linux系统内核结构详解复习过程
linux思维导图期末知识点总结
![linux思维导图期末知识点总结](https://img.taocdn.com/s3/m/2c02bd062bf90242a8956bec0975f46527d3a769.png)
linux思维导图期末知识点总结环境:虚拟机/云服务器许多程序需要开机启动,它们在win叫服务,在linux叫守护进程,init进去运行开机启动的程序。
正常情况下,很少遇到关机情况。
正确关机流程:sync > shutdown > reboot > halt区别于重启系统和关闭系统,都要运行sync,把内存中的数据写到磁盘中关机命令:shutdown –h now halt poweroff 和 init 0重启系统的命令:shutdown –r now reboot init 6内核版本cat /etc/issue系统版本cat /proc/version1、yum源进行备份进入到yum源的配置文件中执行命令如下:cd /etc/yum.repos.d将yum源进行备份:mv Centos-Base.repo Centos-Base.repo.bak2、获取阿里的yum源配置文件执行命令:wget -O Centos-Base.repo3、对yum源生成缓存执行命令:yum makecache4、更新yum源执行命令:yum -y install update执行完成之后就可以使用yum源了,到此yum源就更换成功了。
在 Linux 或 Unix 操作系统中,所有的文件和目录都被组织成以一个根节点开始的倒置的树状结构。
文件系统的最顶层是由根目录开始的,系统使用 / 来表示根目录。
在根目录之下的既可以是目录,也可以是文件,而每一个目录中又可以包含子目录文件。
如此反复就可以构成一个庞大的文件系统。
/boot:存放的启动Linux 时使用的内核文件,包括连接文件以及镜像文件。
/etc:存放所有的系统需要的配置文件和子目录列表,更改目录下的文件可能会导致系统不能启动。
/lib:存放基本代码库(比如c++库),其作用类似于Windows里的DLL文件。
几乎所有的应用程序都需要用到这些共享库。
linux操作系统目录结构详解
![linux操作系统目录结构详解](https://img.taocdn.com/s3/m/f9be97ab64ce0508763231126edb6f1aff0071b2.png)
linux操作系统目录结构详解linux操作系统目录结构详解为了帮助广大考试新手们更加顺利地复习备考,店铺整理了关于Linux目录结构的备考资料,希望能够对大家有所帮助。
linux 目录结构/: 根目录,一般根目录下只存放目录,不要存放文件,/etc、/bin、/dev、/lib、/sbin应该和根目录放置在一个分区中/bin:/usr/bin: 可执行二进制文件的目录,如常用的命令ls、tar、mv、cat等。
/boot: 放置linux系统启动时用到的一些文件。
/boot/vmlinuz为linux的内核文件,以及/boot/gurb.建议单独分区,分区大小100M 即可/dev: 存放linux系统下的设备文件,访问该目录下某个文件,相当于访问某个设备,常用的是挂载光驱mount /dev/cdrom /mnt./etc: 系统配置文件存放的目录,不建议在此目录下存放可执行文件,重要的配置文件有/etc/inittab、/etc/fstab、/etc/init.d、/etc/X11、/etc/sysconfig、/etc/xinetd.d修改配置文件之前记得备份。
注:/etc/X11存放与x windows有关的设置。
/home: 系统默认的用户家目录,新增用户账号时,用户的家目录都存放在此目录下,~表示当前用户的家目录,~test表示用户test的家目录。
建议单独分区,并设置较大的磁盘空间,方便用户存放数据/lib:/usr/lib:/usr/local/lib: 系统使用的函数库的目录,程序在执行过程中,需要调用一些额外的参数时需要函数库的协助,比较重要的目录为/lib/modules./lost+fount: 系统异常产生错误时,会将一些遗失的片段放置于此目录下,通常这个目录会自动出现在装置目录下。
如加载硬盘于/disk 中,此目录下就会自动产生目录/disk/lost+found/mnt:/media: 光盘默认挂载点,通常光盘挂载于/mnt/cdrom下,也不一定,可以选择任意位置进行挂载。
linux操作系统的结构及详细说明
![linux操作系统的结构及详细说明](https://img.taocdn.com/s3/m/37d4b138cdbff121dd36a32d7375a417866fc1df.png)
linux操作系统的结构及详细说明linux的操作系统的结构你了解多少呢?下面由店铺为大家整理了linux操作系统的结构及详细说明的相关知识,希望对大家有帮助!linux操作系统的结构及详细说明:一、 linux内核内核是操作系统的核心,具有很多最基本功能,它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。
Linux 内核由如下几部分组成:内存管理、进程管理、设备驱动程序、文件系统和网络管理等。
系统调用接口:SCI 层提供了某些机制执行从用户空间到内核的函数调用。
这个接口依赖于体系结构,甚至在相同的处理器家族内也是如此。
SCI 实际上是一个非常有用的函数调用多路复用和多路分解服务。
在 ./linux/kernel 中您可以找到 SCI 的实现,并在 ./linux/arch 中找到依赖于体系结构的部分。
1. 内存管理对任何一台计算机而言,其内存以及其它资源都是有限的。
为了让有限的物理内存满足应用程序对内存的大需求量,Linux 采用了称为“虚拟内存”的内存管理方式。
Linux 将内存划分为容易处理的“内存页”(对于大部分体系结构来说都是 4KB)。
Linux 包括了管理可用内存的方式,以及物理和虚拟映射所使用的硬件机制。
不过内存管理要管理的可不止 4KB 缓冲区。
Linux 提供了对 4KB 缓冲区的抽象,例如 slab 分配器。
这种内存管理模式使用 4KB 缓冲区为基数,然后从中分配结构,并跟踪内存页使用情况,比如哪些内存页是满的,哪些页面没有完全使用,哪些页面为空。
这样就允许该模式根据系统需要来动态调整内存使用。
为了支持多个用户使用内存,有时会出现可用内存被消耗光的情况。
