【冲刺卷】九年级数学上期末一模试题带答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【冲刺卷】九年级数学上期末一模试题带答案
一、选择题
1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( ) A .m≥1
B .m≤1
C .m >1
D .m <1
2.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,
()1212122(2)2x x x x x x -+--+3=-,则k 的值( )
A .0或2
B .-2或2
C .-2
D .2
3.如图,Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,分别以A 、C 为圆心,以2
AC 的长为半径作圆,将Rt △ABC 截去两个扇形,则剩余(阴影)部分面积为( )
A .(24−
25
4π)cm 2 B .
25
4
πcm 2 C .(24−54
π)cm 2
D .(24−
25
6
π)cm 2 4.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )
A .x(x-20)=300
B .x(x+20)=300
C .60(x+20)=300
D .60(x-20)=300
5.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( ) A .27 B .36
C .27或36
D .18
6.二次函数236y
x x =-+变形为()2
y a x m n =++的形式,正确的是( )
A .()2
313y x =--+ B .()2
313y x =--- C .()2
313y x =-++
D .()2
313y x =-+-
7.下列命题错误..的是 ( ) A .经过三个点一定可以作圆
B .经过切点且垂直于切线的直线必经过圆心
C .同圆或等圆中,相等的圆心角所对的弧相等
D .三角形的外心到三角形各顶点的距离相等
8.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( ) A .正三角形
B .矩形
C .正八边形
D .正六边形
9.如图,点C 是线段AB 的黄金分割点(AC >BC ),下列结论错误的是( )
A .
AC BC
AB AC
= B .2·BC AB BC = C .
51
AC AB -=
D .
0.618≈BC
AC
10.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .﹣1、3 B .1、﹣3 C .﹣1、﹣3 D .1、3 11.正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是( ) A .36°
B .54°
C .72°
D .108°
12.与y=2(x ﹣1)2+3形状相同的抛物线解析式为( ) A .y=1+
12
x 2 B .y=(2x+1)2 C .y=(x ﹣1)2 D .y=2x 2
二、填空题
13.如图,有6张扑克牌,从中任意抽取两张,点数和是偶数的概率是_____.
14.如图,抛物线2
y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点,若点P 的坐标为(4,0),则点Q 的坐标为__________.
15.一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是_____cm 2.
16.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为
,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,
F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米精确到1米
17.四边形ABCD内接于⊙O,∠A=125°,则∠C的度数为_____°.
18.函数y=x2﹣4x+3的图象与y轴交点的坐标为_____.
19.若二次函数y=x2﹣3x+3﹣m的图象经过原点,则m=_____.
20.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s =60t﹣1.5t2,飞机着陆后滑行_____米才能停下来.
三、解答题
21.如图,方格纸中有三个点A B C
,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.
(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;
(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;
(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.
(注:图甲、图乙、图丙在答题纸上)
22.某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:
转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701
落在“铅笔”的频率m n
(结果保留小数点后两位)
0.680.740.680.690.680.70(1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)
(2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;
(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.
23.如图,已知二次函数y=-x2+bx+c的图象经过A(-2,-1),B(0,7)两点.
(1)求该抛物线的解析式及对称轴;
(2)当x为何值时,y>0?
(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.
24.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE ⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE
(1)求证:DE是⊙O的切线;
(2)若AE=6,∠D=30°,求图中阴影部分的面积.
25.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB 上,点B的对应点为E,连接BE.
(Ⅰ)求证:∠A=∠EBC;
(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.D 解析:D 【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.
详解:∵方程2x 2x m 0-+=有两个不相同的实数根, ∴()2
240m =-->V , 解得:m <1. 故选D .
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
2.D
解析:D 【解析】 【分析】
将()1212122(2)2=3x x x x x x -+--+-化简可得,()2
1212124423x x x x x x +-+=--,
利用韦达定理,()2
142(2)3k k ----+=-,解得,k =±2,由题意可知△>0, 可得k =2符合题意. 【详解】
解:由韦达定理,得:
12x x +=k -1,122x x k +=-,
由()1212122(2)23x x x x x x -+--+=-,得:
()
2
1212423x x x x --+=-,
即()2
1212124423x x x x x x +-+=--, 所以,()2
142(2)3k k ----+=-, 化简,得:24k =, 解得:k =±2,
因为关于x 的一元二次方程2
(1)20x k x k ---+=有两个实数根, 所以,△=()2
14(2)k k ---+=227k k +-〉0, k =-2不符合, 所以,k =2 故选:D. 【点睛】
本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.
3.A
解析:A 【解析】 【分析】
利用勾股定理得出AC 的长,再利用图中阴影部分的面积=S △ABC −S 扇形面积求出即可. 【详解】
解:在Rt △ABC 中,∠ABC =90°,AB =8cm ,BC =6cm ,
∴10AC ===cm ,

