(完整word版)第一章导数及其应用测试题(含答案)
导数应用测试题及参考答案

导数应用测试题一、选择题:(本大题共12小题,每小题5分, 共60分) 1.设函数f(x)在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于 ( )A .)('0x fB .)('0x f -C .)('0x f --D .)(0x f -- 2.若13)()2(lim000=∆-∆+→∆xx f x x f x ,则)('0x f 等于 ( ) A .32 B .23C .3D .2 3.曲线x x y 33-=上切线平行于x轴的点的坐标是( )A .(-1,2)B .(1,-2)C .(1,2)D .(-1,2)或(1,-2) 4.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切 线的倾斜角为( )A .90°B .0°C .锐角D .钝角5.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是 ( )A .5,-15B .5,-4C .-4,-1D .5,-166.一直线运动的物体,从时间t 到t+△t 时,物体的位移为△s ,那么ts t ∆∆→∆0lim 为( )A .从时间t 到t+△t 时,物体的平均速度B .时间t 时该物体的瞬时速度C .当时间为△t 时该物体的速度D .从时间t 到t+△t 时位移的平均变化率7.关于函数762)(23+-=x x x f ,下列说法不正确的是( )A .在区间(∞-,0)内,)(x f 为增函数B .在区间(0,2)内,)(x f 为减函数C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数8.对任意x ,有34)('x x f =,f(1)=-1,则此函数为 ( ) A .4)(x x f = B .2)(4-=x x f C .1)(4+=x x f D .2)(4+=x x f9.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -1610.抛物线y=x 2到直线x-y-2=0的最短距离为 ( )A .2B 。
新人教版选修22第一章导数及其应用测试题及答案

(数学选修2-2) 第一章 导数及其应用一、选择题1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+D .2sin α2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( )A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(-4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +>5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( )x ?abxy)(f y =OA .1个B .2个C .3个D .4个二、填空题1.若函数2f xx x c 在2x =处有极大值,则常数c 的值为_________;2.函数x x y sin 2+=的单调增区间为 。
3.设函数())(0)f x ϕϕπ=+<<,若()()f x f x '+为奇函数,则ϕ=__________ 4.设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。
高中数学选修22:第一章导数及其应用单元测试题.doc

数学选修 2-2 第一章单元测试题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点()A.1 个B.2 个C.3 个D.4 个1 12.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在1同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是()C.8D.423.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( )ππ3A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π)3 π 3C.[ 4π,π ) D.[ 2,4π]14.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()3 3A.m≥2 B.m>23 3C.m≤2 D.m<2x2 25.函数f ( x) =cos x-2cos 2的一个单调增区间是 ()f x 0+3 -f x 06.设f ( x) 在x=x0 处可导,且lim Δx=1,Δx→0则 f ′(x0)等于( )A.1 B.0C.3x+97.经过原点且与曲线y=x+5相切的切线方程为()A.x+y=0B.x+25y=0C.x+y= 0 或x+25y=0D.以上皆非8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0 时,f ( x) 是()A.