高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
高中物理高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)
高中物理高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,质量为m=1kg的滑块,在水平力F作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s,长为L=1.4m,今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移:s =v 0t 由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩ 相对滑动生成的热量⑪⑫2.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。
质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。
已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。
高考物理动能与动能定理解题技巧分析及练习题(含答案)
高考物理动能与动能定理解题技巧分析及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。
开始时让连着A 的细线与水平杆的夹角α。
现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭2.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
最新高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)
距离 l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为 L,撞车后共同滑行的距
离 l 8 L .假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量 M 为故障车质量 25
m 的 4 倍.
(1)设卡车与故障车相撞前的速度为
v1
两车相撞后的速度变为
v2,求
v1 v2
(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生.
【答案】(1) 4.5m,4.9m;(2) 4J
【解析】
【详解】
(1)设物块在 B 点的最大速度为 vB,由牛顿第二定律得:
Fm
mg
m
vB2 R
从 P 到 B,由动能定理得
mg ( H
R)
1 2
mvB2
0
解得
H=4.5m 物块从 B 点运动到斜面最高处的过程中,根据动能定理得:
-mg[R(1-cos37°)+Lsin37°]-μmgcos37°•L=
公式求得运动时间,由 B 点到最高点,由动能定理,克服重力做功等于摩擦力做功,由此
可求得 AB 间距离,产生的内能由相互作用力乘以相对位移求得
7.如图所示在竖直平面内,光滑曲面 AB 与长度 l=3m 的水平传送带 BC 平滑连接于 B 点, 传送带 BC 右端连接内壁光滑、半径 r=0.55m 的四分之一细圆管 CD,圆管内径略大于物块 尺寸,管口 D 端正下方直立一根劲度系数为 k=50N/m 的轻弹簧,弹簧一端固定,另一端恰 好与管口 D 端平齐.一个质量为 m=0.5kg 的物块(可视为质点)从曲面上 P 点静止释放, P 点距 BC 的高度为 h=0.8m.(已知弹簧的弹性势能 Ep 与弹簧的劲度系数 k 和形变量 x 的
高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)
(1)小车运动到 C 点时的速度大小;
(2)小车在 BD 段运动的时间;
(3)水平半圆轨道对小车的作用力大小;
(4)要使小车能通过水平半圆轨道,发动机开启的最短时间.
【答案】(1) 6m/s ;(2) 0.3s ;(3) 4 2N .;(4) 0.35s .
【解析】
【详解】
(1)由小车在 C 点受力得:
【答案】(1)8m/s (2)35J (3)5 次 【解析】 【详解】 (1)物块在 PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦 力,此过程应用动能定理得:
mgL sin mgL cos 1 mv2 2
解得物块第一次接触弹簧时物体的速度的大小为:
v 2gLsin cos 8 m/s
mvA2m
WT
mg
h sin
h
2.如图所示,粗糙水平地面与半径为 R=0.4m 的粗糙半圆轨道 BCD 相连接,且在同一竖直 平面内,O 是 BCD 的圆心,BOD 在同一竖直线上.质量为 m=1kg 的小物块在水平恒力 F=15N 的作用下,从 A 点由静止开始做匀加速直线运动,当小物块运动到 B 点时撤去 F, 小物块沿半圆轨道运动恰好能通过 D 点,已知 A、B 间的距离为 3m,小物块与地面间的动 摩擦因数为 0.5,重力加速度 g 取 10m/s2.求: (1)小物块运动到 B 点时对圆轨道 B 点的压力大小. (2)小物块离开 D 点后落到地面上的点与 D 点之间的距离
2mL QE
点睛:本题是电场相关知识与动量守恒定律的综合,虽然 A 球受电场力,但碰撞的内力远
大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么
A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?
