2018年浙江省绍兴市中考数学真题试卷(答案解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2018年初中毕业生学业考试绍兴市试卷
数学试题卷
一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)
1. 如果向东走记为,则向西走可记为()
A. B. C. D.
【答案】C
【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.
【解答】如果向东走2m时,记作+2m,那么向西走3m应记作−3m.
故选C.
【点评】考查了相反意义的量,相反意义的量用正数和负数来表示.
2. 绿水青山就是金山银山,为了创造良好的生态生活环境,浙江省2017年清理河湖库塘淤泥约116000000方,数字116000000用科学记数法可以表示为()
A. B. C. D.
【答案】B
【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将116000000用科学记数法表示为:.
故选B.
【点评】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3. 有6个相同的立方体搭成的几何体如图所示,则它的主视图是()
A. B. C. D.
【答案】D
【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.
解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.
故选:C.
考点:简单组合体的三视图.
4. 抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()
A. B. C. D.
【答案】A
【解析】【分析】直接得出2的个数,再利用概率公式求出答案.
【解答】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,
∴朝上一面的数字是2的概率为:
故选A.
【点评】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
5. 下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()
A. ①
B. ②
C. ③
D. ④
【答案】C
【解析】【分析】根据完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方进行选择即可.【解答】①.故错误.
②.故错误.
③.正确.
④故错误.
故选C.
【点评】考查完全平方公式,同底数幂的乘法,同底数幂的除法以及积的乘方,熟记它们的运算法则是解题的关键.
6. 如图,一个函数的图象由射线、线段、射线组成,其中点,,,,则此函数()
A. 当时,随的增大而增大
B. 当时,随的增大而减小
C. 当时,随的增大而增大
D. 当时,随的增大而减小
【答案】A
【解析】【分析】根据一次函数的图象对各项分析判断即可.
【解答】观察图象可知:
A. 当时,图象呈上升趋势,随的增大而增大,正确.
B. 当时,图象呈上升趋势,随的增大而减小, 故错误.
C. 当时,随的增大而减小,当时,随的增大而增大,故错误.
D. 当时,随的增大而减小,当时,随的增大而增大,故错误.
故选A.
【点评】考查一次函数的图象与性质,读懂图象是解题的关键.
7. 学校门口的栏杆如图所示,栏杆从水平位置绕点旋转到位置,已知,,垂足分
别为,,,,,则栏杆端应下降的垂直距离为()
A. B. C. D.
【答案】C
【解析】【分析】根据相似三角形的判定定理可得△AOB∽△COD,根据相似三角形的性质计算即可.
【解答】,,
△AOB∽△COD,
即解得:
故选C.
【点评】考查了相似三角形的判定与性质,掌握相似三角形的判定方法是解题的关键.
8. 利用如图1的二维码可以进行身份识别.某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为,,,,那么可以转换为
该生所在班级序号,其序号为.如图2第一行数字从左到右依次为0,1,0,1,序号为,表示该生为5班学生.表示6班学生的识别图案是()
A. B. C. D.
【答案】B
【解析】【分析】根据班级序号的计算方法一一进行计算即可.
【解答】A. 第一行数字从左到右依次为1,0,1,0,序号为,表示该生为10班学生.
B. 第一行数字从左到右依次为0,1, 1,0,序号为,表示该生为6班学生.
C. 第一行数字从左到右依次为1,0,0,1,序号为,表示该生为9班学生.
D. 第一行数字从左到右依次为0,1,1,1,序号为,表示该生为7班学生.
故选B.
【点评】属于新定义题目,读懂题目中班级序号的计算方法是解题的关键.
9. 若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()
A. B. C. D.
【答案】B
【解析】【分析】根据抛物线与轴两个交点间的距离为2,对称轴为直线,求得抛物线
与轴两个交点分别为用待定系数法求出抛物线的解析式,根据平移规律求得平移后的抛物线解析式,再把点的坐标代入进行验证即可.
【解答】抛物线与轴两个交点间的距离为2,对称轴为直线,
可知抛物线与轴两个交点分别为
代入得:解得:
抛物线的方程为:
将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线为:
即
当时,
抛物线过点.
故选B.
