文昌市高中2018-2019学年上学期高三数学10月月考试题(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文昌市高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2- 2. 已知直线 a 平面α,直线b ⊆平面α,则( )
A .a b
B .与异面
C .与相交
D .与无公共点
3. ()()
2
2f x a x a =-+ 在区间[]0,1上恒正,则的取值范围为( )
A .0a >
B .0a <<
C .02a <<
D .以上都不对
4. 在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )
A .
B .
C .
D .
5. 已知集合A={x|x 2﹣2x <0},B={x|>0},则A ∩(∁R B )=( )
A .{x|0<x <1}
B .{x|1≤x <2}
C .{x|0<x ≤1}
D .{x|1<x <2}
6. 已知平面向量与的夹角为
3
π
,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D .
7. 如图,程序框图的运算结果为( )
A .6
B .24
C .20
D .120
8. 过点),2(a M -,)4,(a N 的直线的斜率为2
1
-
,则=||MN ( ) A .10 B .180 C .36 D .56
9. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2
=,则椭圆和双曲线的离
心率的倒数之和的最大值为( ) A .2
B

C

D .4
10.设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
11.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积 为1S 、2S 、3S ,则( )
A .123S S S <<
B .123S S S >>
C .213S S S <<
D .213S S S >> 12.数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )
=+6x ﹣1的极值点,则log 2
(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2
B .3
C .4
D .5
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.已知函数21,0()1,0
x x f x x x ⎧-≤=⎨->⎩,()21x
g x =-,则((2))f g = ,[()]f g x 的值域为 .
【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.
14.已知1sin cos 3
αα+=
,(0,)απ∈,则sin cos 7sin 12
ααπ-的值为 .
15.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,
乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 16.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”
的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.(本小题满分12分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;
(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若222
11PQ F P F Q =+,求直线m 的方程.
18.(本小题满分12分)
已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;
(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足20152
2>++n
n T n 的
最小正整数n .
【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.
19.设函数f (x )=mx 2﹣mx ﹣1.
(1)若对一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)对于x ∈[1,3],f (x )<﹣m+5恒成立,求m 的取值范围.
20.(本小题满分12分)若二次函数()()2
0f x ax bx c a =++≠满足()()+12f x f x x -=,
且()01f =.
(1)求()f x 的解析式; (2)若在区间[]1,1-上,不等式()2f x x m >+恒成立,求实数m 的取值范围.
21.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.
22.已知函数322()1f x x ax a x =+--,0a >. (1)当2a =时,求函数()f x 的单调区间;
(2)若关于的不等式()0f x ≤在[1,)+∞上有解,求实数的取值范围.
文昌市高中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】D 【解析】
试题分析:由{}
{}1,2,025
,0522--=⎭
⎬⎫⎩⎨⎧∈<<-
=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 2. 【答案】D 【解析】
试题分析:因为直线 a 平面α,直线b ⊆平面α,所以//a b 或与异面,故选D. 考点:平面的基本性质及推论. 3. 【答案】C 【解析】
试题分析:由题意得,根据一次函数的单调性可知,函数()()
2
2f x a x a =-+在区间[]0,1上恒正,则
(0)0
(1)0f f >⎧⎨>⎩,即2
020
a a a >⎧⎨-+>⎩,解得02a <<,故选C. 考点:函数的单调性的应用. 4. 【答案】C
【解析】解:如图,设A 1C 1∩B 1D 1=O 1,∵B 1D 1⊥A 1O 1,B 1D 1⊥AA 1,∴B 1D 1⊥平面AA 1O 1, 故平面AA 1O 1⊥面AB 1D 1,交线为AO 1,在面AA 1O 1内过B 1作B 1H ⊥AO 1于H , 则易知A
1H 的长即是点A 1到截面AB 1D 1的距离,在Rt △A 1O 1A 中,A 1O 1=,
AO 1=3,由A 1O 1•A 1A=h •AO 1,可得A 1H=

故选:C .
【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.
5.【答案】C
【解析】解:∵集合A={x|x2﹣2x<0},B={x|>0},
∴A={x|0<x<2},B={x|x>1,或x<﹣1},
∴∁R B═{x|﹣1≤x≤1},
∴A∩(∁R B)={x|0<x≤1},
故选:C
【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
6.【答案】C
考点:平面向量数量积的运算.
7.【答案】B
【解析】解:∵循环体中S=S×n可知程序的功能是:
计算并输出循环变量n的累乘值,
∵循环变量n的初值为1,终值为4,累乘器S的初值为1,
故输出S=1×2×3×4=24,
故选:B.
【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键.
8.【答案】D
【解析】
考点:1.斜率;2.两点间距离.
9.【答案】C
【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,
由椭圆和双曲线的定义可知,
设|MF1|=r1,|MF2|=r2,|F1F2|=2c,
椭圆和双曲线的离心率分别为e1,e2
∵∠F1MF2=,
∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①
在椭圆中,①化简为即4c2=4a2﹣3r1r2,
即=﹣1,②
在双曲线中,①化简为即4c2=4a12+r1r2,
即=1﹣,③
联立②③得,+=4,
由柯西不等式得(1+)(+)≥(1×+×)2,
即(+)2≤×4=,
即+≤,
当且仅当e
=,e2=时取等号.即取得最大值且为.
1
故选C.
【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.10.【答案】B
【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),
且点(cosθ,sinθ)位于复平面的第二象限,
∴,∴θ为第二象限角,
故选:B.
【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.
11.【答案】A
【解析】
考点:棱锥的结构特征.
12.【答案】C
【解析】解:函数f(x)=+6x﹣1,可得f′(x)=x2﹣8x+6,
∵a2014,a2016是函数f(x)=+6x﹣1的极值点,
∴a2014,a2016是方程x2﹣8x+6=0的两实数根,则a2014+a2016=8.
数列{a n}中,满足a n+2=2a n+1﹣a n,
可知{a n}为等差数列,
∴a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,
从而log2(a2000+a2012+a2018+a2030)=log216=4.
故选:C.
【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
-+∞.
13.【答案】2,[1,)
【解析】
14.【答案】
3
【解析】
7sin
sin sin cos cos sin 12434
343πππππππ⎛⎫
=
+=+ ⎪⎝