高考物理高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)
高考物理高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
高考物理动能与动能定理答题技巧及练习题(含答案)及解析
高考物理动能与动能定理答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块第一次通过C 点时的速度大小v C .(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】(1)BC 长度tan 530.4m l R ==o ,由动能定理可得21()sin 372B mg L l mv -=o代入数据的32m/s B v =物块在BC 部分所受的摩擦力大小为cos370.60N f mg μ==o所受合力为sin 370F mg f =-=o故32m/s C B v v ==(2)设物块第一次通过D 点的速度为D v ,由动能定理得2211(1cos37)22D C mgR mv mv -=-o有牛顿第二定律得2D D v F mg m R-= 联立解得7.4N D F =(3)物块每次通过BC 所损失的机械能为0.24J E fl ∆==物块在B 点的动能为212kB B E mv =解得0.9J kB E = 物块经过BC 次数0.9J=3.750.24Jn =设物块最终停在距离C 点x 处,可得()sin 37(3+)0mg L x f l x --=o代入数据可得0.35m x =2.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析
(3)设物体刚好到达 D 点时的速度为 vD 此时有
解得:
mg mvD2 R
vD gR
设物体恰好通过 D 点时释放点距 B 点的距离为 L0 ,有动能定理可知:
mg[L0
sin
R(1
cos )]
mg
cos
L0
1 2
mvD2
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,质量 m=3kg 的小物块以初速度秽 v0=4m/s 水平向右抛出,恰好从 A 点沿着 圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为 R= 3.75m,B 点是圆弧轨道的最低点,
圆弧轨道与水平轨道 BD 平滑连接,A 与圆心 D 的连线与竖直方向成 37 角,MN 是一段粗
代入数据解得: FNC 60N
根据牛顿第三定律,小物块通过 C 点时对轨道的压力大小是 60N
(3)小物块刚好能通过 C 点时,根据 mg m vC2 2 r
解得: vC2 gr 100.4m / s 2m / s
小物块从 B 点运动到 C 点的过程,根据动能定理有:
mgL
mg
2r
1 2
(1)物体释放后,第一次到达 B 处的速度大小,并求出物体做往返运动的整个过程中在 AB 轨道上通过的总路程 s; (2)最终当物体通过圆弧轨道最低点 E 时,对圆弧轨道的压力的大小; (3)为使物体能顺利到达圆弧轨道的最高点 D(E、O、D 为同一条竖直直径上的 3 个 点),释放点距 B 点的距离 L 应满足什么条件.
mg m vD2 R
可得:vD=2m/s 设小物块落地点距 B 点之间的距离为 x,下落时间为 t,根据平抛运动的规律有: x=vDt,
高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析
高考物理动能与动能定理及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
已知它落到水面上时相对于O 点(D 点正下方)的水平距离10m OB =。
为了能让滑车抛到水面上的更远处,有人在轨道的下方紧贴D 点安装一水平传送带,传送带右端轮子的圆心与D 点的水平距离为8m ,轮子半径为0.4m (传送带的厚度不计),若传送带与玩具滑车之间的动摩擦因数为0.4,玩具滑车的质量为4kg ,不计空气阻力(把玩具滑车作质点处理),求 (1)玩具滑车到达D 点时对D 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N ;(2)6m/s ,6m ;(3)见解析。
【解析】 【详解】(1)玩具滑车到达D 点时,由牛顿第二定律:2DD v F mg m R-=解得2210=404=80N 10D D v F mg m R =++⨯;(2)若无传送带时,由平抛知识可知:D x v t =解得1s t =如果传送带保持不动,则当小车滑到最右端时,由动能定理:221122D mv mv mgL μ-=- 解得v =6m/s因为6m/s 2m/s v gR =>=,则小车从右端轮子最高点做平抛运动,则落水点距离传送带右端的水平距离:'6m x vt ==(3)①若传送带的速度v ≤6m/s ,则小车在传送带上运动时一直减速,则到达右端的速度为6m/s ,落水点距离传送带右端的水平距离为6m ; ②若小车在传送带上一直加速,则到达右端时的速度满足'221122D mv mv mgL μ-= 解得'241m/s v =若传送带的速度241m/s v ≥,则小车在传送带上运动时一直加速,则到达右端的速度为241m/s ,落水点距离传送带右端的水平距离为241m x vt ==;③若传送带的速度10m/s≥v ≥6m/s ,则小车在传送带上运动时先减速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt=v m ;④若传送带的速度241m/s ≥v ≥10m/s ,则小车在传送带上运动时先加速到v ,然后以速度v 匀速,则到达右端的速度为v ,落水点距离传送带右端的水平距离为vt =v m 。