由于这个原因,页面可以移出内存并放入磁盘中。
这个过程称为交换,因为页面会被从内存交换到硬盘上。
内存管理的源代码可以在 ./linux/mm 中找到。
2 .进程管理进程实际是某特定应用程序的一个运行实体。
教你如何学习linux内核
![教你如何学习linux内核](https://img.taocdn.com/s3/m/25917c6ab84ae45c3b358c89.png)
教你如何学习linux内核毫不夸张地说,Kconfig和Makefile是我们浏览内核代码时最为依仗的两个文件。
基本上,Linux 内核中每一个目录下边都会有一个Kconfig文件和一个Makefile文件。
对于一个希望能够在Linux内核的汪洋代码里看到一丝曙光的人来说,将它们放在怎么重要的地位都不过分。
我们去香港,通过海关的时候,总会有免费的地图和各种指南拿,有了它们在手里我们才不至于无头苍蝇般迷惘的行走在陌生的街道上。
即使在内地出去旅游的时候一般来说也总是会首先找份地图,当然了,这时就是要去买了,拿是拿不到的,不同的地方有不同的特色,只不过有的特色是服务,有的特色是索取。
Kconfig和Makefile就是Linux Kernel迷宫里的地图。
地图引导我们去认识一个城市,而Kconfig 和Makefile则可以让我们了解一个Kernel目录下面的结构。
我们每次浏览kernel寻找属于自己的那一段代码时,都应该首先看看目录下的这两个文件。
利用Kconfig和Makefile寻找目标代码就像利用地图寻找目的地一样,我们需要利用Kconfig和Makefile来寻找所要研究的目标代码。
比如我们打算研究U盘驱动的实现,因为U盘是一种storage设备,所以我们应该先进入到drivers/usb/storage/目录。
但是该目录下的文件很多,那么究竟哪些文件才是我们需要关注的?这时就有必要先去阅读Kconfig和Makefile文件。
对于Kconfig文件,我们可以看到下面的选项。
config USB_STORAGE_DATAFABbool "Datafab Compact Flash Reader support (EXPERIMENTAL)"depends on USB_STORAGE && EXPERIMENTALhelpSupport for certain Datafab CompactFlash readers.Datafab has a web page at </>.显然,这个选项和我们的目的没有关系。
linux操作系统课程学习笔记,我的Linux学习笔记·Linux操作系统基础
![linux操作系统课程学习笔记,我的Linux学习笔记·Linux操作系统基础](https://img.taocdn.com/s3/m/225985771fd9ad51f01dc281e53a580216fc50d1.png)
linux操作系统课程学习笔记,我的Linux学习笔记·Linux操作系统基础今天的笔记主要是关于Linux操作系统根底的相关学问。
那就从我⾯前的电脑开端讲起。
计算机和操作系统计算机主要包括五个部分:运算器,控制器,存储器,输⼊设备和输出设备。
通常,运算器,控制器再加上其他⼀些部件如寄存器等构成了我们通常所说的CPU(central processing unit),存储器则主要是内存。
运算器,控制器和存储器可以实现数据的处理.但是数据从何⽽来,运算之后的结果去往哪⾥?这就需要输⼊设备和输出设备(I/O设备)。
我们通常⽤到的输⼊设备包括键盘⿏标等,输出设备为屏幕,打印机等。
值得⼀提的是,计算机中有个叫做硬盘的东西,它并不是存储器,⽽是⼀个I/O设备。
在将数据读取到内存时,它是⼀个输⼊设备;⽽将结果保存到磁盘时,它就变成了⼀个输出设备。
这么多设备整合在⼀起,就成了⼀台计算机。
它可以接收我们的指令(键盘⿏标),通过运算(CPU),把结果展⽰给我们(屏幕,硬盘等)。
但是这么多硬件是如何协调作⽤,共同完成⼀个任务⽽不会我⾏我素地乱来呢?我们需要⼀个东西,它可以控制硬件有序地⼯作,各⾃执⾏⾃⼰的任务,这个东西就是操作系统(Operating System)。
操作系统是⼀个特殊的软件,它的任务就是硬件管理—控制CPU的运算,控制内存的分配,控制计算机的⼏乎⼀切。
假如⼀台电脑没有操作系统,它可能只是⼀个艺术品,或者⼀堆废铁。
⼀个完整的操作系统包括内核和⼀些辅助软件。
内核的主要任务就是进⾏硬件管理,它是⼀个操作系统最基础最底层的东西。
内核若想很好地控制硬件并使其发挥相应的功能,需要和硬件相识相知相爱,他俩可以成为完美的⼀对,全都仰仗于驱动的帮忙。
驱动是硬件的灵魂,它向操作系统提供了访问和使⽤硬件的接⼝,以便在某项任务中最⾼效地调⽤硬件。
什么是LinuxLinux就是⼀个操作系统,它可以管理整个计算机硬件,并且可以接收我们的指令,来指挥硬件完成相应的任务,并把结果反馈给我们。
电子科技大学 UNIX_Linux操作系统内核结构6章
![电子科技大学 UNIX_Linux操作系统内核结构6章](https://img.taocdn.com/s3/m/7c525ad67d1cfad6195f312b3169a4517723e58a.png)
一个进程的上下文包括五个方面: ①、被进程正文所定义的进程状态 ②、进程所使用的全局变量和数据结构的值 ③、机器寄存器的值 ④、进程表项proc结构和user结构中的值 ⑤、用户堆栈和核心堆栈中的值
“执行一个进程”——指系统在该进程的上下文中执行, 也就是进程的上下文确定和限制了进程的运行环境和空间。
可以随进程状态的变化而在内外存之间交换的进程控制信 息中的其余部分。
为了方便进程映像在内外之间交换,UNIX系统中把进程非 常驻内存部分作为一个整体,占用连续的存贮区,其顺序是: 首先是user结构(进程扩充控制块)和核心栈,然后是数据段 和用户栈。
16
进程user结构和核心栈合并构成进程的“本进程数据区— —ppda区(per process data area)。
15
在进程映像占用的内存被分配给其他进程之前,不但该进 程的程序和数据需要调出内存,该进程的控制信息也被调出内 存。但为了该进程能够再次被调入内存,内存中需要保留一部 分必要的信息,这就把进程控制信息也分成了常驻内存和非常 驻内存两部分: 常驻内存控制信息块
是系统需要经常查询以及恢复整个进程映象时所不可缺少 的信息。 非常驻内存控制信息块
7
3、进程的解释
在UNIX系统中进程的概念包含什么意义?