=
,
sin
cos 73
3
sin 12
ααπ-∴==
, 故答案为
3
.
考点:1、同角三角函数之间的关系;2、两角和的正弦公式.
15.【答案】2300 【解析】111]
试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪
⎪⎨⎧≥+≥+≥≥140
20y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的
最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.
1111]
考点:简单线性规划.
【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值. 16.【答案】必要而不充分 【解析】
试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,
|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.
2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.
三、解答题(本大共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。


17.【答案】
【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.
(II )①若m 为直线1=x ,代入
13
42
2=+y x 得23±=y ,即)23 , 1(P ,)23 , 1(-Q
直接计算知29PQ =,2
25||||2121=+Q F P F ,222
11PQ F P
F Q ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =-
由⎪⎩
⎪⎨⎧-==+
)1(1342
2x k y y x 得0)124(8)43(2222=-+-+k x k x k 设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,2
2214312
4k k x x +-=⋅
由222
11PQ F P F Q =+得,11
0F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x
0)1())(1()1(2212212=+++-++k x x k x x k
代入得0438)1()143124)(1(2
22222=+⋅-+++-+k k k k k k ,即0972
=-k 解得773±=k ,直线m 的方程为)1(7
7
3-±=x y
18.【答案】
【解析】(1)当111,12n a a =+=时,解得11a =. (1分)
当2n ≥时,2n n S n a +=,
① 11(1)2n n S n a --+-=,

①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分)
即112(1)(2)n n a a n -+=+≥,又112a +=. 所以{}1n a +是以2为首项,2为公比的等比数列.
即12n n a +=故21n n a =-(*n N ∈).
(5分)
19.【答案】
【解析】解:(1)当m=0时,f (x )=﹣1<0恒成立,
当m ≠0时,若f (x )<0恒成立,

解得﹣4<m <0
综上所述m 的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
(2)要x ∈[1,3],f (x )<﹣m+5恒成立,
即恒成立.
令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
﹣﹣﹣﹣
当 m >0时,g (x )是增函数, 所以g (x )max =g (3)=7m ﹣6<0,
解得
.所以
当m=0时,﹣6<0恒成立. 当m <0时,g (x )是减函数. 所以g (x )max =g (1)=m ﹣6<0,
解得m <6. 所以m <0.
综上所述,
﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣
【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.
20.【答案】(1)()2
=+1f x x x -;(2)1m <-. 【解析】
试题分析:(1)根据二次函数()()20f x ax bx c a =++≠满足()()+12f x f x x -=,利用多项式相等,即可求解,a b 的值,得到函数的解析式;(2)由[]()1,1,x f x m ∈->恒成立,转化为2
31m x x <-+,设
()2g 31x x x =-+,只需()min m g x <,即可而求解实数m 的取值范围.
试题解析:(1) ()()20f x ax bx c a =++≠ 满足()01,1f c ==
()()()()2
212,112f x f x x a x b x ax bx x +-=+++--=,解得1,1a b ==-,
故()2
=+1f x x x -.
考点:函数的解析式;函数的恒成立问题.
【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键. 21.【答案】
【解析】解:由题意设a=n 、b=n+1、c=n+2(n ∈N +),
∵最大角是最小角的2倍,∴C=2A ,
由正弦定理得,则,

,得cosA=

由余弦定理得,cosA==,
∴=,
化简得,n=4,
∴a=4、b=5、c=6,cosA=,
又0<A<π,∴sinA==,
∴△ABC的面积S===.
【点评】本题考查正弦定理和余弦定理,边角关系,三角形的面积公式的综合应用,以及方程思想,考查化简、计算能力,属于中档题.
22.【答案】(1)()
f x的单调递增区间是()
,2
-∞-和
2
,
3
⎛⎫
+∞

⎝⎭
,单调递减区间为2
(2,)
3
-;(2)[1,)
+∞.【解析】
试题分析:(1)2
a=时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;(2)对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围.
试题解析:(1)当2
a=时,32
()241
f x x x x
=+--,
所以2
'()344(32)(2)
f x x x x x
=+-=-+,
由'()0
f x>,得2
3
x>或2
x<-,
所以函数()
f x的单调递减区间为2
(2,)
3
-.
(2)要使()0
f x≤在[1,)
+∞上有解,只要()
f x在区间[1,)
+∞上的最小值小于等于0.
因为22
'()32(3)()
f x x ax a x a x a
=+-=-+,
令'()0
f x=,得
1
3
a
x=>,
2
x a
=-<.1
考点:导数与函数的单调性;分类讨论思想.。

相关文档
最新文档