2019-2020成都市第二十中学校中考数学一模试题(及答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020成都市第二十中学校中考数学一模试题(及答案)
一、选择题
1.下列各式中能用完全平方公式进行因式分解的是( ) A .x 2+x+1
B .x 2+2x ﹣1
C .x 2﹣1
D .x 2﹣6x+9
2.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( ) A .平均数
B .中位数
C .众数
D .方差
3.下列关于矩形的说法中正确的是( ) A .对角线相等的四边形是矩形 B .矩形的对角线相等且互相平分 C .对角线互相平分的四边形是矩形 D .矩形的对角线互相垂直且平分
4.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )
A .200米
B .2003米
C .2203米
D .100(31)+米
5.下列命题中,其中正确命题的个数为( )个.
①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件. A .1
B .2
C .3
D .4
6.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于
1
2
AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接
CD .若34B ∠=︒,则BDC ∠的度数是( )
A .68︒
B .112︒
C .124︒
D .146︒
7.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为( )
A.①②B.②③C.①②③D.①③
8.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()
A.12 B.15 C.12或15 D.18
9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=5,BC=2,则sin∠ACD的值为()
A.5
B.
25
C.5D.
2
3
10.已知关于x的方程2x+a-9=0的解是x=2,则a的值为
A.2 B.3 C.4 D.5
11.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.
C.D.
12.如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于()
A.60°B.50°C.45°D.40°
二、填空题
13.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.
14.如图,点A 在双曲线y=
4x
上,点B 在双曲线y=k
x (k≠0)上,AB ∥x 轴,过点A 作AD
⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.
15.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()1
0y x x
=
>与()5
0y x x
-=
<的图象上,则tan BAO ∠的值为_____.
16.如图,边长为2的正方形ABCD 的顶点A ,B 在x 轴正半轴上,反比例函数k y x
=
在第一象限的图象经过点D ,交BC 于E ,若点E 是BC 的中点,则OD 的长为_____.
17.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与
点B 重合,那么折痕长等于 cm .
18.分式方程
32x x 2
--+
2
2x
-=1的解为________. 19.农科院新培育出A 、B 两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下: 种子数量
100 200 500 1000 2000 A
出芽种子数 96 165 491 984 1965 发芽率 0.96 0.83 0.98 0.98 0.98 B
出芽种子数 96 192 486 977 1946 发芽率
0.96
0.96
0.97
0.98
0.97
下面有三个推断:
①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样; ②随着实验种子数量的增加,A 种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A 种子出芽的概率是0.98;
③在同样的地质环境下播种,A 种子的出芽率可能会高于B 种子.其中合理的是__________(只填序号).
20.计算:82-=_______________.
三、解答题
21.解方程:
x 2
1x 1x
-=-. 22.如图,AD 是ABC ∆的中线,AE BC ∥,BE 交AD 于点F ,F 是AD 的中点,连接EC .
(1)求证:四边形ADCE 是平行四边形;
(2)若四边形ABCE 的面积为S ,请直接写出图中所有面积是
1
3
S 的三角形.
23.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之
间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)
(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)
(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.
(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?
24.如图,在平面直角坐标系中,直线10y kx =-经过点(12,0)A 和(,5)B a -,双曲线
(0)m
y x x
=
>经过点B . (1)求直线10y kx =-和双曲线m
y x
=
的函数表达式; (2)点C 从点A 出发,沿过点A 与y 轴平行的直线向下运动,速度为每秒1个单位长度,点C 的运动时间为t (0<t <12),连接BC ,作BD ⊥BC 交x 轴于点D ,连接CD , ①当点C 在双曲线上时,求t 的值;
②在0<t <6范围内,∠BCD 的大小如果发生变化,求tan ∠BCD 的变化范围;如果不发生变化,求tan ∠BCD 的值; ③当1361
DC =
时,请直接写出t 的值.
25.已知:如图,点E ,A ,C 在同一条直线上,AB ∥CD ,AB=CE ,AC=CD .
求证:BC=ED.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:
A、x2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;
B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;
C、x2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;
D、x2﹣6x+9=(x﹣3)2,故选项正确.
故选D.
2.B
解析:B
【解析】
【分析】
由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.
【详解】
11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,
故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
故选B.
【点睛】
本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.
3.B
解析:B
【解析】
试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;
B.矩形的对角线相等且互相平分,故本选项正确;
C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;
D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;
故选B.
考点:矩形的判定与性质.
4.D
解析:D
【解析】
【分析】
在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.