在较高级的方面 进程是一个重要的组织概念。可以把计算机系统看作是若
干进程组合的活动。进程是系统中活动的实体,它可以生成和 消灭,申请和释放资源,可以相互合作和竞争,而真正活动的 部件如处理机和外部设备则是看不见的。
在较低级方面 进程是不活动的实体,而处理机则是活动的,处理机的任
核心从一个进程转到另一个进程执行时,叫做“上下文切
换”,也就是系统从一个进程上下文确定的环境换到另一个进
linux操作系统的体系结构
![linux操作系统的体系结构](https://img.taocdn.com/s3/m/04fefc173d1ec5da50e2524de518964bce84d267.png)
linux操作系统的体系结构Linux操作系统的体系结构Linux是一个开源的操作系统内核,它是一个多任务、多用户的操作系统。
它支持大量的硬件平台,可以运行在个人计算机、服务器、移动设备和嵌入式系统中。
Linux操作系统的核心设计是基于UNIX操作系统的设计理念,具有稳定、安全和高性能的特点。
本文将详细介绍Linux操作系统的体系结构。
一、内核空间和用户空间Linux操作系统采用了一种分层的体系结构,将操作系统分为内核空间和用户空间两部分。
内核空间是操作系统内核运行的区域,包括内核代码、驱动程序和中断处理程序等。
用户空间是用户程序运行的区域,包括应用程序、库文件和用户数据等。
内核空间和用户空间通过操作系统提供的系统调用接口进行通信。
用户程序通过系统调用接口请求操作系统提供的服务,如文件操作、进程管理和网络通信等。
操作系统在内核空间中响应这些请求,并将结果返回给用户程序。
二、进程管理Linux操作系统是一个多任务操作系统,能够同时运行多个进程。
进程是程序在操作系统中的实体,它包括代码、数据和运行环境等。
Linux操作系统通过进程管理功能对进程进行管理和调度。
进程管理功能包括创建进程、销毁进程、挂起进程、恢复进程和进程切换等。
Linux操作系统通过调度算法决定哪个进程优先执行,以实现操作系统的高效利用和公平分享。
三、内存管理Linux操作系统通过内存管理功能对内存进行管理和分配。
内存是计算机中重要的资源,操作系统需要有效地管理和分配内存。
Linux操作系统使用虚拟内存管理技术,将物理内存虚拟化为逻辑地址空间。
这样,每个进程都有自己独立的逻辑地址空间,不会相互干扰。
操作系统通过内存管理功能实现虚拟地址到物理地址的转换,并对内存进行分页、分段和交换等操作,以实现内存的高效利用和管理。
四、文件系统Linux操作系统通过文件系统管理文件和目录。
文件系统是一种组织和存储文件的方式,可以将文件组织成层次结构,方便用户访问和管理。
linux操作系统知识点
![linux操作系统知识点](https://img.taocdn.com/s3/m/aec5ec17b5daa58da0116c175f0e7cd18525184f.png)
Linux 操作系统基础知识概览以下是一些关于Linux 操作系统的常见知识点:1.Linux 基础:●Linux 的起源和发展历史●Linux 的主要组成部分:内核、Shell、文件系统等●常见的Linux 发行版(如Ubuntu、Debian、CentOS 等)●常用的命令行工具和基本命令(如ls、cd、mkdir、rm 等)2.用户和权限管理:●用户账户的创建和管理●用户组的概念和使用●文件和目录的权限设置和管理●sudo 权限和root 用户的重要性3.文件系统:●Linux 文件系统的层级结构●常见的文件系统类型(如ext4、XFS、Btrfs 等)●挂载和卸载文件系统●磁盘和分区管理工具(如fdisk、parted 等)4.进程管理:●进程的概念和属性●进程的创建、终止和管理●进程状态的了解和监控●进程间通信的方式(如管道、信号、共享内存等)5.网络和安全性:●网络配置和网络接口管理●网络命令和工具(如ifconfig、ping、ssh 等)●防火墙和安全性措施(如iptables、SELinux 等)●远程访问和远程管理(如SSH、SCP、rsync 等)6.软件包管理:●软件包管理系统(如apt、yum、dnf 等)●软件包的安装、升级和卸载●软件包的依赖关系和解决依赖问题●软件源和仓库的管理7.Shell 脚本编程:●Shell 脚本的基础语法和结构●变量、条件语句、循环和函数的使用●Shell 命令和管道的组合●脚本的调试和错误处理以上只是Linux 操作系统知识的一些常见方面,涵盖了基础知识、用户和权限管理、文件系统、进程管理、网络和安全性、软件包管理以及Shell 脚本编程等。
要深入学习Linux,建议进一步学习和实践这些知识点,并探索更多高级主题,如网络服务配置、系统性能优化等。
《Linux就该这么学》PPT大纲
![《Linux就该这么学》PPT大纲](https://img.taocdn.com/s3/m/3aabfa783868011ca300a6c30c2259010202f3b4.png)
Fedora
Debian是一个历史悠久的Linux发行版,以 稳定性和丰富的软件包著称,适合服务器和 桌面应用。
Fedora是一个面向开发者和创新者的Linux 发行版,注重最新技术和软件包的更新。
Linux应用领域及前景展望
应用领域
Linux广泛应用于服务器、嵌入式 系统、云计算、大数据、人工智能 等领域。
03
配置文件详解与常见配置示例 (如SMTP认证、反垃圾邮件等)
04
邮箱存储位置及访问权限设置方 法
05
客户端配置与测试邮件发送接收 流程
06
05
安全篇:Linux系统安全 防护策略
防火墙设置及端口控制技巧
防火墙基本概念
介绍防火墙的定义、作用及在Linux系统中的实 现方式。
UFW防火墙
介绍UFW(Uncomplicated Firewall)防火墙 的简易配置方法,适用于初学者快速上手。
《Linux就该这么学》PPT大纲
目 录
• 入门篇:Linux系统概述 • 基础篇:Linux命令行操作 • 进阶篇:软件包管理与系统配置 • 应用篇:常见服务器搭建与维护 • 安全篇:Linux系统安全防护策略 • 拓展篇:自动化运维工具介绍
01
入门篇:Linux系统概述
什么是Linux
Linux定义
安全加固措施
提供Linux系统安全加固的常用措施,如关 闭不必要的服务、限制用户权限等。
漏洞修复建议
根据扫描结果提供针对性的漏洞修复建议, 包括升级软件、打补丁等。
安全监控与日志分析
介绍Linux系统的安全监控方法和日志分析 技巧,以便及时发现和处理安全问题。
06
拓展篇:自动化运维工具 介绍
Linux Kernel 0.11学习
![Linux Kernel 0.11学习](https://img.taocdn.com/s3/m/41d59a300912a216147929c5.png)