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。
水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。
用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。
已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.3.如图所示,固定的粗糙弧形轨道下端B 点水平,上端A 与B 点的高度差为h 1=0.3 m ,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C 点到B 点的高度差为h 2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m =1 kg 的滑块(可看作质点)从轨道的A 点由静止滑下,然后从B 点抛出,恰好以平行于传送带的速度从C 点落到传送带上,传送带逆时针传动,速度大小为v =0.5 m/s ,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g =10 m/s 2,试求:(1).滑块运动至C 点时的速度v C 大小;(2).滑块由A 到B 运动过程中克服摩擦力做的功W f ; (3).滑块在传送带上运动时与传送带摩擦产生的热量Q . 【答案】(1)2.5 m/s (2)1 J (3)32 J【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。
一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。
已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。
(1)求滑块第一次运动到B 点时对轨道的压力。
(2)求滑块在粗糙斜面上向上滑行的最大距离。
(3)通过计算判断滑块从斜面上返回后能否滑出A 点。
【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】(1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有()212B mg h R mv +=那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且()2N 270N B mg h R mv F mg mg R R+=+=+=故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。
(2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得cos37sin37cos370mg h R R L mgL μ+-︒-︒-︒=()所以1.2m L =(3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得()212cos370.542B mv mg h R mgL mg mgR μ'=+-︒=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。
【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析
一、高中物理精讲专题测试动能与动能定理 1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将 静止的小滑块以 v0 水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R=0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C、D 两点的 竖 直高度差 h=0.2m,水平距离 s=0.6m,水平轨道 AB 长为 L1=1m,BC 长为 L2 =2.6m, 小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g=10m/s2.
(1)运动员从 A 点运动到 B 点过程中,到达 B 点时的速度大小 vB; (2)水平轨道 CD 段的长度 L;
(3)通过计算说明,第一次返回时,运动员能否回到 B 点?如能,请求出回到 B 点时速度的 大小;如不能,请求出最后停止的位置距 C 点的距离.
【答案】(1)vB=6m/s (2) L=6.5m (3)停在 C 点右侧 6m 处 【解析】
(1)选手放开抓手时的速度大小; (2)选手在传送带上从 A 运动到 B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】
高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)
高中物理动能定理的综合应用常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.如图所示,半径为R =1 m ,内径很小的粗糙半圆管竖直放置,一直径略小于半圆管内径、质量为m =1 kg 的小球,在水平恒力F =25017N 的作用下由静止沿光滑水平面从A 点运动到B 点,A 、B 间的距离x =175m ,当小球运动到B 点时撤去外力F ,小球经半圆管道运动到最高点C ,此时球对外轨的压力F N =2.6mg ,然后垂直打在倾角为θ=45°的斜面上(g =10 m/s 2).求:(1)小球在B 点时的速度的大小; (2)小球在C 点时的速度的大小;(3)小球由B 到C 的过程中克服摩擦力做的功; (4)D 点距地面的高度.