【详解】
∵在热气球C处测得地面B点的俯角分别为45°,
∴BD=CD=100米,
∵在热气球C处测得地面A点的俯角分别为30°,
∴AC=2×100=200米,
∴AD
∴AB=AD+BD=100(
故选D.
【点睛】
本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.
5.C
解析:C
【解析】
【分析】
利用方差的意义,众数的定义、折线图及随机事件分别判断后即可确定正确的选项.【详解】
①方差是衡量一组数据波动大小的统计量,正确,是真命题;
②影响超市进货决策的主要统计量是众数,正确,是真命题;
③折线统计图反映一组数据的变化趋势,正确,是真命题;
④水中捞月是随机事件,故错误,是假命题,
真命题有3个,
故选C.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解方差的意义,众数的定义、折线图及随机事件等知识,难度不大.
6.B
解析:B
【解析】
【分析】
根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
【详解】
解:∵DE是AC的垂直平分线,
∴DA=DC,
∴∠DCE=∠A,
∵∠ACB=90°,∠B=34°,
∴∠A=56°,
∴∠CDA=∠DCE+∠A=112°,
故选B.
【点睛】
本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
7.D
解析:D
【解析】
如图,连接BE,
根据圆周角定理,可得∠C=∠AEB,
∵∠AEB=∠D+∠DBE,
∴∠AEB>∠D,
∴∠C>∠D,
根据锐角三角形函数的增减性,可得,
sin∠C>sin∠D,故①正确;
cos∠C<cos∠D,故②错误;
tan∠C>tan∠D,故③正确;
故选D.
8.B
解析:B
【解析】
试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.
解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.
②若3是底,则腰是6,6.
3+6>6,符合条件.成立.
∴C=3+6+6=15.
故选B .
考点:等腰三角形的性质.
9.A
解析:A 【解析】 【分析】
在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】
在直角△ABC 中,根据勾股定理可得:AB =
==3.
∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠
B 3
AC AB =
=
. 故选A . 【点睛】
本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.
10.D
解析:D 【解析】
∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0, 解得a =5.故选D .
11.B
解析:B 【解析】
分析:根据轴对称图形与中心对称图形的概念求解即可. 详解:A .是轴对称图形,不是中心对称图形; B .是轴对称图形,也是中心对称图形; C .是轴对称图形,不是中心对称图形; D .是轴对称图形,不是中心对称图形. 故选B .
点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.
12.D
解析:D 【解析】 【分析】 【详解】
∵∠C=80°,∠CAD=60°,
∴∠D=180°﹣80°﹣60°=40°,
∵AB∥CD,
∴∠BAD=∠D=40°.
故选D.
二、填空题
13.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点
∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:
解析:5
【解析】
【分析】
【详解】
试题解析:∵∠AFB=90°,D为AB的中点,
∴DF=1
2
AB=2.5,
∵DE为△ABC的中位线,
∴DE=1
2
BC=4,
∴EF=DE-DF=1.5,
故答案为1.5.
【点睛】
直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
14.12【解析】【详解】解:设点A的坐标为(a)则点B的坐标为()
∵AB∥x轴AC=2CD∴∠BAC=∠ODC∵∠ACB=∠DCO∴△ACB∽△DCO∴∵OD=a则AB=2a∴点B的横坐标是3a∴3a=
解析:12
【解析】
【详解】
解:设点A的坐标为(a,4
a
),则点B的坐标为(
ak
4

4
a
),
∵AB∥x轴,AC=2CD,∴∠BAC=∠ODC,
∵∠ACB=∠DCO,
∴△ACB∽△DCO,
∴AB AC 2DA CD 1
==, ∵OD=a ,则AB=2a ,
∴点B 的横坐标是3a ,
∴3a=
ak 4
, 解得:k=12.
故答案为12. 15.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案
【解析】
【分析】
过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭
,求得OB OA = 【详解】
过A 作AC x ⊥轴,过B 作BD x ⊥轴于,
则90BDO ACO ∠=∠=︒,
∵顶点A ,B 分别在反比例函数()10y x x =
>与()50y x x -=<的图象上, ∴52BDO S ∆=,12
AOC S ∆=, ∵90AOB ∠=︒,
∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,
∴DBO AOC ∠=∠,
∴BDO OCA ∆∆:, ∴2
52512BOD
OAC S OB S OA ∆∆⎛⎫=== ⎪⎝⎭

∴OB OA
=
∴tan OB BAO OA ∠=
=,
【点睛】
本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.
