核酸的酶促降解及核苷酸代谢
第十章 核酸酶促降解和核苷酸代谢详解
第二节 核苷酸的分解代谢
一、嘌呤核苷酸的降解 〈一〉部位:主要在肝、小肠、肾 〈二〉终产物:尿酸。
〈三〉特点:嘌呤环不被打破,产物不易溶于水。
腺嘌呤
H2O
腺嘌呤脱氨酶
鸟嘌呤
H2O
鸟嘌呤脱氨酶
NH3
次黄嘌呤
黄嘌呤氧化酶
NH3
黄嘌呤
H2O+O2
H2O2
黄嘌呤
氧化酶
H2O+O2
(灵长类以外的哺乳动物) 尿酸氧化酶
子物质合成嘧啶核苷酸的过程。 (2)原料:Gln、CO2、Asp、R-5-P(合成
dTMP尚需一碳单位) (3)合成部位:肝为主,胞液。
(4) 大致 过程:
(5)合成特点: 〈1〉先合成嘧啶环,后与R-5-P结合。 〈2〉先合成UMP、再转化生成CTP、dTMP等
〈二〉补救合成
利用嘧啶、嘧啶核苷合成嘧啶核苷酸的 过程。
IMP → → →AMP﹑GMP
合成IMP:十一步反应
IMP转为AMP 和GMP
特点: 〈1〉在R-5-P分子上逐步合成嘌呤核苷酸, 而不是先单独合成嘌呤环再和R-5-P 结合。 〈2〉先合成IMP再转化生成AMP、GMP。
(二) 嘧啶核苷酸的全合成
1、从头合成途径 (1)概念:机体利用AA、CO2、R-5-P等小分
二、核苷酸的半合成
〈一〉嘌呤核苷酸的补救合成 1、定义——某些组织器官利用游离的碱基 或核苷为原料合成核苷酸的途径。 2、简单过程:
ÏÙ àÑ ßÊ + PRPP APRT AMP + PPi
´Î »Æ àÑ ßÊ +PRPPHGPRT IMP+PPi
Äñ àÑ ßÊ +PRPP HGPRT GMP+PPi
核酸降解和核苷酸代谢
R-5'-P
R-5'-P
5-氨基咪唑-4-羧酸 核苷酸(CAIR)
5-氨基咪唑核苷酸 (AIR)
甲酰甘氨咪核苷酸 (FGAM)
O
C
HO
C
C H2N
N Asp
H2O
ATP
CH
N
合成酶
R-5'-PFra bibliotekCOOH OC
HC N C H
CH2
C
H2N COOH
延胡索酸 N
CH
N
裂解酶
R-5'-P
O
C
H2N
C
C H2N
二、嘌呤核苷酸的降解
AMP
GMP
嘌呤核苷酸的结构
AMP GMP
H(I) 黄嘌呤氧化酶
(次黄嘌呤)
X
G
(黄嘌呤)
黄嘌呤 氧化酶
嘌呤碱的最终 代谢产物
腺嘌呤脱氨酶含量极少 腺苷脱氨酶和腺苷酸脱氨酶活性较高
腺嘌呤脱氨基主要在 核苷和核苷酸水平
鸟嘌呤脱氨酶分布广
鸟嘌呤脱氨基主要 在碱基水平
嘌呤类在核苷酸、核苷和碱基三个水平上的降解
1. 从头合成途径
(1)尿嘧啶核苷酸的合成
2ATP 2ADP+Pi
Gln + HCO3氨甲酰磷酸合成酶Ⅱ
(CPS-Ⅱ )
H2N C OPO3H2 + Glu
O
氨甲酰磷酸
CO2 + NH3 + H2O
2ATP N-乙酰谷氨酸
2ADP+Pi
氨基甲酰磷酸
Pi
线粒体
鸟氨酸
瓜氨酸
鸟氨酸循环
鸟氨酸
尿素
生物化学试题库
核酸的酶促降解和核苷酸代谢一、名词解释1.核苷磷酸化酶(nucleoside phosphorylase):能分解核苷生成含氮碱和戊糖的磷酸酯的酶。