【答案】(1)10 m/s (2)6 m/s (3)12 J (4)0.2 m 【解析】 【分析】对AB 段,运用动能定理求小球在B 点的速度的大小;小球在C 点时,由重力和轨道对球的压力的合力提供向心力,由牛顿第二定律求小球在C 点的速度的大小;小球由B 到C 的过程,运用动能定理求克服摩擦力做的功;小球离开C 点后做平抛运动,由平抛运动的规律和几何知识结合求D 点距地面的高度. 【详解】(1)小球从A 到B 过程,由动能定理得:212B Fx mv = 解得:v B =10 m/s(2)在C 点,由牛顿第二定律得mg +F N =2c v m R又据题有:F N =2.6mg 解得:v C =6 m/s.(3)由B 到C 的过程,由动能定理得:-mg ·2R -W f =221122c B mv mv - 解得克服摩擦力做的功:W f =12 J(4)设小球从C 点到打在斜面上经历的时间为t ,D 点距地面的高度为h , 则在竖直方向上有:2R -h =12gt 2由小球垂直打在斜面上可知:cgtv=tan 45°联立解得:h=0.2 m【点睛】本题关键是对小球在最高点处时受力分析,然后根据向心力公式和牛顿第二定律求出平抛的初速度,最后根据平抛运动的分位移公式列式求解.2.如图所示,AB是竖直面内的四分之一圆弧形光滑轨道,下端B点与水平直轨道相切.一个小物块自A点由静止开始沿轨道下滑,已知轨道半径为R=0.2m,小物块的质量为m=0.1kg,小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2.求:(1)小物块在B点时受到的圆弧轨道的支持力大小;(2)小物块在水平面上滑动的最大距离.【答案】(1)3N (2)0.4m【解析】(1)由机械能守恒定律,得在B点联立以上两式得F N=3mg=3×0.1×10N=3N.(2)设小物块在水平面上滑动的最大距离为l,对小物块运动的整个过程由动能定理得mgR-μmgl=0,代入数据得【点睛】解决本题的关键知道只有重力做功,机械能守恒,掌握运用机械能守恒定律以及动能定理进行解题.3.某物理小组为了研究过山车的原理提出了下列的设想:取一个与水平方向夹角为θ=53°,长为L1=7.5m的倾斜轨道AB,通过微小圆弧与足够长的光滑水平轨道BC相连,然后在C处连接一个竖直的光滑圆轨道.如图所示.高为h=0.8m光滑的平台上有一根轻质弹簧,一端被固定在左面的墙上,另一端通过一个可视为质点的质量m=1kg的小球压紧弹簧,现由静止释放小球,小球离开台面时已离开弹簧,到达A点时速度方向恰沿AB方向,并沿倾斜轨道滑下.已知小物块与AB间的动摩擦因数为μ=0.5,g取10m/s2,sin53°=0.8.求:(1)弹簧被压缩时的弹性势能; (2)小球到达C 点时速度v C 的大小;(3)小球进入圆轨道后,要使其不脱离轨道,则竖直圆弧轨道的半径R 应该满足什么条件. 【答案】(1)4.5J ;(2)10m/s ;(3)R ≥5m 或0<R ≤2m 。
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ;(2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离.【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处【解析】【分析】【详解】(1)在B 点时有v B =0cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
高中物理动能与动能定理及其解题技巧及练习题(含答案)及解析
高中物理动能与动能定理及其解题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,半径R =0.5 m 的光滑圆弧轨道的左端A 与圆心O 等高,B 为圆弧轨道的最低点,圆弧轨道的右端C 与一倾角θ=37°的粗糙斜面相切。
一质量m =1kg 的小滑块从A 点正上方h =1 m 处的P 点由静止自由下落。
已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g =10 m/s 2。
(1)求滑块第一次运动到B 点时对轨道的压力。
(2)求滑块在粗糙斜面上向上滑行的最大距离。
(3)通过计算判断滑块从斜面上返回后能否滑出A 点。
【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】(1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有()212B mg h R mv +=那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且()2N 270N B mg h R mv F mg mg R R+=+=+=故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。
(2)设滑块在粗糙斜面上向上滑行的最大距离为L ,滑块运动过程只有重力、摩擦力做功,故由动能定理可得cos37sin37cos370mg h R R L mgL μ+-︒-︒-︒=()所以1.2m L =(3)对滑块从P 到第二次经过B 点的运动过程应用动能定理可得()212cos370.542B mv mg h R mgL mg mgR μ'=+-︒=> 所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出A 点。
【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.某小型设备工厂采用如图所示的传送带传送工件。
传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。
工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。
