苍梧县第三中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苍梧县第三中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 在等比数列中,,前项和为,若数列也是等比数列,则
等于( )
A .
B .
C .
D .
2. 在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥n
B .如果平面α内的两条直线都平行于平面β,那么平面α∥平面β
C .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥α
D .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β
3. 已知双曲线C :

=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1作直线l ⊥x 轴交双曲线C
的渐近线于点A ,B 若以AB 为直径的圆恰过点F 2,则该双曲线的离心率为( )
A .
B .
C .2
D .
4. 曲线y=在点(1,﹣1)处的切线方程为( )
A .y=x ﹣2
B .y=﹣3x+2
C .y=2x ﹣3
D .y=﹣2x+1
5. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )
A .(﹣∞,]
B .(﹣∞,)
C .(﹣∞,0]
D .(﹣∞,0)
6. 已知曲线2
:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则O P Q ∆的面积等于( )
A .
B .
C .
2 D .4
7. 在等差数列{a n }中,a 3=5,a 4+a 8=22,则{}的前20项和为( )
A .
B .
C .
D .
8. 如果过点M (﹣2,0)的直线l 与椭圆有公共点,那么直线l 的斜率k 的取值范围是( )
A .
B .
C .
D .
9.下列推断错误的是()
A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”
B.命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0
C.若p且q为假命题,则p,q均为假命题
D.“x<1”是“x2﹣3x+2>0”的充分不必要条件
10.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于()
A.12+ B.12+23πC.12+24πD.12+π
11.已知A,B是以O为圆心的单位圆上的动点,且||=,则•=()
A.﹣1 B.1 C.﹣D.
12.函数f(x)=e ln|x|+的大致图象为()
A.B.C.D.
二、填空题
13.已知曲线y=(a﹣3)x3+lnx存在垂直于y轴的切线,函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则a的范围为.
14.△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,则c的值为.
15.抛物线y 2=8x 上到顶点和准线距离相等的点的坐标为 .
16
在这段时间内,该车每100千米平均耗油量为 升.
17.如果椭圆+
=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .
18.已知平面向量a ,b 的夹角为
3π,6=-b a ,向量c a -,c b -的夹角为23
π,23c a -=,则a 与c
的夹角为__________,a c ⋅的最大值为 . 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.
三、解答题
19.已知函数f (x )=
sin ωxcos ωx ﹣cos 2ωx+(ω>0)经化简后利用“五点法”画其在某一个周期内的图象
π π
(Ⅰ)请直接写出①处应填的值,并求函数f (x )在区间[﹣

]上的值域;
(Ⅱ)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知f (A+)=1,b+c=4,a=
,求△ABC 的面
积.
20.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.
(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);
(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.
21.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名
Ⅰ2×295%的把握认为“歌迷”与性别有关?
“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌
3.841 6.635
附:K2=.
22.(本小题满分12分) 在等比数列{}n a 中,3339,22
a S =
=. (1)求数列{}n a 的通项公式; (2)设221
6log n n b a +=,且{}n b 为递增数列,若1
1
n n n c b b +=
,求证:12314
n c c c c ++++<