2
AC
=5 cm , ∴S 阴影部分=S △ABC −S 扇形面积=2190525862423604
ππ
⨯⨯⨯-=-
(cm 2), 故选:A . 【点睛】
本题考查了扇形的面积公式,阴影部分的面积可以看作是Rt △ABC 的面积减去两个扇形的面积.求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.
4.A
解析:A 【解析】 【分析】
设扩大后的正方形绿地边长为xm ,根据“扩大后的绿地面积比原来增加300m 2”建立方程即可. 【详解】
设扩大后的正方形绿地边长为xm , 根据题意得x (x-20)=300, 故选A .
【点睛】
本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.
5.B
解析:B 【解析】
试题分析:由于等腰三角形的一边长3为底或为腰不能确定,故应分两种情况进行讨论:(1)当3为腰时,其他两条边中必有一个为3,把x=3代入原方程可求出k 的值,进而求出方程的另一个根,再根据三角形的三边关系判断是否符合题意即可;(2)当3为底时,则其他两条边相等,即方程有两个相等的实数根,由△=0可求出k 的值,再求出方程的两个根进行判断即可. 试题解析:分两种情况:
(1)当其他两条边中有一个为3时,将x=3代入原方程, 得:32-12×3+k=0 解得:k=27
将k=27代入原方程, 得:x 2-12x+27=0 解得x=3或9
3,3,9不能组成三角形,不符合题意舍去; (2)当3为底时,则其他两边相等,即△=0, 此时:144-4k=0 解得:k=36 将k=36代入原方程, 得:x 2-12x+36=0 解得:x=6
3,6,6能够组成三角形,符合题意. 故k 的值为36. 故选B .
考点:1.等腰三角形的性质;2.一元二次方程的解.
6.A
解析:A 【解析】 【分析】
根据配方法,先提取二次项的系数-3,得到(
)
2
32y x x =--,再将括号里的配成完全平方式即可得出结果. 【详解】
解:()()
()2
2
2
2
36=323211313y x x x x x x x =-+--=--+-=--+,
故选:A . 【点睛】
本题主要考查的是配方法,正确的掌握配方的步骤是解题的关键.
7.A
解析:A 【解析】
选项A ,经过不在同一直线上的三个点可以作圆;选项B ,经过切点且垂直于切线的直线必经过圆心,正确;选项C ,同圆或等圆中,相等的圆心角所对的弧相等,正确;选项D ,三角形的外心到三角形各顶点的距离相等,正确;故选A.
8.C
解析:C 【解析】
因为正八边形的每个内角为135︒,不能整除360度,故选C.
9.B
解析:B 【解析】 【详解】 ∵AC >BC , ∴AC 是较长的线段,
根据黄金分割的定义可知:
AC BC AB AC =
≈0.618, 故A 、C 、D 正确,不符合题意; AC 2=AB •BC ,故B 错误,符合题意; 故选B .
10.A
解析:A 【解析】 【分析】
让两个横坐标相加得0,纵坐标相加得0即可求得a ,b 的值. 【详解】
解:∵P (-b ,2)与点Q (3,2a )关于原点对称点, ∴-b+3=0,2+2a=0, 解得a=-1,b=3, 故选A . 【点睛】
用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.
11.C
解析:C 【解析】
正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是360
5
=72度,
故选C.
12.D
解析:D
【解析】
【分析】
抛物线的形状只是与a有关,a相等,形状就相同.
【详解】
y=2(x﹣1)2+3中,a=2.
故选D.
【点睛】
本题考查了抛物线的形状与a的关系,比较简单.
二、填空题
13.【解析】【分析】列举出所有情况再找出点数和是偶数的情况根据概率公式求解即可【详解】解:从6张牌中任意抽两张可能的情况有:(410) (510) (610 ) (810) (910) (109) (4
解析:
7 15