传送带长度为6m =L ,不计空气阻力。
(工件可视为质点,sin370.6︒=,cos370.8︒=,210m /s g =)求:(1)若工人某次只把一个工件轻放至A 点,则传送带将其由最低点A 传至B 点电动机需额外多输出多少电能?(2)若工人每隔1秒将一个工件轻放至A 点,在传送带长时间连续工作的过程中,电动机额外做功的平均功率是多少?【答案】(1)104J ;(2)104W 【解析】 【详解】 (1)对工件cos sin mg mg ma μθθ-=22v ax =1v at =12s t =得2m x =12x vt x ==带 2m x x x =-=相带由能量守恒定律p k E Q E E =+∆+∆电即21cos sin 2E mg x mgL mv μθθ=⋅++电相代入数据得104J E =电(2)由题意判断,每1s 放一个工件,传送带上共两个工件匀加速,每个工件先匀加速后匀速运动,与带共速后工件可与传送带相对静止一起匀速运动。
匀速运动的相邻的两个工件间距为2m x v t ∆=∆=L x n x -=∆得2n =所以,传送带上总有两个工件匀加速,两个工件匀速 则传送带所受摩擦力为2cos 2sin f mg mg μθθ=+电动机因传送工件额外做功功率为104W P fv ==2.如图所示,质量为m=1kg 的滑块,在水平力F 作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v 0=3m/s ,长为L=1.4m ,今将水平力撤去,当滑块滑到传送带右端C 时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s 2.求(1)水平作用力F 的大小; (2)滑块开始下滑的高度h ;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s ,求滑块在传送带上滑行的整个过程中产生的热量Q . 【答案】(1) (2)0.1 m 或0.8 m (3)0.5 J【解析】 【分析】 【详解】解:(1)滑块受到水平推力F 、重力mg 和支持力F N 处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫3.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.【答案】(1)5 m/s (2)3 s (3)360 J【解析】试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02,v1=5m/s(2)设选手放开抓手时的水平速度为v2,v2=v1cosθ①选手在传送带上减速过程中 a=-μg② v=v2+at1③④匀速运动的时间t2,s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥得:t=3s(3)由动能定理得W f=mv2-mv22,解得:W f=-360J故克服摩擦力做功为360J.考点:动能定理的应用4.如图所示,粗糙水平地面与半径为R=0.4m的粗糙半圆轨道BCD相连接,且在同一竖直平面内,O是BCD的圆心,BOD在同一竖直线上.质量为m=1kg的小物块在水平恒力F=15N的作用下,从A点由静止开始做匀加速直线运动,当小物块运动到B点时撤去F,小物块沿半圆轨道运动恰好能通过D点,已知A、B间的距离为3m,小物块与地面间的动摩擦因数为0.5,重力加速度g取10m/s2.求:(1)小物块运动到B点时对圆轨道B点的压力大小.(2)小物块离开D点后落到地面上的点与D点之间的距离【答案】(1)160N(2)2【解析】【详解】(1)小物块在水平面上从A运动到B过程中,根据动能定理,有:(F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==5.如图(a )所示,倾角θ=30°的光滑固定斜杆底端固定一电量为Q =2×10﹣4C 的正点电荷,将一带正电小球(可视为点电荷)从斜杆的底端(但与Q 未接触)静止释放,小球沿斜杆向上滑动过程中能量随位移的变化图象如图(b )所示,其中线1为重力势能随位移变化图象,线2为动能随位移变化图象.(g =10m/s 2,静电力恒量K=9×109N•m 2/C 2)则(1)描述小球向上运动过程中的速度与加速度的变化情况; (2)求小球的质量m 和电量q ;(3)斜杆底端至小球速度最大处由底端正点电荷形成的电场的电势差U ;(4)在图(b )中画出小球的电势能ε 随位移s 变化的图线.(取杆上离底端3m 处为电势零点)【答案】(1)小球的速度先增大,后减小;小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.(2)4kg ;1.11×10﹣5C ;(3)4.2×106V (4)图像如图, 线3即为小球电势能随位移s 变化的图线;【解析】 【分析】 【详解】(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零. (2)由线1可得:E P =mgh=mgs sin θ斜率:k =20=mg sin30°所以m =4kg当达到最大速度时带电小球受力平衡:20sin kqQ mg s θ=由线2可得s 0=1m , 得:20sin mg s q kQθ==1.11×10﹣5C(3)由线2可得,当带电小球运动至1m 处动能最大为27J . 根据动能定理:W G +W 电=△E k即有:﹣mgh +qU =E km ﹣0代入数据得:U =4.2×106V(4)图中线3即为小球电势能ε随位移s 变化的图线6.如图所示,一质量为M 、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧相连,弹簧的另一端固定在墙上.