每题5分,考试期间,不得使用计算工具或手机。
七年级试题一、 选择题(共8题,每题5分,共40分)以下每题的四个选项中,仅有一个是正确的.请将表示正确答案的英文字母写在答题卷上1.从12110181614121+++++中删去两个加数后使余下的四个数之和恰好等于1,则删去的数是( )A .6141和 B .12141和 C .10161和D .10181和2.如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a b c d 、、、 ,且210d a -=,那么数轴的原点应是( ). A .A 点B .B 点C .C 点D .D 点 C3. 小颖按如图所示的程序输入一个正数x ,最后输出的结果为656,则满足条件的x 的不同值最多有 ( ) 个.A .1个B .2个C .3个D .4个4.关于x 的一元一次方程20062008201020122005200720092011x x x x----+=+的解( ).A .是一个大于1000的数B .是一个两位的自然数C .是一个大于0且小于2的数D .不存在5.在以下两个数串中:1,3,5,7,…,1991,1993,1995,1997,1999和1,4,7,10,…,1990,1993,1996,1999同时出现在这两个数串中的数的个数共有( )个.A .333B .334C .335D .3366.关于x 的不等式组错误!未找到引用源。
有四个整数解,则a 的取值范围是( ). A .﹣错误!未找到引用源。
<a ≤﹣错误!未找到引用源。
B .﹣错误!未找到引用源。
≤a <﹣错误!未找到引用源。
C .﹣错误!未找到引用源。
≤a ≤﹣错误!未找到引用源。
D .﹣错误!未找到引用源。
<a <﹣错误!未找到引用源。
7.设121220001999++=P ,121220012000++=Q ,则P 、Q 的大小关系是( ).A .P >QB .P <QC .P =QD .不能确定8.已知α∠与β∠互补,且βα∠>∠,那么α∠的余角不可能是( ).A .90α︒-∠B .90β︒∠-C .2βα∠-∠ D .1()2αβ∠+∠二、填空题(共20题,每题4分,共80分)9. |3a +b +5|+|2a -2b -2|=0,则2a 2-3ab 的值是____________.10. 一个角和它的补角的度数比为1﹕8,则这个角的余角的度数为_____________.11.已知p q 、都是质数,并且以x 为未知数的一元一次方程597px q +=的解是1x =,则pq 的值为________________.12. 323233342(0.6) 1.52253⎛⎫⎛⎫⎛⎫-⨯---⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=______________.13.如图, OM 平分∠AOC , ON 平分∠BOC , OT 平分∠AOB , 如果∠AOB 是∠COT 的6倍, 那么∠BON 是∠AOM 的_____________倍.T NMO CBA14. 设,,a b c 为正整数,且()()240aab a b a b b+++-+=,若a b >, ab 的最大值为_______________15.某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯道宽2米,其侧面如图所示,则购买地毯至少需要_____元16.一个非零自然数若能表示为两个非零自然数的平方差,则称这个自然数为“智慧数”,比如16=52-32,故16是一个“智慧数”,在自然数列中,从1到100中“智慧数”有 个.17.如图,∠CAB 和∠CBA 的平分线AO 与BO 相交于O ,过O 作OD ∥AC ,OE ∥BC ,若∠DOE =80°,则∠AOB = __________ °CEO18.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)根据这个规律探索可得,第100个点的坐标为 _____ .19.四十只脚的蜈蚣和三个头的龙在同一个笼中,共有26个头和298只脚,如果40只脚的蜈蚣只有一个头,那么三个头的龙有__________只脚20.把真分数7a化成小数后,在小数点后1994个数位上的数字和为8972,那么a =_____________21.已知正数a 、b 有下列命题:①若a =1,b =1,则1≤ab ; ②若25,21==b a ,则23≤ab ; ③若a =2,b =3,则25≤ab ; ④若a =1,b =5,则3≤ab . 根据以上几个命题所提供的信息,请猜想,若a =6,b =7,则≤ab__.22. 小明解方程21512ax x +=-+,去分母时方程左边的1没有乘以10,由此求得方程的解为x =4,方程正确的解为_______________.23. 已知实数a满足2014a a -=,那么22014a -的值是_________.24. 图中八条边的长度正好分别是1、2、3、4、5、6、7、8厘米.已知a =2厘米,b =4厘米,c =5厘米,则图形的面积为________.25.有一个三位数是8的倍数,把它的各位数字的顺序颠倒过来所得到的新三位数与原三位数的和恰好是1111,那么原来的三位数是26. 