【点评】考查待定系数法求二次函数解析式,二次函数的图形与性质,以及平移规律.掌握待定系数法求二次函数解析式是解题的关键.
10. 某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )
A. 16张
B. 18张
C. 20张
D. 21张
【答案】D
【解析】【分析】每张作品都要钉在墙上,要用4个图钉,相邻的可以用同一个图钉钉住两个角或者四个角,相邻的越多,用的图钉越少,把这些作品摆成长方形,使四周的最少.
【解答】A. 最少需要图钉枚.
B. 最少需要图钉枚.
C. 最少需要图钉枚.
D. 最少需要图钉枚.还剩余枚图钉.
故选D.
【点评】考查学生的空间想象能力以及动手操作能力,通过这道题使学生掌握空间想象能力和动手能力,并且让学生能够独立完成类似问题的解决.
二、填空题(本大题有6小题,每小题5分,共30分)
11. 因式分解:__________.
【答案】
【解析】【分析】根据平方差公式直接进行因式分解即可.
【解答】原式
故答案为:
【点评】考查因式分解,常用的方法有:提取公因式法,公式法,十字相乘法.
12. 我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为__________尺,竿子长为__________尺.
【答案】 (1). 20 (2). 15
【解析】【分析】设索长为尺,竿子长为尺.根据题目中的等量关系列方程组求解即可.
【解答】设索长为尺,竿子长为尺.根据题意得:
解得:
故答案为:20,15.
【点评】考查二元一次方程组的应用,解题的关键是找到题目中的等量关系.
13. 如图,公园内有一个半径为20米的圆形草坪,,是圆上的点,为圆心,,从到只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路.通过计算可知,这些市民其实仅仅少走了__________步(假设1步为0.5米,结果保留整数).(参考数据:,取3.142)
【答案】15
【解析】【分析】过O作OC⊥AB于C,分别计算出弦AB的长和弧AB的长即可求解.
【解答】过O作OC⊥AB于C,如图,
∴AC=BC,
∵
∴
∴
∴
∴
又∵弧AB的长=
米步.
故答案为:15.
【点评】考查了弧长的计算,垂径定理的应用,熟记弧长公式是解题的关键.
14. 等腰三角形中,顶角为,点在以为圆心,长为半径的圆上,且,则的度数为__________.
【答案】或
【解析】【分析】画出示意图,分两种情况进行讨论即可.
【解答】如图:分两种情况进行讨论.
易证≌,
同理:≌,
故答案为:或
【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用. 15. 过双曲线的动点作轴于点,是直线上的点,且满足,过点作轴的平行线交此双曲线于点.如果的面积为8,则的值是__________.
【答案】12或4
【解析】【分析】画出示意图,分两种情况进行讨论即可.
【解答】如图:
设点A的坐标为:
则点P的坐标为:
点C的纵坐标为:,代入反比例函数,点C的横坐标为:
解得:
如图:
设点A的坐标为:
则点P的坐标为:
点C的纵坐标为:,代入反比例函数,点C的横坐标为:
解得:
故答案为:12或4.
【点评】考查反比例函数图象上点的坐标特征,注意数形结合思想在数学中的应用.
16. 实验室里有一个水平放置的长方体容器,从内部量得它的高是,底面的长是,宽是,容器内的水深为.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点的三条棱的长分别是,,,当铁块的顶部高出水面时,,满足的关系式是__________.
【答案】或
【解析】【分析】根据长方体实心铁块的放置情况可以分两种情况进行讨论.根据铁块的顶部高出现在水面
,列出函数关系式.
【解答】当长,宽分别为,的面与容器地面重合时,根据铁块的顶部高出水面,
整理得:.
当长,宽分别为,的面与容器地面重合时,根据铁块的顶部高出水面,
整理得:.
故答案为:或
【点评】考查函数关系式的建立,解题的关键是找到题目中的等量关系.
三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22、23小题每小题12分,第24小题14分,共80分.解答应写出文字说明、证明过程或演算步骤)17. (1)计算:.
(2)解方程:.
【答案】(1)2;(2),.
【解析】【分析】根据实数的运算法则直接进行运算即可.
用公式法直接解方程即可.
【解答】(1)原式.
(2)
,
,.