增函数B.减函数C.常数D.既不是增函数也不是减函数13 29.若a>2,则方程3x -ax +1=0 在(0,2) 上恰好有 ()A.0 个根B.1 个根C.2 个根D.3 个根1 10.一点沿直线运动,如果由始点起经过t s 后距离为s=4t 4-53t 3+2t 2,那么速度为零的时刻是( )A.1 s 末B.0 sC.4 s 末D.0,1,4 s 末x2,x∈[0,1],2f(x) d x 等于 () 11.设f ( x) =则2-x,x∈ 1,2] ,0D.不存在sin x sin x1 sin x2 12.若函数 f(x) =x,且 0<x1<x2 <1,设 a=x1 ,b=x2 ,则 a,b 的大小关系是 ( )A.a>b B.a<bC.a=b D.a、b的大小不能确定二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 )1 3 213.若 f(x) =3x -f ′(1)x +x+5,则 f ′(1) = ________.π π14.已知函数 f(x) 满足 f(x) =f( π-x) ,且当 x∈ -2,2 时,f(x) =x+sin x,设a=f(1) ,b=f(2) ,c=f(3) ,则a、b、c 的大小关系是 ________.15.已知函数f(x) 为一次函数,其图像经过点(2,4) ,且1f(x) d x=3,则函数f(x) 的解析式为________.16.(2010 ·江苏卷) 函数2y=x(x>0)的图像在点 2(a k,a k) 处的切线与x 轴的交点的横坐标为a k+1,其中k∈N*. 若a1=16,则a1+a3+a5的值是________.三、解答题 ( 本大题共 6 小题,共 70 分,解答应出写文字说明、证明过程或演算步骤 )17.(10 分) 如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k 的值.18.(12 分) 已知函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 上单调递增,在区间 [1,2) 上单调递减.(1)求 a 的值;(2)若点 A(x0,f(x0)) 在函数 f(x) 的图像上,求证:点 A关于直线x=1 的对称点 B 也在函数 f(x) 的图像上.19.(12 分) 设 x=- 2 与 x=4 是函数 f(x) =x3+ax2+bx 的两个极值点.(1)求常数 a,b;(2)试判断 x=- 2,x= 4 是函数 f(x) 的极大值还是极小值,并说明理由.20.(12 分) 已知 f(x) =ax3-6ax2+b,x∈[ -1,2] 的最大值为 3,最小值为- 29,求 a,b 的值.21.(12 分)(2010 ·重庆卷 ) 已知函数 f(x) =ax3+x2+ bx( 其中常数a,b∈R) ,g( x) =f ( x) +f′(x) 是奇函数.(1)求 f ( x)的表达式;(2)讨论 g( x)的单调性,并求 g( x)在区间[1,2]上的最大值与最小值.1-x22.(12 分) 已知函数f ( x) =ln( ax+1) +1+x,x≥0,其中a>0.(1)若 f ( x)在 x=1处取得极值,求 a 的值;(2)求 f ( x)的单调区间;(3)若 f ( x)的最小值为1,求 a 的取值范围.参考答案1.答案 A解析设极值点依次为 x1,x2,x3且 a<x1<x2<x3<b,则 f ( x) 在( a,x1) ,( x2,x3) 上递增,在 ( x1,x2) ,( x3,b) 上递减,因此,x1、x3是极大值点,只有x2是极小值点.2.答案 D3.答案 B4.答案 A1解析因为函数 f ( x)=2x4-2x3+3m,所以 f ′(x)=2x3-6x2.令 f ′(x)=0,得 x=0或 x=3,经检验知 x=3是函数的一个最27小值点,所以函数的最小值为 f (3)=3m-2.不等式 f ( x)+9≥0恒成27 3立,即 f ( x)≥-9恒成立,所以3m-2≥-9,解得 m≥2.5.答案 A解析 f ( x)=cos2x-cos x-1,∴f′(x)=-2sin x·cos x+sin x=sin x·(1-2cos x).令 f ′(x)>0,结合选项,选A.6. 答案 D7. 答案 D8. 答案 A9. 答案 B解析 1 3 2设 f ( x ) =3x -ax +1,则2f ′(x )=x -2ax =x ( x -2a ) ,当 x ∈(0,2) 时, f ′(x )<0,f ( x ) 在(0,2) 上为减函数,又 f (0) f (2) =8 111 3-4a +1 = 3 -4a <0,f ( x ) =0 在(0,2) 上恰好有一个根,故选 B.10. 答案 D11. 答案 C解析 数形结合,如图.2f(x) d x = 1x 2d x + 2(2 -x) d x0 11 3 11 22= 3x+ 2x -2x11 1= 3+(4 -2-2+2)5= 6,故选 C .12. 答案Af ′(x) =x cos x -sin x解析 x 2, 令 g(x) =x cos x -sin x ,则g ′(x) =- x sin x +cos x -cos x =- x sin x.