如图,把一张平行四边形纸片ABCD 沿BD 对折,使C 点落在E 处,BE 与AD 相交于点O ,若∠DBC =15°,则∠BOD =________.27. 一楼梯共有n 级台阶,规定每一步可以迈1级或2级或3级,设从地面到台阶的第n 级,不同的迈法为n a 种,当n =8时,8a = _____.28. 已知:c b a ,,三个数满足51,41,31=+=+=+a c ca c b bc b a ab ,则cabc ab abc++的值为_____________.三、解答题(共2题,每题10分,共20分) 29.已知 34580a b c d <,且2a c =-,若a b c d 、、、满足 63=++-----a c a c c a ,()21xb c +=,求()1x a c a c b +----=?30.某地区举办初中学生比赛,有A ,B ,C ,D 四所中学参加,选手中, A , B 两校共16名;B ,C 两校共 20名; C , D 两校共34名,并且各校选手人数的多少是按A ,B ,C ,D 中学的顺序选派的,试求各中学的选手人数.。
2016年世界少年奥数赛七年级海选赛试题及答案解析
世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛(2016年10月)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。
2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。
3、比赛时不能使用计算工具。
4、比赛完毕时试卷和草稿纸将被收回。
七年级试题(A卷)(本试卷满分120分,考试时间90分钟)一、填空题。
(每题5分,共计50分)1、用200千克花生可榨油25千克,如此计算,用15吨花生可以榨油吨。
2、把110厘米长的铁丝焊成一个长方体的框架,长是宽的两倍,宽是高的1.5倍。
则这个长方体的长厘米,宽厘米,高厘米。
3、某商品按20﹪的利润定价,然后按八八折出售,实际获得利润84元。
则商品的成本元。
4、某中学学生中83是男生,男生比女生少250人,则该中学有人。
5、若04312y x ,求yx 。
6、一项工程,如果单独做,甲、乙各需10天完成,丙需7.5天完成,现在三人合作,在做的过程中,甲外出1天,丙休息0.5天,结果一共用了天完成。
7、有五张牌,分别写着2、3、4、5、6,其中三张是反着的,从中任意取出一张,若为单数就是甲赢,若为双数就是乙赢,则赢的可能性大。
8、甲、乙两种酒精浓度分别为70﹪和50﹪,现在要配制65﹪的酒精3000克,应当从甲种酒精中取克,乙种酒精中取克。
9、在一个长为4厘米的正方体的前后、上下、左右各面的中心位置挖去一个底面半径为1厘米、高为1厘米的圆柱,则挖去后物体的表面积为。
(圆周率用3.14计算)10、|3-x ||2-x ||1x|的最小值是____。
二、计算题。
(每题6分,共计12分)11、211712111743322174112、102418141211三、解答题。
(第13题6分,第14题8分,第15题10分,第16题10分,第17题12分,第18题12分,共计58分)13、已知在数轴上,点A 与原点之间的距离是点A 与30所对应的点之间的距离的4倍,那么点A 所表示的数是多少?14、a 与b 互为相反数,且1,54|b -a |2ab abab a 求的值。
2016国际奥林匹克数学竞赛试题
2016国际奥林匹克数学竞赛试题2016年国际奥林匹克数学竞赛(IMO)是第57届IMO竞赛,于2016年7月12日至22日在阿塞拜疆的巴库举行。
本次竞赛共有来自115个国家的615名选手参加。
竞赛分为两天,每天有3道题目,选手需要在4.5小时内解决这些问题。
以下是2016年IMO的试题,以及对每道题目的简要分析。
第一天的试题:题目1:多项式的数量论问题给定一个正整数n,考虑所有形如a_1 x^1 + a_2 x^2 + ... + a_n x^n的多项式,其中a_i是正整数,x_i是1至n之间的整数。
设M(n)是所有这样的多项式,当两个多项式的对应系数成比例时,它们被认为是相同的。
求M(n)的表达式。
分析:这道题目涉及到多项式的数量论性质,特别是多项式的等价类问题。
解决这个问题需要对多项式的结构和等价类有一个深刻的理解,并且可能需要使用到组合数学和数论中的高级概念。
题目2:几何问题——圆与切线在平面上给定一个圆O和一个点A,不在圆上。
从点A出发,画一系列圆O的切线,每条切线与圆相交于两点,记为B_i和C_i(i=1,2,3,...)。
连接A与B_i和C_i,形成一系列三角形。
证明:所有这些三角形的外接圆的圆心都位于同一直线上。
分析:这道题目是典型的几何问题,涉及到圆的性质、切线的性质以及三角形的外接圆。
解决这个问题需要对几何图形的性质有深入的了解,并且可能需要运用到几何构造和证明技巧。
题目3:组合数学问题——排列与组合设有一个由10个不同的元素组成的集合,从这个集合中取出3个元素,形成一个三元组。
如果三元组中的元素可以按照一定的顺序排列,使得第一个元素大于第二个,第二个元素大于第三个,或者三个元素都相等,那么这个三元组被认为是有效的。
求所有有效三元组的数量。
分析:这道题目是组合数学中的问题,涉及到排列、组合以及条件概率的概念。