23.已知曲线C
的参数方程为
(y 为参数),过点A (2,1)作平行于θ=的直线l 与曲线C 分别
交于B ,C 两点(极坐标系的极点、极轴分别与直角坐标系的原点、x 轴的正半轴重合).
(Ⅰ)写出曲线C 的普通方程; (Ⅱ)求B 、C 两点间的距离.
24.已知﹣2≤x ≤2,﹣2≤y ≤2,点P 的坐标为(x ,y )
(1)求当x ,y ∈Z 时,点P 满足(x ﹣2)2+(y ﹣2)2
≤4的概率; (2)求当x ,y ∈R 时,点P 满足(x ﹣2)2+(y ﹣2)2
≤4的概率.
苍梧县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】D
【解析】
设的公比为,则,,
因为也是等比数列,所以,
即,所以
因为,所以,即,所以,故选D
答案:D
2.【答案】C
【解析】解:对于A,直线m∥平面α,直线n⊂α内,则m与n可能平行,可能异面,故不正确;
对于B,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;
对于C,根据线面垂直的判定定理可得正确;
对于D,如果平面α⊥平面β,任取直线m⊂α,那么可能m⊥β,也可能m和β斜交,;
故选:C.
【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.
3.【答案】D
【解析】解:设F1(﹣c,0),F2(c,0),则l的方程为x=﹣c,
双曲线的渐近线方程为y=±x,所以A(﹣c,c)B(﹣c,﹣c)
∵AB为直径的圆恰过点F2
∴F1是这个圆的圆心
∴AF1=F1F2=2c
∴c=2c,解得b=2a
∴离心率为==
故选D.
【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式.
4.【答案】D
【解析】解:y′=()′=,
∴k=y′|x=1=﹣2.
l:y+1=﹣2(x﹣1),则y=﹣2x+1.
故选:D
5.【答案】B
【解析】解:由题意,不等式f(x)<g(x)在[1,e]上有解,
∴mx<2lnx,即<在[1,e]上有解,
令h(x)=,则h′(x)=,
∵1≤x≤e,∴h′(x)≥0,
∴h(x)max=h(e)=,
∴<h(e)=,
∴m<.
∴m的取值范围是(﹣∞,).
故选:B.
【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.
6.【答案】C
【解析】
∴1122(1,)2(1,)(0,0)x y x y -+-=, ∴1220y y +=③, 联立①②③可得2
18
m =,
∴12y y -==.
∴12122
S OF y y =
-=
. (由1212420y y y y =-⎧⎨+=⎩
,得12y y ⎧=⎪⎨=⎪⎩
12y y ⎧=-⎪⎨=⎪⎩
考点:抛物线的性质.
7. 【答案】B
【解析】解:在等差数列{a n }中,由a 4+a 8=22,得2a 6=22,a 6=11. 又a 3=5,得
d=,∴a 1=a 3﹣2d=5﹣4=1.
{}的前20
项和为:
=
=

故选:B .
8. 【答案】D
【解析】解:设过点M (﹣2,0)的直线l 的方程为y=k (x+2),
联立
,得(2k 2+1)x 2+8k 2x+8k 2
﹣2=0,
∵过点M (﹣2,0)的直线l
与椭圆
有公共点,
∴△=64k 4﹣4(2k 2+1)(8k 2
﹣2)≥0,
整理,得k 2