16.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E∴2x=x+2 解析:12x x 【解析】
【分析】
设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.
【详解】
解:设D (x ,2)则E (x+2,1),
∵反比例函数k y x
=
在第一象限的图象经过点D 、点E , ∴2x =x+2,
解得x =2,
∴D (2,2),
∴OA =AD =2,
∴2222,OD OA OD =+=
故答案为:2 2.
【点睛】
本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 17.cm 【解析】试题解析:如图折痕为GH 由勾股定理得:AB==10cm 由折叠得:
AG=BG=AB=×10=5cmGH⊥AB∴∠AGH=90°∵∠A=∠A∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G
解析:cm .
【解析】
试题解析:如图,折痕为GH ,
由勾股定理得:AB=
=10cm , 由折叠得:AG=BG=AB=×10=5cm ,GH ⊥AB ,
∴∠AGH=90°, ∵∠A=∠A ,∠AGH=∠C=90°,
∴△ACB ∽△AGH , ∴
, ∴
, ∴GH=cm .
考点:翻折变换
18.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=
【解析】
【分析】
根据解分式方程的步骤,即可解答.
【详解】
方程两边都乘以x 2-,得:32x 2x 2--=-,
解得:x 1=,
检验:当x 1=时,x 21210-=-=-≠,
所以分式方程的解为x 1=,
故答案为x 1=.
【点睛】
考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.
19.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确
解析:②③
【解析】分析:
根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.
详解:
(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;
(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;
(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.
故答案为:②③.
点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 20.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键
【解析】
【分析】
.
【详解】
=.
.
【点睛】
本题考查了二次根式的运算,正确对二次根式进行化简是关键.
三、解答题
x=.
21.2
【解析】
【分析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
去分母得:x2-2x+2=x2-x,
解得:x=2,
检验:当x=2时,方程左右两边相等,
所以x=2是原方程的解.
【点睛】
此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
22.(1)见解析;(2)ABD ∆,ACD ∆,ACE ∆,ABE ∆
【解析】
【分析】
(1)首先证明△AFE ≌△DFB 可得AE=BD ,进而可证明AE=CD ,再由AE ∥BC 可利用一组对边平行且相等的四边形是平行四边形可得四边形ADCE 是平行四边形;
(2)根据面积公式解答即可.
【详解】
证明:∵AD 是△ABC 的中线,
∴BD=CD ,
∵AE ∥BC ,
∴∠AEF=∠DBF ,
在△AFE 和△DFB 中,
AEF DBF AFE BFD AF DF ===∠∠⎧⎪∠∠⎨⎪⎩

∴△AFE ≌△DFB (AAS ),
∴AE=BD ,
∴AE=CD ,
∵AE ∥BC ,
∴四边形ADCE 是平行四边形;
(2)∵四边形ABCE 的面积为S ,
∵BD=DC ,
∴四边形ABCE 的面积可以分成三部分,即△ABD 的面积+△ADC 的面积+△AEC 的面积=S , ∴面积是
12
S 的三角形有△ABD ,△ACD ,△ACE ,△ABE . 【点睛】
此题主要考查了平行四边形的判定,全等三角形的判定和性质.等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
23.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.
【解析】
分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;
(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者
作差后利用二次函数的性质即可解决最值问题;
(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.
详解:(1)当x=6时,y 1=3,y 2=1,
∵y 1﹣y 2=3﹣1=2,
∴6月份出售这种蔬菜每千克的收益是2元.
(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.
将(3,5)、(6,3)代入y 1=mx+n ,
3563m n m n +=⎧⎨+=⎩,解得:237
m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23
x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,
4=a (3﹣6)2+1,解得:a=
13, ∴y 2=13(x ﹣6)2+1=13
x 2﹣4x+13. ∴y 1﹣y 2=﹣
23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13
<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为
73
, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13
x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,
根据题意得:2t+
73
(t+2)=22, 解得:t=4,
∴t+2=6.
答:4月份的销售量为4万千克,5月份的销售量为6万千克.
点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.