解决这个问题需要对组合数学的基本原理有清晰的理解,并且需要进行一定的计算。
初一的奥数题目30道
1、兄妹二人同时从家上学,哥哥每分钟走90米,妹妹每分钟走60米。
哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离学校180米处和妹妹相遇。
他们家离学校有多远?2、甲、乙两人骑自行车分别从A,B两地同时相向而行。
第一次两车在距B地7千米处相遇。
相遇后,两车继续向前行驶,当两车分别到达B,A两地后立即返回,返回时在距A地4千米处相遇。
A,B两地相距多少千米?3、龟兔赛跑,同时同地出发,全程20000米,乌龟每分钟爬行80米,兔子每分钟跑800米,兔子跑了一会儿就在途中睡觉,醒来后立刻以原速向前跑。
(1)若兔子不想输给乌龟,则它在途中多只能睡多少分钟?(2)如果兔子在途中要睡1.5小时(乌龟和兔子的速度保持不变),且兔子不输给乌龟,则路程至少为多少米?4、甲、乙、丙三个小分队都从A地到B地进行野外训练,上午6时,甲、乙两个小队一起从A地出发,甲队每小时走5千米,乙队每小时走4千米,丙队上午8时才从A地出发,傍晚6时,甲、丙两队同时到达B地。
那么丙队追上乙队的时间是什么时候?5、王明从A城步行到B城,同时刘洋从B城骑车到A城,1.2小时后两人相遇。
相遇后继续前进,刘洋到A城立即返回,在第一次相遇后45分钟又追上了王明,两人再继续前进,当刘洋到达B城后立即折回。
刘洋追上王明后两人多长时间再次相遇?6.在上、下行轨道上,两列火车相对开来,一列火车长182米,每秒行18米,另一列火车每秒行17米,两列火车错车而过用了10秒钟,求另一列火车长多少米?7.有两列火车,一列长140米,每秒行24米,另一列长230米,每秒行13米,现在两车相向而行,求这两列火车错车时从相遇到离开需几秒钟?8.快车长80米,慢车长70米,如果同向而行,快车车头接住慢车车尾后,又经过15秒才穿过;如果相向而行,两个车头相接后,又经过6秒可以相离,问两车每秒各行多少米?9.某列车通过360米长的第一个隧道用了24秒,接着通过216米长的隧道用了16秒,(1)求列车的长度和速度。
(完整版)初一数学奥林匹克竞赛题(含标准答案).doc
初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100 元,三年后负债600 元.求每人每年收入多少?S 的末四位数字的和是多少?4.一个人以 3 千米 / 小时的速度上坡,以 6 千米 / 小时的速度下坡,行程 12 千米共用了 3 小时 20 分钟,试求上坡与下坡的路程.5.求和:6.证明:质数 p 除以 30 所得的余数一定不是合数.8.若两个整数 x,y 使 x2 +xy+y2能被 9 整除,证明: x 和 y 能被 3 整除.9.如图 1-95 所示.在四边形 ABCD中,对角线 AC,BD的中点为 M,N,MN的延长线与 AB边交于 P 点.求证:△ PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000( 元) .所以 S 的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当 b≥ a> 0 或 b≤a<0 时,等式成立.4.设上坡路程为 x 千米,下坡路程为y 千米.依题意则有由②有 2x+y=20,③由①有 y=12-x .将之代入③得2x+12-x=20 .所以x=8( 千米 ) ,于是 y=4( 千米 ) .5.第 n 项为所以6.设 p=30q+r ,0≤r <30.因为 p 为质数,故 r ≠0,即 0< r <30.假设 r 为合数,由于 r < 30,所以 r 的最小质约数只可能为 2,3,5.再由 p=30q+r知,当 r 的最小质约数为 2,3,5 时, p 不是质数,矛盾.所以, r 一定不是合数.7.设由①式得 (2p-1)(2q-1)=mpq ,即(4-m)pq+1=2(p+q) .可知 m<4.由①, m> 0,且为整数,所以m=1,2,3.下面分别研究 p,q.(1)若 m=1时,有解得 p=1,q=1,与已知不符,舍去.(2)若 m=2时,有因为 2p-1=2q 或 2q-1=2p 都是不可能的,故m=2时无解.(3)若 m=3时,有解之得故p +q=8.8.因为 x2+xy+y2 =(x-y) 2+3xy.由题设, 9|(x 2+xy+y2) ,所以 3|(x 2+xy+y2) ,从而 3| (x-y) 2.因为 3 是质数,故 3|(x-y) .进而 9| (x-y) 2.由上式又可知,9|3xy,故 3|xy.所以 3|x 或 3| y.若 3|x,结合 3(x-y) ,便得 3|y;若 3|y,同理可得, 3|x.9.连结 AN,CN,如图 1-103 所示.因为 N是 BD的中点,所以上述两式相加另一方面,S△PCD=S△CND+ S△CNP+S△DNP.因此只需证明S△AND=S△CNP+ S△DNP.由于 M,N 分别为 AC, BD的中点,所以S△CNP=S△CPM-S△CMN=S△APM-S △AMN=S△ANP.又S△DNP=S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知 3x2-x=1 ,求 6x3+7x2-5x + 2000 的值.2.