吴堡县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吴堡县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 下列满足“∀x ∈R ,f (x )+f (﹣x )=0且f ′(x )≤0”的函数是( ) A .f (x )=﹣xe |x| B .f (x )=x+sinx
C .f (x )=
D .f (x )=x 2|x|
2. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:
0.7,则这组样本数据的回归直线方程是( )
A . =0.7x+0.35
B . =0.7x+1
C . =0.7x+2.05
D . =0.7x+0.45
3. 圆2
2
2
(2)x y r -+=(0r >)与双曲线2
2
13
y x -=的渐近线相切,则r 的值为( )
A B .2 C D .
【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力.
4. 已知2,0
()2, 0
ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )
A .716-
B .916-
C .12-
D .14
-
5. 已知f (x )=,则“f[f (a )]=1“是“a=1”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .即不充分也不必要条件
6. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( ) A .7049 B .7052 C .14098 D .14101
7. 已知f (x )=4+a x ﹣1的图象恒过定点P ,则点P 的坐标是( ) A .(1,5) B .(1,4) C .(0,4) D .(4,0) 8. 直径为6的球的表面积和体积分别是( )
A .144,144ππ
B .144,36ππ
C .36,144ππ
D .36,36ππ 9. 在正方体1111ABCD A B C D -中,M 是线段11A C 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )
A .2
B .3
C .4
D .5
【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力.
10.若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )
A .﹣
B .
C .2
D .6
11.已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β
C .若m ⊥α,n ⊥α,则 m ∥n
D .若 m ∥α,m ∥β,则 α∥β
12.已知函数f (x )=⎩⎪⎨⎪⎧log 2(a -x ),x <1
2x ,x ≥1若f (-6)+f (log 26)=9,则a 的值为( )
A .4
B .3
C .2
D .1
二、填空题
13.若x ,y 满足线性约束条件
,则z=2x+4y 的最大值为 .
14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,sinA ,sinB ,sinC 依次成等比数列,c=2a 且•
=24,
则△ABC 的面积是 .
15.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,
()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.
16.若P (1,4)为抛物线C :y 2=mx 上一点,则P 点到该抛物线的焦点F 的距离为|PF|= . 17.给出下列命题:
①把函数y=sin (x ﹣
)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣
);
②若α,β是第一象限角且α<β,则cos α>cos β;
③x=﹣
是函数y=cos (2x+π)的一条对称轴;
④函数y=4sin (2x+)与函数y=4cos (2x ﹣
)相同;
⑤y=2sin (2x ﹣
)在是增函数;
则正确命题的序号 .
18.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量
所对应
的复数为 .
三、解答题
19.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;
(2)令()()g x xf x =,区间15
2
2,D e e -⎛⎫= ⎪⎝⎭
,e 为自然对数的底数。

