非齐次线性方程组解判定
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非齐次线性方程组解判定
非齐次线性方程组解的判定:当系数矩阵的秩等于增广矩阵的秩,那么非齐次线性方程组有解。
当r(A)=r(A|b)=n时有唯一解,当r(A)=r (A|b)<n时有无穷多解。
当r(A)不等于r(A|b)时方程组无解。
题目中的线性方程组根据解的判定定理判定为:r(A)=r(A|b)=4。
所以线性方程组有唯一解。
扩展资料:
解的存在性
非齐次线性方程组Ax=b有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(A)=rank(A, b)(否则为无解)。
非齐次线性方程组有唯一解的充要条件是rank(A)=n。
非齐次线性方程组有无穷多解的充要条件是rank(A)<n。
(rank(A)表示A 的秩)
非齐次线性方程组解的结构:
非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解(η=ζ+η*)。
齐次线性方程组解法:
非齐次线性方程组Ax=b的求解步骤:
(1)对增广矩阵B施行初等行变换化为行阶梯形。
若R(A)<R(B),则方程组无解。
(2)若R(A)=R(B),则进一步将B化为行最简形。
(3)设R(A)=R(B)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余n-r个未知数(自由未知数)表示,并令自由未知数分别等于c1、c2、c3……c(n-r),即可写出含n-r个参数的通解。