某商店出售的一种商品,每天卖出100 件,每件可获利 4 元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价 1 元,每天就少卖出 10 件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图 1-96 所示.已知 CB⊥AB,CE平分∠ BCD,DE平分∠ CDA,∠1+∠ 2=90°.求证: DA⊥ AB.4.已知方程组的解应为一个学生解题时把 c 抄错了,因此得到的解为求 a2+b2+ c2的值.5.求方程| xy|- |2x| +| y| =4 的整数解.6.王平买了年利率 7.11 %的三年期和年利率为 7.86 %的五年期国库券共 35000 元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为 47761 元,问王平买三年期与五年期国库券各多少? ( 一年期定期储蓄年利率为 5.22 % )7.对 k,m的哪些值,方程组至少有一组解?8.求不定方程 3x+ 4y+13z=57 的整数解.9.小王用 5 元钱买 40 个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20 分、8 分、3 分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式 =2x(3x 2-x)+3(3x 2 -x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利 4× 100 元,若每件提价 x 元,则每件商品获利 (4 + x) 元,但每天卖出为 (100-10x) 件.如果设每天获利为 y 元,则y=(4 + x)(100-10x)=400 + 100x-40x-10x 2=-10(x 2-6x +9) +90+ 400=-10(x-3) 2+490.所以当 x=3 时, y 最大 =490 元,即每件提价 3 元,每天获利最大,为 490 元.3.因为 CE平分∠ BCD,DE平分∠ ADC及∠ 1+∠ 2=90° ( 图 1-104) ,所以∠ ADC+∠ BCD=180°,所以AD∥BC.①又因为AB⊥ BC,②由①,② AB⊥AD.4.依题意有所以a2+b2 +c2=34.5.| x|| y|-2 |x|+|y|=4,即|x|( |y|-2)+( | y| -2)=2 ,所以 ( | x| +1)( |y|-2)=2 .因为| x|+ 1>0,且 x, y 都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x 元和 y 元,则因为y=35000-x ,所以 x(1 +0.0711 ×3)(1 +0.0522) 2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x + 48755-1.393x=47761 ,所以 0.0497x=994 ,所以 x=20000( 元) ,y=35000-20000=15000( 元) .7.因为(k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所6 / 18当 k=1,m≠4 时,①无解.所以, k≠1,m为任何实数,或k=1, m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m .原方程的通解为其中 n,m取任意整数值.9.设苹果、梨子、杏子分别买了x, y, z 个,则消去 y,得 12x-5z=180.它的解是 x=90-5t , z=180-12t .代入原方程,得 y=-230 + 17t .故 x=90-5t , y=-230+17t ,z=180-12t .x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有 1+2+3+4+5+6=21>20 个.初一奥数三1.解关于 x 的方程2.解方程其中 a+b+c≠0.3.求 (8x 3-6x 2+4x-7) 3(2x 5 -3) 2的展开式中各系数之和.4.液一桶,倒出8 升后用水灌,再倒出混合溶液 4 升,再用水灌,的度72%,求桶的容量.5.足 [-1.77x]=-2x 的自然数 x 共有几个?里 [x] 表示不超 x 的最大整数,例如 [-5.6]=-6 ,[3]=3 .6. P 是△ ABC内一点.求: P 到△ ABC三点的距离和与三角形周之比的取范.7.甲乙两人同从西两站相向步行,相会,甲比乙多行24 千米,甲 9 小到站,乙16 小到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,下去,最后得到19,1997,1999,原来的三个数能否是2, 2, 2?9.有 n 个数 x1, x2,⋯, x n,其中每一个不是 +1 就是 -1 ,且求: n 是 4 的倍数.解答:1.化得 6(a-1)x=3-6b+4ab ,当 a≠ 1 ,2.将原方程形由此可解得 x=a+b+c.3.当 x=1 , (8-6+4-7) 3(2-1) 2=1.即所求展开式中各系数之和1.依题意得去分母、化简得 7x2-300x+800=0,即 7x-20)(x-40)=0,5 .