(ⅰ)若函数()g x 在区间D 上有两个极值,求实数m 的取值范围;
(ⅱ)设函数()g x 在区间D 上的两个极值分别为()1g x 和()2g x , 求证:12x x e ⋅>.
20.已知函数3
2
2
()1f x x ax a x =+--,0a >. (1)当2a =时,求函数()f x 的单调区间;
(2)若关于的不等式()0f x ≤在[1,)+∞上有解,求实数的取值范围.
21.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.
(1)求A ∪B ;
(2)求(∁U A )∩B ; (3)求∁U (A ∩B ).
22.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.
23.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且
AM FN =,求证://MN 平面BCE .
24.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收. (1)求掷3次骰子,至少出现1次为5点的概率;
(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.
吴堡县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
1. 【答案】A
【解析】解:满足“∀x ∈R ,f (x )+f (﹣x )=0,且f ′(x )≤0”的函数为奇函数,且在R 上为减函数, A 中函数f (x )=﹣xe |x|,满足f (﹣x )=﹣f (x ),即函数为奇函数,
且f ′(x )=
≤0恒成立,故在R 上为减函数,
B 中函数f (x )=x+sinx ,满足f (﹣x )=﹣f (x ),即函数为奇函数,但f ′(x )=1+cosx ≥0,在R 上是增函数,
C 中函数f (x )=
,满足f (﹣x )=f (x ),故函数为偶函数;
D 中函数f (x )=x 2|x|,满足f (﹣x )=f (x ),故函数为偶函数,
故选:A .
2. 【答案】A
【解析】解:设回归直线方程=0.7x+a ,由样本数据可得, =4.5, =3.5.
因为回归直线经过点(,),所以3.5=0.7×4.5+a ,解得a=0.35.
故选A .
【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.
3. 【答案】C
4. 【答案】C
【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.
当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2
y ax x =+图象相切时,916
a =-,切点横坐标为83,函数2
y ax x =+图象经过点(2,0)时,12a =-,
观察图象可得1
2
a ≤-,选C . 5. 【答案】B
【解析】解:当a=1,则f(a)=f(1)=0,则f(0)=0+1=1,则必要性成立,
若x≤0,若f(x)=1,则2x+1=1,则x=0,
若x>0,若f(x)=1,则x2﹣1=1,则x=,
即若f[f(a)]=1,则f(a)=0或,
若a>0,则由f(a)=0或1得a2﹣1=0或a2﹣1=,
即a2
=1或a2=+1,解得a=1或a=,
若a≤0,则由f(a)=0或1得2a+1=0或2a+1=,
即a=﹣,此时充分性不成立,
即“f[f(a)]=1“是“a=1”的必要不充分条件,
故选:B.
【点评】本题主要考查充分条件和必要条件的判断,根据分段函数的表达式解方程即可.
6.【答案】B
【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,
∴,可得a n+1=a n﹣1,
因此数列{a n}是周期为2的周期数列.
a1=3,∴3a2+2=2a2+2×3,解得a2=4,
∴S2015=1007(3+4)+3=7052.
【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.
7.【答案】A
【解析】解:令x﹣1=0,解得x=1,代入f(x)=4+a x﹣1得,f(1)=5,
则函数f(x)过定点(1,5).
故选A.
8.【答案】D
【解析】
考点:球的表面积和体积.
9.【答案】C
10.【答案】A
【解析】解:因为向量=(3,m),=(2,﹣1),∥,
所以﹣3=2m,
解得m=﹣.
故选:A.
【点评】本题考查向量共线的充要条件的应用,基本知识的考查.
11.【答案】C
【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;
对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;
对于D,若m∥α,m∥β,则α与β可能相交;故D错误;
故选C.
【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.
12.【答案】
【解析】选C.由题意得log2(a+6)+2log26=9.
即log2(a+6)=3,
∴a+6=23=8,∴a=2,故选C.
二、填空题
13.【答案】38.
【解析】解:作出不等式组对应的平面区域如图:
由z=2x+4y得y=﹣x+,
平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,
直线y=﹣x+的截距最大,此时z最大,
由,解得,
即A (3,8),
此时z=2×3+4×8=6+32=32, 故答案为:38
14.【答案】 4 .
【解析】解:∵sinA ,sinB ,sinC 依次成等比数列,
∴sin 2B=sinAsinC ,由正弦定理可得:b 2
=ac ,
∵c=2a ,可得:b=a ,
∴cosB==
=,可得:sinB=
=



=24,可得:accosB=ac=24,解得:ac=32,
∴S
△ABC =acsinB==4

故答案为:4.
15.【答案】()(),10,1-∞-⋃
【解析】
16.【答案】 5 .
【解析】解:P (1,4)为抛物线C :y 2
=mx 上一点, 即有42
=m ,即m=16, 抛物线的方程为y 2
=16x ,
焦点为(4,0),
即有|PF|==5.
故答案为:5.
【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题.
17.【答案】
【解析】解:对于①,把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的
倍,纵坐标不变,得
到函数y=sin (2x ﹣
),故①正确.
对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cos α=cos β=,故②错
误.
对于③,当x=﹣时,2x+
π=π,函数y=cos (2x+
π)=﹣1,为函数的最小值,故x=﹣
是函
数y=cos (2x+
π)的一条对称轴,故③正确.
对于④,函数y=4sin (2x+)=4cos[
﹣(2x+
)]=4cos (
﹣2)=4cos (2x ﹣
),
故函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同,故④正确.
对于⑤,在上,2x ﹣
∈,函数y=2sin (2x ﹣
)在上没有单调性,故⑤错误,
故答案为:①③④.
18.【答案】 2i .
【解析】解:向量饶坐标原点逆时针旋转60°得到向量所对应的复数为