∵0<x<1,∴ g ′(x)<0 ,即函数 g(x) 在 (0,1) 上是减函数,得 g(x)<g(0) =0,故 f ′(x)<0 ,函数 f(x) 在(0,1) 上是减函数,得 a>b ,故选A .213. 答案 32 2解析 f ′(x) = x -2f ′(1)x + 1,令 x=1,得 f ′(1) =3.14. 答案 c<a<b解析f(2) = f( π-2) , f(3) = f( π- 3) ,因为 f ′(x) = 1+π ππcos x≥0,故f(x)在-2,2上是增函数,∵2 >π-2>1>π-3>0,∴f( π-2)>f(1)>f( π-3) ,即 c<a<b.2815.答案 f(x) =3x+3解析设函数 f(x) =ax+b(a ≠0) ,因为函数 f(x) 的图像过点(2,4) ,所以有 b=4-2a.∴1 f(x) d x= 1 (ax +4-2a) d x0 01 2 1 1=[ ax +(4 -2a)x] | 0=a+4-2a=1.2 22 8 2 8∴a=3. ∴b=3. ∴f(x) =3x+3.16. 答案21解析2 2∵y′=2x,∴过点( a k,a k)处的切线方程为y-a k=2a k( x1-a k),又该切线与 x 轴的交点为( a k+1,0),所以 a k+1=2a k,即数列{ a k}1是等比数列,首项a1=16,其公比q=2,∴ a3=4,a5=1,∴ a1+a3 +a5=21.17. 解析抛物线 y =x -x 2 与 x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与 x 轴所围图形面积 S = 12) d x =x 2 x 3 11 (x -x 2 -3 0=2-1 13=6.y =x -x 2,又 由此可得抛物线 y =x -x 2 与 y =kx 两交点的横y =kx ,S- 2 x 3 -坐标 x 3= , 4= - ,所以 = 1-k (x - x 2 kx) d x =1 k x - 1k -0 x 1 k 2 02313=6(1 -k) .3又 S = ,所以 (1 -k) 3=1,∴ k =1- 4.622118. 解析 (1) 由函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 单调递增,在区间 [1,2) 单调递减,∴x =1 时,取得极大值,∴ f ′(1) = 0.又 f ′(x) = 4x3-12x2+2ax ,∴4-12+2a = 0? a = 4.(2) 点 A(x0,f(x0)) 关于直线 x =1 的对称点 B 的坐标为 (2 -x0, f(x0)) ,f(2 -x0) =(2 -x0)4 -4(2 -x0)3 +4(2 -x0)2 -1= (2 -x0)2[(2 -x0) -2]2 -1= x 40-4x30+ ax20- 1=f(x0) ,∴A 关于直线 x =1 的对称点 B 也在函数 f(x) 的图像上.19.解析 f ′(x) =3x2+2ax+b.(1) 由极值点的必要条件可知:12-4a+b=0,f ′( - 2) =f ′(4) = 0,即48+8a+b=0,解得 a=- 3,b=- 24.或f ′(x) = 3x2+2ax+b=3(x +2)(x -4)=3x2-6x-24,也可得 a=- 3,b=- 24.(2) 由 f ′(x) = 3(x +2)(x -4) .当 x<- 2 时, f ′(x) > 0,当- 2<x<4 时, f ′(x) < 0. ∴x=- 2 是极大值点,而当x>4 时, f ′(x) > 0,∴x=4 是极小值点.20.解析 a≠0( 否则 f(x) =b 与题设矛盾 ) ,由f ′(x) = 3ax2-12ax=0 及 x∈[ - 1,2] ,得 x=0. (1) 当 a>0 时,列表:x ( -1,0) 0 (0,2)f ′(x) +0 -f(x) 增极大值 b 减由上表知, f(x) 在[ - 1,0] 上是增函数,f(x) 在[0,2] 上是减函数.则当 x=0 时, f(x) 有最大值,从而b=3.又f( -1) =- 7a+3,f(2) =- 16a+3,∵a>0,∴ f( -1) >f(2) .从而 f(2) =- 16a+3=- 29,得a=2.(2)当 a<0 时,用类似的方法可判断当 x=0 时 f(x) 有最小值.当x=2 时, f(x) 有最大值.从而 f(0) =b=- 29, f(2)=-16a-29=3,得a=- 2.综上, a= 2,b=3 或 a=- 2,b=- 29.21.解析 (1) 由题意得f′(x) = 3ax2+2x+b. 因此g( x) =f ( x) +f′(x)=ax3+(3 a+1) x2+( b+2) x+b.因为函数 g( x)是奇函数,所以g(-x)=- g( x),即对任意实数x,有 a(- x)3+(3 a+1)(-x)2+( b +2)( -x) +b=- [ ax3+(3 a+1) x2+( b+2) x+b] ,从而 3a+1=0,b=0,解得a=-1,b=0,因此f ( x) 的解析式为f ( x) =-x3+x2. 331(2)由(1) 知g( x) =-1x3+2x,所以g′(x) =-x2+2. 