PCM通信系统
PCM通信统设计

课程设计任务书学生姓名:骆准专业班级:电信0601班指导教师:陈永泰作单位:信息工程学院题目:PCM通信系统设计初始条件:具备通信课程的理论知识;具备模拟与数字电路基本电路的设计能力;掌握通信电路的设计知识,掌握通信电路的基本调试方法;自选相关电子器件;可以使用实验室仪器调试。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、PCM码速率128KB,两路时分复用,通信双方有线连接,语音信号无明显失真,采用A律压缩13折线芯片;2、系统时钟信号频率2.048MHZ,时隙同步信号频率为8KHZ;3、选用相应合适的芯片,设计确定电路形式,对单元电路和整体系统进行计算、仿真验证。
4、进行系统仿真,调试并完成符合要求的课程设计书。
时间安排:二十二周一周,其中3天硬件设计,2天硬件调试指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)1 PCM原理 (1)1.1 PCM系统组成 (1)1.2 抽样 (2)1.3 量化 (2)1.4 编码 (3)2 时分复用原理 (4)3 实验电路图 (7)3.1编译码芯片介绍 (7)3.2引脚图 (7)3.3 PCM编译码电路 (8)4 仿真图 (11)5 心得体会 (13)参考文献 (14)致谢 (15)1 PCM 原理1.1 PCM 系统组成1.2 抽样低通抽样定理指出,一个频带受限信号m(t),如果它的最高频率为fh ,则可以唯一地由频率等于或大于2fh 的样值序列所决定。
在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。
并且,从抽样信号中可以无失真地恢复出原始信号。
音频信号频谱如图1.2 。
因为对时域信号进行采样相当于将时域信号按抽样抽样频率为周期进行周期延扩,因此需要在抽样后得到的信号后一级加上一个低通滤波器,将音频信号滤出。
抽样后信号频谱如图1.3 。
信道译 码低通 滤波音频信号抽样图1.1 PCM 通信系统方框图量化 编码 音频信号干扰1.2 音频信号的频谱由于语音信号的频率范围为300~3400HZ,通常将语音信号通过一个3400 Hz 低通滤波器(或通过一个300~3400Hz 的带通滤波器),限制语音信号的最高频率为3400Hz ,这样可以用频率大于或等于6800 Hz 的样值序列来表示。
数字通信原理3-PCM

折叠码(FBC) b1 b2 b3 b4
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
格雷码(RBC) b1 b2 b3 b4
12
1 Fs (w ) Ts
n
F (w nw
s
)
13
2.3.2 低通型信号抽样
14
2.3.2 低通型信号抽样
低通信号的抽样定理 一个频带限制在 f M 以下的连续信号 m(t ) ,可以唯
1 一的用间隔 T 2 fM
秒的抽样序列来确定。
( T =1/2fM是抽样的最大间隔,被称为奈奎斯特间隔。)
0
t
图2.3 连续信号抽样示意图
8
2.3 抽样的概念及分类
2、抽样的分类
低通型信号抽样
带通型信号抽样
F(w) F(w)
P19
0
w
w
0
w0
w
w
9
2.3.2 低通型信号抽样
f (t ) F (w )
sT (t )
sT (w )
sT t
n
t nT
T 2T 3T
f s (t )
45
PCM 编码~二进制码型的选定
样值脉 冲极性
电平序号
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
自然码(NBC) b1 b2 b3 b4
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
PCM通信设备基本原理

抽样 低通抽样定理 抽样频率: fs=8kHz 抽样间隔:Ts=1/fs=125μs
01 什么是量化
量化:把一个连续函数的无限个数值的集合映射为一个离散函数的有限个数值的集合。
量化原则:“四舍五入”
例: 量化前
量化后
0 0 0 0 1 A2 1 1
话路 (C时H1隙6 ~ C H29)
帧同步信号
复帧同
备用
步信号
比特
C H3 0
3 ቤተ መጻሕፍቲ ባይዱ91 s
488 ns
奇帧 T S0 × 1 A1 1 1 1 1 1
保留给 国内通信用
F1 a b c d a b c d
C H1
C H1 6
F2 a b c d a b c d
C H2
01 均匀量化缺点
丢失小信号的丰富信息,小信号的信噪比低。
举例来说:
电量统计(不是电量计量):
供电分公司2017年供电量 某用电单位2017年用电量 某生产车间2017年用电量 某生产设备2017年用电量 某住户2017年用电量
17.9亿度 5.85亿度 36.2万度 1.25万度 3451度
01 非均匀量化
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/
PCM通信设备原理
电力调度中心 2018年8月
目录
01.PCM基本原理 02.PCM基本帧结构 03.PCM设备的组成 04.PCM指示灯含义及常见故障处理
通信原理PCM

