洛川县高中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洛川县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是sinA=的(
)
A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既不充分也非必要条件
2. 如果随机变量ξ~N (﹣1,σ2),且P (﹣3≤ξ≤﹣1)=0.4,则P (ξ≥1)等于( )
A .0.1
B .0.2
C .0.3
D .0.4
3. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( )
A .1
B .2
C .3
D .4
4. 圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( )1
2
A.缩小到原来的一半
B.扩大到原来的倍
C.不变
D.缩小到原来的
16
5. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )
A .T 1=T 19
B .T 3=T 17
C .T 5=T 12
D .T 8=T 11
6. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )
A .1
B .
C .
D .2
7. 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为(
)
A. B .483C.D .16
3
20
3
8. 已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是(
)
A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④
B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④
C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④
D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④
9. 已知||=3,||=1,与的夹角为,那么|﹣4|等于(
)A .2B .
C .
D .13
10.已知双曲线
﹣=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=1相切,则双曲线的离心率为(
)
A .
B .
C .
D .
11.在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( )
A .3
B .6
C .7
D .8
12.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如
由算得2
()()()()()n ad bc K a b c d a c b d -=++++22
500(4027030160)9.96720030070430
K ⨯⨯-⨯=
=⨯⨯⨯附表:
参照附表,则下列结论正确的是( )
3.841 6.635 10.828k 2() 0.050 0.010 0.001
P K k ≥①有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 99%②有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;
99%
③采用系统抽样方法比采用简单随机抽样方法更好;④采用分层抽样方法比采用简单随机抽样方法更好;A .①③
B .①④
C .②③
D .②④
二、填空题
13.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.
14.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= .15.
的展开式中
的系数为 (用数字作答).
16.分别在区间、上任意选取一个实数,则随机事件“”的概率为_________.[0,1][1,]e a b 、ln a b ≥17.已知数列{a n }中,a 1=1,a n+1=a n +2n ,则数列的通项a n = .
18.已知函数,是函数的一个极值点,则实数
.
3
2
()39f x x ax x =++-3x =-()f x a =三、解答题
19.已知椭圆C : +
=1(a >b >0)与双曲线
﹣y 2=1的离心率互为倒数,且直线x ﹣y ﹣2=0经过椭圆的右
顶点.
(Ⅰ)求椭圆C 的标准方程;
(Ⅱ)设不过原点O 的直线与椭圆C 交于M 、N 两点,且直线OM 、MN 、ON 的斜率依次成等比数列,求△OMN 面积的取值范围.
20.已知曲线C 1:ρ=1,曲线C 2:(t 为参数)
(1)求C 1与C 2交点的坐标;
(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′与C 2′,写出C 1′与C 2′的参数方程,C 1与C 2公共点的个数和C 1′与C 2′公共点的个数是否相同,说明你的理由.
2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)
21.已知数列a1,a2,…a30,其中a1,a2,…a10,是首项为1,公差为1的等差数列;列a10,a11,…a20,是公差为d的等差数列;a20,a21,…a30,是公差为d2的等差数列(d≠0).
(1)若a20=40,求d;
(2)试写出a30关于d的关系式,并求a30的取值范围;
(3)续写已知数列,使得a30,a31,…a40,是公差为d3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?
22.已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆E
上.
(1)求椭圆E的方程;
(2)设过点P(2,1)的直线l与椭圆相交于A、B两点,若AB的中点恰好为点P,求直线l的方程.
23.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图
,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.
V
(1)求该几何体的体积;111]
S
(2)求该几何体的表面积.
24.已知命题p:不等式|x﹣1|>m﹣1的解集为R,命题q:f(x)=﹣(5﹣2m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.
洛川县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】A
【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),
∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,
∴sinB=2cosAsinB,
∵sinB≠0,
∴cosA=,
∴A=,
∴sinA=,
当sinA=,
∴A=或A=,
故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,
故选:A
2.【答案】A
【解析】解:如果随机变量ξ~N(﹣1,σ2),且P(﹣3≤ξ≤﹣1)=0.4,
∵P(﹣3≤ξ≤﹣1)
=
∴
∴P(ξ≥1)=.
【点评】一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位.