24.(1)直线的表达式为5106y x =-,双曲线的表达式为30y x =-;(2)①52
;②当06t <<时,BCD ∠的大小不发生变化,tan BCD ∠的值为56;③t 的值为52或152. 【解析】
【分析】
(1)由点(12,0)A 利用待定系数法可求出直线的表达式;再由直线的表达式求出点B 的坐标,然后利用待定系数法即可求出双曲线的表达式;
(2)①先求出点C 的横坐标,再将其代入双曲线的表达式求出点C 的纵坐标,从而即可得出t 的值;
②如图1(见解析),设直线AB 交y 轴于M ,则(0,10)M -,取CD 的中点K ,连接AK 、BK .利用直角三角形的性质证明A 、D 、B 、C 四点共圆,再根据圆周角定理可得BCD DAB ∠=∠,从而得出tan tan OM BCD DAB OA
∠=∠=,即可解决问题; ③如图2(见解析),过点B 作⊥BM OA 于M ,先求出点D 与点M 重合的临界位置时t 的值,据此分05t <<和512t ≤<两种情况讨论:根据,,A B C 三点坐标求出
,,AM BM AC 的长,再利用三角形相似的判定定理与性质求出DM 的长,最后在Rt ACD ∆中,利用勾股定理即可得出答案.
【详解】
(1)∵直线10y kx =-经过点(12,0)A 和(,5)B a -
∴将点(12,0)A 代入得12100k -= 解得56
k = 故直线的表达式为5106
y x =- 将点(,5)B a -代入直线的表达式得
51056a -=- 解得6a =
(6,5)B ∴- ∵双曲线(0)m y x x
=>经过点(6,5)B - 56
m ∴=-,解得30m =- 故双曲线的表达式为30y x =-
; (2)①//AC y Q 轴,点A 的坐标为(12,0)A
∴点C 的横坐标为12
将其代入双曲线的表达式得305122y =-
=- ∴C 的纵坐标为52
-,即52AC = 由题意得512t AC ⋅==,解得52
t = 故当点C 在双曲线上时,t 的值为52
; ②当06t <<时,BCD ∠的大小不发生变化,求解过程如下:
若点D 与点A 重合
由题意知,点C 坐标为(12,)t -
由两点距离公式得:222
(612)(50)61AB =-+--= 2222(126)(5)36(5)BC t t =-+-+=+-+
22AC t =
由勾股定理得222AB BC AC +=,即226136(5)t t ++-+=
解得12.2t =
因此,在06t <<范围内,点D 与点A 不重合,且在点A 左侧
如图1,设直线AB 交y 轴于M ,取CD 的中点K ,连接AK 、BK
由(1)知,直线AB 的表达式为5106
y x =- 令0x =得10y =-,则(0,10)M -,即10OM =
Q 点K 为CD 的中点,BD BC ⊥
12
BK DK CK CD ∴===(直角三角形中,斜边上的中线等于斜边的一半) 同理可得:12
AK DK CK CD === BK DK CK AK ∴===
∴A 、D 、B 、C 四点共圆,点K 为圆心
BCD DAB ∴∠=∠(圆周角定理)
105tan tan 126
OM BCD DAB OA ∴∠=∠===;
③过点B 作⊥BM OA 于M
由题意和②可知,点D 在点A 左侧,与点M 重合是一个临界位置
此时,四边形ACBD 是矩形,则5AC BD ==,即5t =
因此,分以下2种情况讨论:
如图2,当05t <<时,过点C 作CN BM ⊥于N
(6,5(1),2,0),(12,)B A t C --Q
12,6,6,5,OA OM AM OA OM BM AC t ∴===-===
90CBN DBM BDM DBM ∠+∠=∠+∠=︒Q
CBN BDM ∴∠=∠
又90CNB BMD ∠=∠=︒Q
CNB BMD ∴∆~∆
CN BN BM DM
∴= AM BM AC BM DM -∴=,即655t DM
-= 5(5)6
DM t ∴=- 56(5)6
AD AM DM t ∴=+=+- 由勾股定理得222AD AC CD += 即222513616(5)(6t t ⎡⎤+-+=⎢⎥⎣⎦
解得52t =或152
t =(不符题设,舍去) 当512t ≤<时,同理可得:222513616(5)(6t t ⎡⎤--+=⎢⎥⎣⎦
解得
15
2
t=或
5
2
t=(不符题设,舍去)
综上所述,t的值为5
2

15
2

【点睛】
本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
25.见解析
【解析】
【分析】
首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再由条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED.
【详解】
证明:∵AB∥CD,
∴∠BAC=∠ECD,
∵在△BAC和△ECD中,
AB=EC,∠BAC=∠ECD ,AC=CD,
∴△BAC≌△ECD(SAS).
∴CB=ED.
【点睛】
本题考查了平行线的性质,全等三角形的判定和性质.。

相关文档
最新文档