平板上有一质量为m 的小物块以速度v 0向右运动,且在本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为μ,弹簧弹性势能E p 与弹簧形变量x 的平方成正比,重力加速度为g.求:(1)当弹簧第一次伸长量达最大时,弹簧的弹性势能为E pm ,小物块速度大小为03v 求该过程中小物块相对平板运动的位移大小; (2)平板速度最大时弹簧的弹力大小;(3)已知上述过程中平板向右运动的最大速度为v.若换用同种材料,质量为2m的小物块重复上述过程,则平板向右运动的最大速度为多大?【答案】(1)2049pm E v g mg μμ-;(2)mg μ;(3)2v 【解析】 【分析】(1)对系统由能量守恒求解小物块相对平板运动的位移;(2)平板速度最大时,处于平衡状态,弹力等于摩擦力;(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时弹力等于摩擦力,结合能量转化关系解答. 【详解】(1)弹簧伸长最长时平板速度为零,设相对位移大小为s ,对系统由能量守恒12mv 02=12m(03v)2+E pm +μmgs 解得s =2049pm E v g mgμμ- (2)平板速度最大时,处于平衡状态,f =μmg即F =f =μm g.(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时 μmg =kx对木板由动能定理得μmgx =E p 1+12Mv 2 同理,当m′=12m ,平板达最大速度v′时,2mg μ=kx′12μmgx′=E p 2+12Mv′2 由题可知E p ∝x 2,即E p 2=14E p 1 解得v′=12v.7.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.8.质量为M 的小车固定在地面上,质量为m 的小物体(可视为质点)以v 0的水平速度从小车一端滑上小车,小物体从小车另一端滑离小车时速度减为02v ,已知物块与小车之间的动摩擦因数为μ.求:(1)此过程中小物块和小车之间因摩擦产生的热Q 以及小车的长度L .(2)若把同一小车放在光滑的水平地面上,让这个物体仍以水平速度v 0从小车一端滑上小车.a. 欲使小物体能滑离小车,小车的质量M 和小物体质量m 应满足什么关系?b. 当M =4m 时,小物块和小车的最终速度分别是多少?【答案】(1)2038Q mv =,2038v L g μ=(2)a. M >3m ;b. 025v ,0320v 【解析】 【详解】(1) 小车固定在地面时,物体与小车间的滑动摩擦力为f mg μ=,物块滑离的过程由动能定理220011()222v fL m mv -=- ① 解得:2038v L gμ=物块相对小车滑行的位移为L ,摩擦力做负功使得系统生热,Q fL = 可得:2038Q mv =(2)a.把小车放在光滑水平地面上时,小物体与小车间的滑动摩擦力仍为f . 设小物体相对小车滑行距离为L '时,跟小车相对静止(未能滑离小车)共同速度为v ,由动量守恒定律:mv 0=(M +m )v ②设这过程小车向前滑行距离为s . 对小车运用动能定理有:212fs Mv =③ 对小物体运用动能定理有:22011()22f L s mv mv '-+=- ④联立②③④可得220011()()22mv fL mv M m M m'=-++ ⑤物块相对滑离需满足L L '>且2038fL mv = 联立可得:3M m >,即小物体能滑离小车的质量条件为3M m >b.当M =4m 时满足3M m >,则物块最终从小车右端滑离,设物块和车的速度分别为1v 、2v .由动量守恒:012mv mv Mv =+由能量守恒定律:222012111()222fL mv mv Mv =-+ 联立各式解得:1025v v =,20320v v =9.如图所示的实验装置,可用来探究物体在斜面上运动的加速度以及弹簧储存的弹性势能。
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析
高考物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。
一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。
已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
(1)求滑块第一次运动到B 点时对轨道的压力。
(2)求滑块在粗糙斜面上向上滑行的最大距离。
(3)通过计算判断滑块从斜面上返回后能否滑出A 点。
【答案】(1)70N ; (2)1.2m ; (3)能滑出A 【解析】 【分析】 【详解】(1)滑块从P 到B 的运动过程只有重力做功,故机械能守恒,则有()212B mg h R mv +=那么,对滑块在B 点应用牛顿第二定律可得,轨道对滑块的支持力竖直向上,且()2N 270N B mg h R mv F mg mg R R+=+=+=故由牛顿第三定律可得:滑块第一次运动到B 点时对轨道的压力为70N ,方向竖直向下。
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥3.某游乐场拟推出一个新型滑草娱乐项目,简化模型如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:
;
由功能关系可得:
(另解:两个过程A球发生的位移分别为 、 , ,由匀变速规律推论 ,根据电场力做功公式有: )
(3)对A球由平衡条件得到: , ,
从A开始运动到发生第一次碰撞:
从第一次碰撞到发生第二次碰撞:
点睛:本题是电场相关知识与动量守恒定律的综合,虽然A球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.