2.从头合成(de novo synthesis ):生物体内用简单的前体物质合成生物分子的途径,例如核苷酸的从头合成。
3.补救途径(salvage pathway):与从头合成途径不同,生物分子的合成,例如核苷酸可以由该类分子降解形成的中间代谢物,如碱基等来合成,该途径是一个再循环途径。
4.限制性内切酶:二、单选题(在备选答案中只有一个是正确的)( 3 )1.嘌呤核苷酸从头合成时首先生成的是:①GMP; ②AMP; ③IMP; ④ATP( 2 )2.提供其分子中全部N和C原子合成嘌呤环的氨基酸是:①天冬氨酸; ②甘氨酸; ③丙氨酸; ④谷氨酸( 1 )3.嘌呤环中第4位和第5位碳原子来自下列哪种化合物?①甘氨酸②天冬氨酸③丙氨酸④谷氨酸( 3 )4.嘌呤核苷酸的嘌呤核上第1位N原子来自①Gly②Gln③ASP④甲酸三、多项选择题1.嘧啶分解的代谢产物有:(ABC)A.CO2; B.β-氨基酸C.NH3D.尿酸2.嘌呤环中的氮原子来自(ABC)A.甘氨酸; B.天冬氨酸; C.谷氨酰胺; D.谷氨酸四、填空题1.体内脱氧核苷酸是由____核糖核苷酸_____直接还原而生成,催化此反应的酶是____核糖核苷酸还原酶______酶。
2.人体内嘌呤核苷酸分解代谢的最终产物是______尿酸______,与其生成有关的重要酶是___黄嘌呤氧化酶_________。
3.在生命有机体内核酸常与蛋白质组成复合物,这种复合物叫做染色体。
4.基因表达在转录水平的调控是最经济的,也是最普遍的。
五、问答题:1.降解核酸的酶有哪几类?举例说明它们的作用方式和特异性。
2.什么是限制性内切酶?有何特点?它的发现有何特殊意义?3.简述蛋白质、脂肪和糖代谢的关系?蛋白质AA糖EMP 丙酮酸乙酰辅酶A TCA脂肪甘油脂肪酸六、判断对错:(对)人类和灵长类动物缺乏尿酸氧化酶,因此嘌呤降解的最终产物是尿酸。
核酸的降解和核苷酸代谢(1)
大肠杆菌核糖核苷酸还原酶R2亚基
IMP/GMP+PPi PCR(聚合酶链式反应) (5-磷酸核糖-1-焦磷酸) 肝、肾、胰、心、脑、肉馅、肉汁、沙丁鱼、鱼卵、小虾 PCR(聚合酶链式反应) 1 嘌呤核苷酸的生物合成 ④组成辅酶,如腺苷酸可作为NAD+、NADP+、FMN、FAD及CoA等的组成成分; 嘌呤核苷酸的补救合成2 第二类 含嘌呤中等的食物 (每100g食物含嘌呤75~100mg) 甲基丙二酸单酰辅酶A→琥珀酸CoA 一些微生物如乳酸杆菌、枯草杆菌等则以核苷三磷酸为还原底物。 (N10-CHO FH4) PCR:polymerase chain reaction 利用磷酸核糖、氨基酸、一碳单位、CO2等简单物质为原料。 3 脱氧核糖核酸酶(DNase) AMP + PPi IMP/GMP+PPi 利用磷酸核糖、氨基酸、一碳单位、CO2等简单物质为原料。 利用体内游离的碱基或核苷,反应较简单。 黄嘌呤氧化酶(Xanthine Oxidase)
解 鸟苷酸 27mmol/L (4.
鲤鱼、贝壳类、鳗鱼、熏火退、猪肉、小牛肉; IMP/GMP+PPi
痛风的药物治疗:别嘌呤醇
脱氨酶
通常是在核苷二磷酸水平上发生还原反应;
次黄嘌呤 黄嘌呤
AMP + PPi 一些微生物如乳酸杆菌、枯草杆菌等则以核苷三磷酸为还原底物。
黄嘌呤 第四类 含嘌呤很少的食物
②储存能量,三磷酸核苷酸尤其是ATP是细胞的主要能量形式,一些活化的中间产物,如UDP葡萄糖,亦含有核苷酸成分;
• 第三类 含嘌呤较少的食品(每100g食物含嘌呤<75mg) – 龙虾、蟹 ;火腿、羊肉、鸡;麦片、面包、粗粮 ; – 芦笋、四季豆、菜豆、菠菜、蘑菇、干豆类、豆腐
生物化学_09 核酸降解和核苷酸的代谢
IMP转变为GMP和 转变为GMP (3)IMP转变为GMP和AMP
2、 补救途径
(利用已有的碱基和核苷合成核苷酸) (1) 磷酸核糖转移酶途径(重要途径)
核苷磷酸化酶
嘌呤核苷 + 磷酸 腺嘌呤 + 5-PRPP
次黄嘌呤(鸟嘌呤) 磷酸核糖转移酶
嘌呤碱 + 戊糖-1-磷酸 AMP + PPi
腺嘌呤磷酸核糖转移酶
基因组DNA 基因组 不被切割
限制—修饰的酶学假说 限制 修饰的酶学假说 1968年,Meselson 和Yuan发现了 型限制性核酸内切酶 年 发现了I型限制性核酸内切酶 发现了 1970年,Smith和Wilcox从流感嗜血杆菌中分离纯化了 年 和 从流感嗜血杆菌中分离纯化了 第一个II型限制性核酸内切酶 第一个 型限制性核酸内切酶Hind II 型限制性核酸内切酶
(2)尿嘧啶核苷酸的合成 )
天冬氨酸转氨甲酰酶 二氢乳清酸酶
乳清苷酸焦磷酸化酶/Mg2+ 二氢乳清酸脱氢酶
乳清苷酸脱羧酶
(3) 胞嘧啶核苷酸的合成
尿嘧啶核苷三磷酸可直接与NH3(细菌)或Gln(动物) 细菌) 尿嘧啶核苷三磷酸可直接与 (动物) 反应,生成胞嘧啶核苷三磷酸。 反应,生成胞嘧啶核苷三磷酸。
二、脱氧核糖核酸酶
只能水解DNA磷酸二酯键的酶。 只能水解DNA磷酸二酯键的酶。 DNA磷酸二酯键的酶 牛胰脱氧核糖核酸酶(DNaseⅠ) 牛胰脱氧核糖核酸酶(DNaseⅠ): 可切割双链和单链DNA 降解产物为3 DNA, 可切割双链和单链 DNA, 降解产物为 3’ - 磷酸 为末端的寡核苷酸。 为末端的寡核苷酸。 限制性核酸内切酶: 限制性核酸内切酶: 细菌产生的、能识别并特异切割外源DNA DNA特定 细菌产生的 、 能识别并特异切割外源 DNA 特定 中的磷酸二脂键( 序列中的磷酸二脂键 对碱基序列专一) 序列中的磷酸二脂键(对碱基序列专一)的核酸内 切酶。 切酶。
核酸的酶促降解和核苷酸代谢
核酸的酶促降解和核苷酸代谢核酸是构成生物体遗传物质的重要分子之一、它们在生物体内起着关键的功能,包括存储遗传信息、传递遗传信息和参与生物体的代谢过程。
然而,核酸分子并不是永久存在的,它们会经历酶促降解和核苷酸代谢过程。
酶促降解是一种通过酶催化反应将核酸分子分解为较小的碎片的过程。
这一过程在细胞中起着至关重要的作用,因为它能够控制细胞内的核酸浓度,并对细胞进行修复和调控。
具体而言,核酸的酶促降解主要通过核酸酶参与。
核酸酶可以识别特定的核酸分子,切割磷酸二酯键并将其分解成较小的碎片。
酶促降解的过程是高度调控的,这意味着细胞可以根据需要来降解核酸分子。
核酸酶的酶促降解反应可以发生在DNA和RNA分子上。
在DNA分子中,核酸酶可以通过识别特定的序列或结构来切割DNA链。
这些酶可以在DNA复制、修复和重组过程中发挥重要的作用。
在RNA分子中,核酸酶则可以通过识别特定的次级结构来切割RNA链。
这些酶在RNA降解和剪接等过程中起着关键作用。
核苷酸的合成通常发生在两个方向上。
一方面,细胞通过核苷酸合成途径将脱氧核苷酸和核苷酸合成为DNA和RNA的单体。
这些途径包括脱氧核苷酸合成途径和核苷酸合成途径。
另一方面,细胞还可以通过核苷酸分解途径将核苷酸分解为核苷和磷酸。
这些途径包括核苷酸降解途径和氨基酸代谢途径。
核酸酶和核苷酸代谢的失调会导致DNA和RNA的不稳定和降解,影响细胞的正常功能。
此外,核苷酸代谢紊乱还与多种人类疾病的发生和发展密切相关。
因此,研究核酸的酶促降解和核苷酸代谢机制对于理解生物体的正常功能和疾病的发生具有重要意义。
华中农业大学生物化学考研试题库附答案核酸的降解和核苷酸代谢
第12章核酸的降解和核苷酸代谢一、教学大纲基本要求核酸的酶促降解,水解核酸的有关酶(核酶外切酶、核酶内切酶、限制性内切酶),核苷酸、嘌呤碱、嘧啶碱的分解代谢,嘌呤核苷酸的合成,嘧啶核苷酸的合成,脱氧核糖核苷酸的合成,辅酶核苷酸的合成。
二、本章知识要点(一)核酸的酶促降解核酸酶(nucleases):是指所有可以水解核酸的酶,在细胞内催化核酸的降解,以维持核酸(尤其是RNA)的水平与细胞功能相适应。
食物中的核酸也需要在核酸酶的作用下被消化。
核酸酶按照作用底物可分为:DNA酶(DNase)、RNA酶(Rnase)。
按照作用的方式可分为:核酸外切酶和核酸内切酶,前者指作用于核酸链的5‘或3’端,有5’末端外切酶和3’末端外切酶两种;后者作用于链的内部,其中一部分具有严格的序列依赖性(4~8 bp),称为限制性内切酶。
核酸酶在DNA重组技术中是不可缺少的重要工具,尤其是限制性核酸内切酶更是所有基因人工改造的基础。
(二)核苷酸代谢1.核苷酸的生物学功能①作为核酸合成的原料,这是核苷酸最主要的功能;②体内能量的利用形式;③参与代谢和生理调节;④组成辅酶。
核苷酸最主要的功能是作为核酸合成的原料,体内核苷酸的合成有两条途径,一条是从头合成途径,一条是补救合成途径。
肝组织进行从头合成途径,脑、骨髓等则只能进行补救合成,前者是合成的主要途径。
核苷酸合成代谢中有一些嘌呤、嘧啶、氨基酸或叶酸等的类似物,可以干扰或阻断核苷酸的合成过程,故可作为核苷酸的抗代谢物。
不同生物嘌呤核苷酸的分解终产物不同,人体内核苷酸的分解代谢类似于食物中核苷酸的消化过程,嘌呤核苷酸的分解终产物是尿酸。
嘧啶核苷酸的分解终产物是β-丙氨酸或β-氨基异丁酸。
核苷酸的合成代谢受多种因素的调节。
(1)嘌呤核苷酸代谢①嘌呤核苷酸的合成代谢:体内嘌呤核苷酸的合成有两条途径,一是从头合成途径,一是补救合成途径,其中从头合成途径是主要途径。
嘌呤核苷酸合成部位在胞液,合成的原料包括磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位及CO2等。
核酸的酶促降解
①生成乳清苷酸
②由乳清苷酸转化成其它化合物
↗CO2 乳清苷酸→UMP+ATP尿嘧啶核苷酸激酶
UDP+ADP UDP+ATP核苷二磷酸激酶UTP+ADP UTP+谷氨酰胺+ATP+H2OCTP合成酶 →CTP+谷氨酸+ADP+Pi (2)补救途径与嘌呤核苷酸补救途径相 似
AMP-S
AMP
XMP
GMP
Gln
(2)补救合成途径 嘌呤碱和PRPP在特异的磷酸核糖转 移酶作用下生成嘌呤核苷酸
腺嘌呤+PRPP腺嘌呤磷酸核糖转移酶 →AMP+PPi
鸟嘌呤+PRPP次黄嘌呤-鸟嘌呤磷酸核糖转移酶 →GMP+PPi
2、嘧啶核苷酸的生物合成
(1)从头合成。 特点:A、先合 成嘧啶环,再与PRPP作用生成 嘧啶核苷酸;B、初产物为乳清
腺苷酸及鸟苷酸的合成:
IMP在腺苷酸代琥珀酸合成酶的催化下,由天 冬氨酸提供氨基合成腺苷酸代琥珀酸(AMPS),然后裂解产生AMP;IMP也可在IMP脱氢酶 的催化下,以NAD+为受氢体,脱氢氧化为黄苷 酸(XMP),后者再在鸟苷酸合成酶催化下, 由谷氨酰胺提供氨基合成鸟苷酸(GMP)。
IMP
Asp NAD+
根据核酸酶对底物的专一性将其分为 三类:核糖核酸酶;脱氧核糖酸 酶;非特异性核酸酶。
脱氧核糖核酸酶
脱氧核糖核酸酶专一水解DNA而不作用 于RNA。分为内切酶和外切酶。
内切酶中的限制性内切酶是一种重要 的工具酶。它作用于特定的核苷酸序列, 有极高的专一性,切割后形成平齐末端 和粘性末端。
第八章 核酸的酶促降解
生物化学: 核酸的酶促降解和核苷酸代谢 山农大生物化学与分子生物学系 第 1 页 共 8 页
第八章 核酸的酶促降解和核苷酸代谢
第一节 核酸的酶促降解 第二节 核苷酸的降解代谢 第三节 核苷酸的合成代谢
1
生物化学: 核酸的酶促降解和核苷酸代谢 山农大生物化学与分子生物学系 第 2 页 共 8 页
一、降解方式
3
生物化学: 核酸的酶促降解和核苷酸代谢 山农大生物化学与分子生物学系 第 4 页 共 8 页
应用极广。
限制性内切酶的命名较为特殊:如大肠杆菌的一种限制性内切 E——EcoRI
E coR I
细菌属
酶编号
菌名 菌株
5ˊ pGAATTCp
3ˊ 5ˊ pG pAATTCp
3ˊ
3ˊ pCTTAAG
5ˊ 3ˊ pCTTAAp Gp 5ˊ
5
生物化学: 核酸的酶促降解和核苷酸代谢 山农大生物化学与分子生物学系 第 6 页 共 8 页
R5 P ATP
Gln Gly
甲酸
CO2 甲酸 Gln Asp
G TP A sp
AMP
PRPPP P OCH2 O P P
IMP GMP
G ln A T P
二、嘧啶核苷酸的合成
(一)嘧啶环组成成分来源
氨甲酰磷酸 Asp
UDP
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-CH=NH
H-CO-CH2OH -CH= -CH2-CH3
亚氨甲基 甲酰基 甲醇基 次甲基 亚甲基
甲基
一碳基团转移酶的辅酶:FH4 一碳基团四氢叶酸化合物的结构和命名
核酸的酶促降解和核苷酸代谢
本章重点讨论核酸酶的类别和特点,对核苷 酸的生物合成和分解代谢作一般介绍。
第一节 核酸的酶促降解 第二节 核苷酸的分解代谢 第三节 核苷酸的合成代谢
核酸的酶促降解
核酸酶
核苷酸酶 核苷酸磷酸化酶
核酸 核苷酸
核苷
碱基+戊糖
磷酸
一、核酸酶
二、限制性内切酶
核酸酶
1、核酸酶的分类
• 类型 • 命名 • 意义
常用的DNA限制性内切酶的专一性
酶
辨认的序列和切口
说明
Alu I
‥ ‥A G C T ‥‥ ‥ ‥T C G A ‥ ‥
四核苷酸,平端切口
Bam H I
‥ ‥G G A T C C ‥‥ ‥ ‥C C T A G G ‥‥
六核苷酸,粘端切口
Bgl I
‥ ‥A G A T C T ‥‥ ‥ ‥T C T A G A ‥‥
核苷酸的降解
核苷酸酶 核苷酸磷酸化酶
核苷酸
核苷
碱基+(脱氧)戊糖
磷酸
1、嘌呤的降解
2、嘧啶的降解
嘌 呤 的 分 解
嘧 啶 的 分 解
核苷酸的合成代谢
一、核糖核苷酸的生物合成
二、脱氧核糖核苷酸的生物合成
三、单核苷酸转变成核苷二磷酸和核苷 三磷酸
四、各种核苷酸的相互转变
核糖核苷酸的生物合成
1、嘌呤核苷酸的生物合成
ⅡI型:识别位点为5-7bp的非对称序列 ,切割位点在 顺序之外离识别 序列5-10bp,切割双链,个别也切割单链。 是限制与修饰相多功能酶.