+i )(cos60°+isin60°)=(
+i )(
)=2i
,故答案为 2i .
【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60°得到向量对应的复数为(+i )
(cos60°+isin60°),是解题的关键.
三、解答题
19.【答案】(1)增区间()0,2,减区间()2,+∞,(2)详见解析
【解析】试题分析:(1)求导写出单调区间;(2)(ⅰ)函数()g x 在区间D 上有两个极值,等价于
()2ln 21g x x mx -'=+在15
22,e e -⎛⎫ ⎪⎝⎭
上有两个不同的零点,令()0g x '=,得2ln 12x m x +=
,通过求导分析 得m 的范围为512231,e e ⎛⎫ ⎪ ⎪⎝⎭
;(ⅱ)2ln 1
2x m x +=,得12122ln 12ln 12x x m x x ++==,由分式恒等变换得
12121212
212ln 12ln 12ln 1
lnx x x x x x x x ++++--=+-,得1
1212112112222
1
ln ln 1ln ln 1x x x x x x x x x x x x x x ++++=
⋅=⋅--,要证明 12x x e >,只需证12ln ln 12x x ++>,即证1
2
112
2
1ln 21x x x
x x x +⋅>-, 令3
1
21x e
t x -<
=<,()()21ln 1
t p t t t -=-+,通过求导得到()0p t <恒成立,得证。

试题解析:
(2)(ⅰ)因为()2
2ln g x x x mx x =--,
所以()2ln 2212ln 21g x x mx x mx =+--=-+',15
22
,x e e -⎛⎫∈ ⎪⎝⎭

若函数()g x 在区间D 上有两个极值,等价于()2ln 21g x x mx -'=+在15
22,e e -⎛⎫
⎪⎝⎭
上有两个不同的零点,
令()0g x '=,得2ln 1
2x m x
+=,
设()()2
2ln 112ln ,x x
t x t x x x '+-==
,令(
)0,t x x ='=
所以m 的范围为51
2231
,e e ⎛⎫ ⎪ ⎪⎝⎭
(ⅱ)由(ⅰ)知,若函数()g x 在区间D 上有两个极值分别为()1g x 和()2g x ,不妨设12x x <,则
1212
2ln 12ln 1
2x x m x x ++=
=, 所以12121212
212ln 12ln 12ln 1
lnx x x x x x x x ++++--=+-
即1
1
21211211222
2
1
ln ln 1ln ln 1x x x x x x
x x x x x x x x ++++=⋅=⋅--, 要证12x x e >,只需证12ln ln 12x x ++>,即证1
2112
2
1ln 21x x x
x x x +⋅>-, 令3
121x e t x -<=<,即证1ln 21t t t +⋅>-,即证1ln 21
t t t -<⋅
+, 令()()
21ln 1t p t t t -=-+,因为()()()()
2
22
114
011t p t t t t t -=-=+'>+, 所以()p t 在()
3,1e -上单调增,()10p =,所以()0p t <,
即()21ln 0,1
t t t --
<+所以1
ln 2
1
t t t -<+,得证。

20.【答案】(1)()f x 的单调递增区间是(),2-∞-和2,3⎛⎫
+∞ ⎪⎝⎭
,单调递减区间为2(2,)3-;(2)[1,)+∞. 【解析】
试题分析:(1) 2a =时,利用导数与单调性的关系,对函数求导,并与零作比较可得函数的单调区间;
(2) 对函数求导,对参数分类讨论,利用函数的单调性求函数的最小值,使最小值小于或等于零,可得的取值范围.
试题解析:(1)当2a =时,3
2
()241f x x x x =+--,
所以2
'()344(32)(2)f x x x x x =+-=-+, 由'()0f x >,得2
3
x >
或2x <-, 所以函数()f x 的单调递减区间为2(2,)3
-.
(2)要使()0f x ≤在[1,)+∞上有解,只要()f x 在区间[1,)+∞上的最小值小于等于0. 因为2
2
'()32(3)()f x x ax a x a x a =+-=-+, 令'()0f x =,得103
a
x =
>,20x a =-<.1
考点:导数与函数的单调性;分类讨论思想. 21.【答案】
【解析】解:全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.
(1)A ∪B={1,2,3,4,5,7} (2)(∁U A )={1,3,6,7} ∴(∁U A )∩B={1,3,7}
(3)∵A ∩B={5}
∁U (A ∩B )={1,2,3,4,6,7}.
【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键.
22.【答案】16
y x =-. 【解析】
试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线
12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1
考点:直线方程的求解. 23.【答案】证明见解析. 【解析】
考点:直线与平面平行的判定与证明.
24.【答案】
【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际问题的抽象能力要求较高,属于中档难度.。

相关文档
最新文档