1 设计原理1.1 PCM系统基本原理PCM即脉冲编码调制,在通信系统中完成将语音信号数字化功能。
PCM调制的实现主要包括三个步骤完成:抽样、量化、编码。
分别完成时间上离散、幅度上离散、及量化信号的二进制表示。
为改善小信号量化性能,采用压扩非均匀量化,有两种方式,分别为A律和μ律方式,此处采用了A律方式,由于A律压缩实现复杂,常使用 13 折线法编码,采用非均匀量化。
PCM通信系统示意图图1.1 时分复用PCM通信系统框图1.2 抽样、量化、编码下面介绍PCM编码中抽样、量化及编码的原理:(1)抽样所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
它的抽样速率的下限是由抽样定理确定的。
(2)量化从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。
模拟信号的量化分为均匀量化和非均匀量化。
由于均匀量化存在的主要缺点m t 是:无论抽样值大小如何,量化噪声的均方根值都固定不变。
因此,当信号()较小时,则信号量化噪声功率比也就很小,这样,对于弱信号时的量化信噪比就难以达到给定的要求。
通常,把满足信噪比要求的输入信号取值范围定义为动态范围,可见,均匀量化时的信号动态范围将受到较大的限制。
为了克服这个缺点,实际中,往往采用非均匀量化。
非均匀量化是根据信号的不同区间来确定量化间隔的。
对于信号取值小的区∆也小;反之,量化间隔就大。
它与均匀量化相比,有两个突间,其量化间隔v出的优点。
首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。
因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。
非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。
PCM-在电力通信系统中的应用

PCM-在电力通信系统中的应用引言随着经济的发展和人民生活水平的提高,对电力的需求越来越大。
而电力系统的调度及远程通信也变得越来越重要。
此时,PCM(脉冲编码调制)技术应运而生,被广泛应用于电力通信系统中。
PCM概述PCM全称为脉冲编码调制技术,是一种通过将模拟信号转换为数字信号传输的技术。
PCM技术需要在发送端将模拟信号采样、量化、编码,再通过传输线路将数字信号传输到接收端,并且在接收端将数字信号恢复成模拟信号。
PCM在电力通信系统中的应用非常广泛。
由于电力系统的特殊性,传统的模拟信号传输存在严重的干扰和衰减问题,而PCM技术则解决了这些问题,实现了高保真的信号传输和远程通信。
接下来将具体介绍PCM在电力通信系统中的应用。
PCM在电力通信系统中的应用1. 故障信号传输故障信号传输是电力通信系统中的一个重要应用场景。
在电力系统中出现故障时,传统的模拟信号传输无法满足实时检测的需求,而PCM技术则可以实现高速、高保真的故障信号传输。
2. 负荷控制信号传输负荷控制信号传输也是电力通信系统中的一个重要应用场景。
通过采用PCM技术,可以实现实时的负荷控制信号传输和远程调度。
3. 遥测信号传输遥测信号传输是电力通信系统中的一个常用应用场景。
通过采用PCM技术,可以实现高保真、长距离的遥测信号传输,同时还可以便于数码遥测数据的处理和分析。
4. 通信系统控制信号传输通信系统控制信号传输是电力通信系统中的另一个重要应用场景。
PCM技术可以实现高速、高精度的通信系统控制信号传输,从而提高了电力通信系统的管理和控制水平。
PCM作为一种数字传输技术,在电力通信系统中发挥了重要的作用。
通过PCM技术,可以实现高速、高保真的信号传输和远程通信,提高了电力系统的调度和管理水平。
随着科技的发展,PCM技术还将在电力通信系统中得到更广泛的应用。
通信系统实验报告题目-PCM编码与传输性能分析验证

