和田市二中2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和田市二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 将函数x x f ωsin )(=(其中0>ω)的图象向右平移
4
π
个单位长度,所得的图象经过点 )0,43(
π
,则ω的最小值是( ) A .31 B . C .35
D .
2. 已知函数f (x )
=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)
3. 设复数1i z =-(i 是虚数单位),则复数
22
z z
+=( ) A.1i - B.1i + C. 2i + D. 2i -
【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力. 4. 函数y=a x +2(a >0且a ≠1)图象一定过点( )
A .(0,1)
B .(0,3)
C .(1,0)
D .(3,0)
5. 已知正△ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )
A

B

C

D

6. 函数f (x )
=﹣lnx 的零点个数为( ) A .0
B .1
C .2
D .3
7. 已知直线l
的参数方程为1cos sin x t y t α
α
=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴
正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3
π
ρθ=+
,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )
A .4
π
α=
B .3
π
α=
C .34
πα=
D .23
π
α=
8. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽 车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘 坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有( )种. A .24 B .18 C .48 D .36
【命题意图】本题考查排列与组合的基础知识,考查学生分类讨论,运算能力以及逻辑推理能力.
9. 若函数f (x )=﹣a (x ﹣x 3)的递减区间为(,),则a 的取值范围是( )
A .a >0
B .﹣1<a <0
C .a >1
D .0<a <1
10.某几何体的三视图如图所示,该几何体的体积是( )
A .
B .
C .
D .
11.某三棱锥的三视图如图所示,该三棱锥的体积是( ) A . 2 B .4 C .
34 D .3
8
【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.
12.执行如图所示的程序框图,若输入的
分别为0,1,则输出的
( )
A.4 B.16 C.27 D.36
二、填空题
13.已知数列的前项和是, 则数列的通项__________
14.如图所示,圆C中,弦AB的长度为4,则AB AC
×的值为_______.
【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.
15.已知函数
5
()sin(0)
2
f x x a x
π
=-≤≤的三个零点成等比数列,则
2
log a=.
16.函数y=a x+1(a>0且a≠1)的图象必经过点(填点的坐标)
17.函数()2
log
f x x
=在点()
1,2
A处切线的斜率为▲.
18.已知f(x)=,则f(﹣)+f()等于.
三、解答题
19.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.
(1)求∠BDA的大小
(2)求BC的长.
20.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.
(I)求AM的长;
(Ⅱ)求面DCE与面BCE夹角的余弦值.
21.(1)直线l 的方程为(a+1)x+y+2﹣a=0(a ∈R ).若l 在两坐标轴上的截距相等,求a 的值; (2)已知A (﹣2,4),B (4,0),且AB 是圆C 的直径,求圆C 的标准方程.
22.【南师附中2017届高三模拟二】如下图扇形AOB 是一个观光区的平面示意图,其中AOB ∠为
23
π
,半径OA 为1km ,为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由圆弧
AC 、线段CD 及线段BD 组成.其中D 在线段OB 上,且//CD AO ,设AOC θ∠=.
(1)用θ表示CD 的长度,并写出θ的取值范围; (2)当θ为何值时,观光道路最长?
23.已知复数z=
. (1)求z 的共轭复数;
(2)若az+b=1﹣i ,求实数a ,b 的值.
24.函数f(x)=sin2x+sinxcosx.(1)求函数f(x)的递增区间;
(2)当x∈[0,]时,求f(x)的值域.
和田市二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】D

点:由()ϕω+=x A y sin 的部分图象确定其解析式;函数()ϕω+=x A y sin 的图象变换. 2. 【答案】C
【解析】解:∵f (x )=﹣log 2x ,
∴f (2)=2>0,f (4)=﹣<0, 满足f (2)f (4)<0,
∴f (x )在区间(2,4)内必有零点, 故选:C
3. 【答案】A 【



4. 【答案】B 【解析】解:由于函数y=a x (a >0且a ≠1)图象一定过点(0,1),故函数y=a x
+2(a >0且a ≠1)图象一定
过点(0,3), 故选B .
【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.
5. 【答案】D
【解析】解:∵正△ABC 的边长为a ,∴正△ABC 的高为

画到平面直观图△A ′B ′C ′后,“高”变成原来的一半,且与底面夹角45度,
∴△A ′B ′C ′的高为=,
∴△A ′B ′C ′的面积S==

故选D .
【点评】本题考查平面图形的直观图的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
6. 【答案】B
【解析】解:函数f (x )=﹣lnx 的零点个数等价于
函数y=与函数y=lnx 图象交点的个数, 在同一坐标系中,作出它们的图象:
由图象可知,函数图象有1个交点,即函数的零点个数为1 故选B
7. 【答案】A
【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C
的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵
||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴
4
π
α=,选A .
8. 【答案】A
【解析】分类讨论,有2种情形.孪生姐妹乘坐甲车,则有121
21223=C C C 种. 孪生姐妹不乘坐甲车,则有
12121213=C C C 种. 共有24种. 选A.
9. 【答案】A
【解析】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)
∴f′(x)≤0,x∈(,)恒成立
即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立
∵1﹣3x2≥0成立
∴a>0
故选A
【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.10.【答案】A
【解析】解:几何体如图所示,则V=,
故选:A.
【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.
11.【答案】B
12.【答案】D
【解析】【知识点】算法和程序框图
【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。

