藁城区第一高级中学2018-2019学年高二上学期第一次月考试卷化学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

藁城区第一高级中学2018-2019学年高二上学期第一次月考试卷化学
一、选择题
1. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U A B =ð( )
A .{}2,4,6
B .{}1,3,5
C .{}2,4,5
D .{}2,5
2. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )
A .2015
B .2016
C .2116
D .
2048
3. 设D 为△ABC
所在平面内一点,,则( )
A
. B
. C

D

4. 函数
y=
(x 2
﹣5x+6)的单调减区间为( )
A
.(,+∞) B .(3,+∞)
C .(﹣∞
,) D .(﹣∞,2)
5. 边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( ) A .3π B .5π C .12π D .20π 6. 在等差数列{a n }中,a 1=2,a 3+a 5=8,则a 7=( )
A .3
B .6
C .7
D .8
7. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 8. 若变量x ,y
满足:
,且满足(t+1)x+(t+2)y+t=0,则参数t 的取值范围为( )
A .﹣2<t
<﹣ B .﹣2<t ≤
﹣ C .﹣2≤t ≤
﹣ D .﹣2≤t
<﹣
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
9. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )
A .F ′(x 0)=0,x=x 0是F (x )的极大值点
B .F ′(x 0)=0,x=x 0是F (x )的极小值点
C .F ′(x 0)≠0,x=x 0不是F (x )极值点
D .F ′(x 0)≠0,x=x 0是F (x )极值点
10.已知A 、B 、C
AC BC ⊥,30ABC ∠=,球心O 到平面ABC 的距离为1,点M 是线段BC 的中点,过点M 作球O 的截面,则截面面积的最小值为( ) A

4
B .34π
C
D .3π
11.已知点A (﹣2,0),点M (x ,y )为平面区域
上的一个动点,则|AM|的最小值是( )
A .5
B .3
C .2
D .
12.已知函数f (x )=是R 上的增函数,则a 的取值范围是( ) A .﹣3≤a <0 B .﹣3≤a ≤﹣2
C .a ≤﹣2
D .a <0
二、填空题
13.对于集合M ,定义函数
对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )
=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .
14.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.
15.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”
的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)
A
D
O
C
B
16.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111] 17.已知函数()()31
,ln 4
f x x mx
g x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数
()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .
18.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .
三、解答题
19. 定圆22:(16,M x y +=动圆N 过点0)F 且与圆M 相切,记圆心N 的轨迹为.E (Ⅰ)求轨迹E 的方程;
(Ⅱ)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC BC =,当ABC ∆的面积最小时,求直线AB 的方程.
20.衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中 随机抽取100名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第 5组[40,45],得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组 各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组 至少有一名志愿者被抽中的概率.
21.函数f(x)=sin2x+sinxcosx.
(1)求函数f(x)的递增区间;
(2)当x∈[0,]时,求f(x)的值域.
22.已知f(x)=lg(x+1)
(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范围;
(2)若g(x)是以2为周期的偶函数,且当0≤x≤1时,g(x)=f(x),求函数y=g(x)(x∈[1,2])的反函数.
23.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,
平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.
(Ⅰ)证明:AG⊥平面ABCD;
(Ⅱ)若直线BF与平面ACE所成角的正弦值为,求AG的长.
24.(本题12分)
正项数列{}n a 满足2(21)20n n a n a n ---=. (1)求数列{}n a 的通项公式n a ; (2)令1
(1)n n
b n a =+,求数列{}n b 的前项和为n T .
藁城区第一高级中学2018-2019学年高二上学期第一次月考试卷化学(参考答案) 一、选择题
1. 【答案】A
考点:集合交集,并集和补集.
【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目. 2. 【答案】D 【解析】
试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于
20151>,则进行2y y =循环,最终可得输出结果为2048.1
考点:程序框图. 3. 【答案】A
【解析】解:由已知得到如图
由=
=
=;
故选:A .
【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为

4. 【答案】B
【解析】解:令t=x 2
﹣5x+6=(x ﹣2)(x ﹣3)>0,可得 x <2,或 x >3,
故函数y=
(x 2
﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).
本题即求函数t 在定义域(﹣∞,2)∪(3,+∞)上的增区间.
结合二次函数的性质可得,函数t 在(﹣∞,2)∪(3,+∞)上的增区间为 (3,+∞), 故选B .
5.【答案】C
【解析】解:∵正方形的边长为2,
∴正方形的对角线长为=2,
∵球心到平面ABCD的距离为1,
∴球的半径R==,
则此球的表面积为S=4πR2=12π.
故选:C.
【点评】此题考查了球的体积和表面积,求出球的半径是解本题的关键.
6.【答案】B
【解析】解:∵在等差数列{a n}中a1=2,a3+a5=8,
∴2a4=a3+a5=8,解得a4=4,
∴公差d==,
∴a7=a1+6d=2+4=6
故选:B.
7.【答案】B
【解析】
考点:空间直线与平面的位置关系.
【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.
8.【答案】C
【解析】解:作出不等式组对应的平面区域如图:(阴影部分).
由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,
由,得,即(t+1)x+(t+2)y+t=0过定点M(﹣2,1),
则由图象知A,B两点在直线两侧和在直线上即可,
即[2(t+2)+t][﹣2(t+1)+3(t+2)+t]≤0,
即(3t+4)(2t+4)≤0,
解得﹣2≤t≤﹣,
即实数t 的取值范围为是[﹣2,﹣], 故选:C .
【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,属于中档题.
9. 【答案】 B
【解析】解:∵F (x )=f (x )﹣g (x )=f (x )﹣f ′(x 0)(x ﹣x 0)﹣f (x 0), ∴F'(x )=f'(x )﹣f ′(x 0) ∴F'(x 0)=0, 又由a <x 0<b ,得出
当a <x <x 0时,f'(x )<f ′(x 0),F'(x )<0, 当x 0<x <b 时,f'(x )<f ′(x 0),F'(x )>0, ∴x=x 0是F (x )的极小值点 故选B .
【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.
10.【答案】B
【解析】∵AC BC ⊥,∴90ACB ∠=, ∴圆心O 在平面的射影为AB D 的中点,