《现代通信系统》实验设计报告题目:PCM编码与传输性能分析验证一、提出背景话音PCM的抽样频率为8kHz,每个量化样值对应一个8位二进制码,故话音数字编码信号的速率为8bits×8kHz=64kb/s。
量化噪声随量化级数的增多和级差的缩小而减小。
量化级数增多即样值个数增多,就要求更长的二进制编码。
因此,量化噪声随二进制编码的位数增多而减小,即随数字编码信号的速率提高而减小。
自然界中的声音非常复杂,波形极其复杂,通常我们采用的是脉冲代码调制编码,即PCM编码。
PCM通过抽样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。
二、实验设计本实验通过MATLAB仿真软件平台来设计一个PCM编码与传输系统,主要分为编码和传输两个部分。
通过这个设计来考察线性编码和非线性编码(以A 律为例)的性能,然后对编码后的二进制码流,分别采用双极性(BNRZ)基带传输、BPSK传输以及QPSK传输,考察它们在加性高斯白噪声信道下的性能。
本设计用误码率和量噪比等指标来对系统进行分析,最后根据运行的实验结果来与理论进行对比,并分析该系统的性能。
图1 非均匀量化(对数量化)原理框图三、实验原理3.1 量化3.1.1 均匀量化均匀量化的量化间隔是固定不变的,与输入信号的大小无关,即均匀量化的量化器对所有信号的量化噪声是一样的。
当信号较小时,信号功率变小了,而量化噪声的功率没有变化,所以同样强度的量化噪声对微弱信号的影响要比对大幅度信号的影响大得多,使得微弱信号的信噪比大大降低。
3.1.2 非均匀量化非线性编码采用非均匀量化,量化间隔随着输入信号的改变而改变,信号幅度大时,量化间隔大,信号幅度小时,量化间隔小。
从而保证在量化级数不变的前提下,量化噪声对不同幅度的信号的影响大致相同,改善了小信号的量化信噪比,克服了均匀量化的缺点,实际中,往往采用非均匀量化。
目前,广泛采用的两种非线性编码为A 律13折线编码和u 律15折线编码。
数字通信原理第二章 PCM

19
抽样示意图
m (t)
M ( )
t (a ) T (t)
t
(c ) m s(t)
- H O H (b )
T ( )
2
T
(d )
M s( )
t (e )
H O H
2
T
(f )
20
证明
设:被抽样的信号是m(t),它的频谱表达式是 M(ω),频带限制在(0,fH)内。理想的抽样 就是用单位冲击脉冲序列与被抽样的信号相 乘,即
图 连续信号抽样示意图
8
抽样定义
所谓抽样是把时间上连续的模拟信号变成一系列 时间上离散的样值序列的过程:
图 抽样的输入与输出
满足:抽样信号可以无失真地恢复出原始 信号
图2-2 抽样器及抽样波形示意
图 相乘器抽样模型 图 开关函数
思考
关于抽样需要解决两个问题: 由抽样信号完全恢复出原始的模拟 信号,对 fs (t)和抽样频率有什么限制 条件? 如何从抽样信号中还原出原始信号?
ms(t)m(t)T(t)
这里的抽样脉冲序列是一个周期性冲击序列, 它可以表示为
T(t) (t nTS)
21
由于δT(t)是周期性函数,其频谱δT(ω) 必然是 离散的:
2
δT(ω)= Ts δ(ω-nωs),
ωs=2πfs= 2π/Ts
根据冲击函数性质和频率卷积定理:
M s()21 M ()T()
抽样:按抽样定理把时间上连续的模拟信号转换成时间上离散 的抽样信号。 量化:把幅度上仍连续的抽样信号进行幅度离散,即指定M 个规定的电平,把抽样值用最接近的电平表示。 编码:用二进制码组表示量化后的M个样值脉冲。
编码器送出来的是串行二进制码,是典型的数字信号,经变换调制
什么是PCM

PCM详解(1)什么是PCMPCM是用于将一个模拟信号(如话音)嫁接到一个64kbps的数字位流上,以便于传输。
PCM将连续的模拟信号变换成离散的数字信号,在数字音响中普遍采用的是脉冲编码研制方式,即所谓的PCM (PULSE CODE MODULATION)。
PCM编码是Pulse Code Modulation的缩写,又叫脉冲编码调制,它是数字通信的编码方式之一,其编码主要过程是将话音、图像等模拟信号每隔一定时间进行取样,使其离散化,同时将抽样值按分层单位四舍五入取整量化,同时将抽样值按一组二进制码来表示抽样脉冲的幅值。
PCM编码的最大的优点就是音质好,最大的缺点就是体积大。
我们常见的Audio CD就采用了PCM编码,一张光盘的容量只能容纳72分钟的音乐信息。
PCM方式是由取样,量化和编码三个基本环节完成的。
音频信号经低通滤波器带限滤波后,由取样,量化,编码三个环节完成PCM调制,实现A/D变化,形成的PCM数字信号再经纠错编码和调制后,录制在记录媒介上。
数字音响的记录媒介有激光唱片和盒式磁带等。
放音时,从记录媒介上取出的数字信号经解调,纠错等处理后,恢复为PCM数字信号,由D/A变换器和低通滤波器还原成模拟音频信号。
将CD―PCM数字信号变换还原成模拟信号的解码器―称为CD---PCM 解码器。
(2) PCM基本工作原理脉冲调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输.脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程.所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号.该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号.它的抽样速率的下限是由抽样定理确定的.在该实验中,抽样速率采用8Kbit/s.所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示.一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值.所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值.然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D.PCM的原理如图5-1所示.话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用"四舍五入"办法量化为有限个幅度取值的信号,再经编码后转换成二进制码.对于电话,CCITT规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM 编码后的标准数码率是64kb/s.为解决均匀量化时小信号量化误差大,音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密,量化间隔小,而在大信号时分层疏,量化间隔大.在实际中广泛使用的是两种对数形式的压缩特性:A律和律.A律PCM用于欧洲和我国,律用于北美和日本.PCM是为了用数字方式传输或存储模拟信号,对模拟信号进行数字化的一种方法。
PCM 通信原理解析