所以
B到C根据动能定理有
解得
(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为
F=qE-mg=59.6N
所以D点为等效最高点,则小球到达D点时对轨道的压力为零,此时的速度最小,即
解得
所以要小物块不离开圆轨道则应满足vC≥vD得:
R≤0.022m
4.如图所示,斜面高为h,水平面上D、C两点距离为L。可以看成质点的物块从斜面顶点A处由静止释放,沿斜面AB和水平面BC运动,斜面和水平面衔接处用一长度可以忽略不计的光滑弯曲轨道连接,图中没有画出,不计经过衔接处B点的速度大小变化,最终物块停在水平面上C点。已知物块与斜面和水平面间的滑动摩擦系数均为μ。请证明:斜面倾角θ稍微增加后,(不改变斜面粗糙程度)从同一位置A点由静止释放物块,如图中虚线所示,物块仍然停在同一位置C点。
(1)第一次碰撞结束瞬间A、B两球的速度各为多大?
(2)从开始到即将发生第二次碰撞这段过程中电场力做了多少功?
(3)从开始到即将发生第二次碰撞这段过程中,若要求A在运动过程中对桌面始终无压力且刚好不离开水平桌面(v=0时刻除外),可以在水平面内加一与电场正交的磁场.请写出磁场B与时间t的函数关系.
【答案】(1) (2) (3) ( )
3.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量 ,电量 的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为 。某一瞬间释放弹簧弹出小物块,小物块从水平台右端 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点 ,并沿轨道 滑下,运动到光滑水平轨道 ,从 点进入到光滑竖直圆内侧轨道。已知倾斜轨道与水平方向夹角为 ,倾斜轨道长为 ,带电小物块与倾斜轨道间的动摩擦因数 。小物块在 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强 。已知 , ,取 ,求:
由运动学公式:
解得:
(3)从 点到 点,由运动学公式:
,
解得:
小车在水平半圆轨道所需的向心力大小:
,
代入数据可得:
水平半圆轨道对小车的作用力大小为:
.
(4)设小车恰能到 点时的速度为 ,对应发动机开启的时间为 ,则:
解得
.
在此情况下从 点到 点,由动能定理得:
解得
即小车无法到达 点.
设小车恰能到 点时对应发动机开启的时间为 ,则有:
(1)小球在C处受到的向心力大小;
(2)在压缩弹簧过程中小球的最大动能Ekm;
(3)小球最终停止的位置。
【答案】(1)35N;(2)6J;(3)距离B0.2m或距离C端0.3m
【解析】
【详解】
(1)小球进入管口C端时它与圆管上管壁有大小为 的相互作用力
故小球受到的向心力为
(2)在C点,由
代入数据得
在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离D端的距离为
(1)小物块运动到 点时的速度大小 ;
(2)小物块运动到 点时的速度大小 ;
(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?
【答案】(1)4m/s;(2) m/s;(3)R⩽0.022m
【解析】
【分析】
【详解】
(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能
解得
(2)A到B物体做平抛运动,到B点有
,
解得
.