1
12
AB ==,∴2AB =. ∴cos303BC AC ==
当线段BC 为截面圆的直径时,面积最小,
∴截面面积的最小值为234
ππ⨯=. 11.【答案】D
【解析】解:不等式组表示的平面区域如图,
结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,
即|AM|min=.
故选:D.
【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.12.【答案】B
【解析】解:∵函数是R上的增函数
设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)
由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)


解可得,﹣3≤a≤﹣2
故选B
二、填空题
13.【答案】{1,6,10,12}.
【解析】解:要使f A(x)f B(x)=﹣1,
必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}
={6,10}∪{1,12}={1,6,10,12,}, 所以A △B={1,6,10,12}. 故答案为{1,6,10,12}.
【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.
14.【答案】 24
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC 中,根据正弦定理得:BC==24
海里,
则这时船与灯塔的距离为24海里.
故答案为:24

15.【答案】必要而不充分 【解析】
试题分析:充分性不成立,如2y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,
|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.
2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 16.【答案】[]1,1- 【解析】

点:函数的定义域.
17.【答案】()
53
,44
--
【解析】
试题分析:()2
3f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足
(
)10,0,0f f m ><<
,解得51534244
m m >-⇒-<<- 考点:函数零点
【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 18.【答案】 6 .
【解析】解:∵|z|=1,
|z ﹣3+4i|=|z ﹣(3﹣4i )|≤|z|+|3﹣
4i|=1+=1+5=6,
∴|z ﹣3+4i|的最大值为6,
故答案为:6.
【点评】本题考查复数求模,着重考查复数模的运算性质,属于基础题.
三、解答题
19.【答案】 【解析】(Ⅰ)
(3,0)F
在圆22:(16M x y +=内,∴圆N 内切于圆.M
NM NF +∴轨迹E 的方程为4(11OA OC =
(14k +当且仅当182,5>∴∆20.【答案】(1)3,2,1;(2)7
10
. 【解析】111]
试题分析:(1)根据分层抽样方法按比例抽取即可;(2)列举出从名志愿者中抽取名志愿者有10种情况,其中第组的名志愿者12,B B 至少有一名志愿者被抽中的有种,进而根据古典概型概率公式可得结果. 1
(2)记第3组的3名志愿者为123,,A A A ,第4组的2名志愿者为12,B B ,则从5名志愿者中抽取2名志愿者有12(,)A A ,13(,)A A ,11(,)A B ,12(,)A B ,23(,)A A ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共10种,其中第4组的2名志愿者12,B B 至少有一名志愿者被抽中的有11(,)A B ,12(,)A B ,21(,)A B ,
22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,共7种,所以第4组至少有一名志愿都被抽中的概率为
7
10
. 考点:1、分层抽样的应用;2、古典概型概率公式. 21.【答案】 【解析】解:(1)…(2分)

解得

f (x )的递增区间为…(6分) (2)∵,∴
…(8分)

,∴…(10分)
∴f (x )的值域是
…(12分)
【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.
22.【答案】
【解析】解:(1)f (1﹣2x )﹣f (x )=lg (1﹣2x+1)﹣lg (x+1)=lg (2﹣2x )﹣lg (x+1),
要使函数有意义,则
由解得:﹣1<x<1.
由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,
∵x+1>0,
∴x+1<2﹣2x<10x+10,
∴.
由,得:.
(2)当x∈[1,2]时,2﹣x∈[0,1],
∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),
由单调性可知y∈[0,lg2],
又∵x=3﹣10y,
∴所求反函数是y=3﹣10x,x∈[0,lg2].
23.【答案】
【解析】(本小题满分12分)
(Ⅰ)证明:因为AE=AF,点G是EF的中点,
所以AG⊥EF.
又因为EF∥AD,所以AG⊥AD.…
因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,
AG⊂平面ADEF,
所以AG⊥平面ABCD.…
(Ⅱ)解:因为AG⊥平面ABCD,AB⊥AD,所以AG、AD、AB两两垂直.
以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系则A(0,0,0),B(4,0,0),C(4,4,0),
设AG=t(t>0),则E(0,1,t),F(0,﹣1,t),
所以=(﹣4,﹣1,t),=(4,4,0),=(0,1,t).…
设平面ACE的法向量为=(x,y,z),
由=0,=0,得,
令z=1,得=(t,﹣t,1).
因为BF与平面ACE所成角的正弦值为,
所以|cos<>|==,…

=,解得t 2
=1或

所以AG=1或AG=
.…
【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
24.【答案】(1)n a n 2=;(2)=
n T )
1(2+n n
.

点:1.一元二次方程;2.裂项相消法求和.。

相关文档
最新文档