深圳市特发信息股份有限公司泰科通信分公司
脉冲编码调制—量化 (Quantizing)
将抽样获得的PAM信号变成幅度离散的 信号的过程。 均匀量化/非均匀量化(压/扩 13折线A 律) PCM过程的量化采用256个量化级 由于量化信号与原始信号样值存在误差, 将引入量化噪声,SNR=39DB
10 2018/10/8
深圳市特发信息股份有限公司泰科通信分公司
脉冲编码调制—编码(Coding)
采用逐次反馈编码 8位编码(0-40dB动态范围内,SNR=39dB)
– 极性码1位,幅度码7位; – 幅度码中段落码3位,段内码4位;
码字码型:折迭码 码字处理:AMI
深圳市特发信息股份有限公司泰科通信分公司
语音:
– – – – 男声-基频100Hz 能量集中在250-500 女声-基频300Hz 能量集中在300-600 人耳-16-16KHz 动态范围60-70dB
数据:
深圳市特发信息股份有限公司泰科通信分公司
5 2018/10/8
通信系统-信号
连续 离散 数字 模拟
深圳市特发信息股份有限公司泰科通信分公司
11 2018/10/8
脉冲编码调制—低通滤波(LPF)
通频带:300-3400Hz 低通重建过程将引入折叠噪声
深圳市特发信息股份有限公司泰科通信分公司
12 2018/10/8
脉冲编码调制-多路复用
频分多路复用 FDM 时分多路复用 TDM 码分多路复用 CDM
深圳市特发信息股份有限公司泰科通信分公司
通信系统-基本概念
通信系统模型:
– – – – – – 信源 信宿 信道 噪声源 传输 接入(终端)
PCM通信设备基本原理

在视频传输应用场景中,PCM通信设备可以实现视频信号的同步传输,支持多人视频 会议的开展。
06 PCM通信设备发展趋势 与挑战
PCM通信设备发展趋势
5G/6G通信技术融合
物联网与智能家居的普及
随着5G/6G通信技术的快速发展, PCM通信设备将进一步融合5G/6G技 术,提升数据传输速度和稳定性。
数据传输应用场景
数据传输
PCM通信设备在数据传输应用场景中,可以将各种数据信号进行数字化处理后进行传输,如文件传输 、网络数据传输等。
远程控制
利用PCM通信设备,可以实现远程控制功能,对远程设备进行操作和管理。
视频传输应用场景
视频监控
通过PCM通信设备,可以将视频信号进行数字化处理后进行传输,实现视频监控功能。
数据安全与隐私保护
随着数据传输量的增加,PCM通信设备需要加强数据安全和隐私 保护措施,确保数据传输的安全性和可靠性。
设备兼容性问题
不同品牌和型号的PCM通信设备可能存在兼容性问题,需要加强 设备间的互通性和标准化工作。
THANKS FOR WATCHING
感谢您的观看
误码率
译码过程中出现错误的概率,误码率 越低,译码质量越好。
03 PCM通信设备硬件结构
发送端硬件结构
模拟信号输入电路
将模拟信号转换为适合传输的 信号,通常包括放大、滤波和
调制等环节。
数字编码器
将模拟信号转换为数字信号, 以便于传输和处理。
信道编码器
对数字信号进行编码,增加信 号的抗干扰能力。
调制器
PCM通信系统组成
发送端
包括模拟信号输入、采样器、量 化和编码器等部分,用于将模拟 信号转换为数字信号。
PCM通信设备基本原理

