高级中等学校招生统一考试数学试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高级中等学校招生统一考试数学试卷
第Ⅰ卷(机读卷
共32分)
一、选择题(共8个小题,每小题4分,共32分.) 下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.5-的相反数是( )
A.5
B.5-
C.
15
D.15
-
2.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000
用科学记数法表示应为( ) A.7
0.2510⨯
B.7
2.510⨯
C.6
2.510⨯
D.5
2510⨯
3.在函数1
3
y x =
-中,自变量x 的取值范畴是( ) A.3x ≠ B.0x ≠ C.3x >
D.3x ≠-
4.如图,AD BC ∥,点E 在BD 的延长线上,
若155ADE ∠=,则DBC ∠的度数为( ) A.155 B.50
C.45
D.25
5.小芸所在学习小组的同学们,响应“为祖国争光,为奥运添彩”的号召,主动到邻近的7个社区关心爷爷,奶奶们学习英语日常用语.他们记录的各社区参加其中一次活动的人数如下:33,32,32,31,28,26,32,那么这组数据的众数和中位数分别是( ) A.32,31 B.32,32 C.3,31 D.3,32 6.把代数式2
9xy x -分解因式,结果正确的是( ) A.2
(9)x y -
B.2
(3)x y +
C.(3)(3)x y y +-
D.(9)(9)x y y +-





7.掷一枚质地平均的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为( ) A.
16
B.
13
C.
14
D.
12
8.将如右图所示的圆心角为90的扇形纸片AOB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是( )
高级中等学校招生统一考试数学试卷(课标B 卷)
第II 卷(非机读卷
共88分)
考生
须知
1.第Ⅱ卷共8页,共八道大题,17个小题.
2.除画图能够用铅笔外,答题必须用黑色或蓝色钢笔、圆珠笔.
二、填空题(共4个小题,每小题4分,共16分.)
9.若关于x 的一元二次方程2
30x x m -+=有实数根,则m 的取值范畴是

10.若2
3(1)0m n -++=,则m n +的值为

11.用“>⨯”定义新运算:关于任意实数a ,b ,都有a >⨯21b b +=.例如,
7>⨯211744+==,那么5>⨯3=

当m 为实数时,(m m >
>⨯⨯2)=

12.如图,在ABC △中,AB AC =,M ,N 分别是AB ,
A.
B. C. D.
AC的中点,D,E为BC上的点,连结DN,EM.若13cm
AB=,10cm
BC=,5cm
DE=,则图中阴影部分的面积为2
cm.
三、解答题(共5个小题,共25分)
13.(本小题满分5分)
1
1
(2006)
2
-
⎛⎫
--+ ⎪
⎝⎭

解:
14.(本小题满分5分)
解不等式组
315
260.
x
x
-<


+>


解:
15.(本小题满分5分)
解分式方程
12
2
11
x
x x
+=
-+

解:
16.(本小题满分5分)
已知:如图,AB ED
∥,点F,点C在AD上,AB DE
=,AF DC
=.
求证:BC EF
=.
证明:
17.(本小题满分5分)
已知230
x-=,求代数式22
()(5)9
x x x x x
-+--的值.
解:


四、解答题(共2个小题,共11分.) 18.(本小题满分5分)
已知:如图,在梯形ABCD 中,AD BC ∥,90ABC ∠=,45C ∠=,BE CD ⊥于点E ,1AD =,22CD =
. 求:BE 的长. 解: 19.(本小题满分6分) 已知:如图,ABC △内接于
O ,点D 在OC 的延长线上,1
sin 2
B =
,30CAD ∠=.
(1)求证:AD 是
O 的切线;
(2)若OD AB ⊥,5BC =,求AD 的长.
(1)证明:
(2)解:
五、解答题(本题满分5分)
20.依照北京市统计局公布的2000年,2005年北京市常住人口相关数据,绘制统计图表如下: 年份 大学程度人数(指大专及以上)
高中程度人数(含中专) 初中程度人数
小学程度人数
其他人数
2000年 233 320 475 234 120 2005年
362
372
476
212
114
请利用上述统计图表提供的信息回答下列问题:

D E


C D AO
2000年,2005年北京市常住人口中教育情形统计表(人数单位:万人)
(1)从2000年到2005年北京市常住人口增加了多少万人?
(2)2005年北京市常住人口中,少儿(014岁)人口约为多少万人?
(3)请结合2000年和2005年北京市常住人口受教育程度的状况,谈谈你的看法.
解:(1)
(2)
(3)
六、解答题(共2个小题,共9分.)
21.(本小题满分5分)
在平面直角坐标系xOy中,直线y x
=-绕点O顺时针旋转90得到直线l.直线l与反比例
函数
k
y
x
=的图象的一个交点为(3)
A a,,试确定反比例函数的解析式.
解:
22.(本小题满分4分)
请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
小东同学的做法是:设新正方形的边长为(0)
x x>.依题意,割补前后图形的
面积相等,有25
x=,解得x=
成的矩形对角线的长.因此,画出如图2所示的分割线,拼出如图3所示的新正方形.
图1 图2
图3
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一个新的正方形.要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形. 说明:直截了当画出图形,不要求写分析过程. 解:
七、解答题(本题满分6分)
23.如图1,OP 是MON ∠的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.
请你参考那个作全等三角形的方法,解答下列问题:
(1)如图2,在ABC △中,ACB ∠是直角,60B ∠=,AD ,CE 分别是BAC ∠,
BCA ∠的平分线,AD ,CE 相交于点F .请你判定并写出FE 与FD 之间的数
量关系;
(2)如图3,在ABC △中,假如ACB ∠不是直角,而(1)中的其他条件不变, 请问,你在(1)中所得结论是否仍旧成立?若成立,请证明;若不成立,请说明理由. 解:画图:
(1)FE 与FD 之间的数量关系为 .
(2)
图4 图5
N P M O 图
1 图2
图3
八、解答题(本题满分8分)
24.已知抛物线2
y ax bx c =++与y 轴交于点(03)A ,,与x 轴分别交于(10)B ,,
(50)C ,两点.
(1)求此抛物线的解析式;
(2)若点D 为线段OA 的一个三等分点,求直线
DC 的解析式;
(3)若一个动点P 自OA 的中点M 动身,先到
达x 轴上的某点(设为点E ),再到达抛物线的对
称轴上某点(设为点F ),最后运动到点A .求使点P 运动的总路径最短的点E ,点F 的坐标,并
求出那个最短总路径的长.
解:(1)
(2)
(3)
九、解答题(本题满分8分)
25.我们给出如下定义:若一个四边形的两条对角线相等,则称那个四边形为等对角线四边形.请解答下列问题:
(1)写出你所学过的专门四边形中是等对角线四边形的两种图形的名称;
(2)探究:当等对角线四边形中两条对角线所夹锐角为60时,这对60角所对的两边之和与其中一条对角线的大小关系,并证明你的结论. 解:(1)
(2)
高级中等学校招生统一考试数学试卷(课标B卷)
答案及评分参考
阅卷须知:
1.一律用红钢笔或红圆珠笔批阅,按要求签名. 2.第I 卷是选择题,机读阅卷.
3.第II 卷包括填空题和解答题.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明要紧过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
第I卷(机读卷共32分)
第II卷(非机读卷共88分)
二、填空题(共4个小题,每小题4分,共16分.)
三、解答题(本题共30分,每小题5分.)
13
1
1
(2006)
2
-
⎛⎫
--+ ⎪
⎝⎭
12
=+·············································································4分1
=+ ······················································································5分14.解:由不等式315
x-<解得2
x<.················································2分由不等式260
x+>解得3
x>-. ·············································4分则不等式组的解集为32
x
-<<. ·············································5分15.解:(1)2(1)2(1)(1)
x x x x x
++-=+-.················································2分22
12222
x x x x
++-=-.···························································3分
3
x=.·································································4分经检验3
x=是原方程的解.
因此原方程的解是3
x=.······························································5分16.证明:因为AB ED
∥,
则A D
∠=∠. ·········································································1分又AF DC
=,
则AC DF
=. ·········································································2分在ABC
△与DEF
△中,
AB DE
A D
AC DF
=


∠=∠

⎪=




·······································································3分因此ABC DEF
△≌△.···························································4分因此BC EF
=. ······································································5分17.解:22
()(5)9
x x x x x
-+--
3223
59
x x x x
=-+--·································································2分
2
49x =-. ················································································ 3分 当230x -=时,原式2
49(23)(23)0x x x =-=+-=. ····················· 5分 四、解答题(共2个小题,共11分)
18.解:如图,过点D 作DF AB ∥交BC 于点F .······································· 1分 因为AD BC ∥,
因此四边形ABFD 是平行四边形. ························································ 2分 因此1BF AD ==.
由DF AB ∥, 得90DFC ABC ∠=∠=.
在Rt DFC △中,45C ∠=
,CD =,
由cos CF
C CD
=
, 求得2CF =. ··················································································· 3分 因此3BC BF FC =+=. ··································································· 4分
在BEC △中,90BEC ∠=, sin BE
C BC
=.
求得BE =
. ·
············································································ 5分 19.解:(1)证明:如图,连结OA .
因为1
sin 2
B =,
因此30B ∠=.
故60O ∠=.···························· 1分 又OA OC =,
因此ACO △是等边三角形.
故60OAC ∠=. ·············································································· 2分 因为30CAD ∠=, 因此90OAD ∠=.
因此AD 是
O 的切线. ····································································· 3分 (2)解:因为OD AB ⊥, 因此OC 垂直平分AB . 则5AC BC ==. ············································································· 4分 因此5OA =. ··················································································· 5分
在OAD △中,90OAD ∠=, 由正切定义,有tan AD
AOD OA
∠=