【解析】
【分析】
列举出所有情况,再找出点数和是偶数的情况,根据概率公式求解即可.
【详解】
解:从6张牌中任意抽两张可能的情况有:
(4,10)(5,10)(6,10)(8,10)(9,10)(10,9) (4,9)(5,9)(6,9)(8,9)(9,8)(10,8) (4,8)(5,8)(6,8)(8,6)(9,6)(10,6) (4,6)(5,6)(6,5)(8,5)(9,5)(10,5) (4,5)(5,4)(6,4)(8,4)(9,4)(10,4)∴一共有30种情况,点数和为偶数的有14个,
∴点数和是偶数的概率是147 3015

故答案为
7 15
.
【点睛】
本题考查概率的概念和求法.解题的关键是找到所求情况数与总情况数,根据:概率=所求
情况数与总情况数之比.
14.(0)【解析】∵抛物线的对称轴为点P 点Q 是抛物线与x 轴的两个交点∴点P 和点Q 关于直线对称又∵点P 的坐标为(40)∴点Q 的坐标为(-20)故答案为(-20)
解析:(2-,0) 【解析】
∵抛物线2y ax bx c =++的对称轴为1x =,点P ,点Q 是抛物线与x 轴的两个交点, ∴点P 和点Q 关于直线1x =对称, 又∵点P 的坐标为(4,0), ∴点Q 的坐标为(-2,0). 故答案为(-2,0).
15.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm ∵扇形的圆心角为135°弧长为3πcm ∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6
解析:6π 【解析】
分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可. 详解:设扇形的半径为Rcm , ∵扇形的圆心角为135°,弧长为3πcm ,

135180R
π⨯=3π, 解得:R=4,
所以此扇形的面积为
2
1354180
π⨯=6π(cm 2), 故答案为6π.
点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.
16.85【解析】由于两盏EF 距离水面都是8m 因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平
解析:
【解析】
由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就 是直线y=8与抛物线两交点的横坐标差的绝对值. 故有, 即



所以两盏警示灯之间的水平距离为:
17.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性
解析:【解析】
【分析】
根据圆内接四边形的对角互补的性质进行计算即可.
【详解】
解:∵四边形ABCD内接于⊙O,
∴∠A+∠C=180°,
∵∠A=125°,
∴∠C=55°,
故答案为:55.
【点睛】
本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键. 18.(03)【解析】【分析】令x=0求出y的值然后写出与y轴的交点坐标即可【详解】解:x=0时y=3所以图象与y轴交点的坐标是(03)故答案为(03)【点睛】本题考查了求抛物线与坐标轴交点的坐标掌握二次
解析:(0,3).
【解析】
【分析】
令x=0,求出y的值,然后写出与y轴的交点坐标即可.
【详解】
解:x=0时,y=3,
所以.图象与y轴交点的坐标是(0,3).
故答案为(0,3).
【点睛】
本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键.
19.【解析】【分析】此题可以将原点坐标(00)代入y=x2-3x+3-m求得m的值即可【详解】由于二次函数y=x2-3x+3-m的图象经过原点把(00)代入
y=x2-3x+3-m得:3-m=0解得:m=
解析:【解析】
【分析】
此题可以将原点坐标(0,0)代入y=x2-3x+3-m,求得m的值即可.
【详解】
由于二次函数y=x2-3x+3-m的图象经过原点,
把(0,0)代入y=x2-3x+3-m,得:
3-m=0,
解得:m=3.
故答案为3.
【点睛】
本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解.
20.600【解析】【分析】将函数解析式配方成顶点式求出s的最大值即可得【详解】∵s=60t﹣15t2=﹣t2+60t=﹣(t﹣20)2+600∴当t=20时s取得最大值600即飞机着陆后滑行600米才能
解析:600
【解析】
【分析】
将函数解析式配方成顶点式求出s的最大值即可得.
【详解】
∵s=60t﹣1.5t2,
=﹣3
2
t2+60t,
=﹣3
2
(t﹣20)2+600,
∴当t=20时,s取得最大值600,即飞机着陆后滑行600米才能停下来,
故答案为:600.
【点睛】
此题考查二次函数解析式的配方法,利用配方法将函数解析式化为顶点式由此得到函数的最值是一种很重要的解题方法.
三、解答题
21.(1)见解析;(2)见解析;(3)见解析.
【解析】
【分析】
可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形
【详解】
解:如图:
22.(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36
【解析】
【分析】
(1)利用频率估计概率求解;
(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,则4000×3×360
n +4000×0.5(1-360
n )=3000,然后解方程即可. 【详解】
(1)转动该转盘一次,获得铅笔的概率约为0.7;
故答案为 0.7
(2)4000×
0.5×0.7+4000×3×0.3=5000, 所以该商场每天大致需要支出的奖品费用为5000元;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n 度,
则4000×3×360n +4000×0.5(1﹣360
n )=3000,解得n =36, 所以转盘上“一瓶饮料”区域的圆心角应调整为36度.
故答案为36.
【点睛】 本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了扇形统计图.
23.(1) y=-(x-1)2+8;对称轴为:直线x=1;(2) 当2<x <2时,y >0;(3) C 点坐标为:(-1,4).
【解析】
【分析】
(1)根据待定系数法求二次函数解析式,再用配方法或公式法求出对称轴即可; (2)求出二次函数与x 轴交点坐标即可,再利用函数图象得出x 取值范围; (3)利用正方形的性质得出横纵坐标之间的关系即可得出答案.
【详解】
(1)∵二次函数y=-x 2+bx+c 的图象经过A (-2,-1),B (0,7)两点.