PCM通信设备工作原理
采样:将模拟信号转换 为数字信号
量化:将采样得到的数 字信号转换为二进制信 号
编码:将二进制信号转 换为PCM信号
传输:将PCM信号通 过信道传输
解码:接收端将PCM 信号转换为二进制信号
恢复:将二进制信号转 换为模拟信号
PCM通信设备信号处理过 程
章节副标题
采样
采样定理:采样频率必 须大于模拟信号最高频
THEME TEMPLATE
感谢观看
随着5G技术的发展高清语音与视 频传输需求将得到更好的满足
添加标题
添加标题
添加标题
添加标题
传统的PCM通信设备无法满足高 清语音与视频传输的需求
挑战:如何实现高清语音与视频 传输的低延迟、高稳定性和高可 靠性
低延迟与高可靠性要求
5G技术的发展对低延迟通信提出了更高的要求
物联网、工业自动化等领域对高可靠性通信的需求日益增长
滤波:接收端对重建后 的模拟信号进行滤波以
消除噪声和干扰
解码:接收端将二进制 信号转换为数字信号
量化
量化过程:将模拟信号转换为 数字信号
量化方法:采用/D转换器进行 量化
量化精度:取决于/D转换器的 分辨率
量化噪声:量化过程中产生的 噪声影响信号质量
编码
采样:将模 拟信号转换 为数字信号
量化:将采 样得到送器:将模拟信号 转换为数字信号
接收器:将数字信号 转换为模拟信号
编码器:将模拟信号 转换为数字信号
解码器:将数字信号 转换为模拟信号
调制器:将数字信号 转换为模拟信号
解调器:将模拟信号 转换为数字信号
传输介质:传输数字 信号的介质如光纤、
电缆等
PCM通信系统

PCM通信系统一.设计总方案:PCM系统方框图该设计要紧包含两部分:1.Pcm编译码电路2.复用与解复用电路二.PCM电路部分(一)PCM基本工作原理数字程控调度机PCM脉码调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。
脉码调制就是对模拟信号先抽样,再对样值幅度量化、编码的过程。
所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号通过抽样后还应当包含原信号中所有信息,也就是说能无失确实恢复原模拟信号。
所谓量化,就是把通过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
一个模拟信号通过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。
所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
然而,实际上量化是在编码过程中同时完成的,故编码过程也称之模/数变换,可记作A/D。
由此可见,数字程控调度机脉冲编码调制方式就是一种传递模拟信号的数字通信方式。
PCM的原理如上图所示。
话音信号先经防混叠低通滤波器,进行脉冲抽样,变成重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码,转换成二进制码。
关于电话,CCITT 规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM编码后的标准数码率是64kb/s。
为解决均匀量化时小信号量化误差大、音质差的问题,在实际中使用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密、量化间隔小,而在大信号时分层疏、量化间隔大,如图1—2所示。
在JSQ-31-512型数字程控调度机中使用的是对数形式的压缩特性。
对数形式的压缩特性:A律与m律,A律PCM用于欧洲与我国,m律用于北美与日本。
图1-2 PCM的原理框图(二)PCM编译码电路TP3067芯片介绍1.编译码器的简单介绍模拟信号通过编译码器时,在编码电路中,它要通过取样、量化、编码。
PCM-在电力通信系统中的应用

PCM-在电力通信系统中的应用什么是PCMPCM是脉冲编码调制(Pulse Code Modulation)的简称。
PCM是一种采用模拟信号的数字编码技术,它广泛应用于通信领域和电力系统中。
PCM的原理PCM可以将模拟信号转换成数字信号,从而保证信号的可靠传输。
PCM的原理可以简单概述为:首先将模拟信号进行采样,然后对采样到的信号进行量化。
通过量化将连续的模拟信号转换成离散的数字信号,再通过编码将数字信号表示成一个字节流。
最后,再通过解码将数字信号恢复成模拟信号。
PCM在电力通信系统中的应用在电力通信系统中,PCM技术被广泛应用于数字通信和保护通信中。
具体包括以下方面。
数字通信在数字通信中,PCM技术可以将模拟信号转换成数字信号,提高通信质量和可靠性。
在数字通信中,光模块和数字电路等设备都可以使用PCM技术,使得信号的传输更快捷、可靠。
保护通信保护通信是电力系统中非常重要的通信方式。
通常情况下,保护通信的需求是因为在电力系统中,如果发生故障,则电网必须在最短时间内停电,以保护设备和人员的安全。
在保护通信中,PCM技术可以将保护信号转换成数字信号,以确保信号的可靠传输。
此外,采用PCM技术的数字通信和保护通信还可以对抗电磁干扰和外部噪声等干扰因素,提高电力系统的抗干扰性和可靠性。
整站监测整站监测是电力系统中另一重要应用场景。
通过对电力系统各个站点的电压、电流、温度等参数进行实时监测和分析,可以及时发现并解决故障,保证电力系统的稳定运行。
使用PCM技术可以将整站监测的信号进行数字化处理,实时上传到电力调度中心进行分析和监测。
PCM技术具有实时性强和精度高的优点,在整站监测中的应用广泛。
PCM技术具有数字化处理信号和保证信号可靠传输的优点,因此在电力通信系统中应用广泛。
具体应用方面包括数字通信、保护通信和整站监测等。
需要注意的是,在应用过程中需要做好参数设置和调试工作,确保PCM技术的性能优良和应用效果良好。
30-32路PCM系统