若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知 [-1.77x]=-2x,所以-2x=-2x+[0.23x],所以[0.23x]=0.又因为 x 为自然数,所以0≤ 0.23x <1,经试验,可知x 可取 1,2,3,4,共 4 个.6.如图 1- 105 所示.在△ PBC中有 BC< PB+PC,①延长 BP交 AC于 D.易证 PB+PC< AB+AC.②由①,②BC<PB+PC<AB+AC,③同理AC<PA+PC<AC+BC,④AB< PA+PB<AC+ AB.⑤③+④+⑤得 AB+ BC+CA<2(PA+PB+ PC)< 2(AB+ BC+CA).所以7.设甲步行速度为x 千米 / 小时,乙步行速度为y 千米 / 小时,则所求距离为(9x+16y) 千米.依题意得由①得 16y2 =9x2,③由②得 16y=24+9x,将之代入③得即(24 +9x) 2=(12x) 2.解之得于是所以两站距离为 9×8+16×6=168(千米 ) .8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数( 数值可以改变,但奇偶性不变 ) ,所以,不可能变为 19, 1997, 1999 这三个奇数.。
初一上奥数试题及答案
初一上奥数试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的相反数是它本身,那么这个数是:A. 0B. 1C. -1D. 2答案:A3. 一个数的绝对值是它本身的数是:A. 正数B. 负数C. 0D. 所有数答案:A4. 下列哪个选项是偶数?A. 2B. 3C. 4D. 5答案:C5. 一个数的平方是它本身的数是:A. 0B. 1C. -1D. 2答案:A6. 一个数的立方是它本身的数是:A. 0B. 1C. -1D. 2答案:A7. 一个数的倒数是它本身的数是:A. 0B. 1C. -1D. 2答案:B8. 一个数的平方根是它本身的数是:A. 0B. 1C. -1D. 2答案:B9. 一个数的立方根是它本身的数是:A. 0B. 1C. -1D. 2答案:B10. 一个数的平方与它的立方相等,这个数是:A. 0B. 1C. -1D. 2答案:B二、填空题(每题5分,共20分)1. 一个数的绝对值是5,这个数可能是______或______。
答案:5,-52. 如果一个数的相反数是-3,那么这个数是______。
答案:33. 一个数的平方是25,这个数可能是______或______。
答案:5,-54. 一个数的立方是-8,这个数是______。
答案:-2三、解答题(每题10分,共50分)1. 计算下列表达式的值:(1)2的平方(2)-3的立方答案:(1)4;(2)-272. 一个数的平方是16,求这个数。
答案:这个数是4或-4。
3. 一个数的立方是64,求这个数。
答案:这个数是4。
4. 一个数的倒数是1/2,求这个数。
答案:这个数是2。
5. 一个数的平方根是4,求这个数。
答案:这个数是16或-16。
世界少年奥林匹克数学竞赛初赛七年级考试卷(A)含答案
世界少年奥林匹克数学竞赛(中国区)选拔赛 2012-2013 初赛试卷 七年级(A 卷) ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 考生须知:本卷共120分,考试时间90分钟。
第1至20题,每题6分。
考试期间,不得使用计算工具或手机Part 1 填空题1. 计算: 211⨯+321⨯+431⨯+……+100991⨯= 。
2. 当1±≠x 时,方程20111133=--+++x x x x 的解是 。
3. 计算:3001×2999= 。
4. 计算: 97×103×10009= 。
5. 计算:1234712345-1234620122⨯= 。
6. 计算:当3-=x ,31=y 时,5y 3-2+x 的值是 。
7. 计算:=2-2-2--2-2-223201********* 。
8. 计算:有两个质数的平方和是125,这两质数的和是 。
9.当=x 时,分式 32+x x的值为0。
10. 732012÷的余数是 。
Part 2 单项选择题(把字母填在空格处)11. 如果4a-3b=7,并且3a+2b=19,14a-2b 的值是 。
A.52B.55C.58D.62 12.若m 为实数,则代数式m +m 的值一定是( ).A 、正数B 、0C 、负数D 、非负数 _______学校 姓名_________辅导教师__________年级____考场____考号手机电话 ---------------------------------------装-----------------------------订---------------------------线----------------------------------13.已知m 是方程01x -x 2=+2006的一个根,则3+1++22m 20062005m -m 的值等于( ). A 、2005 B 、2006 C 、2007 D 、.200814.将一段72cm 长的绳子,从一端开始每3cm 作一记号,每4cm 也作一记号,然后从有记号的地方剪断,则这段绳子共被剪成的段数为( ).A 、37B 、36C 、35D 、3415.某旅游团92人在快餐店就餐,该店备有9种菜,每份菜单单价分别为1、2、3、4、5、6、7、8、9(元),旅游团领队交代:每人可选不同的菜,但金额都须正好10元,且每一种菜最多只能买一份,这样,该团成员在购菜完全符合要求的所有方案中,至少有一个方案的人数不少于( ).A 、9人B 、10人C 、11人D 、12人16.如图4是由几块相同的小正方体搭成的立体图形的三视图,则这立体图形中小正方体共有( )块.A 、9B 、10C 、11D 、12Part 3 计算:17. 20022003)2()2(-+-; 18. 5.702.04.01.05.201.03.02.0-+=--x xPart 4 列方程解应用题。