3令g′(x)=0,解得x1=-2,x2=2,则当x<-2或x> 2时,g′(x)<0,从而 g( x)在区间(-∞,-2],[ 2,+∞)上是减函数;当- 2<x< 2时,g′(x)>0 ,从而g( x) 在[ - 2, 2] 上是增函数.由前面讨论知, g( x)在区间[1,2] 上的最大值与最小值只能在x=1,2,2 时取得,而g(1)5=3,g( 2) =4 23,g(2)4=3. 因此g( x)在区间 [1,2] 上的最大值为g( 2) =4 2,最小值为3g(2)4=3.22. 分析解答本题,应先正确求出函数 f ( x)的导数f ′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.a 2 ax2+a-2解析 (1) f′(x) =ax+1-1+x 2=ax+1 1+x 2,∵f ( x)在 x=1处取得极值,2∴f ′(1)=0,即 a·1+a-2=0,解得 a=1.(2) f′(x) =ax2+a-22,ax+1 1+x∵x≥0, a>0,∴ ax+1>0.①当 a≥2时,在区间[0,+∞)上, f ′(x)>0,∴f( x)的单调增区间为[0,+∞).②当 0<a<2 时,由 f ′(x)>0,解得 x> 2-a a.由 f ′(x)<0,解得 x< 2-a a.∴f ( x)的单调减区间为(0, 2-a 2-a a ) ,单调增区间为 ( a,+∞ ) .(3) 当a≥2时,由 (2) ①知,f ( x) 的最小值为f (0) =1;当 0<a<2,由 (2) ②知,f ( x) 在x=2-aa 处取得最小值,且2-af ( a )< f (0) =1.综上可知,若 f ( x)的最小值为1,则 a 的取值范围是[2,+∞).。
导数及其应用测试题(有详细答案)

《导数及其应用》一、选择题1。
0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。
B. C 。
D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。
设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。
直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。
若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。
高中数学 第一章 导数及其应用单元测验卷(含解析)新人教A版选修2-2(2021年最新整理)

高中数学第一章导数及其应用单元测验卷(含解析)新人教A版选修2-2 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章导数及其应用单元测验卷(含解析)新人教A版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章导数及其应用单元测验卷(含解析)新人教A版选修2-2的全部内容。
第一章 导数及其应用一、选择题(本大题共12小题,每小题5分,共60分,每小题只有一个选项符合题意) 1.曲线2122y x x =-在点3(1,)2-处的切线的倾斜角为( ) A .135-︒B .45︒C .45-︒D .135︒1.答案:D 解析:32,(1,)2y x '=-∴-处的切线斜率为1-,倾斜角为135︒2.下列求导运算正确的是 A .(cos )sin x x '= B .1(ln 2)x x'=C .3(3)3log x x e '=D .2()2x x x e xe '=2.答案:B 解析:(cos )sin x x '=-,(3)3ln 3x x '=,22()2x x x x e xe x e '=+3.若函数2()f x ax bx c =++的图象的顶点在第四象限且开口向上,则函数()f x '的图象是( )ABCD3.答案:A 解析:函数2()f x ax bx c =++的图象的顶点在第四象限,开口向上,函数是先减后增,且极小值点为正,∴先有()0f x '<,后有()0f x '>,当()0f x '=时,0x > 4.函数3()1f x ax x =++有极值的充要条件是( ) A .0a >B .0a ≥C .0a <D .0a ≤4.答案:C 解析:2()31f x ax '=+,由题意得()0f x '=有实数解,即21(0)3a x x =-≠,所以0a < 5.已知函数3()f x x =,则()f x 与y x =围成的封闭图形的面积为( )A .13B .14C .12D .15.答案:C 解析:11324001112()2242S x x dx x x ⎛⎫=-=-= ⎪⎝⎭⎰6.设(),()f x g x 分别是定义在R 上的奇函数和偶函数,当0x <时,()()f x g x '+()()f x g x '0>,且(3)0g -=,则不等式()()0f x g x <的解集是( )A .(3,0)(3,)-+∞B .(3,0)(0,3)-C .(,3)(3,)-∞-+∞D .(,3)(0,3)-∞-6.