2020年【通用版】高考数学(三轮复习)冲刺专题《数学思想方法》(含答案)

合集下载

最新高中数学思想办法(附经典例题及详解)

最新高中数学思想办法(附经典例题及详解)

最新高中数学思想办法(附经典例题及详解) 最新高中数学思想办法经典例题经典解析名目前言 (2)第一章高中数学解题基本办法 (3)一、配办法 (3)二、换元法 (7)三、待定系数法 (14)四、定义法 (19)五、数学归纳法 (23)六、参数法 (28)七、反证法 (32)八、消去法………………………………………九、分析与综合法………………………………十、特别与普通法………………………………十一、类比与归纳法…………………………十二、观看与实验法…………………………第二章高中数学常用的数学思想 (35)一、数形结合思想 (35)二、分类讨论思想 (41)三、函数与方程思想 (47)四、转化(化归)思想 (54)第三章高考热点咨询题和解题策略 (59)一、应用咨询题 (59)二、探究性咨询题 (65)三、挑选题解答策略 (71)四、填空题解答策略 (77)附录………………………………………………………一、高考数学试卷分析…………………………二、两套高考模拟试卷…………………………三、参考答案……………………………………前言美国闻名数学教育家波利亚讲过,掌握数学就意味着要善于解题。

而当我们解题时遇到一具新咨询题,总想用熟悉的题型去“套”,这不过满脚于解出来,惟独对数学思想、数学办法明白透彻及融会贯穿时,才干提出新看法、巧解法。

高考试题十分重视关于数学思想办法的考查,特殊是突出考查能力的试题,其解答过程都蕴含着重要的数学思想办法。

我们要故意识地应用数学思想办法去分析咨询题解决咨询题,形成能力,提高数学素养,使自个儿具有数学头脑和眼光。

高考试题要紧从以下几个方面对数学思想办法举行考查:①常用数学办法:配办法、换元法、待定系数法、数学归纳法、参数法、消去法等;②数学逻辑办法:分析法、综合法、反证法、归纳法、演绎法等;③数学思维办法:观看与分析、概括与抽象、分析与综合、特别与普通、类比、归纳和演绎等;④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。

《数学思想方法》综合练习(含答案)

《数学思想方法》综合练习(含答案)

《数学思想方法》综合练习一、填空题1.《九章算术》思想方法的特点是开放的归纳体系算法化的内容模型化的方法。

2.古代数学大体可分为两种不同的类型:一种是崇尚逻辑推理,以《几何原本》为代表;一种是长于计算和实际应用,以《九章算术》为典范。

3.在数学中建立公理体系最早的是几何学,而这方面的代表著作是古希腊欧几里得的《几何原本》。

4.《几何原本》所开创的公理化方法不仅成为一种数学陈述模式,而且还被移植到其它学科,并且促进他们的发展。

5.推动数学发展的原因主要有两个:①实践的需要,②理论的需要:数学思想方法的几次突破就是这两种需要的结果。

6.变量数学产生的数学基础是解析几何,标志是微积分。

7.数学基础知识和数学思想方法是数学教学的两条主线。

&随机现象的特点是在一定条件下,可能发生某种结果,也可能不发生某种结果。

9.等腰三角形的抽象过程,就是把一个新的特征:两边相等,加入到三角形概念中去,使三角形概念得到强化。

10.学生理解或掌握数学思想方法的过程有如下三个主要阶段、①潜意识阶段,②明朗化阶段,③深刻理解阶段。

11.数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现,它表现为数学的各个分支相互渗透和相互结合的趋势。

12.抽象的含义:取其共同的本质属性或特征,舍去其非本质的属性或特征的思维过程13.强抽象就是指,通过把一些新特征加入到某一概念中去而形成新概念的抽象过程。

14.菱形概念的抽象过程就是把一个新的特征:一组邻边相等,加入到平行四边形概念中去,使平行四边形概念得到了强化。

15.演绎法与归纳法被认为是理性思维中两种最重要的推理方法。

16.所谓类比,是指由一类事物所具有的某种属性,可以推测与其类似的事物也具有该属性的一种推理方法:常称这种方法为类比法,也称类比推理。

17.反例反驳的理论依据是形式逻辑的矛盾律。

18.在反例反驳中,构造一个反例必须满足条件(1)反例满足构成猜想的所有条件(2)反例与构成猜想的结论矛盾。

【精品高考数学】2020年江苏省高考数学三轮冲刺专项突破-专题10 坐标系与参数方程 +答案

【精品高考数学】2020年江苏省高考数学三轮冲刺专项突破-专题10 坐标系与参数方程 +答案

2020年江苏省高考数学三轮冲刺专项突破专题10坐标系与参数方程2020年江苏高考核心考点1.坐标系与参数方程是江苏高考必考题,考试大纲要求掌握参数方程与普通方程的转化。

2.江苏高考常对极坐标方程与直角坐标方程的互化。

专项突破一、解答题:本大题共16小题,共计160分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.1.(2019—2020学年度苏、锡、常、镇四市高三教学情况调查(一))在平面直角坐标系xOy 中,曲线l 的参数方程为⎪⎩⎪⎨⎧+=+=2cos 323cos 22θθy x ,以原点O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4sin θ.(1)求曲线C 的普通方程;(2)求曲线l 和曲线C 的公共点的极坐标.2. (江苏省南京市、盐城市2020届高三年级第二次模拟考试)在平面直角坐标系xOy 中,曲线C 的参数方程为2212x t y t =⎧⎪⎨=⎪⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l极坐标方程为cos()4πρθ-=.若直线l 交曲线C 于A ,B 两点,求线段AB的长.3. (江苏省苏北七市2020届高三第二次调研考试)在极坐标系中,已知曲线C 的方程为r ρ=(r >0),直线l的方程为cos()4πρθ+=.设直线l 与曲线C相交于A ,B 两点,且AB=r 的值.4.(江苏省海安中学高三数学模拟考试数学试卷)已知点P 在曲线C :⎩⎨⎧==θθsin 3cos 4y x (θ为参数)上,直线 l :⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 223223(t 为参数),求P 到直线l 距离的最小值.5.(江苏省南通市2020届四校联盟高三数学模拟测试卷)在极坐标中,已知圆C 经过点)4P π,,圆心为直线sin 32πρθ⎛⎫-=- ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.6.(南通市通州区2020届高三年级第二学期复学后联考数学试卷) 在极坐标系中,已知(A 1,3π),(B 9,3π),线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ABC ∆的面积.7.(无锡市第一中学2018—2019学年度第二学期期初质量检测) 在极坐标系中,已知圆C 的圆心极坐标为(2,),且圆C 经过极点,求圆C 的极坐标方程.8.(江苏省如皋市2019—2020学年高三年级第二学期语数英学科模拟(二))在极坐标系中,求直线6πθ=(ρ∈R )被曲线4sin()6πρθ=+所截得的弦长.9.(2020年南通高考模拟(3月份)高考数学模拟试卷)已知直线l 的极坐标方程为ρsin(θ−π3)=6,圆C 的参数方程为{x =10cosθy =10sinθ(θ为参数).(1)请分别把直线l 和圆C 的方程化为直角坐标方程; (2)求直线l 被圆截得的弦长.10.(2019~2020学年度南师附中高三年级第二学期期初调研测试)在极坐标系(ρ,θ)(0≤θ<2π)中,求曲线ρ=2sinθ与ρcosθ=1的交点Q 的极坐标.11.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,两种坐标系取相同的单位长度.已知曲线1325: 45x t C y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)和曲线22:sin 2cos C ρθθ=相交于A B 、两点,求AB 中点的直角坐标.12.在极坐标系中,直线l 的极坐标方程为cos()13πρθ+=. 以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 的参数方程为cos sin x r y r θθ=⎧⎨=⎩(θ为参数). 若直线l 与圆C 相切,求r 的值.13.已知直线l 的参数方程为⎩⎨⎧-=+-=t y tx 4231(t 为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为)4cos(22πθρ-=. (1)求直线l 的普通方程及曲线C 的直角坐标方程; (2)设直线l 与曲线C 交于A 、B 两点,求线段AB 的长度.14.在平面直角坐标系xOy 中,已知直线l 的参考方程为82x t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C的参数方程为22x sy ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.15.在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.16.在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.2020年江苏省高考数学三轮冲刺专项突破专题10坐标系与参数方程2020年江苏高考核心考点1.坐标系与参数方程是江苏高考必考题,考试大纲要求掌握参数方程与普通方程的转化。

专题1 数形结合思想【高考文科数学】数学思想方法 含答案

专题1 数形结合思想【高考文科数学】数学思想方法 含答案

第二讲数形结合思想1.数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.2.数形结合思想的实质、关键及运用时应注意的问题:其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化,在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参,合理用参,建立关系,由数思形,以形思数,做好数形转化;第三是正确确定参数的取值范围.3.实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(4)所给的等式或代数式的结构含有明显的几何意义.如等式(x-2)2+(y-1)2=4,表示坐标平面内以(2,1)为圆心,以2为半径的圆.1.(2013·重庆)已知圆C1:(x-2)2+(y-3)2=1,圆C2:(x-3)2+(y-4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为( ) A.52-4 B.17-1C.6-2 2 D.17答案 A解析设P(x,0),设C1(2,3)关于x轴的对称点为C1′(2,-3),那么|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2|=2-32+-3-42=5 2.而|PM|=|PC1|-1,|PN|=|PC2|-3,∴|PM|+|PN|=|PC1|+|PC2|-4≥52-4.2. (2011·大纲全国)已知a、b是平面内两个互相垂直的单位向量,若向量c满足(a-c)·(b -c)=0,则|c|的最大值是( )A.1 B.2 C. 2 D.2 2答案 C解析 如图,设OA →=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c .由题意知CA →⊥CB →,∴O 、A 、C 、B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC →|= 2.3. (2013·山东)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12答案 C解析 如图,由⎩⎪⎨⎪⎧x +2y -1=0,3x +y -8=0得A (3,-1).此时直线OM 的斜率最小,且为-13.4. (2013·课标全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x , x ≤0,ln x +1, x >0.若|f (x )|≥ax ,则a的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 D解析 函数y =|f (x )|的图象如图. ①当a =0时,|f (x )|≥ax 显然成立. ②当a >0时,只需在x >0时, ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,∴a ≥-2.综上所述:-2≤a ≤0.故选D.5. (2012·天津)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.答案 (0,1)∪(1,4)解析 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1x >1或x <-1,-x -1-1≤x <1.在直角坐标系中作出该函数的图象,如图中实线所示. 根据图象可知,当0<k <1或1<k <4时有两个交点.题型一 数形结合解决方程的根的个数问题 例1 (2012·福建)对于实数a和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.审题破题 本题以新定义为背景,要先写出f (x )的解析式,然后将方程f (x )=m 根的个数转化为函数y =f (x )的图象和直线y =m 的交点个数.答案 ⎝ ⎛⎭⎪⎫1-316,0解析 由定义可知,f (x )=⎩⎪⎨⎪⎧2x -1x ,x ≤0,-x -1x ,x >0.作出函数f (x )的图象,如图所示.由图可知,当0<m <14时,f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3. 不妨设x 1<x 2<x 3, 易知x 2>0,且x 2+x 3=2×12=1,∴x 2x 3<14.令⎩⎪⎨⎪⎧2x -1x =14,x <0,解得x =1-34.1-34<x1<0,∴1-316<x1x2x3<0.∴反思归纳 研究方程的根的个数、根的范围等问题时,经常采用数形结合的方法.一般 地,方程f (x )=0的根,就是函数f (x )的零点,方程f (x )=g (x )的根,就是函数f (x )和g (x )的图象的交点的横坐标.变式训练1 已知:函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是( )A .5B .7C .9D .10答案 C解析 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.又f (x )=lg x ,则x ∈(0,10],画出两函数图象,则交点个数即为解的个数.由图象可知共9个交点.题型二 数形结合解不等式问题例2 设有函数f (x )=a +-x 2-4x 和g (x )=43x +1,已知x ∈[-4,0]时恒有f (x )≤g (x ),求实数a 的取值范围.审题破题 x ∈[-4,0]时恒有f (x )≤g (x ),可以转化为x ∈[-4,0]时,函数f (x )的图象都在函数g (x )的图象下方或者两图象有交点. 解 f (x )≤g (x ),即a +-x 2-4x ≤43x +1,变形得-x 2-4x ≤43x +1-a ,令y =-x 2-4x , ① y =43x +1-a .②①变形得(x +2)2+y 2=4(y ≥0),即表示以(-2,0)为圆心,2为半径的圆的上半圆;②表示斜率为43,纵截距为1-a 的平行直线系.设与圆相切的直线为AT ,AT 的直线方程为: y =43x +b (b >0), 则圆心(-2,0)到AT 的距离为d =|-8+3b |5,由|-8+3b |5=2得,b =6或-23(舍去).∴当1-a ≥6即a ≤-5时,f (x )≤g (x ).反思归纳 解决含参数的不等式和不等式恒成立问题,可以将题目中的某些条件用图象表现出来,利用图象间的关系以形助数,求方程的解集或其中参数的范围.变式训练2 已知不等式x 2+ax -2a 2<0的解集为P ,不等式|x +1|<3的解集为Q ,若P ⊆Q ,求实数a 的取值范围.解 x 2+ax -2a 2=(x +2a )(x -a )<0. |x +1|<3⇒Q ={x |-4<x <2}.当-2a <a ,即a >0时,P ={x |-2a <x <a }.∵P ⊆Q ,∴⎩⎪⎨⎪⎧-2a ≥-4,a ≤2,a >0.解得0<a ≤2.当-2a =a ,即a =0时,P =∅,P ⊆Q . 当-2a >a ,即a <0时,P ={x |a <x <-2a },∵P ⊆Q ,∴⎩⎪⎨⎪⎧a ≥-4,-2a ≤2,a <0,解得-1≤a <0,综上可得-1≤a ≤2.题型三 数形结合解决有明显几何意义的式子(概念)问题例3 已知函数f (x )=ax 2+bx -1(a ,b ∈R 且a >0)有两个零点,其中一个零点在区间(1,2)内,则ba +1的取值范围为( )A .(-∞,1)B .(-∞,1]C .(-2,1]D .(-2,1)审题破题 先根据图象确定a ,b 满足的条件,然后利用ba +1的几何意义——两点(a ,b ),(-1,0)连线斜率求范围.答案 D解析 因为a >0,所以二次函数f (x )的图象开口向上.又f (0)=-1,所以要使函数f (x )的一个零点在区间(1,2)内,则有⎩⎪⎨⎪⎧a >0,f 1<0,f 2>0,即⎩⎪⎨⎪⎧a >0,a +b -1<0,4a +2b -1>0.如图所示的阴影部分是上述不等式组所确定的平面区域,式 子ba +1表示平面区域内的点 P (a ,b )与点Q (-1,0)连线的斜率.而直线QA 的斜率k =1-00--1=1,直线4a +2b -1=0的斜率为-2,显然不等式组所表示的平面区域不包括边界,所以P ,Q 连线的斜率的取值范围为(-2,1).故选D. 反思归纳 如果等式、代数式的结构蕴含着明显的几何特征,就要考虑用数形结合的思想方法来解题,即所谓的几何法求解,比较常见的对应有: (1)b -n a -m ↔(a ,b )、(m ,n )连线的斜率; (2)a -m2+b -n2↔(a ,b )、(m ,n )之间的距离;(3)a 2+b 2=c 2↔a 、b 、c 为直角三角形的三边; (4)f (a -x )=f (b +x )↔f (x )图象的对称轴为x =a +b2.只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形结合的思想方法.变式训练3 已知点P (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则x 2+y 2-6x +9的取值范围是( )A .[2,4]B .[2,16]C .[4,10]D .[4,16]答案 B解析 画出可行域如图,所求的x 2+y 2-6x +9=(x -3)2+y 2是点Q (3,0)到可行域上的点的距离的平方,由图形知最小值为Q 到射线x -y -1=0(x ≥0)的距离d 的平方,最大值为|QA |2=16.∵d 2=⎝⎛⎭⎪⎫|3-0-1|12+-122=(2)2=2. ∴取值范围是[2,16]. 题型四 数形结合解几何问题例4 已知点P 在抛物线y 2=4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .(14,-1)B .(14,1)C .(1,2)D .(1,-2)审题破题 本题可以结合图形将抛物线上的点P 到焦点的距离转化为到准线的距离,再探求最值. 答案 A解析 定点Q (2,-1)在抛物线内部,由抛物线的定义知,动点P到抛物线焦点的距离等于它到准线的距离,问题转化为当点P 到点Q 的距离和点P 到抛物线的准线距离之和最小时,求点P 的坐标,显然点P 是直线y =-1和抛物线y 2=4x的交点时,两距离之和取最小值,解得这个点的坐标是(14,-1).反思归纳 在几何中的一些最值问题中,可以根据图形的性质结合图形上点的条件进行转换,快速求得最值.变式训练4 已知P 是直线l :3x +4y +8=0上的动点,PA 、PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A 、B 是切点,C 是圆心,求四边形PACB 面积的最小值. 解 从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,直角三角形PAC 的面积S Rt △PAC=12|PA |·|AC |=12|PA |越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S四边形PACB变小,显然,当点P 到达一个最特殊的位置,即CP 垂直直线l 时,S四边形PACB应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3, 从而|PA |=|PC |2-|AC |2=2 2.∴(S 四边形PACB )min =2×12×|PA |×|AC |=2 2.典例 (12分)已知函数f (x )=x 3-3ax -1,a ≠0.(1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.规范解答解 (1)f ′(x )=3x 2-3a =3(x 2-a ), 当a <0时,对x ∈R ,有f ′(x )>0,∴当a <0时,f (x )的单调增区间为(-∞,+∞); 当a >0时,由f ′(x )>0,解得x <-a 或x >a , 由f ′(x )<0,解得-a <x <a ,∴当a >0时,f (x )的单调增区间为(-∞,-a ),(a ,+∞); 单调减区间为(-a ,a ). [4分](2)∵f (x )在x =-1处取得极值, ∴f ′(-1)=3×(-1)2-3a =0,∴a =1. [6分]∴f (x )=x 3-3x -1,f ′(x )=3x 2-3,由f ′(x )=0, 解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.因为直线y =m 与函数y =f (x )的图象有三个不同的交点, 结合如图所示f (x )的图象可知:m 的取值范围是(-3,1).[12分]评分细则 (1)求出f ′(x )给1分,不写出单调区间扣1分;(2)只画图象没有说明极值扣2分;(3)没有结论扣1分,结论中范围写成不等式形式不扣分.阅卷老师提醒 (1)解答本题的关键是数形结合,根据函数的性质勾画函数的大致图象; (2)解答中一定要将函数图象的特点交待清楚,单调性和极值是勾画函数的前提,然后结合图象找出实数m 的取值范围.1. 设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (13)<f (2)<f (12)B .f (12)<f (2)<f (13)C .f (12)<f (13)<f (2)D .f (2)<f (12)<f (13)答案 C解析 由f (2-x )=f (x )知f (x )的图象关于直线x =2-x +x2=1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|13-1|>|12-1|,∴f (12)<f (13)<f (2).2. 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则函数y =g (x )=f (x )-x 的零点个数为( )A .1B .2C .3D .4答案 C解析 由f (-4)=f (0) 得16-4b +c =c .由f (-2)=-2,得4-2b +c =-2. 联立两方程解得:b =4,c =2.于是,f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.在同一直角坐标系内,作出函数y =f (x )与函数y =x 的图象,知它们有3个交点,进而函数亦有3个零点.3. 若方程x +k =1-x 2有且只有一个解,则k 的取值范围是( )A .[-1,1)B .k =± 2C .[-1,1]D .k =2或k ∈[-1,1)答案 D解析 令y =x +k ,令y =1-x 2,则x 2+y 2=1(y ≥0). 作出图象如图:而y =x +k 中,k 是直线的纵截距,由图知:方程有一个解⇔直线与 上述半圆只有一个公共点⇔k =2或-1≤k <1.4. 设a ,b ,c 是单位向量,且a ·b =0,则(a -c )·(b -c )的最小值为( ) A .-2 B.2-2 C .-1D .1- 2答案 D解析 由于(a -c )·(b -c )=-(a +b )·c +1,因此等价于求(a +b )·c 的最大值,这个最大值只有当向量a +b 与向量c 同向共线时取得.由于a ·b =0,故a ⊥b ,如图所示,|a +b |=2,|c |=1,当θ=0时,(a +b )·c 取最大值2,故所求的最小值为1- 2. 5. 当0<x ≤12时,4x<log a x ,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝⎛⎭⎪⎫22,1 C .(1,2)D .(2,2)答案 B解析 由0<x ≤12,且log a x >4x>0,可得0<a <1,12由4 =log a 12可得a =22.令f (x )=4x,g (x )=log a x , 若4x<log a x ,则说明当0<x ≤12时,f (x )的图象恒在g (x )图象的下方(如图所示),此时需a >22. 综上可得a 的取值范围是⎝⎛⎭⎪⎫22,1. 6. 已知P 为抛物线y =14x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(2,0),则|PA |+|PM |的最小值是________. 答案5-1解析 如图,抛物线y =14x 2,即x 2=4y 的焦点F (0,1),记点P 在抛物线的准线l :y =-1上的射影为P ′,根据抛物线的定义知, |PP ′|=|PF |,则|PP ′|+|PA |=|PF |+|PA |≥|AF |=22+12=5.所以(|PA |+|PM |)min =(|PA |+|PP ′|-1)min =5-1.专题限时规范训练一、选择题1. 已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )·cos x <0的解集是( )A.⎝ ⎛⎭⎪⎫-3,-π2∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3B.⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3 C .(-3,-1)∪(0,1)∪(1,3)D.⎝ ⎛⎭⎪⎫-3,-π2∪(0,1)∪(1,3) 答案 B解析 根据对称性画出f (x )在(-3,0)上的图象如图,结合y =cos x 在(-3,0),(0,3)上函数值的正负,易知不等式f (x )cos x <0的解集是⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3.2. 已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10,若a 、b 、c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)答案 C解析 a ,b ,c 互不相等,不妨设a <b <c , ∵f (a )=f (b )=f (c ),由图象可知,0<a <1,1<b <10,10<c <12. ∵f (a )=f (b ),∴|lg a |=|lg b |,即lg a =lg 1b ,a =1b.则ab =1,所以abc =c ∈(10,12).3. 用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x } (x≥0),则f (x )的最大值为( )A .4B .5C .6D .7答案 C解析 画出y =2x,y =x +2,y =10-x 的图象,如图所示,观察图象,可知当0≤x ≤2,f (x )=2x,当2<x ≤4时,f (x )=x +2,当x >4时,f (x )=10-x ,f (x )的最大值在x =4时取得,为6.4. 函数f (x )=(12)x-sin x 在区间[0,2π]上的零点个数为( ) A .1 B .2 C .3D .4答案 B解析 函数f (x )=(12)x-sin x 在区间[0,2π]上的零点个数即为方程(12)x -sin x =0在区间[0,2π]上解的个数.因此可以转化为两函数y =(12)x 与y=sin x 交点的个数.根据图象可得交点个数为2,即零点个数为2.5. 已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)答案 C解析 ∵渐近线y =bax 与过焦点F 的直线l 平行,或渐近线从该位置绕原点按逆时针旋转时,直线l 与双曲线的右支有一个交点,∴b a≥3,即c 2=a 2+b 2≥4a 2,∴e ≥2.6. 设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( ) A .a <b <c B .a <c <b C .b <c <aD .b <a <c答案 D解析 a =sin 5π7=sin ⎝⎛⎭⎪⎫π-2π7=sin 2π7,又π4<2π7<π2,可通过单位圆中的三角函数线进行比较:如图所示,cos 2π7=OA ,sin 2π7=AB ,tan 2π7=MN ,∴cos 2π7<sin 2π7<tan 2π7,即b <a <c .7. 不等式x 2-log a x <0在x ∈(0,12)时恒成立,则a 的取值范围是( )A .0<a <1 B.116≤a <1C .a >1D .0<a ≤116答案 B解析 不等式x 2-log a x <0转化为x 2<log a x , 由图形知0<a <1且 (12)2≤log a 12, ∴a ≥116,故a 的取值范围为⎣⎢⎡⎭⎪⎫116,1.8. 函数y =11-x的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8 答案 D解析 令1-x =t ,则x =1-t .由-2≤x ≤4,知-2≤1-t ≤4,所以-3≤t ≤3. 又y =2sin πx =2sin π(1-t )=2sin πt .在同一坐标系下作出y =1t和y =2sin πt 的图象.由图可知两函数图象在[-3,3]上共有8个交点,且这8个交点两两关于原点对称.因此这8个交点的横坐标的和为0,即t 1+t 2+…+t 8=0.也就是1-x 1+1-x 2+…+1-x 8=0, 因此x 1+x 2+…+x 8=8. 二、填空题9. 若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,则yx的最小值是________.答案 2解析 可行域如图所示.又y x的几何意义是可行域内的点与坐标原点连线的斜率k . 由图知,过点A 的直线OA 的斜率最小.联立⎩⎪⎨⎪⎧x -y +1=0,y =2,得A (1,2),∴k OA =2-01-0=2.∴y x的最小值为2.10.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m的取值范围是__________. 答案 m ≥2-1解析 集合A 是一个圆x 2+(y -1)2=1上的点的集合,集合B 是一个不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),即直线x +y +m =0应与圆相切或相离(在圆的下方),而当直线与圆相切时有|m +1|2=1,又m >0,∴m =2-1,故m 的取值范围是m ≥2-1.11.若函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,则实数a 的取值范围是________.答案 a >1解析 设函数y =a x(a >0且a ≠1)和函数y =x +a .则函数f (x )=a x-x -a (a >0且a ≠1)有两个零点,就是函数y =a x(a >0且a ≠1)的图象与函数y =x +a 的图象有两个交点.由图象可知,当0<a <1时,两函数只有一个交点,不符合;当a >1时,因为函数y =a x(a >1)的图象过点(0,1),而直线y =x +a 的图象与y 轴的交点一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是a >1.12.已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≥0-2x ,x <0,则关于x 的方程f [f (x )]+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析 依题意知函数f (x )>0,又f [f (x )]=依据y =f [f (x )]的大致图象(如图)知,存在实数k ,使得方程f [f (x )]+k =0恰有1个实根;存在实数k ,使得方程f [f (x )]+k=0恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根;不存在实数k ,使得方程恰有4个不相等的实根.综上所述,其中正确命题的序号是①②. 三、解答题13.已知函数f (x )=x 3+ax 2+bx .(1)若函数y =f (x )在x =2处有极值-6,求y =f (x )的单调递减区间; (2)若y =f (x )的导数f ′(x )对x ∈[-1,1]都有f ′(x )≤2,求ba -1的范围.解 (1)f ′(x )=3x 2+2ax +b ,依题意有⎩⎪⎨⎪⎧ f ′2=0,f 2=-6.即⎩⎪⎨⎪⎧12+4a +b =0,8+4a +2b =-6,解得⎩⎪⎨⎪⎧a =-52,b =-2.∴f ′(x )=3x 2-5x -2.由f ′(x )<0,得-13<x <2.∴y =f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,2. (2)由⎩⎪⎨⎪⎧f ′-1=3-2a +b ≤2,f ′1=3+2a +b ≤2,得⎩⎪⎨⎪⎧2a -b -1≥0,2a +b +1≤0.不等式组确定的平面区域如图阴影部分所示:由⎩⎪⎨⎪⎧ 2a -b -1=0,2a +b +1=0,得⎩⎪⎨⎪⎧a =0,b =-1. ∴Q 点的坐标为(0,-1). 设z =ba -1,则z 表示平面区域内的点(a ,b )与点P (1,0)连线的斜率.∵k PQ =1,由图可知z ≥1或z <-2, 即ba -1∈(-∞,-2)∪[1,+∞).14.设关于θ的方程3cos θ+sin θ+a =0在区间(0,2π)内有相异的两个实根α、β.(1)求实数a 的取值范围; (2)求α+β的值.解 方法一(1)设x =cos θ,y =sin θ,则由题设知,直线l :3x +y +a =0与圆x 2+y 2=1有两个不同的交点A (cos α,sin α)和B (cos β,sin β).所以原点O 到直线l 的距离小于半径1,即 d =||0+0+a 32+12=|a |2<1,∴-2<a <2. 又∵α、β∈(0,2π),且α≠β. ∴直线l 不过点(1,0),即3+a ≠0.∴a ≠-3,即a ∈(-2,-3)∪(-3,2).(2)如图,不妨设∠xOA =α,∠xOB =-β,作OH ⊥AB ,垂足为H ,则∠BOH =α-β2.∵OH ⊥AB ,∴kAB ·k OH =-1.∴tan α+β2=33.又∵α+β2∈(0,2π),∴α+β=π3或α+β=7π3.方法二 (1)原方程可化为sin (θ+π3)=-a 2,作出函数y =sin (x +π3)(x ∈(0,2π))的图象.由图知,方程在(0,2π)内有相异实根α,β的充要条件是⎩⎪⎨⎪⎧-1<-a2<1-a 2≠32,即-2<a <-3或-3<a <2.(2)由图知:当-3<a <2,即-a 2∈⎝ ⎛⎭⎪⎫-1,32时,直线y =-a 2与三角函数y =sin(x+π3)的图象交于C 、D 两点,它们中点的横坐标为7π6,∴α+β2=7π6,∴α+β=7π3. 当-2<a <-3,即-a 2∈⎝ ⎛⎭⎪⎫32,1时,直线y =-a 2与三角函数y =sin(x +π3)的图象有两交点A 、B ,由对称性知,α+β2=π6,∴α+β=π3,综上所述,α+β=π3或α+β=7π3.。

2020年全国高考三轮复习信息卷 理科数学(附答案+全解全析)01

2020年全国高考三轮复习信息卷 理科数学(附答案+全解全析)01

2020年全国高考三轮复习信息卷数 学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合A ={x ∈N||x −1|≤1 }, B ={x|y =√1−x 2},则A ∩B 的真子集的个数为( ) A .3 B .4 C .7 D .82.若复数22252x 2i 2x x x x -++---()为纯虚数,则x 的值为( ) A .2. B .-1. C .12-. D .12. 3.若347log log log 2x y z ==<-,则( )A .347x y z <<B .743z y x <<C .437y x z <<D .734z x y <<4.“上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是( )A .13B .16C .14D .1125.埃及金字塔是古埃及的帝王(法老)陵墓,世界七大奇迹之一,其中较为著名的是胡夫金字塔.令人吃惊的并不仅仅是胡夫金字塔的雄壮身姿,还有发生在胡夫金字塔上的数字“巧合”.如胡夫金字塔的底部周长如果除以其高度的两倍,得到的商为3.14159,这就是圆周率较为精确的近似值.金字塔底部形为正方形,整个塔形为正四棱锥,经古代能工巧匠建设完成后,底座边长大约230米.因年久风化,顶端剥落10米,则胡夫金字塔现高大约为( )A .128.5米B .132.5米C .136.5米D .110.5米 6.函数1()log 1a x f x x x +=+(01a <<)的图象的大致形状是( ) A . B .C .D .7.记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .128.在平行四边形ABCD 中,3AB =,2AD =,13AP AB =u u u r u u u r ,12AQ AD =u u u r u u u r ,若12CP CQ ⋅=u u u r u u u r ,则BAD ∠=( )A .4πB .3πC .2πD .23π 9.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十“的推论.主要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,…,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个判断框中,可以先后填入( )A .n 是偶数?,100n ≥?B .n 是奇数?,100n ≥?C .n 是偶数?, 100n >?D .n 是奇数?,100n >?10.中国古代数学家名著《九章算术》中记载了一种名为“堑堵”的几何体,其三视图如图所示,则其外接球的表面积为( )A .43πB .4πC .8πD .64π11.已知F 是椭圆22221(0)x y a b a b+=>>的右焦点,A 是椭圆短轴的一个端点,若F 为过AF 的椭圆的弦的三等分点,则椭圆的离心率为( )A .13B .3C .12D .212.已知f(x)={e x ,x ≤01−x,0<x <1√x −1,x ≥1 ,若a <b <c,f(a)=f(b)=f(c),则实数a +3b +c 的取值范围是。

2020年高考数学最后冲刺 数形结合思想方法突破

2020年高考数学最后冲刺 数形结合思想方法突破

方法八、数形结合思想方法突破中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。

”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。

“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。

华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。

在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

数学中的知识,有的本身就可以看作是数形的结合。

如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

【注】以上各题是历年的高考客观题,都可以借助几何直观性来处理与数有关的问题,即借助数轴(①题)、图像(②、③、④、⑤题)、单位圆(⑥、⑦题)、复平面(⑧、⑩题)、方程曲线(⑨题)。

2020年高考三轮冲刺卷理数答案

2020年高考三轮冲刺卷理数答案

)!.! 命 题





分条





的判



二-
观 想 象 数 学 运 算 等 核 心 素 养 !
次不等式恒成立问题!体现了逻辑推理的核心素养! - 试题解析由约束条件作出可行域 如 图 中 阴 影 部 分 所
试题解析不 等 式 $" '$*E+# 在 0 上 恒 成 立#则 "-
8 4
#"#J8#"4#
J 半 焦 距5#
槡4"
*8"
#槡%4#JM#
5 4
#槡%!
参 考 答 案 槡%
,9!故选 $! !"!.! 命 题 立 意 考 查 空 间 几 何 体 的 折 叠 问 题 线 面
的性 质!体 现 了 逻 辑 推 理直 观 想 象数 学 运 算 等
垂 核
直心----!%!推命试理题题立解数
-







(%$&#槡)4'5$674$*674"$'
! "
-
所 以 数 列 !4? '<?"为 等 差 数 列 #设8? #4? '<?# 故0?#0% 对任意的?//; 恒成立#可化为8%'##8/###
$ #槡")4'5"$*
!"674"$#4'5%"$*
/
&图 象




右--
)674$!设曲线 (%$&上 任 意 一 点 "%$!#+!&#曲 线=%$& 上存在 一 点 %%$"#+" &#则 ()%$! &=)%$" &# '!#且 ()%$!&# '+$! '!/%' D #'!&#=)%$"&#E')674$"

高三数学三轮复习课件-(数学思想方法)

高三数学三轮复习课件-(数学思想方法)
即关于 x 的方程 x3-3x2-a=0 有三个不同的实数根, 令 h(x)=x3-3x2-a,则 h′(x)=3x2-6x. 令 h′(x)<0,解得 0<x<2; 令 h′(x)>0,解得 x<0 或 x>2. 所以 h(x)在(-∞,0)和(2,+∞)上为增函数,在(0,2) 上为减函数.所以 h(0)为极大值,h(2)为极小值. 从而 h(2)<0<h(0),解得-4<a<0.
专题 7 数学思想方法
第19讲 函数与方程思想 第20讲 数形结合思想 第21讲 分类讨论思想 第22讲 转化与化归思想沿河民族中学:阚 辉来自专题 7 数学思想方法
专题 7 │ 知识网络构建
知识网络构建
专题 7 │ 考情分析预测
考情分析预测
数学思想方法是对数学知识最高层次的提炼与概括, 数学思想方法较之数学知识具有更高的层次,具有理性的 地位,它是一种数学意识,属于思维和能力的范畴,它是 数学知识的精髓,是知识转化为能力的桥梁.
第 19 讲 │ 要点热点探究
要点热点探究
► 探究点一 函数方程思想在求解最值或参数的取值范围的应用
例 1 已知函数 f(x)=x3-2x2+x,g(x)=x2+x+a,若函数 y=f(x)与 y=g(x)的图象有三个不同的交点,求实数 a 的取值 范围.
第 19 讲 │ 要点热点探究
【解答】 函数 f(x)与 y=g(x)的图象有三个不同的交点 等价于方程 x3-2x2+x=x2+x+a 有三个不同的实数根,
第 19 讲 │ 要点热点探究
(2)令 g(x)=f(x)-x2+x2,由 g′(x)=x+1 1-2x+x+22-2 2x= x+1x2x+22,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题 数学思想方法专项【训练目标】1、 领会数形结合思想,函数与方程思想,转化与化归思想三种数学思想的本质,能灵活运用这三种数学思想解决问题;2、 掌握这三种数学思想的常见应用方式和方法; 【温馨小提示】数学教学的最终目标,是要让学生会用数学的眼光观察现实世界,会用数学的思维思考现实世界.数学素养就是指学生学习数学应当达成的有特定意义的综合性能力,数学核心素养高于具体的数学知识技能,具有综合性、整体性和持久性,反映数学本质与数学思想,数学核心素养是数学思想方法在具体学习领域的表现.二轮复习中如果能自觉渗透数学思想,加强个人数学素养的培养,就会在复习中高屋建瓴,对整体复习起到引领和导向作用. 【名校试题荟萃】 1、函数与方程思想一、函数与方程思想在不等式中的应用函数与不等式的相互转化,把不等式转化为函数,借助函数的图象和性质可解决相关的问题,常涉及不等式恒成立问题、比较大小问题.一般利用函数思想构造新函数,建立函数关系求解. 1.若0<x 1<x 2<1,则( ) A.21e e x x->ln x 2-ln x 1 B.21e e x x-<ln x 2-ln x 1 C.1221e >e x xx x D.1221e <e x xx x 【答案】C 【解析】设f (x )=e x-ln x (0<x <1), 则f ′(x )=e x-1x =x e x-1x.令f ′(x )=0,得x e x-1=0.根据函数y 1=e x与y 2=1x的图象(图略)可知两函数图象的交点的横坐标x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确; 设g (x )=e xx(0<x <1),则g ′(x )=exx -1x 2. 又0<x <1,∴g ′(x )<0, ∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴1221e >e xxx x ,故选C.2.已知定义在R 上的函数g (x )的导函数为g ′(x ),满足g ′(x )-g (x )<0,若函数g (x )的图象关于直线x =2对称,且g (4)=1,则不等式g xex>1的解集为________.【答案】(-∞,0)3.已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内的所有实数m ,不等式x 2+mx +4>2m +4x 恒成立,则x 的取值范围是__________________. 【答案】(-∞,-1)∪(2,+∞) 【解析】∵t ∈[2,8],∴f (t )∈⎣⎢⎡⎦⎥⎤12,3. 问题转化为m (x -2)+(x -2)2>0恒成立, 当x =2时,不等式不成立,∴x ≠2.令g (m )=m (x -2)+(x -2)2,m ∈⎣⎢⎡⎦⎥⎤12,3.问题转化为g (m )在⎣⎢⎡⎦⎥⎤12,3上恒大于0, 则⎩⎪⎨⎪⎧g ⎝ ⎛⎭⎪⎫12>0,g 3>0,即⎩⎪⎨⎪⎧12x -2+x -22>0,3x -2+x -22>0,解得x >2或x <-1.4.若x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是______. 【答案】[-6,-2]故f (x )在[-2,-1]上单调递减,在(-1,0)上单调递增, 此时有a ≤f (x )min =f (-1)=1+4-3-1=-2. 当x =0时,不等式恒成立.当0<x ≤1时,a ≥x 2-4x -3x 3,则f (x )在(0,1]上单调递增,此时有a ≥f (x )max =f (1)=1-4-31=-6.综上,实数a 的取值范围是[-6,-2]. 二、函数与方程思想在数列中的应用数列的通项与前n 项和是自变量为正整数的函数,可用函数的观点去处理数列问题,常涉及最值问题或参数范围问题,一般利用二次函数;等差数列或等比数列的基本量的计算一般化归为方程(组)来解决. 5. 已知{a n }是等差数列,a 10=10,其前10项和S 10=70,则其公差d 等于( ) A.-23 B.-13 C.13 D.23【答案】D 【解析】设等差数列的首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 10=a 1+9d =10,S 10=10a 1+10×92d =70,即⎩⎪⎨⎪⎧a 1+9d =10,2a 1+9d =14,解得d =23.6.已知在数列{a n }中,前n 项和为S n ,且S n =n +23a n ,则a na n -1的最大值为( ) A.-3 B.-1 C.3 D.1 【答案】C7.在等差数列{a n }中,若a 1<0,S n 为其前n 项和,且S 7=S 17,则S n 取最小值时n 的值为____. 【答案】 12 【解析】由已知得, 等差数列{a n }的公差d >0, 设S n =f (n ),则f (n )为二次函数,又由f (7)=f (17)知,f (n )的图象开口向上,关于直线n =12对称, 故S n 取最小值时n 的值为12.8.设等差数列{a n }的前n 项和为S n ,若S 4=-2,S 6=3,则nS n 的最小值为________. 【答案】 -9 【解析】由⎩⎪⎨⎪⎧4a 1+6d =-2,6a 1+15d =3解得a 1=-2,d =1,所以S n =n 2-5n2 ,故nS n =n 3-5n 22.令f (x )=x 3-5x 22,则f ′(x )=32x 2-5x ,令f ′(x )=0,得x =0或x =103,∴ f (x )在⎝ ⎛⎭⎪⎫0,103上单调递减,在⎝ ⎛⎭⎪⎫103,+∞上单调递增.又∵n 是正整数,故当n =3时,nS n 取得最小值-9.三、函数与方程思想在解析几何中的应用解析几何中求斜率、截距、半径、点的坐标、离心率等几何量经常要用到方程(组)的思想;直线与圆锥曲线的位置关系问题,可以通过转化为一元二次方程,利用判别式进行解决;求变量的取值范围和最值问题常转化为求函数的值域、最值,用函数的思想分析解答.9.(2016·全国Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( ) A.2 B.4 C.6 D.8 【答案】B 【解析】不妨设抛物线C :y 2=2px (p >0),圆的方程设为x 2+y 2=r 2(r >0),如图,又可设A (x 0,22),D ⎝ ⎛⎭⎪⎫-p2,5, 点A (x 0,22)在抛物线y 2=2px 上,∴8=2px 0,① 点A (x 0,22)在圆x 2+y 2=r 2上,∴x 20+8=r 2,②点D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴5+⎝ ⎛⎭⎪⎫p22=r 2,③联立①②③,解得p =4(负值舍去),即C 的焦点到准线的距离为p =4,故选B.10.如图,已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的一条渐近线交于P ,Q 两点,若∠PAQ =60°,且OQ →=3OP →,则双曲线C 的离心率为( )A.233 B.72 C.396D.3 【答案】B所以点A 到直线y =b ax 的距离d =⎪⎪⎪⎪⎪⎪b a ·a -0⎝ ⎛⎭⎪⎫b a 2+-12=aba 2+b 2, 所以⎝ ⎛⎭⎪⎫ab a 2+b 22=(2R )2-R 2=3R 2,即a 2b 2=3R 2(a 2+b 2), 在△OQA 中,由余弦定理得,|OA |2=|OQ |2+|QA |2-2|OQ ||QA |cos 60°=(3R )2+(2R )2-2×3R ×2R ×12=7R 2=a 2.由⎩⎪⎨⎪⎧a 2b 2=3R 2a 2+b2,a 2=7R 2,得⎩⎪⎨⎪⎧a 2=7R 2,b 2=214R 2,所以双曲线C 的离心率为e =c a=c 2a 2=a 2+b2a 2=1+b 2a2=1+214R 27R 2=72.11.设椭圆中心在坐标原点,A (2,0),B (0,1)是它的两个顶点,直线y =kx (k >0)与AB 相交于点D ,与椭圆相交于E ,F 两点.若ED →=6DF →,则k 的值为________. 【答案】 23或38【解析】依题意得椭圆的方程为x 24+y 2=1,直线AB ,EF 的方程分别为x +2y =2,y =kx (k >0).如图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,且x 1,x 2满足方程(1+4k 2)x 2=4,故x 2=-x 1=21+4k2.由ED →=6DF →知,x 0-x 1=6(x 2-x 0), 得x 0=17(6x 2+x 1)=57x 2=1071+4k 2. 由点D 在AB 上知x 0+2kx 0=2,得x 0=21+2k .所以21+2k =1071+4k 2,化简得24k 2-25k +6=0,解得k =23或k =38.12.已知直线l :y =k (x +1)与抛物线C :y 2=4x 交于不同的两点A ,B ,且以AB 为直径的圆过抛物线C 的焦点F ,则k =________. 【答案】22或-22依题意知,x 1,x 2是①的不相等的两个实根,则⎩⎪⎨⎪⎧Δ=4k 2-22-4k 4>0, ②x 1+x 2=22-k2k 2,x 1x 2=1.由以AB 为直径的圆过F ,得AF ