继电保护-电力变压器的保护

合集下载

电力变压器继电保护

电力变压器继电保护

电力变压器继电保护电力变压器是电力系统中重要的电力设备之一,用于升降电压以及提供电力输送中途的电力支撑。

为了保护电力变压器运行安全,必须采用继电保护,它是电力系统中最重要的保护手段之一。

本文将介绍电力变压器继电保护的原理、类型、应用以及故障处理方法。

一、原理继电保护是指利用电气原理和电气器件,通过电气信号实现保护、控制、监视等功能的一种自动化保护措施。

在电力系统中,继电保护通过对电压、电流、功率、状态等参数进行监测和判断,实现对电气设备的保护。

电力变压器作为电力系统中的重要设备,需要采用多种继电保护手段进行保护。

电力变压器继电保护的原理主要有以下几个方面:1、过电流保护过电流保护是指当电力变压器发生短路、过负荷等故障时,通过对电流进行测量,对相应的故障进行保护。

通常采用电流互感器(CT)对电流进行测量,并通过电流保护装置实现对变压器的保护。

3、差动保护4、绝缘监测保护绝缘监测保护是指通过对电力变压器绝缘状态进行监测,判断绝缘状态的变化情况,实现对电力变压器的保护。

通常采用绝缘监测装置对电力变压器绝缘状态进行监测,并通过绝缘监测装置的报警信号实现对变压器的保护。

二、类型主保护是指继电保护中最基本、最重要的保护方式。

它是指对电力变压器主要运行参数进行监测和判断,如对电流、电压、功率等根据规定的保护定值进行测量和判断,从而实现对电力变压器的保护。

2、备用保护备用保护是指当主保护失效或不能正常工作时,采用备用保护来对变压器进行保护。

通常备用保护是由多个继电保护组成的,当主保护失效时,备用保护可以及时地发挥作用,对变压器进行保护。

三、应用电力变压器继电保护在电力系统中的应用非常广泛,主要是用于保护电力变压器运行的安全与稳定。

1、电力供应管理电力供应管理是电力系统中非常重要的一环,电力变压器作为输电的关键设备,必须要有可靠的继电保护装置,确保电力的稳定供应。

2、防止故障电力变压器继电保护主要用于防止电力变压器的短路、过负荷等故障,当发生故障时,继电保护可及时切断电力变压器,确保安全运行。

电力变压器继电保护

电力变压器继电保护

电力变压器继电保护
电力变压器是输送、分配和利用电力的重要设备,其正常运行对电力系统的稳定运行具有重要意义。

电力变压器在运行过程中受到各种因素的影响,可能会出现各种故障,对电力变压器进行继电保护是确保其安全稳定运行的重要手段之一。

继电保护系统是电力系统中的重要组成部分,用于监测和保护电力设备,保障电力系统的安全运行。

电力变压器继电保护的主要任务是对电力变压器的各种故障进行检测和保护,包括短路、接地故障、过载、过压、欠压等。

通过对这些故障进行及时有效的保护,可以最大限度地减少故障对电力变压器的损害,保障电力系统的安全运行。

电力变压器的继电保护系统通常包括差动保护、过流保护、过电压保护、接地保护等多种保护功能,通过这些保护功能共同作用,可以对电力变压器进行全面的保护。

差动保护是电力变压器继电保护中最重要的一种保护方式,它利用变压器两侧电流的差值来判断变压器的内部故障。

差动保护主要是通过检测变压器两侧的电流,当两侧电流的差值超过设定值时,即判定为变压器内部出现了故障,保护动作将被触发,从而及时切断电力系统中的故障,保护变压器不受损害。

差动保护是对电力变压器内部故障进行及时有效保护的重要方式,同时也是保障电力系统安全运行的重要手段。

电力变压器继电保护

电力变压器继电保护

电力变压器继电保护电力变压器是电力系统中不可或缺的设备,它在电力系统中起着调整电压、升降电压、保护电器设备等作用。

而变压器继电保护则是为了保护变压器的安全运行,防止发生故障而设计的一项重要技术措施。

本文将从电力变压器的基本原理、变压器继电保护的作用及特点等方面进行详细介绍。

一、电力变压器的基本原理电力变压器是一种通过电磁感应原理实现电压变化的设备,其基本原理可以简单地表述为:在变压器的铁心上绕有两个或多个线圈,分别为高压线圈和低压线圈。

当高压线圈通电时,产生的磁场会使铁心中的低压线圈感应出电动势,从而使得输入电压和输出电压之间实现了降压或升压的变换。

这样,变压器可以实现从高电压向低电压、或者从低电压向高电压的转换,以满足不同电器设备的电压需求。

二、变压器继电保护的作用及特点1. 作用电力变压器在电力系统中起着重要的作用,一旦发生故障则可能导致系统的停运,给生产和生活带来严重的影响。

而变压器继电保护的作用就是为了及时发现并隔离变压器的故障,保证电力系统的安全稳定运行。

变压器继电保护系统可以通过实时监测变压器的运行状态,发现变压器的异常情况,并及时做出响应,保护变压器免受损害。

2. 特点变压器继电保护系统有以下特点:(1)灵敏性高:变压器继电保护系统可以对电路的异常情况做出及时反应,实现对变压器的快速保护。

(2)鲁棒性强:变压器继电保护系统可以适应不同的工作环境和电压等级,保证变压器在各种复杂条件下的安全运行。

(3)自动化程度高:现代的变压器继电保护系统采用先进的数字化技术,可以实现自动化的监测、诊断和响应,减轻运维人员的工作负担。

(4)全面性强:变压器继电保护系统可以监测变压器的各种参数,对变压器的各种异常情况都能做出有效的保护措施。

三、变压器继电保护的实现方式变压器继电保护可以通过多种方式实现,下面介绍常见的几种方式:1. 电压继电保护电压继电保护是采用电压传感器对变压器的输入、输出电压进行实时监测,当输入、输出电压偏离正常范围时,可及时发出警报信号并采取措施,以保护变压器不受损害。

继电保护-第章变压器保护

继电保护-第章变压器保护

继电保护-第章变压器保护————————————————————————————————作者:————————————————————————————————日期:第七章变压器保护第一节概述一、电力变压器的故障和继电保护的设置变压器在电力系统中使用非常普遍而且占有十分重要的地位。

如果变压器发生故障和处于不正常运行状态,将会给系统运行和安全供电带来严重的后果,所以有必要根据变压器的电压等级、容量和重要成度装设专用的继电保护装置。

变压器可能发生的故障一般分为变压器箱体内部故障和箱体外部故障两大类。

箱体内部故障主要有:变压器绕组的相间短路、绕组内的层间或匝间短路,单相接地短路故障。

这些故障对供用电系统及其设备会产生很大的危害,短路电流产生的电弧会破坏绕组的绝缘,烧毁铁芯,电弧还会使绝缘材料和变压器油受热分解产生大量气体,可能导致密闭的变压器油箱因气体迅速膨胀而爆炸。

箱体外部故障主要是:引出线绝缘套管的故障,它可能引起引出线的相间短路或对变压器外壳的接地短路。

由于变压器的故障,危及供用电系统的安全运行和供电的可靠性,所以应装设动作于跳闸的继电保护装置。

变压器的不正常运行状态有:外部短路或过负荷所引起的绕组中过电流、油面降低,电压升高等。

长时间的不正常运行状态会使变压器的温度升高、绝缘老化、寿命缩短,甚至会引起故障,因此,应装设动作于信号或跳闸的继电保护装置:二、继电保护的设置根据以上情况分析,变压器一般应装设下列继电保护装置:(1)瓦斯保护。

变压器箱体内部故障的保护,即箱体内发生故障伴随油分解产生气体或变压器油面不论任何原因下降时,瓦斯保护动作。

轻瓦斯保护动作于信号,重瓦斯保护动作于变压器的断路器跳闸。

瓦斯保护一般装设在容量为800千伏安及以上的变压器上。

(2)电流速断保护。

变压器套管处及变压器箱体内部故障的保护,即变压器发生故障引起绕组电流突然增大时,电流速断保护动作。

电流速断保护一般装设在容量为10000千伏安以下单台运行的变压器和容量在6300千伏安以下并列运行的变压器上,动作于变压器的断路器跳闸。

电力变压器的继电保护

电力变压器的继电保护

电力变压器的继电保护前言电力变压器是电力系统中重要的电器设备之一,也是电能转化和传输的核心设备之一。

在长期运行中,变压器会面临各种各样的故障风险,其中一些故障甚至会导致损失极大的事故。

因此,对于变压器的保护至关重要。

而继电保护是一种重要的保护方式之一,本文将讨论电力变压器的继电保护。

继电保护概述继电保护是一种在电力系统中使用的保护技术,利用电流、电压等电气信号作为控制或触发信号,对电力系统进行监控和保护。

其目的是检测电力系统中的故障,及时确定故障位置和类型,并采取相应的措施避免故障继续扩大,从而确保电力系统的正常运行。

继电保护经过多年的发展,已经成为电力系统中重要的保护手段之一。

它具有灵敏、快速、准确、可靠的特点,大大提高了电力系统的安全性和稳定性。

同时,随着科技的不断进步,继电保护的应用领域也不断拓展,越来越多的电器设备开始采用继电保护技术。

变压器的故障与保护电力变压器作为电力系统的关键设备之一,其安全运行对于电力系统的正常运转至关重要。

变压器在长期运行中可能面临多种故障,例如:1.绕组短路;2.油变质和泄漏;3.绝缘劣化等。

当变压器发生故障时,其对电力系统的影响将是很严重的。

因此,对于变压器的保护,早期主要是采用熔断器等保护方式,但这种保护方式在检测故障时速度慢、精度低、可靠性差等问题面前显得力不从心。

随着继电保护技术的成熟和发展,变压器的保护方式也得到了极大的提升。

目前常用的变压器保护方案包括过电压保护、欠电压保护、差动保护、绕组温度计保护等。

变压器差动保护变压器差动保护是变压器保护中最常用的保护方式之一。

它可以对变压器的绝大多数故障进行保护,包括内部故障、一侧绕组与另一侧绕组之间的短路故障等。

差动保护的核心思想是比较变压器的两个绕组所流过的电流是否相等,若不相等则表示变压器内部可能存在故障。

在差动保护系统中,将电流变压器(CT)的输出作为输入,通过比较两边输入信号的大小,判断系统故障类型以及故障位置。

电力变压器继电保护

电力变压器继电保护

电力变压器继电保护电力变压器是电力系统中的重要设备,其作用是将输送线路上的高压电能转变为用户所需的低压电能,为工业生产和居民生活提供电力保障。

而变压器继电保护则是保证变压器正常运行和安全的重要保障措施。

本文将从变压器继电保护的基本原理、作用和常见故障进行深入介绍。

一、继电保护的基本原理继电保护是电力系统中保护设备和线路的一种重要控制保护手段,其基本原理是通过选择合适的保护装置和电气元件,对电力系统中的故障或异常状态进行检测和判别,及时采取必要的措施,避免故障扩大,保证电力系统的安全稳定运行。

继电保护的基本原理包括以下几个方面:1. 故障检测:通过对电力系统中的各种故障进行检测,包括短路故障、接地故障、过载故障等,确定故障的类型和位置,以便及时采取保护措施。

2. 故障判别:根据故障发生的情况和故障信号的特点,对故障类型进行判别,确定是否需要启动继电保护装置。

3. 信号传输:将故障信号传输给继电保护装置,启动相应的保护动作,以保护变压器和电力系统的安全运行。

二、继电保护的作用继电保护在电力系统中起着非常重要的作用,其主要作用包括以下几个方面:1. 故障保护:及时发现电力系统中的各种故障,如短路故障、接地故障、过载故障等,采取必要的保护措施,避免故障扩大,保证电力系统的安全运行。

2. 过载保护:对电力系统中的过载情况进行监测和保护,及时减小负荷或切断电源,避免设备的过载烧坏。

3. 过电压保护:对电力系统中的过电压情况进行监测和保护,避免设备被过电压烧坏。

4. 欠电压保护:对电力系统中的欠电压情况进行监测和保护,确保设备在安全的电压范围内运行。

继电保护的作用主要是保障电力系统的安全运行,避免各种故障对设备和线路造成损害,保证供电的可靠性和稳定性。

特别是对于电力变压器来说,继电保护的作用更为突出,因为变压器在电力系统中扮演着重要的角色,一旦出现故障可能会导致整个系统的停电。

三、常见的变压器继电保护四、结语在当前电力系统中,变压器继电保护技术不断发展,涌现出越来越多的先进的保护装置和技术手段,提高了变压器继电保护的智能化和精准化水平。

浅谈电力变压器的继电保护

浅谈电力变压器的继电保护

电力系统安全稳定经济运行 , 必须合 理的设 置继电保护装置 , 并准确整定各项相关定值 。
【 关键词 】 系统 ; 电力 变压器; 常见故 障; 继电保护
电力变压器是电力系统 中输配 电的主要设备 . 如果发生故 障将会 对于两侧或三侧 电源的升压变压器或 降压变压器应装设 零序电流保 给 电力系统的正常运行及供 电可靠性带来严重 的影响。 为了保证电力 护 。 作变压 器主保 护的后备保护 , 并作为相邻元 件的后备保护 。 变压器的安全运行 , 事故扩 大, 防止 确保 电力系统安全稳定 的运行 , 可 利用接地时产 生的零序电流使保 护动作的装置 .叫零 序电流保 根据变压器的容量、 构及故 障类型装设相应 的继 电保护装置。 结 护 在 电缆线路上都采用专门的零 序电流互感器来实现接地保护 将 零序电流互感器套地三芯 电缆上 . 电流继电器接在互感器的二次线 圈 1电力变压器常见故障及不正 常运行状态 . 在正常运行或无 接地故障时 . 由于电缆三相 电流 的向量之和等于 变压器油箱 内部 原副边绕组 可能发生相间短路 、 匝间短路 、 中性 上 . 点直接接地 系统侧 绕组的单相接地短 路以及原副绕 组之间 的绝缘击 零 . 零序互感 器二次线 圈的电流也 为零( 只有很小 的不平衡 电流 )故 。 零序互感器二次线 圈将 出现 穿等故障。 油箱内部故 障产生 电弧 , 引起绝缘油 的剧烈气化 , 可能导致 电流继电器不动作 。当发生接地故障时 , 使 以便发出信号 或切除故 障 变压器油箱的爆炸。 油箱外部套管和引出线也可能发生相间短路 和接 较大的电流 . 电流继 电器动作 . 2 . 4过负荷保护 地短路。 反应变压器对称过负荷 的过负荷保 护 . 仅作用 于信号 变压器 的不正 常工作状态 主要有 过负荷 、外部 短路 引起 的过 电 对于 4 0 V 0 k A及 以上 的变压器 . 当数 台并 列运行 或单 独运行并作 流、 外部接地短路 引起 的中性点过 电压、 油箱漏油 引起的油面降低 或 冷却系统 故障引起 的温度升 高等 。 为其他负荷 的备用 电源时 。应根据可 能过负荷的情况装设 过负荷保 耦变压器和多绕组变压器 . 保护装 置应能反应公共绕组及各 2根据情况及异 常运行 方式 . . 变压器一般需要配置 以下保 护 对 自 侧过负荷 的情况 。 变压器的过负荷电流 , 在大多数 情况下 , 都是三相对 护 称的 , 过负荷保护只要接入一相电流 , 故 电流继电器来实现 , 并进过一 2 差动保 护或电流速断保护 . 1 要考虑它能够反 映 利用变压器高 、 低压侧 电流大小和相位 , 可实现差动保护。 反应 变 定的延时作用 于信号。选择保护安装在哪一侧时 . 必要 压器引出线 、套管及 内部短路故 障的纵联差动保护或 电流速 断保 护 变压器所有各侧线 圈过负荷情况 。在无经常值班人员 的变 电所 , 保护变压器绕组或引出线 各相 的相 间短路 、 大接地 电流系统 的接地 短 时过负荷保护可动作 于跳 闸或断开部分负荷。 25过励磁保护 . 路 以及绕组匝间短路 . 护瞬时动作于 断开变压器 的各侧 断路器 。差 保 目前的大型变压器设计 中, 了节省材料 . 为 降低造价 . 减少运输重 动保护不仅能够正确区分区内外故 障, 还可 以在无其他元件 的保 护配 铁心的额定工作磁通密度都设计得较高 , 接近饱和磁密 , 因此在过 合的情况下无延时的切除区内各种故障 . 因此差动保护经 常作 为电气 量 , 电压情况下 , 易产生过励磁 。在过励磁时 , 很容 由于铁心饱和 , 励磁 阻 主设备的主保护被广泛应 用于各种 电气 主设备和线路 的保护 中。《 继 抗下降 . 励磁电流增加 的很快 . 当工作磁密达到正常磁密 的 1 - .倍 .1 3 4 电保护和安全 自动装 置技术规程》 中对装设纵联差动保护 和电流速 断 时. 励磁电流可达 到额定 电流水平 。 其次 由于励磁电流是非正 弦波 . 含 保护有如下规定 : 有许多高次谐波分量 . 而铁心和其他金属构件的涡流损耗与频率 的平 2 . 对 6 M A 以下厂 用变 压器 和并 列运 行 的变压 器 .以及 .1 1 . V 3 可引起铁心 、 金属构件 、 绝缘材 料的严重过热 , 若过励磁倍 1M A以下厂用备用变压器和单独运行 的变压器 .当后备保 护时间 方成正 比. 0V 数较高 , 时间过长 . 持续 可能使变压器损坏 因此 , 高压侧为 5 0 V的 0k 大于 05 时 . 装设 电流速断保护 。 .s 应 变压器宜装设 过励磁保护 。 21 .. 63 2对 .MVA及 以上厂用 工作 变压器 和并列运 行 的变压器 . 装设变压器过励磁保护 的目的是为 了检测变压器的过励磁情况 . 1 M A及 以上厂用备用变压器 和单独 运行 的变压器 .以及 2 V 0V M A及 以上用电流速断保 护灵敏性不符合要求 的变压器 . 应装设纵联差 动保 及时发出信号 或动作 于跳 闸.使变压器的过励 磁不超过允许 的限度 . 防止变压器因过励磁 而损坏 。 护。 2 . 6瓦斯保护 2 . 对高压 侧电压为 3 0 V及 以上变压器 .可装设双重纵联 差 .3 1 3k 瓦斯保护是反应 变压器内部气体 的数量和流动 的速度 而动作 的 动保护。 保护 . 保护变压器油箱 内各种短路故 障 . 特别是绕组 的相 间短路和 匝 21 对于发电机变压器组 , .4 . 当发 电机 与变压 器之间有断路器 时 . 应瞬时动作于信 发电机装设 单独的纵联差 动保护 。 当发 电机与变压器之间没有断路 器 间短路 当油箱内故 障产生轻微瓦斯或油面下降时 . 当油箱 内故 障严重时 , 产生的气体量非常大 , 气体流和油流相互夹 时 .0 M A及 以下发 电机与 变压 器组共 用纵 联差 动保 护 ;0 M A 号 : 10 V 10 V 杂着冲向油枕上部 . 由于压强 的作用 , 继电器内部 的油面降低 , 瓦斯保 以上发 电机 . 除发电机变压器共用 纵联差动保护外 , 发电机还应单 独 瞬时断开变压器各侧的断路器 。 继电保护和安全 自动装 置技 《 装设纵联差 动保 护。对 2 0 3 0 0 ~ 0 MVA的发 电机变 压器组亦可在 变压 护启动 , 术规程》 规定 ..MV 04 A及 以上 车间内油浸式变压器和 08 A及 以上 MV 器上增设单独的纵联差动保护 , 即采用双重快 速保护 。 油浸式变压器 . 均应装设 瓦斯保护 。 22过电流保护 . 瓦斯保护具有可靠 、 灵敏和速动性 , 但只能反应油箱 内部 的故 障 , 电网中发生相间短路故障时 , 电流会突然增大 , 电压突然下降 , 过 所 流保护就是按线路选择性的要求 , 电流继 电器 的动作 电流的。过 不能反应引出线的故障。有 时还会受到一些外界 因素 的影响 , 以还 整定 电流保护可作为瓦斯保护和差动保 护或 电流速 断保护 的后备保 护 . 反 需要设置其他后备保 护。 2 压力保 护 . 7 应变压器外部相间短路。一般过 电流保护宜用 于降压变压器 : 电 复合 压力保护也是变压器油箱 内部故障 的主保护 . 当变压器 内部故 障 压起动 的过 电流保 护 , 宜用 于升压变压器 、 系统联 络变压器 和过 电流 温度升高 , 油膨胀压力增高 , 弹簧带动继电器触点 , 使触点 闭合 , 作 保护不满足灵敏性要求的降压变压器 : 负序 电流和单相式低 电压起 动 时 , 用于切除变压器 过 电流保护 , 可用于 6 M A及 以上升压变压器 : 3V 对于升压变压器 、 系 2 温度及 油位保护 . 8 统联络变压器 ,当采 用过 电流保护不能满足灵敏性和选择性要求 时 . 温度保护包括油 温和绕组温度保 护.当变压器 温度升高到预先设 可采用阻抗保护 定的温度时 .温度保护发生告警信号 。并投入启 动变压器的备用冷却 2 零序电流保护 . 3 反应大 接地 电流 系统 中变压 器外部 接地短 路 的零 序电 流保护 器。 油位保 护反应油箱 内油位异常的保护 。 行时 ,下转第 2 4 ) 运 ( 6页 10V及以上大接地 电流系统中 ,如果变压器 中性点可能接地运行 . 1k

电力变压器继电保护

电力变压器继电保护

电力变压器继电保护电力变压器是电力系统中不可或缺的重要设备之一,其作用是将高压电能转换为低压电能或者将低压电能转换为高压电能,以满足不同电气设备的电压要求。

电力变压器在输配电系统中承担着关键的作用,因此其可靠性和安全性非常重要。

为了确保变压器的安全运行,在变压器的保护中,继电保护技术起着至关重要的作用。

一、继电保护的作用继电保护系统是电力系统中非常重要的一部分,其作用是及时检测电力系统中的故障并采取相应的措施来隔离故障,以保护设备和保障系统的安全稳定运行。

变压器继电保护系统能够对变压器进行全面的监测和保护,一旦变压器出现故障,继电保护系统将能够做出快速的响应,避免或者减少故障给变压器带来的损害。

继电保护技术在电力变压器的应用中显得尤为重要。

二、变压器继电保护的原理变压器继电保护系统的原理是在变压器中安装有感应电流互感器和感应电压互感器,这些传感器能够对变压器的电流、电压等参数进行监测,并将监测到的数据传输到继电保护装置中进行处理。

继电保护装置会根据预先设定的保护参数和逻辑来判断变压器是否存在故障,并且确定故障的类型和位置。

一旦确定了故障的存在,继电保护装置将立即采取相应的措施,例如发出信号给断路器来分断故障点,或者给出警示信号以通知运维人员等。

三、常见的变压器继电保护功能1. 过流保护:当变压器出现短路或者过负荷情况时,将导致变压器内部的电流急剧增加,这时过流保护将会发出信号并采取措施来隔离故障,并且避免给变压器带来更大的损害。

2. 零序保护:用于保护变压器内部的短路和接地故障,能够有效地预防变压器出现电气故障,确保变压器的安全运行。

3. 差动保护:利用继电保护装置对变压器两侧的电流值进行比较,以确定变压器内部是否存在短路故障,是一种高精度的保护方式,被广泛应用于变压器保护中。

4. 欠电压保护:用于监测变压器的输入端是否存在欠电压情况,避免因为欠电压导致变压器无法正常运行。

5. 过电压保护:相对于欠电压保护,过电压保护则是用于监测电压输入端的过高电压情况,确保变压器内部设备不会受到过电压的损坏。

继电保护(7)-变压器保护讲解

继电保护(7)-变压器保护讲解
• 可以将电流互感器采取合适的接线进行 相位校正,在微机保护中,也可以用软 件把它校正过来。
nTA2 nTA1 /
3 nT变压器星形侧互感 器采用三角接nTA2 nTA1 /
3

nT
变压器三角侧:互感器 采用星形接法
三、不平衡电流产生的原因及消除措施
1、由变压器励磁涌流IEF 所产生的不平衡 电流
量的磁通,其幅值为 m ,如果不计其
衰减,半个周期后( 180o ), m 也变
成 m
2m
,铁芯中的磁通r 就达到
,2加m上 r
铁芯的剩余磁通 ,总磁通将为
铁芯严重饱和,励I EF 磁电流将剧烈增大, 而成为励磁涌流 。其最大值可达额定 电流的6-8倍。
• 励磁涌流特点 (1)包含有很大的非周期分量(直流分量),
• 变压器保护方式
1、瓦斯保护:针对变压器油箱内的各种故 障以及油面的降低,它反应与油箱内所 产生的气体和油流而动作。轻瓦斯保护 动作于信号,重瓦斯动作于跳闸。
2、纵差动保护或电流速断保护(动作于跳 闸)
• 纵差动保护:大型重要变压器
• 电流速断保护:中小型变压器,且过电 流保护时限大于0.5s时。
(4)阻抗保护,对于采用(2)、(3)的保护不 满足灵敏性和选择性要求时。
4、外部接地短路时,应采用的保护
• 如变压器中性点接地运行,应装设零序电流 保护。对自耦变压器和高、中压侧中性点都 直接接地的三绕组变压器,当有选择性要求 时,应增设零序方向元件。
• 对于电网中部分变压器中性点接地运行时 (一般110kV电网为保证零序等值电路不变化, 只一台变压器接地,其他变不接地),为防 止中性点接地变压器跳开后,不接地变压器 仍带接地故障运行,可装设零序过电压保护、 中性点装放电间隙加零序电流保护等。

电力变压器的继电保护

电力变压器的继电保护

侧引起的 穿越电流 值,如表 6-5所示。
表6-5 变压器低压侧短路时在高压侧引起的穿越电流值
下面分别就Yyn0联结的变压器和Dyn11联结的变压器当其低压侧发生单相短路时在其 高压侧引起的穿越电流的换算关系作一分析。其余的请读者自行分析。
1、Yyn0联结的变压器低压侧短路时在高压侧引起的穿越电流的换算关系分析 假设低压侧b相发生单相短路,其短路电流 Ik 。 I根b 据对称分量法,这一单相短路Ib 可 分解为正序分量Ib1=Ib /3,负序分量Ib2 =Ib /3,零序分量Ib0 =Ib /3。由此可绘出该变压器低压 侧b相短路时低压和高压两侧各序电流分量的相量图(设变压器的电压比为1),如图6-34 所示。
迅速。按GB50052-1992规定:10000kVA及以上单独运行变压器和6300kVA及以上 的并列运行变压器,变压器,应装设纵联差动保护;6300kVA及以下单独运行的重 要变压器,也可装设纵联差动保护。当电流速断保护灵敏度不符合要求时,亦可 装设纵联差动保护。
(一) 变压器差动保护的基本原理
流 Iop(0) 按躲过变压器低压侧最大不平衡电流来整定,其整定计算的公式为
Iop(0)

Krel Kdsq Ki
I 2 N .T
(6-45)
式中 I2N.T 为变压器的额定二次电流;Kdsq 为不平衡系数,一般
取为0.25;K i
为零序电流互感器TAN的变流比;K
为可靠系数,可
rel
取1.3。
零序电流保护的动作时间一般取为0.5~0.7s。
上述四项适于低压侧单相短路保护的措施中, 以第一项措施应用最广,因为它既满足了低压侧 单相短路保护的要求,又操作方便,便于实现自 动化。
四、变压器的过电流保护、电流速断保护和过负荷保护

电力变压器继电保护

电力变压器继电保护

电力变压器继电保护
电力变压器是输电和配电系统中不可或缺的设备,其作用主要是将高压输电线路的电压降至中压或低压电平,从而满足用电设备的需要。

然而,由于变压器的大量使用和长时间运行,可能会发生各种故障,如短路、过流、过压、过载等,这些故障可能对变压器和整个电网造成严重的危害。

因此,必须采取有效的继电保护措施来保护变压器及其它设备。

电力变压器继电保护的目的是在发生变压器故障时,快速地将变压器隔离,从而保护变压器和整个电网。

其原理是通过继电器感应电流、电压等指标,并将信号传递给开关装置,以启动故障保护动作。

以下是电力变压器继电保护的几种常见保护方式。

1. 欠电流保护
欠电流保护通常用于保护变压器的主回路,其原理是检测变压器的内部电流,一旦检测到电流值小于某一预设值,说明电路已经发生了故障,此时应该立即停止供电并进行维修。

欠电流保护装置通常设置在变压器高压侧的主回路保护开关上。

过流保护是一种常见的继电保护方式,用于保护变压器的高压侧和低压侧。

过流保护装置通常采用电流互感器检测电路中的电流值,一旦检测到电流值超过预设阈值,就会启动保护装置进行动作。

过流保护的阈值可根据变压器的电性能和工作环境进行设置。

3. 过压保护
过载保护通常用于保护变压器的额定容量,其原理是检测变压器负载电流,一旦负载电流超过变压器的额定容量,就会启动保护动作。

过载保护通常设置在变压器低压侧的保护开关上。

总之,电力变压器继电保护是保护变压器及其它设备的重要手段,可有效地保护电力系统的正常运行。

因此,在变压器的设计、安装和运行过程中,必须严格遵守安全操作规程和技术规范,以确保电力系统的可靠性和安全性。

电力系统继电保护第9章 变压器保护

电力系统继电保护第9章 变压器保护
重瓦斯动作于跳闸,同时发出信号 一般油流流速整定范围为0.6~1.5m/s
第9章 变压器保护
8 2020/6/18
瓦斯保护的主要优点是结构简单,灵敏性高, 能反应变压器油箱内的各种故障。特别是能反应 轻微匝间短路。它也是油箱漏油或绕组、铁芯烧 损的唯一保护。
瓦斯保护不能反应变压器套管和引出线的故 障,需与纵差动保护一起作为变压器的主保护。
I&AY1
KD1 KD2 KD3
a
b
c
第9章 变压器保护
一次电流 I&A1、I&B1、I&C1 二次电流I&A2、I&B2、I&C2
外转角接线
15 2020/6/18
Y侧
I&CY1
I&AY1 I&BY1
I&AY2-I&BY2 I&AY2
I&CY2
I&BY2-I&CY2 I&BY2
I&A1
△侧
不同相
技术措施
比率制动 相位补偿
系数补偿 (平衡线圈)
1 整定计算考虑
KST 10 0 0 Ik.max KST 10 0 0 IL.max
0.05
Iunb.max fIk.max
Iunb.max UIk.max范围一半
二次谐波 平衡线圈匝数必须为整数引起 间断角 的误差,微机保护可不考虑
前Y侧电流300,形成不平衡电流。 对策:相位补偿 将变压器各侧二次电流调整为同相 方法1.“外转角” 在保护外将相位补偿过来 变压器Y侧电流互感器的二次绕组接成三角形, d侧的三个电流互感器接成星形。
第9章 变压器保护
14 2020/6/18

电力变压器继电保护

电力变压器继电保护

电力变压器继电保护电力变压器继电保护是电力系统运行中非常重要的一部分,它的作用是在发生故障时及时保护变压器,确保电力系统的正常运行。

随着电力系统的不断发展和变化,继电保护技术也在不断进步和完善。

本文将从电力变压器继电保护的基本原理、常见继电保护装置和技术发展趋势等方面进行讨论。

一、基本原理电力变压器是电力系统中常见的重要设备,它的主要作用是将电力从一种电压变换成另一种电压,以满足不同电力设备的需求。

在实际运行中,变压器经常会受到各种外部因素的影响,如电路短路、过载、接地故障等,这就需要对变压器进行继电保护。

继电保护的基本原理是通过测量变压器电压、电流等参数,对变压器的运行状态进行监测和分析,一旦发生故障,即可及时采取保护措施,防止故障扩大。

其核心是利用电力系统中的各种传感器和电气元件,实时监测电力设备的运行状态,当出现异常情况时,能够快速、准确地给出保护动作信号,确保电力系统的安全运行。

二、常见继电保护装置1. 电流互感器:用于测量变压器的电流值,通过测量电流大小和方向来判断变压器的负载情况,以及是否发生了短路故障。

3. 差动保护装置:差动保护是变压器继电保护中常见的一种保护方式,通过比较输入端和输出端的电流值,判断变压器是否出现了内部短路和接地故障。

4. 过流保护装置:用于测量变压器的电流值,当变压器的负载超过额定值时,能够及时切断电源,防止设备过载损坏。

三、技术发展趋势随着电力系统的不断发展和变化,电力变压器继电保护技术也在不断进步和完善。

未来,继电保护技术将朝着以下方向发展:1. 智能化:未来的继电保护装置将会更加智能化,能够实现远程监控和控制,实时对变压器的运行状态进行监测,提高保护的精度和可靠性。

2. 通信互联:未来的继电保护系统将会更加注重与其他电力设备和系统的互联互通,以实现更为全面的电力系统保护。

4. 高精度:未来的继电保护装置将会更加注重对电力设备运行状态的高精度监测和分析,以实现更为精准的保护动作。

电力变压器继电保护

电力变压器继电保护

电力变压器继电保护
电力变压器是电力系统中重要的设备之一,起着将电能从一个电压等级变换到另一个
电压等级的作用。

为了确保变压器的安全运行,需要在变压器上安装继电保护装置。

电力变压器继电保护是指通过继电器和其他辅助装置对变压器进行监测、保护和控制
的系统。

其主要功能包括故障检测、故障跳闸、故障隔离及自动恢复。

电力变压器继电保护的工作原理是基于电流、电压和温度等要素监测变压器的工作状态。

当变压器出现故障时,继电保护装置会迅速出现动作,通过切断故障电路,保护变压
器和电力系统的安全运行。

常见的电力变压器继电保护装置包括差动保护、过电流保护、过温保护和接地保护等。

差动保护是最常用的继电保护装置之一,其原理是通过测量进出变压器的电流差值来判断
是否发生故障,并采取保护措施。

过电流保护是指当变压器的电流超过额定值时,继电保
护装置会迅速动作,切断故障电路。

过温保护是通过测量变压器的温度来判断是否超温,
并采取保护措施。

接地保护是指当变压器出现接地故障时,继电保护装置会迅速检测到并
切断故障电路。

电力变压器继电保护在电力系统中起到了至关重要的作用,它可以保护变压器的安全
运行,提高电力系统的运行可靠性。

对于电力变压器继电保护装置的选用和调试,需要严
格按照相关标准进行,以确保其工作可靠、准确。

电力变压器继电保护

电力变压器继电保护

电力变压器继电保护
电力变压器继电保护是一种常见的电力设备保护系统,用于保护电力变压器免受各种故障和异常工况的影响,从而确保电力系统的稳定运行和变压器的安全可靠运行。

电力变压器继电保护系统通常由多个保护装置组成,包括差动保护、过流保护、接地保护、重载保护、短路保护等。

差动保护是电力变压器继电保护系统中最重要的保护装置之一。

差动保护用于检测电力变压器的绕组电流之间的差异,以判断是否存在绕组接地短路、相间短路等故障。

当绕组之间存在电流差异时,差动保护将动作,切断电力变压器与电力系统的连接,保护变压器免受故障的影响。

电力变压器继电保护系统通常由硬件装置和软件系统组成。

硬件装置包括各种保护装置、继电器、开关等,用于检测和切断电力变压器与电力系统的连接。

软件系统则用于配置和管理保护装置的参数和功能,以确保电力变压器继电保护系统的正常运行。

在实际应用中,电力变压器继电保护系统需要根据电力变压器的特性和运行条件进行合理的配置和调试,以确保保护装置的动作准确可靠,能够及时切断故障电路,并防止误动作。

电力变压器继电保护是保障电力变压器安全可靠运行的重要装置,通过差动保护、过流保护、接地保护、重载保护和短路保护等功能,能够及时切断故障电路,保护变压器免受故障的影响,维护电力系统的稳定和可靠运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 电力变压器的保护
第一节 电力变压器的故障类型、不正常运行状态及其相应的保 护方式 变压器的故障类型 变压器的不正常运行状态 根据故障类型和不正常运行状态,对变压器应装设的保护类型
第二节 变压器的纵差动保护 构成变压器纵差动保护的基本原则 变压器纵差动保护的特点 变压器纵差动保护的整定计算原则
②包含有大量的高次谐波,而以二次谐波为主; ③波形之间出现间断,如图8-3所示,在一个周期中间断 角为α。
(2)在变压器纵差动保护中防止励磁涌流影响的方法:
①采用具有速饱和铁心的差动继电器; ②鉴别短路电流和励磁涌流波形的差别; ③利用二次谐波制动等。
表8-1 励磁涌流试验数据举例
图8-3 励磁涌流的波形
图8-4(a)所示为Y,d11接线变压器的纵差动保护原理接
线图,图中 I&AY1、I&BY1和I&CY1为星形侧的一次电流,I&A1、I&B1和I&C1 为三 角形侧的一次电流,后者超前30°,如图8-4(b) 所示。现将
星形侧的电流互感器也采用相应的三角形接线,则其副边输 出电流为了 I&AY2 -I&BY2 、 I&BY2 I&CY 2 和 I&CY 2 I&AY2 ,它们刚好 与 I&A2、I&B2和I&C2 同相位,如图8-4(C)所示。这样差动回路两 侧的电流就是同相位的了。
2、由变压器两侧电流相位不同而产生的不平衡电流
由于变压器常常采用Y,d11的接线方式,因此,其两侧电 流的相位差30°。此时,如果两侧的电流互感器仍采用通常的 接线方式,则二次电流由于相位不同,也会有一个差电流流入 继电器。为了消除这种不平衡电流的影响,通常都是将变压器 星形侧的三个电流互感器接成三角形,而将变压器三角形侧的 三个电流互感器接成星形,并适当考虑联接方式后即可把二次 电流的相位校正过来。在微机保护中,则可以利用软件把它校 正过来。
2、纵差动保护或电流速断保护 对变压器绕组、套管及引出线上的故障,应根据容量的不 同,装设纵差动保护或电流速断保护。 纵差动保护适用于:并列运行的变压器,容量为 6300kVA 以上时;单独运行的变压器,容量为l0000kVA以上时;发电厂 厂用工作变压器和工业企业中的重要变压器,容量为 6300kVA 以上时。 电流速断保护用于1O000kVA以下的变压器,且其过电流保 护的时限大于0.5s时。对200OkVA以上的变压器,当电流速断保 护的灵敏性不能满足要求时,也应装设纵差动保护。 对高压侧电压为330kV及以上的变压器,可装设双差动保护。 上述各保护动作后,均应跳开变压器各电源侧的断路器。
图8—2 变压器励磁涌流的产生及变化曲线 (a)稳态情况下,磁通与电压的关系;(b)在u=0瞬间空载合闸时,磁通
与电压的关系;(c)变压器铁心的磁化曲线;(d)励磁涌流的波形
(1)励磁涌流的特点: 表8-l所示的数据,是对几次励磁涌流试验数据的分析。
由此可见,励磁涌流具有以下特点。
①包含有很大成分的非周期分量,往往使涌流偏于时间轴 的一侧;
在整定计算时应该予以考虑。
图8-5 利用速饱和变流器的平衡线圈消除差电流影响的原理接线图
4、由两侧电流互感器型号不同而产生的不平衡电流 由于两侧电流互感器的型号不同,它们的饱和特性、励磁 电流(归算至同一侧)也就不同,因此,在差动回路中所产生 的不平衡电流也就较大。此时应采用电流互感器的同型系数 Ks=1。 5、由变压器带负荷调整分接头而产生的不平衡电流 带负荷调整变压器的分接头,是电力系统中采用带负荷调 压的变压器来调整电压的一种方法,实际上改变分接头就是改 变变压器的变比nT。如果差动保护已按照某一变比调整好(如 利用平衡线圈),则当分接头改换时,就会产生一个新的不平 衡电流流入差动回路。此时不可能再用重新选择平衡线圈匝数 的方法来消除这个不平衡电流,这是因为变压器的分接头经常 在改变,而差动保护的电流回路在带电的情况下是不能进行操 作的。因此,对由此而产生的不平衡电流,应在纵差动保护的 整定值中予以考虑。
但当电流互感器采用上述连接方式以后,在互感器接成 三角形侧的差动一臂中,电流又增大了 3倍。此时为保证在 正常运行及外部故障情况下差动回路中应没有电流,就必须
将该侧电流互感器的变比加大 3 倍,以减小二次电流,使之 与另一侧的电流相等,故此时选择变比的条件是:
nTA 2 nTA1 /
3
nT
(8.2)
3、外部相间短路时,应采用的保护 对于外部相间短路引起的变压器过电流,应采用下列保护 作为后备保护。 (l)过电流保护,一般用于降压变压器,保护装置的整定 值应考虑事故状态下可能出现的过负荷电流; (2)复合电压起动的过电流保护,一般用于升压变压器、 系统联络变压器及过电流保护灵敏度不满足要求的降压变压器 上; (3)负序电流及单相式低电压起动的过电流保护,一般用 于容量为63MVA及以上的升压变压器和系统联络变压器,当采用 第(2)、(3)的保护不能满足灵敏性和选择性要求时,可采 用阻抗保护。对500kV系统联络变压器高、中压侧均应装设阻抗 保护。保护可带两段时限,以较短的时限用于缩小故障影响范 围;较长的时限用于断开变压器各侧断路器。
8.1.3 根据故障类型和不正常运行状态,对变 压器应装设的保护类型
1、瓦斯保护 对变压器油箱内的各种故障以及油面的降低,应装设瓦斯 保护,它反应于油箱内部所产生的气体或油流而动作。其中轻 瓦斯保护动作于信号,重瓦斯保护动作于跳开变压器各电源侧 的断路器。 应装设瓦斯保护的变压器容量界限是:800KVA及以上的油 浸式变压器和 400kVA及以上的车间内油浸式变压器。同样对 带负荷调压的油浸式变压器的调压装置,也应装设瓦斯保护。
的磁动势为 WM (I2 I2)。为了消除这个差动电流的影响,通 常都是将平衡线圈Wb接入二次电流较小的一侧,如图所示应
接于I2的回路中。适当地(I2 I2) ,则在二次线圈W2里就不会感应电动势, 因而继电器I中也没有电流,达到了消除差电流影响的目的。
第二节 发电机变压器组继电保护的特点
8、1 电力变压器的故障类型、 不正常运行状态及其相应的保护方式
8.1.1 变压器的故障类型
变压器的内部故障可以分为油箱内和油箱外故障两种。 油箱内的故障包括绕组的相间短路、接地短路,匝间短 路以及铁心的烧损等,对变压器来讲,这些故障都是十分危 险的,因为油箱内故障时产生的电弧,将引起绝缘物质的剧 烈汽化,从而可能引起爆炸,因此,这些故障应该尽快加以 切除。 油箱外的故障,主要是套管和引出线上发生相间短路和 接地短路。 上述接地短路均系对中性点直接接地电力网的一侧而言。
由于两侧的电流互感器都是根据产品目录选取标准的变比, 而变压器的变比也是一定的,因此,三者的关系很难满足
nTA2 nTA1
nT
(或
nTA2 nTA1
nB ) 的要求,此时差动回路中将有
电流流过。当采用具有速饱和铁心的差动继电器时,通常都是
利用它的平衡线圈Wb来消除此差电流的影响。
以双绕组变压器为例,假设在区外故障时 I2 I2 ,如图 8-5所示,则差动线圈中将流过电流 (I2 I2),由它所产生
在图8-l(a)中应使
I2
I
" 2
I1' nTA1
I1" nTA2

nTA2 nTA1
I1" I1'
nT
(8.1)
式中 nTA1——高压侧电流互感器的变比 nTA2——低压侧电流互感器的变比 nTA3——变压器的变比(高、低压侧额定电压之比)
由此可知,要实现变压器的纵差动保护,就必须适当地
选择两侧电流互感器的变比,使其比值等于变压器的变比nT 这是与前述送电线路的纵差动保护不同的。这个区别是由于
8.1.2 变压器的不正常运行状态
由于变压器外部相间短路引起的过电流和外部接地短路引 起的过电流和中性点过电压;由于负荷超过额定容量引起的过 负荷以及由于漏油等原因而引起的油面降低。
对大容量变压器,由于其额定工作时的磁通密度相当接近 于铁心的饱和磁通密度,因此在过电压或低频率等异常运行方 式下,还会发生变压器的过励磁故障。
线路的纵差动保护可以直接比较两侧电流的幅值和相位,而
变压器的纵差动保护则必须考虑变压器变比的影响。
8.2.2 变压器纵差动保护的特点
变压器的纵差动保护同样需要躲开流过差动回路中的不 平衡电流。现对其不平衡电流产生的原因和消除方法分别讨 论如下。
1、由变压器励磁涌流IEF所产生的不平衡电流
变压器的励磁电流IE仅流经变压器的某一侧,因此,通 过电流互感器反应到差动回路中不能被平衡,在正常运行情 况下,此电流很小,一般不超过额定电流的2%~10%。在 外部故障时,由于电压降低,励磁电流减小,它的影响就更 小。
4、外部接地短路时,应采用的保护 对中性点直接接地电力网内,由外部接地短路引起过电流 时,如变压器中性点接地运行,应装设零序电流保护。零序电 流保护可由两段组成,每段可各带两个时限,并均以较短的时 限动作于缩小故障影响范围,或动作于本侧断路器,以较长的 时限动作于断开变压器各侧断路器。 对自耦变压器和高、中压侧中性点都直接接地的三绕组变 压器,当有选择性要求时,应装设零序方向元件。 当电力网中部分变压器中性点接地运行,为防止发生接地 短路时,中性点接地的变压器跳开后,中性点不接地的变压器 (低压侧有电源)仍带接地故障继续运行,应根据具体情况, 装设专用的保护装置,如零序过电压保护,中性点装放电间隙 加零序电流保护等。
式中 nTA1和nTA2为适应 Y , d 接线的需要而采用的新变比。
图8-4Y,d11接线变压器的纵差动保护接线和矢量图 (图中电流方向对应于正常工作情况)
(a)变压器及其纵差动保护的接线;(b)电流互感器原边电流矢量图; (C)纵差动回路两侧的电流矢量图
3、由计算变比与实际变比不同而产生的不平衡电流
相关文档
最新文档