限制性内切酶的命名和意义
例:Eco R I,这是从大肠杆菌(Ecoli)R菌珠中分离出的一种限制性内切酶
Eco R I
属名 种名 株名 序号
限制性内切酶是分析染色体结构、制作DNA限 制图谱、进行DNA序列测定和基因分离、基因体外 重组等研究中不可缺少的工具,是一把天赐的神刀, 用来解剖纤细的DNA分子。
(1) 从头合成途径 (2) 补救途径
2、嘧啶核苷酸的生物合成
(1) 从头合成途径 (2) 补救合成途径
嘌呤核苷酸的从头合成途径
a、嘌呤环上原子的来源 b、IMP的从头合成 c、IMP转变为AMP和GMP
嘌呤环上各原子的来源
来自CO2
来自天冬氨酸 来自甲酸
C6
N1 C5
C2 C4 N3
N7 核苷酸的合成 2、脱氧胸腺嘧啶核苷酸的合成
核糖核苷酸的还原反应
NADP+
SH 硫氧还蛋白 (还原型) SH
硫氧还蛋白 还原酶
FAD
NADPH+H+
S 硫氧还蛋白 (氧化型) S
P-P-CH2
O
N
ATP 、Mg2+
核糖核苷酸还原酶 (B1和B2)
P-P-CH2
O
N
+ H2O
六核苷酸,粘端切口
Eco R I Hind Ⅲ
‥ ‥G A A T T C ‥‥ ‥ ‥C T T A A G ‥‥
‥ ‥A A G C T T‥‥ ‥ ‥T T C G A A ‥‥
六核苷酸,粘端切口 六核苷酸,粘端切口
Sal I
‥ ‥G T C G A C ‥‥ ‥ ‥C A G C T G ‥‥
OH OH 核糖核苷二磷酸
OH H 脱氧核糖核苷二磷酸
脱氧胸腺嘧啶核苷酸的合成
O HN
ON dR-P
胸腺嘧啶核苷酸合成酶
O
HN
CH3
ON dR-P
N5、N10 亚甲基 FH4
FH2
二氢叶酸 还原酶
Ser羟甲基 转移酶
NADP++Gly
NADPH+H++Ser
核 苷 酸 的 合 成 及 相 互 关 系
c、UMP转变为CTP
CTP合成酶
UMP UDP UTP
CTP
ATP Gln H2O
嘧啶环上各原子的来源
来自NH3 来自CO2
4
C
N3
C5
C2
C6
1
N
来自天冬氨酸
尿嘧啶核苷酸合成途径
嘧啶核苷酸补救合成途径
尿嘧啶+PRPP 尿嘧啶+1-P-核糖 尿嘧啶核苷+ATP
UMP+PPi 尿嘧啶核苷+Pi UMP+ADP
(1)根据对底物的 专一性分为
核糖核酸酶(RNase) 脱氧核糖核酸酶(DNase)
非特异性核酸酶
核酸内切酶 (2)根据切割位点分为 核酸外切酶
2、核酸酶的作用特点
外切核酸酶对核酸的水解位点
BBBBBBBB
5´ p
p
p
p
p
p
p
p
OH 3´
牛脾磷酸二酯酶
( 5´端外切5得3)
蛇毒磷酸二酯酶
( 3´端外切3得5)
六核苷酸,粘端切口
Sma I
‥ ‥C C C G G G ‥‥ ‥ ‥G G G C C C ‥‥
六核苷酸,平端切口
限制性内切酶类型
I型:分子量大于105,多亚基,需S-线苷蛋氨酸、ATP 和Mg2+ ,识别位点与切割位点相差甚远,产物为异质,是限 制与修饰相排斥的多功能酶.
Ⅱ型:分子量小于105,需Mg2+ ,切割位点位于识别 位 点上,产物为专一性片段,不具修饰酶功能。现在分子生物 学研究所用的限制性内切酶均为此类。
内切核酸酶对RNA的水解位点示意图
Py Pu Py Py G A C U G A
1´
p
p
p
p
p
p
p
p
p
p
OH
5´
3´
RNAase I RNAase I RNAase T1
RNAase T1
Pu :嘌呤
Py:嘧啶
限制性内切酶
原核生物中存在着一类能识别外源DNA双螺旋中4-8个碱基 对所组成的特异的具有二重旋转对称性的回文序列,并在此序 列的某位点水解DNA双螺旋链,产生粘性末端或平末端,这类 酶称为限制性内切酶(ristriction endonuclease)。
氨基酸与一碳基团代谢
1、一碳基团(一碳单位)的概念
2、一碳基团和氨基酸代谢
Gly、Ser、Thr、His都可以作为一碳基团的供体。
3、一碳基团的利用:参与合成反应, 如磷 脂、核苷酸等的合成。
一碳基团
在代谢过程中,某些化合物 (如氨基酸)可以分解产生具有 一个碳原子的基团(不包括CO2 ),称为一碳基团。一碳基团的 转移除了和许多氨基酸的代谢直 接有关外,还参与嘌呤和胸腺嘧 啶的生物合成
N9
来自甘氨酸 来自甲酸
来自谷氨酰胺的酰胺氮
IMP的生 物合成
一碳基团 代谢
IMP转变为GMP和AMP
嘌呤核苷酸合成补救途径
磷酸核糖转移酶
嘌呤+PRPP
A(G)MP+PPi
嘌呤+1-P-核糖
嘌呤核苷 ATP
ADP A(G)MP
嘧啶核苷酸从头合成途径
a、嘧啶环上原子的来源 b、UMP的从头合成