【点评】本题主要考查了实数的综合运算能力以及解一元二次方程,是各地中考题中常见的计算题型.解决实数的综合运算题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18. 为了解某地区机动机拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2017年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:
根据统计图,回答下列问题:
(1)写出2016年机动车的拥有量,分别计算2010年~2017年在人民路路口和学校门口堵车次数的平均数.
(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法. 【答案】(1)3.40万辆.人民路路口的堵车次数平均数为120次;学校门口的堵车次数平均数为100次;(2)见解析.
【解析】【分析】(1)观察图象,即可得出写出2016年机动车的拥有量,根据平均数的计算方法计算计算2010年~2017年在人民路路口和学校门口堵车次数的平均数即可.
(2)言之有理即可.
【解答】(1)3.40万辆.
人民路路口的堵车次数平均数为120(次).
学校门口的堵车次数平均数为100(次).
(2)不唯一,如:2010年~2013年,随着机动车拥有量的增加,对道路的影响加大,年堵车次数也增加;尽管2017年机动车拥有量比2016年增加,由于进行了交通综合治理,人民路路口堵车次数反而降低. 【点评】考查了折线统计图和条形统计图,根据折线统计图和条形统计图得出解题所需的数据是解题的关键.
19. 一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量(升)关于加满油后已行驶的路程(千米)的函数图象.
(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;
(2)求关于的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.
【答案】(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千
米.
【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;
用待定系数法求出一次函数解析式,再代入进行运算即可.
【解答】(1)汽车行驶400千米,剩余油量30升,
即加满油时,油量为70升.
(2)设,把点,坐标分别代入得,,
∴,当时,,即已行驶的路程为650千米.
【点评】考查待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.
20. 学校拓展小组研制了绘图智能机器人(如图1),顺次输入点,,的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.
(1),,.
(2),,.
【答案】(1)绘制线段,;(2)绘制抛物线.
【解析】【分析】(1),,,绘制线段,.
(2),,,,绘制抛物线,用待定系数法求函数解析式即可.
【解答】(1)∵,,,
∴绘制线段,.
(2)∵,,,,
∴绘制抛物线,
设,把点坐标代入得,
∴,即.
【点评】属于新定义问题,考查待定系数法求二次函数解析式,解题的关键是弄懂程序框图.
21. 如图1,窗框和窗扇用“滑块铰链”连接.图3是图2中“滑块铰链”的平面示意图,滑轨安装在窗框上,托悬臂安装在窗扇上,交点处装有滑块,滑块可以左右滑动,支点,,始终在一直线上,延长交于点.已知,,.
(1)窗扇完全打开,张角,求此时窗扇与窗框的夹角的度数.
(2)窗扇部分打开,张角,求此时点,之间的距离(精确到).
(参考数据:,)
【答案】(1);(2).
【解析】【分析】(1)根据两组对边分别平行的四边形是平行四边形得出四边形ACDE是平行四边形,根据平行四边形的对边平行得出CA∥DE,根据二直线平行,同位角相等得出答案;
(2)如图,过点作于点,根据锐角三角函数进行求解即可.
【解答】(1)∵,,
∴四边形是平行四边形,
∴,
∴.
(2)如图,过点作于点,
∵,
∴,
,
∵,,∴,
在中,,
∴.
【点评】考查平行四边形的判定与性质,平行线的判定与性质,解直角三角形等,注意辅助线的作法. 22. 数学课上,张老师举了下面的例题:
例1 等腰三角形中,,求的度数.(答案:)
例2 等腰三角形中,,求的度数.(答案:或或)
张老师启发同学们进行变式,小敏编了如下一题:
变式等腰三角形中,,求的度数.
(1)请你解答以上的变式题.
(2)解(1)后,小敏发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形中,
设,当有三个不同的度数时,请你探索的取值范围.
【答案】(1)或或;(2)当且,有三个不同的度数.
【解析】【分析】(1)分为顶角和为底角,两种情况进行讨论.
(2)分①当时,②当时,两种情况进行讨论.
【解答】(1)当为顶角,则,
当为底角,若为顶角,则,
若为底角,则,
∴或或.
(2)分两种情况:
①当时,只能为顶角,
∴的度数只有一个.
②当时,
若为顶角,则,
若为底角,则或,
当且且,即时,
有三个不同的度数.
综上①②,当且,有三个不同的度数.
【点评】考查了等腰三角形的性质,注意分类讨论思想在数学中的应用.
23. 小敏思考解决如下问题:
原题:如图1,点,分别在菱形的边,上,,求证:.
(1)小敏进行探索,若将点,的位置特殊化:把绕点旋转得到,使,点,分别在边,上,如图2,此时她证明了.请你证明.
(2)受以上(1)的启发,在原题中,添加辅助线:如图3,作,,垂足分别为,.请你继续完成原题的证明.
(3)如果在原题中添加条件:,,如图1.请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).
【答案】(1)证明见解析;(2)证明见解析;(3)见解析
【解析】【分析】(1)证明,即可求证.
(2)如图2,,即可求证.
(3)不唯一.
【解答】(1)如图1,
在菱形中,
,,,
∵,
∴,
∴,
∵,
∴,
∴,,
∴,
∴.
(2)如图2,由(1),∵,
∴,
∵,,
∴,
∵,
∴,
∴.
(3)不唯一,举例如下:
层次1:①求的度数.答案:.
②分别求,的度数.答案:.
③求菱形的周长.答案:16.
④分别求,,的长.答案:4,4,4.
层次2:①求的值.答案:4.
②求的值.答案:4.
③求的值.答案:.
层次3:①求四边形的面积.答案:.
②求与的面积和.答案:.
③求四边形周长的最小值.答案:.
④求中点运动的路径长.答案:.
【点评】考查菱形的性质,三角形全等的判定与性质等,熟练掌握全等三角形的判定方法是解题的关键.
24. 如图,公交车行驶在笔直的公路上,这条路上有,,,四个站点,每相邻两站之间的距离为5千米,从站开往站的车称为上行车,从站开往站的车称为下行车.第一班上行车、下行车分别从站、
站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在,站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.
(1)问第一班上行车到站、第一班下行车到站分别用时多少?
(2)若第一班上行车行驶时间为小时,第一班上行车与第一班下行车之间的距离为千米,求与的函数关系式.
(3)一乘客前往站办事,他在,两站间的处(不含,站),刚好遇到上行车,千米,此时,接到通知,必须在35分钟内赶到,他可选择走到站或走到站乘下行车前往站.若乘客的步行速度是5千米/小时,求满足的条件.
【答案】(1)第一班上行车到站用时小时,第一班下行车到站用时小时;(2)当时,,
当时,;(3)或.
【解析】【分析】(1)根据速度=路程除以时间即可求出第一班上行车到站、第一班下行车到站的用时. (2)分当时和当时两种情况进行讨论.
(3)由(2)知同时出发的一对上、下行车的位置关于BC中点对称,设乘客到达A站总时间为t分钟,分当x=2.5时,当x<2.5时,当x>2.5时三种情况进行讨论。
【解答】(1)第一班上行车到站用时小时.
第一班下行车到站用时小时.
(2)当时,.
当时,.
(3)由(2)知同时出发的一对上、下行车的位置关于中点对称,设乘客到达站总时间为分钟,
当时,往站用时30分钟,还需再等下行车5分钟,
,不合题意.
当时,只能往站坐下行车,他离站千米,则离他右边最近的下行车离站也是千米,这辆下行车离站千米.
如果能乘上右侧第一辆下行车,,,∴,
,
∴符合题意.
如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,,
,,
∴,,
∴符合题意.
如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,,
,,
∴,,不合题意.
∴综上,得.
当时,乘客需往站乘坐下行车,
离他左边最近的下行车离站是千米,
离他右边最近的下行车离站也是千米,
如果乘上右侧第一辆下行车,,
∴,不合题意.
如果乘不上右侧第一辆下行车,只能乘右侧第二辆下行车,,
,,∴,,
∴符合题意.
如果乘不上右侧第二辆下行车,只能乘右侧第三辆下行车,,
,,,
∴不合题意.
∴综上,得.
综上所述,或.
【点评】考查一次函数,一元一次不等式等的实际应用. 解题的关键是学会由分类讨论的思想思考问题,学会构建一次函数和一元一次不等式.。