答案:D 解析:设()()()h x f x g x =,则()()()()()h x f x g x f x g x -=--=-,所以()h x 是R 上的奇函数,(3)(3)0h h -==,当0x <时,()0h x '>,所以()h x 是(,0)-∞上的增函数,根据奇函数的对称性可知()h x 在(0,)+∞上也是增函数,所以()0h x <的解集为(,3)(0,3)-∞- 7.已知32()(6)1f x x ax a x =++++有极大值和极小值,则a 的取值范围为( ) A . (1,2)-B .(3,6)-C .(,1)(2,)-∞-+∞D .(,3)(6,)-∞-+∞7.答案:D 解析:2()32(6)f x x ax a '=+++,依题意()0f x '=有两个不相等的实数根,∴2412(6)0a a ∆=-+>,解得:3a <-或6a >8.若sin 0ba xdx =⎰,则cos()ab +=( ) A .0B .12C .1D .1-8.答案:1或cos2a 解析:sin cos cos cos 0bba a xdx x ab =-=-=⎰,∴cos cos a b =,∴ sin sin a b =或sin sin a b =-,当sin sin a b =时,cos()a b +cos cos a b =sin sin a b -22cos sin cos 2a a a =-=,当sin sin a b =-时,cos()a b +cos cos a b = sin sin a b +22cos sin 1a a =+=9.设函数()f x 的导函数为()f x ',且2()2(1)f x x xf '=+,则(0)f '=( )A .0B .4-C .2-D .29.答案:B 解析:()22(1)f x x f ''=+,∴(1)22(1),f f ''=+∴(1)2,f '=-(0)2(1)4f f ''==-10.已知,(0,)a b e ∈,且a b <,则下列式子中正确的是( ) A .ln ln a b b a <B .ln ln a b b a >C .ln ln a a b b >D .ln ln a a b b <10.答案:B 解析:设ln ()x f x x =,则21ln ()xf x x-'=,在(0,)e 上()0f x '>,()f x 单调递增,所以()()f a f b <,即ln ln ,ln ln a b b a a b a b<<;设()ln ,g x x x =则()g x '= 1ln x +,当1(0,)x e ∈时,()0,()g x g x '<单调递减,当1(,)x e e∈时,()0,()g x g x '>单调递增,∴C ,D 均不正确.11.若函数2()2ln f x x x =-在其定义域内的一个子区间(1,1)k k -+内不是单调函数,则实数k 的取值范围是( ) A .[1,)+∞B .31,2⎡⎫⎪⎢⎣⎭C .[)1,2D .3,22⎡⎫⎪⎢⎣⎭11.答案:B2141()4,x f x x x x -'=-=∴当102x <<时,()0,()f x f x '<单调递减,当12x >时,()0,()f x f x '>单调递增,依题意得10112k k ≤-<<+,∴312k ≤< 12.已知函数1()ln ln f x x x=+,则下列结论正确的是( ) A .若1212,()x x x x <是()f x 的极值点,则()f x 在区间12(,)x x 内是增函数 B .若1212,()x x x x <是()f x 的极值点,则()f x 在区间12(,)x x 内是减函数 C .0x ∀>,且1,()2x f x ≠≥D .00,()x f x ∃>在0(,)x +∞上是增函数12.答案:D 解析:令211()10(ln )f x x x ⎡⎤'=-=⎢⎥⎣⎦,得x e =或1x e =,列表如下:因为()f x 在1(,)e e 上不是单调函数,可判断A,B 错,又1()22f e=-<,可判断C 错,易知D 正确.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知函数1()sin ,(0,)2f x x x x π=-∈,则()f x 的最小值为 。
高中数学:第一章《导数及其应用》单元测试(1)(选修一)旧人教版

4x 3 3x 2 4x 3.
11、 2sin(4 x
2 ).
12
、(1) 6.8 rad/s; (2)
3
13、( 1) 215; 210.5 ; 210.05. ( 2) 210.
20 (s).
3
14、 f '( x)
1 (x 0) 1x
不存在( x 0)
sin 2x sin 2 x
x
x2 .
-2- / 2
()
10
A.
27
10
B.
27
2 C. 128
3
D .以上皆非
6. ( 05 湖北卷)在函数 y x3 8x 的图象上,其切线的倾斜角小于
数的点的个数是
的点中,坐标为整
4
(
)
A.3
B.2
C. 1
D.0
3
x 7. ( 05 全国卷 III )曲线 y 2x
在点( 1, 1)处的切线方程为
x2
8.函数 y=
的导数为 ______.
sin x
x3
9.函数 y= x 2
在点 x=3 处的导数值为 _____.
3
10.函数 y=2x2- 3x+4- 3 x
2 x 2 的导数为 ______.