30/32路PCM系统1. 30/32路PCM系统的结构30/32路PCM系统的结构如下图。
30/32路PCM系统的话路容量为30路,同步码及告警码占1路,标志信号占1路,共32路(或称32个信道)。
(1)发送支路。
每条话路的话音模拟信号经2/4线转换用的混合电路的1、2端送入发送支路,由低通滤波器限制话音信号频带的上限为3.4 kHz,再由模/数(A/D)变换电路完成取样、量化和编码,编成单极性的8位PCM信号;然后经汇总电路把各话路的话音信号、同步码(或告警码)和信令码插入不同时隙,即按不同时隙进行时分合路,组成PCM信号群;最后由码型变换电路将其变换成适宜于传输的码型送往传输线。
(2)接收支路。
在接收端,首先将接收到的PCM信号群的双极性码进行整形再生;然后经过码型反变换电路恢复成原始编码的码型;经分离电路将各话路的话音信号、同步码(或告警码)和信令码进行分路;分离出来的各话音信号经各自的数/模(D/A)变换电路完成解码,使之恢复成PAM信号;最后经过低通滤波器恢复为每条话路的话音模拟信号。
2. 30/32路PCM系统的帧结构帧结构就是在一帧(或取样周期)内的时间分配关系,它包括时隙、码位、同步与标志信号的分配关系。
图2-9为30/32路PCM系统的帧结构,图中最上部的F0,Fl,…表示帧顺序,由F0~F15共16个帧组成一个复帧;每一帧有32个时隙;每一个时隙有8位码组。
TS1~TS15和TS17~TS31共30个时隙为话路信息时隙,用于传送30个话路的话音信号,一个时隙传输一路话音信号。
TS1为第1路话音信号的时隙,用来传输第1路话音信号;TS17为第16路话音信号的时隙,用来传输第16路话音信号;TS31为第30路话音信号的时隙,用来传输第30路话音信号;TS0为帧同步时隙,用于实现发送端和接收端的起始位同步;TS16为标志信号时隙,用来传送复帧同步码和各个话路的标志信号(中继话路的占用空闲信号等,从而使两个交换机能够相互配合,自动完成电话接续任务)。
PCM系统——精选推荐