初一奥数比赛试题及答案
初一奥数比赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是质数?A. 15B. 16C. 17D. 18答案:C2. 一个数列的前三项为1、2、4,每一项都是前一项的两倍,那么这个数列的第五项是多少?A. 8B. 16C. 32D. 64答案:C3. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A4. 如果一个数的平方是36,那么这个数是多少?A. 6B. -6C. 6 或 -6D. 都不是答案:C5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题4分,共20分)6. 一个数的立方是-64,那么这个数是_________。
答案:-47. 如果一个等差数列的首项是3,公差是2,那么它的第10项是_________。
答案:238. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是_________。
答案:59. 一个分数的分子是7,分母是14,化简后是_________。
答案:1/210. 如果一个数的绝对值是5,那么这个数可能是_________。
答案:5 或 -5三、解答题(每题10分,共50分)11. 一个数列的前三项为2、5、8,每一项都比前一项多3,求这个数列的第20项。
答案:2 + 3 * (20 - 1) = 5912. 一个长方体的长、宽、高分别是a、b、c,求它的体积。
答案:V = a * b * c13. 一个圆的半径是r,求它的周长和面积。
答案:周长 = 2πr,面积= πr²14. 一个等差数列的首项是a1,公差是d,求它的第n项。
答案:an = a1 + (n - 1) * d15. 一个分数的分子是a,分母是b,求它的倒数。
答案:1/(a/b) = b/a以上是初一奥数比赛的试题及答案,供参考。
2016年初中奥数题及答案
2016年初中奥数题及答案初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是()A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。
两个单项式x2,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是()A.有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有()A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是()A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是()A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
初一年级奥数试题及答案
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
国际数学奥林匹克作为⼀项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育⽔平,难度⼤⼤超过⼤学⼊学考试。
奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。
下⾯是⽆忧考为⼤家带来的初⼀年级奥数试题及答案,欢迎⼤家阅读。
⼀、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0.B.a,b之⼀是0.C.a,b互为相反数.D.a,b互为倒数. 2.下⾯的说法中正确的是()A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式. 3.下⾯说法中不正确的是()A.有最⼩的⾃然数.B.没有最⼩的正有理数.C.没有的负整数.D.没有的⾮负数. 4.如果a,b代表有理数,并且a+b的值⼤于a-b的值,那么()A.a,b同号.B.a,b异号.C.a>0.D.b>0. 5.⼤于-π并且不是⾃然数的整数有()A.2个.B.3个.C.4个.D.⽆数个. 6.有四种说法: 甲.正数的平⽅不⼀定⼤于它本⾝;⼄.正数的⽴⽅不⼀定⼤于它本⾝; 丙.负数的平⽅不⼀定⼤于它本⾝;丁.负数的⽴⽅不⼀定⼤于它本⾝. 