11.函数 y= sin 2 (2x ) 的导数为 ______. 3
12.在受到制动后的七秒种内飞轮转过的角度(弧度)由函数
(t) 4t- 0.3t2 给出,求:
(1) t=2( 秒 )时,飞轮转过的角度; (2)飞轮停止旋转的时刻 .
13.动点沿 ox 轴的运动规律由 x=10t+5t 2 给出, 式中 t 表示时间 (单位: s),x 表示距离 (单 位: m),求在 20≤ t≤ 20+△t 时间段内动点的平均速度,其中 ① △t=1; ② △t= O.1; ③ △t=0.01 当 t=20 时,运动的瞬时速度等于什么?
人教A版第一章 导数及其应用单元测试卷(含答案)

第一章 导数及其应用一.选择题:(只有一个结论正确,每小题4分,共40分) 1.曲线123-+=x x y 在点P (-1,-1)处的切线方程是( )A .1-=x yB .2-=x yC .x y =D .1+=x y2. 曲线f (x )= x 3+x -2在P 0点处的切线平行于直线y = 4x -1,则P 0点的坐标为 ( ) A .(1,0) B .(2,8) C .(1,0)和(-1,-4) D .(2,8)和(-1,-4) 3.已知函数x x y 33-=,则它的单调递减区间是 ( )A.)0,(-∞B.)1,1(-C. ),0(+∞D.)1,(--∞及),1(+∞ 4.函数]0,3[13)(3-+-=在x x x f 上的最大值,最小值分别是( ) A .1,-1 B .1,-17 C .3,-17 D .9,-19 5. 已知f (x )=x 2+2x·f '(1),则f '(0)等于( )A. 0B. –2C. 2D. – 4 6. 下列求导运算正确的是( )xx x D e C x x B x x x A x x sin 2)cos (.log 3)3(.2ln 1)(log .11)1(.2322-='='='+='+ 7. 函数)2ln()(2--=x x x f 的单调递增区间是( )),和(∞+-+∞---∞2)21,1(.),2(.)21,1(.)1,(.D C B A8. 设)()(),()(),()(,sin )(112010x f x f x f x f x f x f x x f n n '='='==+, ,)(N n ∈则=')(2005x f ( ) x D x C x B x A cos .cos .sin .sin .--9.已知函数y = f (x )在区间(a ,b )内可导,且x 0∈(a ,b ),则000()()lim h f x h f x h h→+--=( )A .f ′(x 0)B .2f ′(x 0)C .-2f ′(x 0)D .010. 设,)(,02c bx ax x f a ++=>曲线)(x f y =在点))((0,0x f x P 处切线的倾角的取值范围为]4,0[π,则P 点到曲线)(x f y =对称轴距离的取值范围为( )ab D ab C aB aA21,0[.]2,0[.]21,0[.]1,0[-二.填空题:(每小4分,共16分)11. 已知m m x x x f (62)(23+-=为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值为 . 12. 当∈k 时,23)(kx x x f +=在]2,0[上是减函数.13.如果函数y=f(x)的导函数的图像如右图所示, 给出下列判断:(1) 函数y=f(x)在区间(3,5)内单调递增; (2) 函数y=f(x)在区间(-1/2,3)内单调递减;(3) 函数y=f(x)在区间(-2,2)内单调递增; (4) 当x= -1/2时,函数y=f(x)有极大值; (5) 当x=2时,函数y=f(x)有极大值;则上述判断中正确的是 .14. .直线a y =与函数x x x f 3)(3-=的图像有相异的三个公共点,则a 的取值范围是 三.解答题:15 (本小题满分16分) 已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值。
完整版)导数测试题(含答案)

完整版)导数测试题(含答案)1.已知函数y=f(x)=x^2+1,则在x=2,Δx=0.1时,Δy的值为0.41.2.函数f(x)=2x^2-1在区间(1,1+Δx)上的平均变化率为4+4Δx。
3.设f′(x)存在,则曲线y=f(x)在点(x,f(x))处的切线与x 轴相交但不垂直。
4.曲线y=-1/x在点(1,-1)处的切线方程为y=x-2.5.在曲线y=x^2上,且在该点处的切线倾斜角为π/4的点为(2,4)。
6.已知函数f(x)=1/x,则f′(-3)=-1/9.7.函数f(x)=(x-3)ex的单调递增区间是(2,∞)。
8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的充要条件。
9.函数f(x)在开区间(a,b)内的极小值点有2个。
10.函数f(x)=-x^2+4x+7,在x∈[3,5]上的最大值和最小值分别是f(3)和f(5)。
11.函数f(x)=x^3-3x^2-9x+k在区间[-4,4]上的最小值为-71.12.速度为零的时刻是0,1,4秒末。
13.已知函数 $y=f(x)=ax^2+2x$,且 $f'(1)=4$,则 $a=3$。
14.已知函数 $y=ax^2+b$ 在点 $(1,3)$ 处的切线斜率为 $2$,则 $b=a+1$。
15.函数 $y=x e^x$ 的最小值为 $-1/e$。
16.有一长为 $16$ m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是 $64$ $m^2$。
17.(1) $y'=6x+\cos x$;(2) $y'=\dfrac{1}{(1+x)^2}$;(3)$y'=\dfrac{1}{x}-e^x$。
18.(1) 解方程 $x^2+4=x+10$ 得 $x=3$ 或 $x=-2$,故交点为 $(3,13)$ 或 $(-2,0)$;(2) 在交点 $(3,13)$ 处,抛物线的斜率为 $6$,故该点处的切线方程为 $y=6x-5$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章导数及其应用测试题一、 选择题1.设xx y sin 12-=,则='y ( ).A .x x x x x 22sin cos )1(sin 2---B .xx x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .xx x x sin )1(sin 22---2.设1ln)(2+=x x f ,则=)2('f ( ). A .54 B .52 C .51 D .53 3.已知2)3(',2)3(-==f f ,则3)(32lim3--→x x f x x 的值为( ).A .4-B .0C .8D .不存在 4.曲线3x y =在点)8,2(处的切线方程为( ).A .126-=x yB .1612-=x yC .108+=x yD .322-=x y5.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ⋅的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22131)(23,当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则12--a b 的取值范围是( ). A .)1,41( B .)1,21( C .)41,21(- D .)21,21(-7.函数)cos (sin 21)(x x e x f x +=在区间]2,0[π的值域为( ). A .]21,21[2πe B .)21,21(2πe C .],1[2πe D .),1(2πe8.积分=-⎰-aadx x a 22( ).A .241a π B .221a πC .2a πD .22a π9.由双曲线12222=-by a x ,直线b y b y -==,围成的图形绕y 轴旋转一周所得旋转体的体积为( )A .238ab π B .b a 238π C .b a 234π D .234ab π 10.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). A .18B .338C .316 D .1611.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). A.3V B.32V C.34V D .32V 二、填空题13.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为61,则=a _________ 。
14.一点沿直线运动,如果由始点起经过t 秒后的位移是23425341t t t S +-=,那么速度为零的时刻是_______________。
16.=-+-⎰dx x x 4|)3||1(| ____________。
三、解答题(17)(本小题满分10分)已知向量),1(),1,(2t x x x -=+=,若函数x f ⋅=)(在区间)1,1(-上是增函数,求t 的取值范围。
(18)(本小题满分12分)已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值. (1)讨论)1(f 和)1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线)(x f y =的切线,求此切线方程.(19)(本小题满分14分)设a x ≤≤0,求函数x x x x x f 24683)(234+--=的最大值和最小值。
(20)(本小题满分12分)用半径为R 的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,扇形的圆心角α多大时,容器的容积最大?(21) (本小题满分12分)直线kx y =分抛物线2x x y -=与x 轴所围成图形为面积相等的两个部分,求k 的值.第一章导数及其应用测试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分。
)二、填空题:(本大题共4小题,每小题4分,共16分)(13)、 1± (14)、 0=t (16)、 10三、解答题:(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) (17)(本小题满分10分) 解:由题意知:t tx x x x t x x x f +++-=++-=232)1()1()(,则t x x x f ++-=23)('2┅┅┅┅┅┅┅┅┅┅ (3分) ∵)(x f 在区间)1,1(-上是增函数,∴0)('>x f即x x t 232->在区间)1,1(-上是恒成立, ┅┅┅┅┅┅┅┅┅┅ (5分)设x x x g 23)(2-=,则31)31(3)(2--=x x g ,于是有 5)1()(max =-=>g x g t∴当5>t 时,)(x f 在区间)1,1(-上是增函数 ┅┅┅┅┅┅┅┅┅┅ (8分) 又当5=t 时, 314)31(3523)('22+--=++-=x x x x f , 在)1,1(-上,有0)('>x f ,即5=t 时,)(x f 在区间)1,1(-上是增函数 当5<t 时,显然)(x f 在区间)1,1(-上不是增函数∴5≥t ┅┅┅┅┅┅┅┅┅┅ (10分)(18)(本小题满分12分)解:(1)323)('2-+=bx ax x f ,依题意, 0)1(')1('=-=f f ,即⎩⎨⎧=--=-+.0323,0323b a b a 解得 0,1==b a ┅┅ (3分)∴x x x f 3)('3-=,∴)1)(1(333)('2-+=-=x x x x f令0)('=x f ,得 1,1=-=x x 若),1()1,(+∞--∞∈Y x ,则0)('>x f 故)(x f 在),1()1,(+∞--∞和上是增函数;若)11(,-∈x ,则0)('<x f 故)(x f 在)1,1(-上是减函数;所以2)1(=-f 是极大值,2)1(-=f 是极小值。
┅┅┅┅┅┅┅┅ (6分) (2)曲线方程为x x y 33-=,点)16,0(A 不在曲线上。
设切点为),(00y x M ,则03003x x y -= 由)1(3)('200-=x x f 知,切线方程为))(1(30200x x x y y --=- ┅┅┅┅┅┅┅┅┅┅ (9分) 又点)16,0(A 在切线上,有)0)(1(3)3(16020030x x x x --=-- 化简得 830-=x ,解得 20-=x所以切点为)2,2(--M ,切线方程为 0169=+-y x ┅┅┅┅┅┅ (12分) (19)(本小题满分14分)解:)2)(1)(1(1224122412)('23--+=+--=x x x x x x x f令0)('=x f ,得:2,1,1321==-=x x x ┅┅┅┅┅┅┅ (2分) 当x 变化时,)(),('x f x f 的变化情况如下表:又0)0(=f ,故最小值为0。
┅┅┅┅┅┅┅┅┅┅ (6分)最大值与a 有关:(1)当)1,0(∈a 时,)(x f 在),0(a 上单调递增,故最大值为:a a a a a f 24683)(234+--= ┅┅┅┅┅┅┅┅┅┅ (8分) (2)由13)(=x f ,即:01324683234=----x x x x ,得: 0)1323()1(22=---x x x ,∴1=x 或31021±=x 又0>x ,∴1=x 或31021+=x ┅┅┅┅┅┅┅┅┅┅ (10分) ∴当1[∈a ]31021,+时,函数)(x f 的最大值为:13)1(=f ┅┅ (12分)(3)当(∈a ),31021+∞+时,函数)(x f 的最大值为: a a a a a f 24683)(234+--= ┅┅┅┅┅┅┅┅┅┅ (14分) (20)(本小题满分12分)解:设圆锥的底面半径为r ,高为h ,体积为V ,则 由222R r h =+,所以 )0(,3131)(313132222R h h h R h h R h r V <<-=-==ππππ ∴2231'h R V ππ-=,令0'=V 得 R h 33= ┅┅┅┅┅┅┅ (6分) 易知:R h 33=是函数V 的唯一极值点,且为最大值点,从而是最大值点。
∴当R h 33=时,容积最大。
┅┅┅┅┅┅┅┅┅┅ (8分) 把R h 33=代入222R r h =+,得 R r 36= 由r R πα2=得 πα362=即圆心角πα362=时,容器的容积最大。
┅┅┅┅┅┅┅ (11分) 答:扇形圆心角πα362=时,容器的容积最大。
┅┅┅┅ (12分) (21) (本小题满分12分)解:解方程组⎩⎨⎧-==2xx y kx y 得:直线kx y =分抛物线2x x y -=的交点的横坐标为 0=x 和k x -=1 ┅┅┅┅┅┅┅┅┅┅ (4分) 抛物线2x x y -=与x 轴所围成图形为面积为 61|)3121()(103212=-=-=⎰x x dx x x S ┅┅┅┅┅ (6分) 由题设得dx kx dx x x S k k ⎰⎰----=10102)(26)1()(3102k dx kx x x k-=--=⎰- ┅┅┅┅┅┅┅ (10分)又61=S ,所以21)1(3=-k ,从而得:2413-=k ┅┅┅┅┅ (12分)。