PCM 系统一、PCM系统相关概念1、PCM的发展多路复用技术主要有:频分制(FDM)和时分制(TDM)1)频分制(FDM):语音信号调制在各个频带上。
◆把传输频带分为若干部分,每部分均可作为独立的传输信道使用每对用户占用其中的一个频段。
(频分制:又称载波通信,主要用于模拟通信)◆缺点:频带宽,干扰大2)时分制(TDM):◆把传输通道按时间分割以传送若干路电话的通信方式◆每对用户占用其中的一段时间(时隙Time Slot),进行PCM处理。
(时分制:又称时间分割制通信,主要用于数字通信)2、模拟电信号的处理,话音信号的数字化PCM系统的基本单元:发送端PCM系统基本单元1)采样频率:f >=2 f0 话音不失真话音频率:300~3400,Max:4000Hzf0=4000Hz,采样频率=2×4000=8000Hz先滤波,再采样以限制频率(<4000Hz),通过采样,连续信号变为每秒有限的离散值2)量化:采用先压缩再均匀量化,压缩率为A律(美国用µ律)所有的离散值可得到归一化的电平输出3)编码:把离散值用一定的编码表示,目前用8比特编码编码类型:A)起止信号(单极性信号):1:有电流,0:无(AXE内部使用:GS,BUS)B)双极性信号:1:正电流,0:负电流C)归零信号:1:1/2宽电流,0:无D)伪三元码:1:+-交替,0:无E)曼彻斯特码:1:+-,0:-+F)差分编码:1:有电流变化,0:无变化G)HDB3码:连续三个0,插入1,连续两个破坏点(1个数为奇数),第一个0改为1/0(1/0,取决于两个破坏点间“1”的个数,即“1”个数要为奇数)4)再生:PCM系统利用再生中继器恢复PCM波形,从而可抗畸变和噪声5)解码:按码字恢复脉冲幅度6)滤波:数字信号 模拟信号3、PCM 基本原理欧洲、我国使用的PCM系统:32信道/帧,采样频率:8000Hz采样间隔:125µs每时隙时长:125µs/32=3.9µs压缩律:A律速率:2.048Mbit/s1)PCM帧结构(见图)帧结构特点:a)每帧125微秒,分32时隙(TS0~TS31),每时隙3.9微秒b)时隙TS1~TS15和TS17~TS31用于传送话音信息,TS0:用于帧同步和帧失步告警TS16:CAS:用于线路信令的传输和复帧同步,N0.7:某些TS16用于信号传输,但不是所有TS16不用于信号传输的TS16可用于话音c)每时隙8比特,每位占用时间1/8×3.9微秒=488毫微秒,每帧有8×32=256比特d)每16帧为一复帧(F0~F15),复帧时长:16×125微秒=2毫秒e)每秒传送8000次,帧的总码率为256比特/帧×8000帧/秒=2048Kbit/s 基群速率二、PCM 线上信令的传递p3:9.91、CAS2、CCS三、连接到GS的设备p3:9.15GS是APT部分的核心,绝大多数的交换设备均连在GS上(LIC,KRC等除外,直接连在用户级上),由于设备类型众多,为了方便管理和维护,为各种设备提供了统一的接口:TPLU 或GSNIC,接口速率为2Mbit/s◆TPLU:Time and Plane Selection UnitGSNIC:Group Switching Network Interface CircuitTPLU和GSNIC的功能:负责选面,链路监视和例行测试图3:9.6◆连接在GS的设备主要有:ETC,PCD,PCDD,CCD,RT,JT,CSR1,ASDH等图3:9.7◆ETC的功能:ETC是最常用的PCM接口板,与其它功能块一起完成对PCM的监视。
PCM系统与△M系统的比较