142
7
b c
c
-=--+


=

,解得:
2
7
b
c
=


=


∴y=-x2+2x+7,
=-(x2-2x)+7,
=-[(x2-2x+1)-1]+7,
=-(x-1)2+8,
∴对称轴为:直线x=1.
(2)当y=0,
0=-(x-1)2+8,
∴x-1=±,
x1x2,
∴抛物线与x轴交点坐标为:(,0),(,0),
∴当<x<时,y>0;
(3)当矩形CDEF为正方形时,
假设C点坐标为(x,-x2+2x+7),
∴D点坐标为(-x2+2x+7+x,-x2+2x+7),
即:(-x2+3x+7,-x2+2x+7),
∵对称轴为:直线x=1,D到对称轴距离等于C到对称轴距离相等,
∴-x2+3x+7-1=-x+1,
解得:x1=-1,x2=5(不合题意舍去),
x=-1时,-x2+2x+7=4,
∴C点坐标为:(-1,4).
【点睛】
此题主要考查了待定系数法求二次函数解析式以及利用图象观察函数值和正方形性质等知识,根据题意得出C、D两点坐标之间的关系是解决问题的关键.
24.(1)证明见解析;(2)阴影部分的面积为8
3
π

【解析】
【分析】
(1)连接OC,先证明∠OAC=∠OCA,进而得到OC∥AE,于是得到OC⊥CD,进而证明DE是⊙O的切线;(2)分别求出△OCD的面积和扇形OBC的面积,利用S阴影=S△COD ﹣S扇形OBC即可得到答案.
【详解】
解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,
∵AC平分∠BAE,∴∠OAC=∠CAE,
∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,
∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,
∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;
(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,
∴CD=2222
8443
-=-=
DO OC
∴S△OCD=
434
22
⋅⨯
=
CD OC
=83,∵∠D=30°,∠OCD=90°,
∴∠DOC=60°,∴S扇形OBC=1
6
×π×OC2=
8
3
π,
∵S阴影=S△COD﹣S扇形OBC ∴S阴影=83﹣8
3
π

∴阴影部分的面积为83﹣8
3
π

25.(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35°
【解析】
【分析】
(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.
(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.
【详解】
证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,
∴AC=CD,CB=CE,∠ACD=∠BCE,
∴∠A=180ACD
2
︒-∠
,∠CBE=
180BCE
2
︒-∠

∴∠A=∠EBC;
(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,
∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE ∴∠A=∠ADC=65°,
∵∠ACE=130°,∠ACD=∠BCE=50°,
∴∠ACB=∠DCE =80°,
∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,
∵∠EDC=∠A=65°,
∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°
【点睛】
本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.。

相关文档
最新文档