(第一章)att汇编语法格式的笔记1寄存器引用寄存器引用要在寄存器号前加% 例如:mov %eax,%ebx2操作数顺序操作数排列是从源(左)到目的的(右) 例如:mov % eax(源),%ebx(目的)3 常数/立即数的格式使用立即数。
要在数前面加$,例如:mov $4,%ebx (变量前加$则表示该变量数值对应的地址);符号常数直接引用,如mov value,% ebx,引用符号地址在符号齐前加$,如mov $value,%ebx4 操作数长度操作数长度用加在指令后面的符号表示,b=byte(8bit) w=word(16bit) l=long(32bit),如movw %ax,%bx5跳转在 AT&T 汇编格式中,绝对转移和调用指令(jump/call)的操作数前要加上'*'作为前缀,而在 Intel 格式中则不需要。
6远跳转远程转移指令和远程子调用指令的操作码,在AT&T 汇编格式中为"ljump" 和"lcall",7远程返回指令8内存操作数的寻址方式计算方法是:base + index(索引)*scale(比例因子) + disp(偏移地址)例子:9 内嵌汇编9.1 内嵌汇编格式:_asm_("asm statements":outputs:intput:registers-modified);这四个字段的含义是:asm statements -是汇编语句表达式,AT&T 的结构, 每新行都是分开的。
outputs - 修饰符一定要用引号引起来, 用逗号分隔,输出的寄存器inputs - 修饰符一定要用引号引起来, 用逗号分隔,输入的寄存器registers-modified - 名字用逗号分隔,汇编代码会修改的寄存器outputs,inputs,register-modified都是可选参数,以冒号隔开,且一次以0~9编号,如outputs 的寄存器是0号,inputs寄存器是1号,往后依次类推。
linux 内核源码需要掌握的数据结构和算法
![linux 内核源码需要掌握的数据结构和算法](https://img.taocdn.com/s3/m/d9daf7a90875f46527d3240c844769eae009a3c4.png)
linux 内核源码需要掌握的数据结构和算法在深入理解Linux内核源码的过程中,掌握数据结构和算法是非常重要的。
数据结构和算法是编程和系统编程的基础,也是理解Linux内核源码的关键。
本文将介绍Linux内核源码需要掌握的一些常见数据结构和算法,帮助读者更好地理解内核源码。
一、数据结构1.数组:Linux内核源码中经常使用数组来存储固定大小的元素。
数组在内核源码中主要用于存储数据结构(如链表、树、图等)的元素。
2.链表:链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
在Linux内核源码中,链表常用于实现内存管理、文件系统、网络协议等。
3.树:树是一种由节点和边组成的图形结构,其中每个节点最多只有两个子节点。
在Linux内核源码中,树常用于进程调度、内存管理、文件系统等。
4.二叉树:二叉树是一种特殊的树结构,每个节点最多只有两个子节点,通常称为根、左子节点和右子节点。
在Linux内核源码中,二叉树常用于维护设备树、路由表等。
5.图:图是由节点和边组成的图形结构,其中每个节点可以有多个相邻节点。
在Linux内核源码中,图常用于网络协议、进程间通信等。
6.哈希表:哈希表是一种基于哈希函数的数据结构,它可以快速查找、插入和删除元素。
在Linux内核源码中,哈希表常用于进程调度、内存管理等。
二、算法1.遍历算法:遍历算法是用于遍历数据结构的算法,如深度优先搜索(DFS)、广度优先搜索(BFS)等。
这些算法在Linux内核源码中常用于遍历链表、树、图等数据结构。
2.排序算法:排序算法是用于将数据元素按照一定顺序排列的算法,如冒泡排序、快速排序等。
在Linux内核源码中,排序算法常用于维护内存分配表、设备驱动等。
3.查找算法:查找算法是用于在数据结构中查找特定元素的算法,如线性查找、二分查找等。
在Linux内核源码中,查找算法常用于设备驱动、内存管理等。
4.递归算法:递归算法是一种通过函数自我调用来解决问题的方法。
linux操作系统的基本体系结构
![linux操作系统的基本体系结构](https://img.taocdn.com/s3/m/4e83965e6fdb6f1aff00bed5b9f3f90f76c64dac.png)
linux操作系统的基本体系结构一、内核(Kernel)Linux操作系统的核心是内核,它负责管理系统资源、控制硬件设备、调度进程和提供基本的系统服务。
Linux内核采用单内核结构,包含了操作系统的大部分核心功能和驱动程序。
内核是操作系统的核心组件,它提供了操作系统运行所必须的基本功能。
Linux内核具有以下特点:1、多任务处理:Linux内核支持多任务处理,可以同时运行多个程序,并实现多个程序之间的切换和管理。
2、硬件管理:Linux内核负责管理硬件设备,与硬件设备交互,控制硬件设备的工作状态。
3、内存管理:Linux内核负责管理系统的内存,包括内存的分配、释放、映射和交换等操作。
4、文件系统:Linux内核支持多种文件系统,包括ext4、NTFS、FAT等,负责文件的读写、管理和保护。
5、进程管理:Linux内核管理系统进程,包括进程的创建、调度、挂起、唤醒和终止等操作。
6、网络通信:Linux内核支持网络通信功能,包括TCP/IP协议栈、网卡驱动等,实现网络数据传输和通信。
二、ShellShell是Linux操作系统的命令解释器,用户通过Shell与操作系统进行交互。
Shell接受用户的命令,并将其转换为对应的系统调用,最终由内核执行。
Linux系统中常用的Shell有Bash、Zsh等,用户可以根据自己的喜好选择不同的Shell。
Shell具有以下功能:1、命令解释:Shell接受用户输入的命令,并将其翻译为操作系统可以执行的命令。
2、执行程序:Shell可以执行各种程序、脚本和命令,包括系统工具、应用程序等。
3、环境控制:Shell可以设置环境变量、别名和路径等,帮助用户管理系统环境。
4、文件处理:Shell可以处理文件操作,包括创建、删除、复制、移动等。
5、脚本编程:Shell支持脚本编程,用户可以编写Shell脚本来自动执行一系列操作。
三、系统工具Linux操作系统提供了丰富的系统工具,帮助用户管理系统和执行各种任务。
linux内核模块及内核编译过程
![linux内核模块及内核编译过程](https://img.taocdn.com/s3/m/b2a5c3ac541810a6f524ccbff121dd36a32dc4a3.png)
Linux内核模块及内核编译过程一、引言Linux内核是Linux操作系统的核心组件,负责管理系统的硬件和软件资源。
内核模块是一种动态加载到内核中的代码,用于扩展和添加新的功能。
本文将介绍Linux内核模块的概念、编写方法以及内核编译过程。
二、Linux内核模块内核模块是一种动态加载到内核中的代码,用于扩展和添加新的功能。
它是一种轻量级的解决方案,可以在不重新编译整个内核的情况下添加或删除功能。
内核模块可以使用内核提供的API,以实现与内核其他部分的交互。
编写内核模块需要了解内核的内部结构和API。
通常,内核模块是用C语言编写的,因为C语言与汇编语言有良好的交互性,并且内核本身也是用C语言编写的。
编写内核模块的基本步骤如下:1.编写模块的源代码:使用C语言编写模块的源代码,并确保遵循内核的编码风格和约定。
2.编译模块:使用内核提供的工具和方法将源代码编译成模块。
3.加载和卸载模块:使用insmod命令将模块加载到内核中,使用rmmod命令卸载模块。
三、内核编译过程内核编译是将源代码转换成可在计算机上运行的二进制代码的过程。
Linux内核的编译过程可以分为以下几个步骤:1.配置内核:使用make menuconfig或make xconfig等工具,根据需要选择要包含在内核中的功能和选项。
2.生成Makefile:根据配置结果生成Makefile文件,该文件用于指导make命令如何编译内核。
3.编译内核:使用make命令根据Makefile编译内核。
这个过程包括编译源代码、生成目标文件、链接目标文件等步骤。
4.安装内核:将编译好的内核映像安装到系统中,以便在启动时加载。
5.配置引导加载程序:将引导加载程序配置为加载新编译的内核映像。
四、总结本文介绍了Linux内核模块的概念、编写方法以及内核编译过程。
通过了解这些知识,我们可以更好地理解Linux操作系统的内部原理,并根据需要定制和优化系统的功能。
linux内核完全注释(课件)第六章
![linux内核完全注释(课件)第六章](https://img.taocdn.com/s3/m/a65e042bed630b1c59eeb5be.png)
0x303
0x304 0x305 3
3
4 5
第一块硬盘的第三个分区
第一块硬盘的第四个分区 第二块硬盘
0x306
0x307 0x308 0x309
6
7 8 9
第二块硬盘的第一个分区
第二块硬盘的第二个分区 第二块硬盘的第三个分区 第二块硬盘的第四个分区
硬盘分区表
引导标志 开始磁头号 引导程序 主 引 导 记 录 开始扇区号 开始柱面号 分区类型 结束磁头号 结束扇区号 结束柱面号 起始物理扇区号 参见P149表6-8 分区扇区数量
文件管理模块 (缓冲区) ll_rw_block
初始化模块 blk_dev_init hd_init floppy_init setup
设备管理模块 hd_interrupt floppy_interrupt 中断管理模块
初始化
void blk_dev_init(void) //定义在ll_rw_blk.c(P153第157行) 作用:完成请求项数组的初始化 void hd_init(void) //定义在hd.c(P146第343行) void floppy_init(void) //定义在floppy.c(P168第457行) long rd_init(long mem_start, int length) //定义在ramdisk.c(P155第52行)
0x1BE
分 区 表
第1分区表项 第2分区表项 第3分区表项 第4分区表项 0x55AA
分区数据结构
struct partition { unsigned char boot_ind; unsigned char head; unsigned char sector; unsigned char cyl; unsigned char sys_ind; unsigned char end_head; unsigned char end_sector; unsigned char end_cyl; unsigned int start_sect; unsigned int nr_sects; };
linux系统层次结构
![linux系统层次结构](https://img.taocdn.com/s3/m/9683e40b68eae009581b6bd97f1922791688be8d.png)
linux系统层次结构
Linux系统的层次结构可以分为以下几个主要层次:
1. 硬件层(Hardware Layer)
这是最底层,包括CPU、内存、硬盘、网卡等硬件设备。
2. 内核层(Kernel Layer)
Linux内核是操作系统的核心部分,负责管理硬件资源、调度进程、提供系统服务等。
常见的内核版本有Linux、FreeBSD、Solaris等。
3. 系统库层(System Libraries Layer)
系统库是应用程序和内核之间的接口,提供了常用的系统调用函数,如文件操作、进程管理、网络通信等。
常见的系统库有glibc、musl 等。
4. 系统工具层(System Utilities Layer)
系统工具是管理和维护操作系统的工具程序,如文件系统工具、网络工具、系统管理工具等。
常见的系统工具有bash、cron、systemd 等。
5. 服务层(Services Layer)
服务层包括各种系统服务,如Web服务(Apache、Nginx)、数据库服务(MySQL、PostgreSQL)、文件服务(Samba、NFS)等。
6. 桌面环境层(Desktop Environment Layer)
桌面环境提供了图形化的用户界面,方便用户与系统交互。
常见的桌面环境有GNOME、KDE、Xfce等。
7. 应用层(Application Layer)
应用层包括各种应用程序,如办公软件、浏览器、媒体播放器、游戏等。
Linux系统的层次结构由底层的硬件到上层的应用程序,每一层都扮演着重要的角色,相互协作为用户提供了完整的操作系统功能。
linux操作系统课程所讲的内容
![linux操作系统课程所讲的内容](https://img.taocdn.com/s3/m/570f122f24c52cc58bd63186bceb19e8b8f6ece8.png)
linux操作系统课程所讲的内容《Linux操作系统》课程通常会涵盖以下主要内容:1. Linux系统简介与历史:1)Linux内核的发展历程2)开源文化与社区支持3)Linux发行版介绍(如Ubuntu、CentOS、Red Hat Enterprise Linux等)2. Linux系统安装与基本配置:1)安装过程演示与实践2)系统启动流程(GRUB引导程序)3)文件系统管理(分区、格式化、挂载点)4)用户和组的创建与管理5)shell基础与高级操作(bash脚本编程)3. 文件系统与目录结构:1)文件权限及所有权2)软链接与硬链接3)目录操作命令(ls, cd, cp, mv, rm等)4. 进程管理:1)进程状态与控制(ps, top, kill, pgrep等)2)进程调度与作业控制5. 内存管理和虚拟存储:1)内存使用监控工具2)swap空间配置与管理3)物理内存与虚拟内存原理6. 网络配置与服务管理:1)网络接口配置(ifconfig/ip命令)2)DNS解析原理与配置3)配置网络服务(例如:Apache、Nginx、DHCP、DNS服务器)4)端口管理与防火墙规则设置(iptables或firewalld)7. 系统安全:1)权限管理策略2)SSH远程登录与密钥认证3)SELinux或AppArmor安全模块4)日志分析与审计8. 软件包管理:1)RPM与YUM/DNF在RHEL/CentOS系统上的应用2)APT与DEB包在Ubuntu/Debian系统上的使用3)编译安装与依赖管理9. 脚本编程与自动化任务:1)Shell脚本编写与调试2)Cron定时任务设置10. 设备管理与硬件驱动:1)设备文件与udev规则2)常见硬件设备的识别与配置11. 系统维护与故障排查:1)系统备份与恢复2)系统性能监视与优化3)故障诊断与日志分析通过理论教学和实验实践,学生将深入理解Linux操作系统的内部工作原理,并掌握在实际环境中进行系统管理和应用开发的基本技能。
linux操作系统原理
![linux操作系统原理](https://img.taocdn.com/s3/m/fcbbf760657d27284b73f242336c1eb91a37332b.png)
linux操作系统原理Linux操作系统是一种开源的、多用户、多任务的操作系统,基于Unix的设计理念和技术,由芬兰的林纳斯·托瓦兹(Linus Torvalds)在1991年首次发布。
其原理主要包括以下几个方面:1. 内核与外壳:Linux操作系统的核心是Linux内核,负责管理计算机的资源并为用户程序提供服务。
外壳(Shell)则是用户与内核之间的接口,提供命令行或图形用户界面供用户操作系统。
2. 多用户和多任务:Linux支持多用户和多任务,可以同时运行多个用户程序,并为每个用户分配资源。
多任务由调度器负责,按照一定的算法将CPU时间片分配给各个任务,以提高系统的利用率。
3. 文件系统:Linux采用统一的文件系统作为数据的存储与管理方式。
文件系统将计算机中的存储设备抽象成为一个层次化的文件和目录结构,使用户可以方便地访问和管理文件。
4. 设备管理:Linux操作系统通过设备驱动程序管理计算机的外部设备,如键盘、鼠标、打印机等。
每个设备都有相应的驱动程序,将硬件操作转换成可供内核或用户程序调用的接口。
5. 系统调用:Linux操作系统提供了一组系统调用接口,允许用户程序通过调用这些接口来访问内核提供的功能。
常见的系统调用包括文件操作、进程管理、内存管理等,通过系统调用可以使用户程序与操作系统进行交互。
6. 网络支持:Linux操作系统具有强大的网络功能,支持网络协议栈和网络设备驱动程序。
Linux可以作为服务器提供各种网络服务,如Web服务器、数据库服务器等。
7. 安全性:Linux操作系统注重安全性,提供了许多安全机制来保护系统和数据。
例如,文件权限控制、访问控制列表、加密文件系统等可以保护文件的机密性和完整性;防火墙和入侵检测系统可以保护网络安全。
总之,Linux操作系统具有高度的可定制性、稳定性和安全性,适用于服务器、嵌入式设备和个人计算机等各种场景。
在开源社区的支持下,Linux不断发展壮大,成为当今最受欢迎的操作系统之一。
《Linux培训》PPT课件
![《Linux培训》PPT课件](https://img.taocdn.com/s3/m/a5aa3db3f71fb7360b4c2e3f5727a5e9856a27e2.png)
04
性能监控工具
介绍常用的Linux系统性能监 控工具,如top、htop、sar
等。
性能瓶颈识别
通过分析系统资源使用情况, 识别性能瓶颈,如CPU、内
存、磁盘I/O等。
优化方法
针对不同的性能瓶颈,提供相 应的优化方法,如调整系统参
数、优化软件配置等。
实践案例
分享一些成功的系统性能优化 案例,帮助学员更好地理解和
《Linux培训》PPT课 件
汇报人: 2023-12-31
目 录
• Linux基础知识 • Linux常用命令 • Linux文件系统与磁盘管理 • Linux网络配置与服务管理 • Linux Shell编程基础 • Linux系统安全与优化
Linux基础知识
01
Linux简介
Linux的起源
Linux Shell编程基
05
础
Shell脚本概述
01
02
03
脚本定义
Shell脚本是一种命令行脚 本语言,用于自动化 Linux/Unix系统上的任务 。
脚本执行
Shell脚本可以通过Shell 解释器执行,例如Bash、 sh等。
脚本组成
Shell脚本由命令、控制结 构、变量和注释等组成。
不同的操作。
循环控制
Shell脚本支持循环控制语句,如 for、while等,用于重复执行一
段代码。
流程控制
Shell脚本还支持其他流程控制语 句,如break、continue等,用
于控制循环的执行流程。
Linux系统安全与优
06
化
防火墙配置与安全策略制定
防火墙基本概念
介绍防火墙的定义、作用及常见类型。
linux网络内核基础
![linux网络内核基础](https://img.taocdn.com/s3/m/31e1cdb7284ac850ad024238.png)
一.linux内核网络栈代码的准备知识 1. linux内核ipv4网络部分分层结构:BSD socket层:这一部分处理BSD socket相关操作,每个socket在内核中以struct socket结构体现。
这一部分的文件主要有:/net/socket.c /net/protocols.c etcINET socket层:BSD socket是个可以用于各种网络协议的接口,而当用于tcp/ip,即建立了AF_INET形式的socket时,还需要保留些额外的参数,于是就有了struct sock结构。
文件主要有:/net/ipv4/protocol.c /net/ipv4/af_inet.c /net/core/sock.c etcTCP/UDP层:处理传输层的操作,传输层用struct inet_protocol和struct proto两个结构表示。
文件主要有:/net/ipv4/udp.c /net/ipv4/datagram.c /net/ipv4/tcp.c/net/ipv4/tcp_input.c /net/ipv4//tcp_output.c /net/ipv4/tcp_minisocks.c/net/ipv4/tcp_output.c /net/ipv4/tcp_timer.c etcIP层:处理网络层的操作,网络层用struct packet_type结构表示。
文件主要有:/net/ipv4/ip_forward.c ip_fragment.c ip_input.c ip_output.c etc.数据链路层和驱动程序:每个网络设备以struct net_device表示,通用的处理在dev.c中,驱动程序都在/driver/net目录下。
2. 两台主机建立udp通信所走过的函数列表^| sys_read fs/read_write.c| sock_read net/socket.c| sock_recvmsg net/socket.c| inet_recvmsg net/ipv4/af_inet.c| udp_recvmsg net/ipv4/udp.c| skb_recv_datagram net/core/datagram.c| -------------------------------------------| sock_queue_rcv_skb include/net/sock.h| udp_queue_rcv_skb net/ipv4/udp.c| udp_rcv net/ipv4/udp.c| ip_local_deliver_finish net/ipv4/ip_input.c| ip_local_deliver net/ipv4/ip_input.c| ip_recv net/ipv4/ip_input.c| net_rx_action net/dev.c| -------------------------------------------| netif_rx net/dev.c| el3_rx driver/net/3c30Array.c| el3_interrupt driver/net/3c30Array.c==========================| sys_write fs/read_write.c| sock_writev net/socket.c| sock_sendmsg net/socket.c| inet_sendmsg net/ipv4/af_inet.c| udp_sendmsg net/ipv4/udp.c| ip_build_xmit net/ipv4/ip_output.c| output_maybe_reroute net/ipv4/ip_output.c| ip_output net/ipv4/ip_output.c| ip_finish_output net/ipv4/ip_output.c| dev_queue_xmit net/dev.c| --------------------------------------------| el3_start_xmit driver/net/3c30Array.cV 3. 网络路径图、重要数据结构sk_buffer及路由介绍linux-net.pdf 第2.1章第2.3章第2.4章4. 从连接、发送、到接收数据包的过程linux-net.pdf 第4、5、6章详细阐述二.linux的tcp-ip栈代码的详细分析1.数据结构(msghdr,sk_buff,socket,sock,proto_ops,proto) bsd套接字层,操作的对象是socket,数据存放在msghdr这样的数据结构:创建socket需要传递family,type,protocol三个参数,创建socket其实就是创建一个socket实例,然后创建一个文件描述符结构,并且互相建立一些关联,即建立互相连接的指针,并且初始化这些对文件的写读操作映射到socket的read,write函数上来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l i n u x系统内核结构
详解
Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。
1.进程调度(SCHED):控制进程对CPU的访问。
当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。
可运行进程实际上是仅等待CPU 资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。
Linux 使用了比较简单的基于优先级的进程调度算法选择新的进程。
2.内存管理(MM)允许多个进程安全的共享主内存区域。
Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。
必要时,操作系统负责在磁盘和内存间交换程序块。
内存管理从逻辑上分为硬件无关部分和硬件有关部分。
硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。
3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。
虚拟文件系统可以分为逻辑文件系统和设备驱动程序。
逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。
4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。
网络接口可分为网络协议和网络驱动程序。
网络协议部分负责实现每一种
可能的网络传输协议。
网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。
5.进程间通讯(IPC) 支持进程间各种通信机制。
处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。
一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。
例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。
其他子系统以相似的理由依赖于进程调度。
各个子系统之间的依赖关系如下:
进程调度与内存管理之间的关系:这两个子系统互相依赖。
在多道程序环境下,程序要运行必须为之创建进程,而创建进程的第一件事情,就是将程序和数据装入内存。
进程间通信与内存管理的关系:进程间通信子系统要依赖内存管理支持共享内存通信机制,这种机制允许两个进程除了拥有自己的私有空间,还可以存取共同的内存区域。
虚拟文件系统与网络接口之间的关系:虚拟文件系统利用网络接口支持网络文件系统(NFS),也利用内存管理支持RAMDISK设备。
内存管理与虚拟文件系统之间的关系:内存管理利用虚拟文件系统支持交换,交换进程(swapd)定期由调度程序调度,这也是内存管理依赖于进程调度的唯一原因。
当一个进程存取的内存映射被换出时,内存管理向文件系统发出请求,同时,挂起当前正在运行的进程。
除了这些依赖关系外,内核中的所有子系统还要依赖于一些共同的资源。
这些资源包括所有子系统都用到的过程。
例如:分配和释放内存空间的过程,打印警告或错误信息的过程,还有系统的调试例程等等。
系统数据结构
在linux的内核的实现中,有一些数据结构使用频度较高,他们是:
task_struct.
Linux内核利用一个数据结构(task_struct)代表一个进程,代表进程的数据结构指针形成了一个task数组(Linux中,任务和进程是相同的术语),这种指针数组有时也称为指针向量。
这个数组的大小由NR_TASKS(默认为512),表明Linux系统中最多能同时运行的进程数目。
当建立新进程的时候,Linux为新进程分配一个task_struct结构,然后将指针保存在task数组中。
调度程序一直维护着一个current指针,他指向当前正在运行的进程。
Mm_struct
每个进程的虚拟内存由一个mm_struct结构来代表,该结构实际上包含了当前执行映像的有关信息,并且包含了一组指向vm_area_struct结构的指针,vm_area_struct结构描述了虚拟内存的一个区域。
Inode
虚拟文件系统(VFS)中的文件、目录等均由对应的索引节点(inode)代表。
每个VFS索引节点中的内容由文件系统专属的例程提供。
VFS索引节点只存在于内核内存中,实际保存于VFS的索引节点高速缓存中。
如果两个进程用相同的进程打开,则可以共享inade的数据结构,这种共享是通过两个进程中数据块
指向相同的inode完成。
Linux的具体结构
所谓具体结构是指系统实现的结构。
Linux的具体结构类似于抽象结构,这种对应性是因为抽象结构来源于具体结构,我们的划分没有严格依照源代码的目录结构,且和子系统的分组也不完全匹配,但是,它很接近源代码的目录结构。
尽管前面的讨论的抽象结构显示了各个子系统之间只有很少的依赖关系,但是具体结构的5个子系统之间有高度的依赖关系。
我们可以看出,具体结构中的很多依赖关系并没有在抽象结构中出现。
Linux内核源代码
目前,较新而又稳定的内核版本是2.0.x和2.2.x,因为版本不同稍有差别,因此如果你想让一个新的驱动程序既支持2.0.x,又支持2.2.x,就需要根据内核版本进行条件编译,要作到这一点,就要支持宏LINUX_VERSION_CODE,
假如内核的版本用a.b.c来表示,这个宏的值就是216a+28b+c。
要用到指定内核版本的值,我们可以用KERNEL_VERSION宏,我们也可以自己去定义它。
对内核的修改用补丁文件的方式发布的。
Patch实用程序用来用来对内核源文件进行一系列的修改。
例如:你有2.2.9的源代码,但想移到2.2.10。
就可以获得2.2.10的补丁文件,应用patch来修改2.2.9源文件。
例如:
$ cd /usr/src/linux
$ patch –pl < patch-2.2.10
Linux 内核源代码的结构
Linux内核源代码位于/usr/src/linux目录下。
/include子目录包含了建立内核代码时所需的大部分包含文件,这个模块利用其他模块重建内核。
/init 子目录包含了内核的初始化代码,这是内核工作的开始的起点。
/arch子目录包含了所有硬件结构特定的内核代码。
如:i386,alpha
/drivers子目录包含了内核中所有的设备驱动程序,如块设备和SCSI设备。
/fs子目录包含了所有的文件系统的代码。
如:ext2,vfat等。
/net子目录包含了内核的连网代码。
/mm子目录包含了所有内存管理代码。
/ipc子目录包含了进程间通信代码。
/kernel子目录包含了主内核代码。
从何处开始阅读源代码?
在Internet,有人制作了源代码导航器,为阅读源代码提供了良好的条件,站点为lxr.linux.no/source。
下面给出阅读源代码的线索:
系统的启动和初始化:
在基于Intel的系统上,当loadlin.exe或LILO把内核装入到内存并把控制权传递给内核时,内核开始启动。
关于这一部分请看,
arch/i386/kernel/head.S,head.S进行特定结构的设置,然后跳转到init/main.c的main()例程。
内存管理:
内存管理的代码主要在/mm,但是特定结构的代码在arch/*/mm。
缺页中断处理的代码在/mm/memory.c ,而内存映射和页高速缓存器的代码在
/mm/filemap.c 。
缓冲器高速缓存是在/mm/buffer.c 中实现,而交换高速缓存是在mm/swap_state.c和mm/swapfile.c。
内核:
内核中,特定结构的代码在arch/*/kernel,调度程序在kernel/sched.c,fork的代码在kernel/fork.c,内核例程处理程序在include/linux/interrupt.h,task_struct数据结构在inlucde/linux/sched.h中。
PCI:
PCI伪驱动程序在drivers/pci/pci.c,其定义在inclulde/linux/pci.h。
每一种结构都有一些特定的PCI BIOS代码,Intel的在arch/alpha/kernel/bios32.c中。
进程间通信:
所有的SystemVIPC对象权限都包含在ipc_perm数据结构中,这可以在include/linux/ipc.h中找到。
SystemV消息是在ipc/msg.c中实现。
共享内存在ipc/shm.c中实现。
信号量在ipc/sem.c中,管道在/ipc/pipe.c中实现。
中断处理:
内核的中断处理代码几乎所有的微处理器特有的。
中断处理代码在
arch/i386/kernel/irq.c中,其定义在include/asm-i386/irq.h中。