这四种说法中,不正确的说法的个数是()A.0个.B.1个.C.2个.D.3个. 7.a代表有理数,那么,a和-a的⼤⼩关系是()A.a⼤于-a.B.a⼩于-a.C.a⼤于-a或a⼩于-a.D.a不⼀定⼤于-a. 8.在解⽅程的过程中,为了使得到的⽅程和原⽅程同解,可以在原⽅程的两边()A.乘以同⼀个数.B.乘以同⼀个整式.C.加上同⼀个代数式.D.都加上1. 9.杯⼦中有⼤半杯⽔,第⼆天较第⼀天减少了10%,第三天⼜较第⼆天增加了10%,那么,第三天杯中的⽔量与第⼀天杯中的⽔量相⽐的结果是()A.⼀样多.B.多了.C.少了.D.多少都可能. 10.轮船往返于⼀条河的两码头之间,如果船本⾝在静⽔中的速度是固定的,那么,当这条河的⽔流速度增⼤时,船往返⼀次所⽤的时间将()A.增多.B.减少.C.不变.D.增多、减少都有可能. ⼆、填空题(每题1分,共10分) 1.______. 2.198919902-198919892=______. 3.=________. 4.关于x的⽅程的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______. 6.当x=-时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式的值是______. 8.含盐30%的盐⽔有60千克,放在秤上蒸发,当盐⽔变为含盐40%时,秤得盐⽔的重是______克. 9.制造⼀批零件,按计划18天可以完成它的.如果⼯作4天后,⼯作效率提⾼了,那么完成这批零件的⼀半,⼀共需要______天. 10.现在4点5分,再过______分钟,分针和时针第⼀次重合. 答案及解析 ⼀、选择题1.C2.D3.C4.D5.C6.B7.D8.D9.C10.A 提⽰: 1.令a=2,b=-2,满⾜2+(-2)=0,由此 2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D. 3.1是最⼩的⾃然数,A正确.可以找到正 所以C“没有的负整数”的说法不正确.写出扩⼤⾃然数列,0,1,2,3,…,n,…,易知⽆⾮负数,D正确.所以不正确的说法应选C. 5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C. 6.由12=1,13=1可知甲、⼄两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.⽽负数的平⽅均为正数,即负数的平⽅⼀定⼤于它本⾝,所以“负数平⽅不⼀定⼤于它本⾝”的说法不正确.即丙不正确.在甲、⼄、丙、丁四个说法中,只有丙1个说法不正确.所以选B. 7.令a=0,马上可以排除A、B、C,应选D. 8.对⽅程同解变形,要求⽅程两边同乘不等于0的数.所以排除A. 我们考察⽅程x-2=0,易知其根为x=2.若该⽅程两边同乘以⼀个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原⽅程同解,排除B.若在⽅程x-2=0两边加上同⼀个代数式去了原⽅程x=2的根.所以应排除C.事实上⽅程两边同时加上⼀个常数,新⽅程与原⽅程同解,对D,这⾥所加常数为1,因此选D. 9.设杯中原有⽔量为a,依题意可得, 第⼆天杯中⽔量为a×(1-10%)=0.9a; 第三天杯中⽔量为(0.9a)×(1+10%)=0.9×1.1×a; 第三天杯中⽔量与第⼀天杯中⽔量之⽐为 所以第三天杯中⽔量⽐第⼀天杯中⽔量少了,选C. 10.设两码头之间距离为s,船在静⽔中速度为a,⽔速为v0,则往返⼀次所⽤时间为 设河⽔速度增⼤后为v,(v>v0)则往返⼀次所⽤时间为 由于v-v0>0,a+v0>a-v0,a+v>a-v 所以(a+v0)(a+v)>(a-v0)(a-v) ∴t0-t<0,即t0 ⼆、填空题 提⽰: 2.198919902-198919892 =(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979. 3.由于(2+1)(22+1)(24+1)(28+1)(216+1) =(2-1)(2+1)(22+1)(24+1)(28+1)(216+1) =(22-1)(22+1)(24+1)(28+1)(216+1) =(24-1)(24+1)(28+1)(216+1) =(28-1)(28+1)(216+1) =(216-1)(216+1)=232-1. 2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=4 5.1-2+3-4+5-6+7-8+…+4999-5000 =(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000) =-2500. 6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+2 7.注意到: 当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0. 8.⾷盐30%的盐⽔60千克中含盐60×30%(千克)设蒸发变成含盐为40%的⽔重x克,即0.001x千克,此时,60×30%=(0.001x)×40% 解得:x=45000(克).。
七年级奥数考试题及答案
七年级奥数考试题及答案1. 题目:一个数列的前四项是1, 2, 4, 8,请问第五项是多少?答案:这个数列是2的幂次方数列,即每一项都是前一项的2倍。