3.【答案】A
【解析】解:设等差数列{a n}的公差为d,
由a1+1,a3+2,a5+3构成等比数列,
得:(a3+2)2=(a1+1)(a5+3),
整理得:a32+4a3+4=a1a5+3a1+a5+3
即(a 1+2d )2+4(a 1+2d )+4=a 1(a 1+4d )+4a 1+4d+3.化简得:(2d+1)2=0,即d=﹣.
∴q=
=
=1.
故选:A .
【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.
4. 【答案】A 【解析】
试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来2
113
V r h π=的倍,底面半径缩短到原来的,则体积为,所以,故选A.
122
22111(2)326
V r h r h ππ=⨯=122V V =考点:圆锥的体积公式.15. 【答案】C 【解析】解:∵a n =29﹣n ,
∴T n =a 1•a 2•…•a n =28+7+…+9﹣n =∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确T 5=230,T 12=230,故C 正确T 8=236,T 11=233,故D 不正确故选C
6. 【答案】A
【解析】解:极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,可知两条曲线是同心圆,如图,|PQ|的最小值为:1.故选:A .
【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.
7. 【答案】
【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-×2×2×1=,故选D.
13203
8. 【答案】 D
【解析】解:图象①是关于原点对称的,即所对应函数为奇函数,只有f (x );
图象②④恒在x 轴上方,即在[﹣π,π]上函数值恒大于0,符合的函数有h (x )和Φ(x ),又图象②过定点(0,1),其对应函数只能是h (x ),那图象④对应Φ(x ),图象③对应函数g (x ).故选:D .
【点评】本题主要考查学生的识图、用图能力,从函数的性质入手结合特殊值是解这一类选择题的关键,属于基础题.
9. 【答案】C
【解析】解:||=3,||=1,与的夹角为,
可得
=||||cos <,>=3×1×=,
即有|﹣4|=
=
=
.
故选:C .
【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.
10.【答案】D
【解析】解:双曲线﹣=1(a >0,b >0)的渐近线方程为 y=±x ,即x ±y=0.
根据圆(x ﹣2)2+y 2=1的圆心(2,0)到切线的距离等于半径1,可得,1=
,∴ =
,
,可得e=
.故此双曲线的离心率为:.
故选D .
【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键.
11.【答案】B
【解析】解:∵在等差数列{a n }中a 1=2,a 3+a 5=8,∴2a 4=a 3+a 5=8,解得a 4=4,
∴公差d==,
∴a 7=a 1+6d=2+4=6故选:B .
12.【答案】D
【解析】解析:本题考查独立性检验与统计抽样调查方法.
由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年9.967 6.635 人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D .
二、填空题
13.【答案】 必要不充分
【解析】解:由题意得f ′(x )=e x ++4x+m ,∵f (x )=e x +lnx+2x 2+mx+1在(0,+∞)内单调递增,
∴f ′(x )≥0,即e x ++4x+m ≥0在定义域内恒成立,由于+4x ≥4,当且仅当=4x ,即x=时等号成立,
故对任意的x ∈(0,+∞),必有e x ++4x >5
∴m ≥﹣e x ﹣﹣4x 不能得出m ≥﹣5
但当m ≥﹣5时,必有e x ++4x+m ≥0成立,即f ′(x )≥0在x ∈(0,+∞)上成立∴p 不是q 的充分条件,p 是q 的必要条件,即p 是q 的必要不充分条件故答案为:必要不充分
14.【答案】 5 .
【解析】解:P (1,4)为抛物线C :y 2=mx 上一点,即有42=m ,即m=16,抛物线的方程为y 2=16x ,焦点为(4,0),即有|PF|==5.
故答案为:5.
【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.
15.【答案】20
【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3.
所以系数为:故答案为:16.【答案】
1e e
-【解析】解析: 由得,如图所有实数对表示的区域的面积为,满足条件“”的ln a b ≥a
b e ≤(,)a b e a
b e ≤实数对表示的区域为图中阴影部分,其面积为
,∴随机事件“”的概率为
(,)a b 1
1
1|a a e da e e ==-⎰
ln a b ≥.1
e e
-17.【答案】 2n ﹣1 .