解得﹣
≤k ≤

∴直线l 的斜率k 的取值范围是[


].
故选:D .
【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.9.【答案】C
【解析】解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;
对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;
对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;
对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.
综上所述,错误的选项为:C,
故选:C.
【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.
10.【答案】C
【解析】解:根据几何体的三视图,得;
该几何体是一半圆台中间被挖掉一半圆柱,
其表面积为
S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]
=12+24π.
故选:C.
【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.
11.【答案】B
【解析】解:由A,B是以O为圆心的单位圆上的动点,且||=,
即有||2+||2=||2,
可得△OAB为等腰直角三角形,
则,的夹角为45°,
即有•=||•||•cos45°=1××=1.
故选:B.
【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.
12.【答案】C
【解析】解:∵f(x)=e ln|x|+
∴f(﹣x)=e ln|x|﹣
f(﹣x)与f(x)即不恒等,也不恒反,
故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,
可排除A,D,
当x→0+时,y→+∞,故排除B
故选:C.
二、填空题
13.【答案】.
【解析】解:因为y=(a﹣3)x3+lnx存在垂直于y轴的切线,即y'=0有解,即
y'=在x>0时有解,
所以3(a﹣3)x3+1=0,即a﹣3<0,所以此时a<3.
函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则f'(x)≤0恒成立,
即f'(x)=3x2﹣2ax﹣3≤0恒成立,即,
因为函数在[1,2]上单调递增,所以函数的最大值为,
所以,所以.
综上.
故答案为:.
【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.
14.【答案】.
【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,
∴由正弦定理可得:,解得:a=3,
∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,
∴解得:c=1+,或1﹣(舍去).
故答案为:.
【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.
15.【答案】(1,±2).
【解析】解:设点P坐标为(a2,a)
依题意可知抛物线的准线方程为x=﹣2
a2+2=,求得a=±2
∴点P的坐标为(1,±2)
故答案为:(1,±2).
【点评】本题主要考查了两点间的距离公式、抛物线的简单性质,属基础题.
16.【答案】8升.
【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量48÷6=8.故答案是:8.
17.【答案】x+4y﹣5=0.
【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),
由中点坐标公式知x1+x2=2,y1+y2=2,
把P(x1,y1),Q(x2,y2)代入x2+4y2=36,
得,
①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0,
∴k==﹣,
∴这条弦所在的直线的方程y﹣1=﹣(x﹣1),
即为x+4y﹣5=0,
由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0.
故答案为:x+4y﹣5=0.
【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.
π,18+
18.【答案】
6
【解析】
三、解答题
19.【答案】
【解析】解:(Ⅰ)①处应填入.
=.
∵T=,
∴,,
即.
∵,∴,∴,
从而得到f(x)的值域为.
(Ⅱ)∵,
又0<A<π,∴,
得,.
由余弦定理得a2=b2+c2﹣2bccosA==(b+c)2﹣3bc,
即,∴bc=3.
∴△ABC的面积.
【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题.
20.【答案】
【解析】解:(Ⅰ)该连锁分店一年的利润L(万元)与售价x的函数关系式为:
L(x)=(x﹣7)(x﹣10)2,x∈[7,9],
(Ⅱ)L′(x)=(x﹣10)2+2(x﹣7)(x﹣10)=3(x﹣10)(x﹣8),
令L′(x)=0,得x=8或x=10(舍去),
∵x∈[7,8],L′(x)>0,x∈[8,9],L′(x)<0,
∴L(x)在x∈[7,8]上单调递增,在x∈[8,9]上单调递减,
∴L(x)max=L(8)=4;
答:每件纪念品的售价为8元,该连锁分店一年的利润L最大,最大值为4万元.
【点评】本题考查了函数的解析式问题,考查函数的单调性、最值问题,是一道中档题.
21.【答案】
100人中,“歌迷”有25人,从而完成2×2列联表如下:
将2×2列联表中的数据代入公式计算,得: K 2
=
=
≈3.030
因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…
(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a 1,a 2),(a 1,a 3),(a 2,a 3),(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2)}其中a i 表示男性,i=1,2,3,b i 表示女性,i=1,2. Ω由10个等可能的基本事件组成.…
用A 表示“任选2人中,至少有1个是女性”这一事件,则A={(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2) },事件A 由7个基本事件组成. ∴P (A )
=
(12)
【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.
22.【答案】(1)1
31622n n n a a -⎛⎫
==- ⎪
⎝⎭
或;(2)证明见解析.
【解析】
试题分析:(1)将3339,22a S ==化为1,a q ,联立方程组,求出1,a q ,可得1
31622n n n a a -⎛⎫
==- ⎪
⎝⎭
或;(2)
由于{}n b 为递增数列,所以取1
162n n a -⎛⎫
=⋅- ⎪
⎝⎭
,化简得2n b n =,()1111114141n n n c b b n n n n +⎛⎫
=
==- ⎪++⎝⎭

其前项和为()111
4414
n -<+.
考点:数列与裂项求和法.1
23.【答案】
【解析】解:(Ⅰ)由曲线C的参数方程为(y为参数),消去参数t得,y2=4x.
(Ⅱ)依题意,直线l的参数方程为(t为参数),
代入抛物线方程得可得,
∴,t1t2=14.
∴|BC|=|t1﹣t2|===8.
【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题.
24.【答案】
【解析】解:如图,点P所在的区域为长方形ABCD的内部(含边界),
满足(x﹣2)2+(y﹣2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).
(1)当x,y∈Z时,满足﹣2≤x≤2,﹣2≤y≤2的点有25个,
满足x,y∈Z,且(x﹣2)2+(y﹣2)2≤4的点有6个,
依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);
∴所求的概率P=.
(2)当x,y∈R时,
满足﹣2≤x≤2,﹣2≤y≤2的面积为:4×4=16,
满足(x﹣2)2+(y﹣2)2≤4,且﹣2≤x≤2,﹣2≤y≤2的面积为:=π,
∴所求的概率P==.
【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档.。

相关文档
最新文档