所以第五项是8的2倍,即16。
2. 题目:一个班级有40名学生,其中25人喜欢数学,15人喜欢英语。
至少有多少人同时喜欢数学和英语?答案:根据鸽巢原理,如果25人喜欢数学,15人喜欢英语,那么至少有1人同时喜欢数学和英语。
因为如果所有人都只喜欢数学或只喜欢英语,那么最多只有39人,但有40人,所以至少有1人同时喜欢数学和英语。
3. 题目:一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。
答案:长方体的体积计算公式为长×宽×高。
所以体积为6cm×4cm×3cm=72立方厘米。
4. 题目:如果一个等差数列的前三项分别是2, 5, 8,那么这个数列的第10项是多少?答案:等差数列的公差是5-2=3。
所以第10项是2+(10-1)×3=2+27=29。
5. 题目:一个圆的半径是5cm,求其周长。
答案:圆的周长计算公式为2πr。
所以周长为2×π×5cm≈31.42厘米。
6. 题目:一个正方体的棱长是4cm,求其表面积。
答案:正方体的表面积计算公式为6a²,其中a为棱长。
所以表面积为6×4²=96平方厘米。
7. 题目:一个数的平方是36,求这个数。
答案:一个数的平方是36,那么这个数可以是6或者-6,因为6²=36且(-6)²=36。
8. 题目:一个直角三角形的两条直角边分别是3cm和4cm,求斜边的长度。
答案:根据勾股定理,斜边的长度等于两条直角边长度的平方和的平方根。
所以斜边长度为√(3²+4²)=√(9+16)=√25=5cm。
9. 题目:一个数的1/3加上这个数的2/5等于1,求这个数。
答案:设这个数为x,则1/3x + 2/5x = 1。
初一奥数计算题及答案
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
国际数学奥林匹克作为⼀项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育⽔平,难度⼤⼤超过⼤学⼊学考试。
下⾯是⽆忧考为⼤家带来的初⼀奥数计算题及答案,欢迎⼤家阅读。
⼀、选择题1、我国研制的“曙光3000超级服务器”,它的峰值计算速度达到403,200,000,000次/秒,⽤科学计数法可表⽰为()A.4032×108B.403.2×109C.4.032×1011D.0.4032×10122、下⾯四个图形每个都由六个相同的⼩正⽅形组成,折叠后能围成正⽅体的是()3、下列各组数中,相等的⼀组是()A.-1和-4+(-3)B.|-3|和-(-3)C.3x2-2x=xD.2x+3x=5x24.巴黎与北京的时差是-7(正数表⽰同⼀时刻⽐北京早的时数),若北京时间是7⽉2⽇14:00时整,则巴黎时间是()A.7⽉2⽇21时B.7⽉2⽇7时C.7⽉1⽇7时D.7⽉2⽇5时5、国家规定存款利息的纳税办法是:利息税=利息×20%,银⾏⼀年定期的利率为2.25%,今⼩磊取出⼀年到期的本⾦及利息时,交纳了4.5元利息税,则⼩磊⼀年前存⼊银⾏的钱为A.1000元B.900元C.800元D.700元()6、某种品牌的彩电降价30%后,每台售价为a元,则该品牌彩电每台售价为()A.0.7a元B.0.3a元C.元D.元7、两条相交直线所成的⾓中A.必有⼀个钝⾓B.必有⼀个锐⾓C.必有⼀个不是钝⾓D.必有两个锐⾓8、为了让⼈们感受丢弃塑料袋对环境造成的影响,某班环保⼩组的六名同学记录了⾃⼰家中⼀周内丢弃的塑料袋的数量,结果如下(单位:个):332528262531.如果该班有45名学⽣,根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量约为()A.900个B.1080个C.1260个D.1800个9、若关于x的⽅程3x+5=m与x-2m=5有相同的解,则x的值是()A.3B.–3C.–4D.410、已知:│m+3│+3(n-2)2=0,则mn值是()A.–6B.8C.–9D.911.下⾯说法正确的是()A.过直线外⼀点可作⽆数条直线与已知直线平⾏B.过⼀点可作⽆数条直线与已知直线垂直C.过两点有且只有⼆条直线D.两点之间,线段最短.12、正⽅体的截⾯中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形⼆、填空题13、⽤计算器求4×(0.2-3)+(-2)4时,按键的顺序是__________________________14、计算51°36ˊ=________°15、张⼤伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张⼤伯的卖报收⼊是___________.16、已知:如图,线段AB=3.8㎝,AC=1.4㎝,D为CB的中点,ACDB则DB=㎝17、设长⽅体的⾯数为f,棱数为v,顶点数为e,则f+v+e=___________.18.⽤⿊⽩两种颜⾊的正六边形地⾯砖按如下所⽰的规律拼成若⼲个图案:则第(4)个图案中有⽩⾊地⾯砖________块;第n (1)(2)(3)个图案中有⽩⾊地⾯砖_________块.19.⼀个袋中有⽩球5个,黄球4个,红球1个(每个球除颜⾊外其余都相同),摸到__________球的机会最⼩20、⼀次买10⽄鸡蛋打⼋折⽐打九折少花2元钱,则这10⽄鸡蛋的原价是________元.。