故答案为:D
二、填空题
13.【答案】
【解析】
当时,
当时,,
两式相减得:
令得,所以
答案:
14.【答案】8
15.【答案】
1 2
考点:三角函数的图象与性质,等比数列的性质,对数运算.
【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题.
16.【答案】(0,2)
【解析】解:令x=0,得y=a0+1=2
∴函数y=a x+1(a>0且a≠1)的图象必经过点(0,2)
故答案为:(0,2).
【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点
17.【答案】1
ln 2
【解析】
试题分析:()()111ln 2ln 2
f x k f x ''=
∴== 考点:导数几何意义
【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.
(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 18.【答案】 4 .
【解析】解:由分段函数可知f ()=2×=.
f (﹣)=f (﹣+1)=f (﹣)=f (﹣)=f ()=2×=,
∴f ()+f (﹣)=+.
故答案为:4.
三、解答题
19.【答案】
【解析】(本题满分为12分)
解:(1)在△ABC 中,AD=5,AB=7,BD=8,由余弦定理得…
=

∴∠BDA=60°… (2)∵AD ⊥CD , ∴∠BDC=30°…
在△ABC 中,由正弦定理得
,…
∴.…
20.【答案】解:(I)由已知可得AM⊥CD,又M为CD的中点,
∴;3分
(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,
以OA为x轴,OF为y轴,OC为z轴建立坐标系,
可得

∴,,5分
设为面BCE的法向量,由可得=(1,2,﹣),
∴cos<,>==,∴面DCE与面BCE夹角的余弦值为4分
21.【答案】
【解析】解:(1)当a=﹣1时,直线化为y+3=0,不符合条件,应舍去;
当a≠﹣1时,分别令x=0,y=0,解得与坐标轴的交点(0,a﹣2),(,0).
∵直线l在两坐标轴上的截距相等,
∴a﹣2=,解得a=2或a=0;
(2)∵A (﹣2,4),B (4,0), ∴线段AB 的中点C 坐标为(1,2). 又∵
|AB|=

∴所求圆的半径
r=
|AB|=

因此,以线段AB 为直径的圆C 的标准方程为(x ﹣1)2+(y ﹣2)2
=13.
22.【答案】(1
)cos ,0,3CD πθθθ⎛⎫
=+∈ ⎪⎝⎭
;(2)设∴当6πθ=时,()L θ取得最大值,即当6πθ=
时,观光道路最长.
【解析】试题分析:(1)在OCD ∆中,由正弦定理得:sin sin sin CD OD CO COD DCO CDO ==∠∠∠
2cos 3CD πθθθ⎛⎫
∴=-= ⎪⎝⎭
,OD θ=
1sin 03OD OB π
θθθ<<∴<<<
cos ,0,3CD πθθθ⎛⎫
∴=∈ ⎪⎝⎭
(2)设观光道路长度为()L θ, 则()L BD CD AC θ=++弧的长
= 1cos θθθθ+++
= cos 1θθθ++,0,3πθ⎛⎫∈ ⎪⎝⎭
∴(
)sin 1L θθθ=-+' 由()0L θ'=
得:sin 6πθ⎛⎫
+= ⎪⎝
⎭,又0,3πθ⎛⎫∈ ⎪⎝⎭
6πθ∴=
∴当6
π
θ=
时,()L θ取得最大值,即当6
π
θ=
时,观光道路最长.
考点:本题考查了三角函数的实际运用
点评:对三角函数的考试问题通常有:其一是考查三角函数的性质及图象变换,尤其是三角函数的最大值与最小值、周期。

多数题型为选择题或填空题;其次是三角函数式的恒等变形。

如运用三角公式进行化简、求值解决简单的综合题等。

除在填空题和选择题出现外,解答题的中档题也经常出现这方面内容。

另外,还要注意利用三角函数解决一些应用问题 23.【答案】
【解析】解:(1).
∴=1﹣i .
(2)a (1+i )+b=1﹣i ,即a+b+ai=1﹣i ,


解得a=﹣1,b=2.
【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键.
24.【答案】 【解析】解:(1)…(2分)

解得

f (x )的递增区间为…(6分) (2)∵,∴
…(8分)

,∴…(10分)
∴f (x )的值域是
…(12分)
【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.。

相关文档
最新文档