【解析】解:∵a 1=1,a n+1=a n +2n ,
∴a 2﹣a 1=2,
a 3﹣a 2=22,
…
a n ﹣a n ﹣1=2n ﹣1,
相加得:a n ﹣a 1=2+22+23+2…+2n ﹣1,
a n =2n ﹣1,
故答案为:2n ﹣1,
18.【答案】5
【解析】
试题分析:.
'2'
()323,(3)0,5f x x ax f a =++∴-=∴=考点:导数与极值.三、解答题
19.【答案】
【解析】解:(Ⅰ)∵双曲线的离心率为,所以椭圆的离心率,
又∵直线x ﹣y ﹣2=0经过椭圆的右顶点,
∴右顶点为(2,0),即a=2,c=
,b=1,…∴椭圆方程为:.…(Ⅱ)由题意可设直线的方程为:y=kx+m •(k ≠0,m ≠0),M (x 1,y 1)、N (x 2,y 2)联立消去y 并整理得:(1+4k 2)x 2+8kmx+4(m 2﹣1)=0…则,于是…
又直线OM 、MN 、ON 的斜率依次成等比数列.∴
…
由m ≠0得:
又由△=64k 2m 2﹣16(1+4k 2)(m 2﹣1)=16(4k 2﹣m 2+1)>0,得:0<m 2<2
显然m 2≠1(否则:x 1x 2=0,则x 1,x 2中至少有一个为0,
直线OM 、ON 中至少有一个斜率不存在,与已知矛盾) …
设原点O到直线的距离为d,则
∴故由m的取值范围可得△OMN面积的取值范围为(0,1)…
【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力.
20.【答案】
【解析】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,
∴C1是以原点为圆心,以1为半径的圆,
∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,
联立,解得x=﹣,y=.
∴C2与C1只有一个公共点:(﹣,).
(2)压缩后的参数方程分别为
:(θ为参数):(t为参数),
化为普通方程为::x2+4y2=1,:y=,
联立消元得,
其判别式,
∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.
【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.
21.【答案】
【解析】解:(1)a10=1+9=10.a20=10+10d=40,∴d=3.
(2)a30=a20+10d2=10(1+d+d2)(d≠0),
a30=10,
当d∈(﹣∞,0)∪(0,+∞)时,a30∈[7.5,+∞)
(3)所给数列可推广为无穷数列{a n],
其中a1,a2,…,a10是首项为1,公差为1的等差数列,
当n≥1时,数列a10n,a10n+1,…,a10(n+1)是公差为d n的等差数列.
研究的问题可以是:试写出a10(n+1)关于d的关系式,并求a10(n+1)的取值范围.
研究的结论可以是:由a40=a30+10d3=10(1+d+d2+d3),
依此类推可得a10(n+1)=10(1+d+…+d n)=.
当d>0时,a10(n+1)的取值范围为(10,+∞)等.
【点评】此题考查学生灵活运用等差数列的性质解决实际问题,会根据特例总结归纳出一般性的规律,是一道中档题.
22.【答案】
【解析】解:(1)由题得=,=1,又a2=b2+c2,
解得a2=8,b2=4.
∴椭圆方程为:.
(2)设直线的斜率为k,A(x1,y1),B(x2,y2),
∴,=1,
两式相减得=0,
∵P是AB中点,∴x1+x2=4,y1+y2=2,=k,
代入上式得:4+4k=0,解得k=﹣1,
∴直线l:x+y﹣3=0.
【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.
23.【答案】(1;(2).6+【解析】
(2)由三视图可知,
该平行六面体中平面,平面,
1A D ⊥ABCD CD ⊥11BCC B ∴,侧面,均为矩形,
12AA =11ABB A 11CDD C
.1
2(11112)6S =⨯++⨯=+
考点:几何体的三视图;几何体的表面积与体积.
【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键.
24.【答案】
【解析】解:不等式|x ﹣1|>m ﹣1的解集为R ,须m ﹣1<0,即p 是真 命题,m <1
f (x )=﹣(5﹣2m )x 是减函数,须5﹣2m >1即q 是真命题,m <2,
由于p 或q 为真命题,p 且q 为假命题,故p 、q 中一个真,另一个为假命题
因此,1≤m <2.
【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键.属中档题.。