8.如图所示,在倾角为θ=37°的斜面底端有一个固定挡板D,处于自然长度的轻质弹簧一端固定在挡板上,另一端在O点,已知斜面OD部分光滑,PO部分粗糙且长度L=8m。质量m=1kg的物块(可视为质点)从P点静止开始下滑,已知物块与斜面PO间的动摩擦因数μ=0.25,g取10m/s2,sin37°=0.6,cos37°=0.8。求:
7.如图甲所示为某一玩具汽车的轨道,其部分轨道可抽象为图乙的模型. 和 为两段水平直轨道,竖直圆轨道与水平直轨道相切于 点, 点为水平直轨道与水平半圆轨道的切点.在某次游戏过程中,通过摇控装置使静止在 点的小车以额定功率启动,当小车运动到 点时关闭发动机并不再开启,测得小车运动到最高点 时对轨道的压力大小 ,小车通过水平半圆轨道时速率恒定.小车可视为质点,质量 ,额定功率 , 长 , 长 ,竖直圆轨道半径 ,水平半圆轨道半径 .小车在两段水平直轨道所受的阻力大小均为 ,在竖直圆轨道和水平半圆轨道所受的阻力均忽略不计,重力加速度取 .求:
,解得:
(2)C点的水平分速度与B点的速度相等,则
从A到B点的过程中,据动能定理得: ,解得:
(3)滑块在传送带上运动时,根据牛顿第二定律得:
解得:
达到共同速度所需时间
二者间的相对位移
由于 ,此后滑块将做匀速运动。
滑块在传送带上运动时与传送带摩擦产生的热量
2.如图所示,在某竖直平面内,光滑曲面AB与水平面BC平滑连接于B点,BC右端连接内壁光滑、半径r=0.2m的四分之一细圆管CD,管口D端正下方直立一根劲度系数为k=100N/m的轻弹簧,弹簧一端固定,另一端恰好与管口D端平齐,一个质量为1kg的小球放在曲面AB上,现从距BC的高度为h=0.6m处静止释放小球,它与BC间的动摩擦因数μ=0.5,小球进入管口C端时,它对上管壁有FN=2.5mg的相互作用力,通过CD后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能Ep=0.5J。取重力加速度g=10m/s2。求:
解得:
故物块每经过一次O点,上升的最大距离为上一次的
所以,物块第一次返回时沿斜面上升的最大距离为:
则第n次上升的最大距离为:
因为 ,所以n>4,即物块与弹簧接触5次后,物块从O点沿斜面上升的最大距离小于
9.如图所示,将一根弹簧和一个小圆环穿在水平细杆上,弹簧左端固定,右端与质量为m的小圆环相接触,BC和CD是由细杆弯成的1/4圆弧,BC分别与杆AB和弧CD相切,两圆弧的半径均为R.O点为弹簧自由端的位置.整个轨道竖直放置,除OB段粗糙外,其余部分均光滑.当弹簧的压缩量为d时释放,小圆环弹出后恰好能到达C点,返回水平杆时刚好与弹簧接触,停在O点,(已知弹簧弹性势能与压缩量的平方成正比,小球通过B处和C处没有能量损失),问:
(1)小车运动到 点时的速度大小;
(2)小车在 段运动的时间;
(3)水平半圆轨道对小车的作用力大小;
(4)要使小车能通过水平半圆轨道,发动机开启的最短时间.
【答案】(1) ;(2) ;(3) .;(4) .
【解析】
【详解】
(1)由小车在 点受力得:
解得:
(2)从 点到 点,由动能定理得:
解得:
小车在 段运动的加速度大小为:
解得物块第一次接触弹簧时物体的速度的大小为:
m/s
(2)物块由O到将弹簧压缩至最短的过程中,重力势能和动能减少、弹簧的弹性势能增加,由能量守恒定律可得弹簧的最大弹性势能Ep
J
(3)物块第一次接触弹簧后,物体从O点沿斜面上升的最大距离 ,由动能定理得:
解得:
物块第二次接触弹簧后,物块从O点沿斜面上升的最大距离 ,由动能定理得:
则有ห้องสมุดไป่ตู้
解得
设最大速度位置为零势能面,由机械能守恒定律有
得
(3)滑块从A点运动到C点过程,由动能定理得
解得BC间距离
小球与弹簧作用后返回C处动能不变,小滑块的动能最终消耗在与BC水平面相互作用的过程中,设物块在BC上的运动路程为 ,由动能定理有
解得
故最终小滑动距离B为 处停下.
【点睛】
经典力学问题一般先分析物理过程,然后对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
(1).滑块运动至C点时的速度vC大小;
(2).滑块由A到B运动过程中克服摩擦力做的功Wf;
(3).滑块在传送带上运动时与传送带摩擦产生的热量Q.
【答案】(1)2.5 m/s (2)1 J (3)32 J
【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。
(1)在C点,竖直分速度:
(1)描述小球向上运动过程中的速度与加速度的变化情况;