7.8 PCM系统与△M系统的比较
PCM和△M都是模拟信号数字化的基本方法,△M实际上是DPCM的一种特例。
PCM系统的特点:多路信号统一编码,一般采用8位编码(语音信号).编码设备复杂,但质量较好。
PCM系统一般用于大容量的干线通信。
△M系统的特点:单路信号单用一个编码设备,设备简单,一般数码率比PCM的低,质量次于PCM。
△M一般适用于小容量支线通信,话路增减方便灵活。
在相同的信道传输速率下,对于量化信噪比,在传输速率低时,△M性能优越,在编码位数多、码率较高时,PCM性能优越。
根据式(7.6-6),有
当用分贝表示时,上式变为
与N成线性关系,如图7-8-1所示。
图7-8-1 PCM和△M系统的性能比较
而△M系统的性能可由式(7.7-6)来衡量,即
若△M与PCM数据传输速率相同,则,代入上式得
当用分贝表示时,上式变为
因为,若取f c为1000Hz,为3000Hz,则上式变为
与N的关系如图7-8-1中红线所示。
结论:
由于语音信号大部分能量集中在低频段,从图7-8-1中可以看出:
在编码位数时,△M性能优于PCM性能;
△M与PCM抗干扰性能取决于误码的影响。
由于△M中误码只会引起2的脉冲幅度误差,而在PCM中误码所引起的误码脉冲幅度一般大于2,所以,在同样误码条件下,△M 系统质量优于PCM质量。
如果希望两者有相同的误码噪声功率,则PCM系统中误码率小于△M
系统中的误码率;
△M比PCM更适用于对语音信号和图像信号的编码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多路语音数字通信系统课程设计报告
一.设计总方案:
PCM系统方框图
该设计主要包括两部分:1.Pcm编译码电路
2.复用与解复用电路
二.PCM电路部分
(一)PCM基本工作原理
数字程控调度机PCM脉码调制就是把一个时间连续、取值连续的模拟信号变换成时间离散、取值离散的数字信号后在信道中传输。
脉码调制就是对模拟信号先抽样,再对样值幅度量化、编码的过程。
所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。
所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。
由此可见,数字程控调度机脉冲编码调制方式就是一种传递模拟信号的数字通信方式。
PCM的原理如上图所示。
话音信号先经防混叠低通滤波器,进行脉冲抽样,变成重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码,转换成二进制码。
对于电话,CCITT 规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM编码后的标准数码率是64kb/s。
为解决均匀量化时小信号量化误差大、音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密、量化间隔小,而在大信号时分层疏、量化间隔大,如图1—2所示。
在JSQ-31-512型数字程控调度机中使用的是对数形式的压缩特性。
对数形式的压缩特性:A律和m律,
A律PCM用于欧洲和我国,m律用于北美和日本。
图1-2 PCM的原理框图
(二)PCM编译码电路TP3067芯片介绍
1.编译码器的简单介绍
模拟信号经过编译码器时,在编码电路中,它要经过取样、量化、编码。
到底在什么时候被取样,在什么时序输出PCM码则由A→D控制来决定,同样PCM码被接收到译码电路后经过译码、低通滤波、放大,最后输出模拟信号,把这两部分集成在一个芯片上就是一个单路编译码器,它只能为一个用户服务,即在同一时刻只能为一个用户进行A\D及D\A变换。
编码器把模拟信号变换成数字信号的规律一般有二种,一种是μ律十五折线变换
法,它一般用在PCM24路系统中,另一种是A律十三折线非线性交换法,它一般应用于PCM 30\32路系统中,这是一种比较常用的变换法.模拟信号经取样后就进行A律十三折线变换,最后变成8位PCM码,在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去,这个时序号是由A→D控制电路来决定的,而在其它时隙时编码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧里只在一个由它自己的A→D控制电路决定的时隙里输出8位PCM码,同样在一个PCM 帧里,它的译码电路也只能在一个由它自己的D--A控制电路决定的时序里,从外部接收8位PCM 码。
其实单路编译码器的发送时序和接收时序还是可由外部电路来控制的,编译码器的发送时序由A→D控制电路来控制。
我们定义为FSx和FSr,要求FSx和FSr是周期性的,并且它的周期和PCM的周期要相同,都为125μS,这样,每来一个FSx,其Codec就输出一个PCM码,每来一个FSr,其Codec 就从外部输入一个PCM码。
下图是PCM的译码电路方框图。
2. JSQ-31-512型数字程控调度机编译码器电路的设计
我们所使用的编译码器是把Codec和Filter集成在一个芯片上,它的框图见上图所示。
该器件为TP3067。
下图是它的管脚排列图。
3. TP3067引脚符号
符号功能
VPO+ 接收功率放大器的同相输出。
GNDA 模拟地,所有信号均以该引脚为参考点。
VPO- 接收功率放大器的倒相输出。
VPI 接收功率放大器的倒相输入。
VFRO 接收滤波器的模拟输出。
VCC 正电源引脚,VCC = +5V士5%
FSR 接收帧同步脉冲,FSR为8kHz脉冲序列。
DR 接收帧数据输入.PCM数据随着FSR前沿移入DR。
BCLKR\CLKSEL 在FSR的前沿后把数据移入DR的位时钟,其频率可从64kHz至
2.48MHz。
MCLKR\PDN 接收主时钟,其频率可以为1.536MHz、1.544MHz或2.048MHz. MCLKX 送主时钟,其频率可以是1.536MHz,1.544MHz或2.048MHz.它允许与MCLK异步,同步工作能实现最佳性能。
BCLKX PCM数据从DX上移出的位时钟,频率从64kHz至2.048MHz,必须与MCLKX同步。
DX 由FSX启动的三态PCM数据输出。
FSX 发送帧同步脉冲输入,它启动BCLKX并使DX上PCM数据移到DX上。
ANLB 模拟环回路控制输入,在正常工作时必须置为逻辑“0”,当拉到逻辑“1”时,发送滤波器和前置放大器输出被断开,改为和接收功率放
大器的VPO+输出连接。
GSX 发送输入放大器的模拟输出。
用来在外部调节增益。
VFXI- 发送输入放大器的倒相输入。
VFXI+ 发送输入放大器的非倒相输入。
VBB 负电源引脚,VBB = -5V ±5% 。
4. JSQ-31-512型数字程控调度机PCM编译码电路
PCM系统的PROTEL电路原理图
PCM编译码电路所需的工作时钟为2.048MHz,FSR、FSX的帧同步信号为8KHz窄脉冲,上图是它的电原理图。
在JSQ-31-512型数字程控调度机中选择A-Law变换,以2.048Mbit来传送信息,信息帧为无信令帧,它的发送时序与接收时序直接受FSX和FSR 控制。
还有一点,编译码器一般都有一个PDN降功耗控制端,PDN=0时,编译码能正常工作,PDN=1时,编译码器处于低功耗状态,这时编译码器其它功能都不起作用,我们在设计时,可以实现对编译码器的降功耗控制。
三.复用与解复用部分
五附录
附录一PCM的电路原理图。