因此AD = ·············································································· 6分 五、解答题(本题满分5分) 20.解:(1)153********-=(万人). ···················································· 1分 故从2000年到2005年北京市常住人口增加了154万人. (2)153610.2%156.672157⨯=≈(万人).
故2005年北京市常住人口中,少儿(014岁)人口约为157万人. ·········· 3分 (3)例如:依数据可得,2000年受大学教育的人口比例为16.86%,2005年受大学教育的人口比例为23.57%.可知,受大学教育的人口比例明显增加,教育水平有所提高. ············································································································· 5分 六、解答题(共2个小题,共9分)
21.解:依题意得,直线l 的解析式为y x =. ··············································· 2分 因为(3)A a ,在直线y x =上,
则3a =. ··················································································· 3分 即(33)A ,. 又因为(33)A ,在k
y x
=
的图象上, 可求得9k =. ············································································ 4分 因此反比例函数的解析式为9
y x
=
. ················································ 5分 22.解:所画图形如图所示.
说明:图4与图5中所画图形正确各得2
分.分割方法不唯独,正确者相应给分. 七、解答题(本题满分6分.) 23.解:图略.画图正确得1分. (1)FE 与FD 之间的数量关系为FE FD =. ········································ 2分 (2)答:(1)中的结论FE FD =仍旧成立.
证法一:如图4,在AC 上截取AG AE =,连结FG . ····························· 3分 因为12∠=∠,AF 为公共边,
可证AEF AGF △≌△.
图4
图5
因此AFE AFG ∠=∠,FE FG =. ·················· 4分 由60B ∠=,AD CE ,分别是BAC BCA ∠∠,的平分线, 可得2360∠+∠=.
因此60AFE CFD AFG ∠=∠=∠=.
因此60CFG ∠=. ··········································································· 5分 由34∠=∠及FC 为公共边,可得CFG CFD △≌△.
因此FG FD =. 因此FE FD =. ················································································ 6分 证法二:如图5,
过点F 分别作FG AB ⊥于点G ,FH BC ⊥于点H . ···························· 3分 因为60B ∠=,且AD ,CE 分别是BAC ∠,BCA ∠的平分线,
因此可得2360∠+∠=,F 是ABC △的内心. ············· 4分 因此601GEF ∠=+∠,FG FH =.
又因为1HDF B ∠=∠+∠, 因此GEF HDF ∠=∠. ············································· 5分 因此可证EGF DHF △≌△.
因此FE FD =. ················································································ 6分 八、解答题(本题满分8分) 24.解:(1)依照题意,3c =,
因此3025530.a b a b ++=⎧⎨++=⎩

解得3518.5a b ⎧=⎪⎪⎨⎪=-⎪⎩

因此抛物线解析式为2318
355
y x x =
-+. ·
·············································· 2分 (2)依题意可得OA 的三等分点分别为(01),,(02),
. 设直线CD 的解析式为y kx b =+.
当点D 的坐标为(01),
时,直线CD 的解析式为1
15y x =-+; ···················· 3分 当点D 的坐标为(02),时,直线CD 的解析式为2
25
y x =-+. ··················· 4分
图5
(3)如图,由题意,可得302M ⎛⎫ ⎪⎝⎭
,.
点M 关于x 轴的对称点为302M ⎛
⎫'- ⎪⎝
⎭,, 点A 关于抛物线对称轴3x =的对称点为(63)A ',.
连结A M ''.
依照轴对称性及两点间线段最短可知,A M ''的长确实是所求点P 运动的最短总路径的长. ······································································································· 5分
因此A M ''与x 轴的交点为所求E 点,与直线3x =的交点为所求F 点. 可求得直线A M ''的解析式为33
42
y x =
-. 可得E 点坐标为(20),,F 点坐标为334⎛⎫ ⎪⎝⎭
,. ·········································· 7分 由勾股定理可求出15
2
A M ''=
. 因此点P 运动的最短总路径()ME EF FA ++的长为
15
2
. ························· 8分 九、解答题(本题满分8分) 25.解:(1)略.写对一种图形的名称给1分,最多给2分.
(2)结论:等对角线四边形中两条对角线所夹锐角为60时,这对60角所对的两边之和大于或等于一条对角线的长. ······························································· 3分
已知:四边形ABCD 中,对角线AC ,BD 交于点O ,AC BD =,
且60AOD ∠=.
求证:BC AD AC +≥.
证明:过点D 作DF AC ∥,在DF 上截取DE ,使DE AC =. 连结CE ,BE . ················································································ 4分 故60EDO ∠=,四边形ACED 是平行四边形.
因此BDE △是等边三角形,CE AD =. ···········································
···· 6分
因此DE BE AC ==.
①当BC 与CE 不在同一条直线上时(如图1),
在BCE △中,有BC CE BE +>.
因此BC AD AC +>. ··············································· 7分
②当BC 与CE 在同一条直线上时(如图2), 则BC CE BE +=.
因此BC AD AC +=. ··············································· 8分 综合①、②,得BC AD AC +≥.
A D
E F
C B
O
图2
A D
E F C B O
图1
x
'
即等对角线四边形中两条对角线所夹角为60时,这对60角所对的两边之和大于或等于其中一条对角线的长.。

相关文档
最新文档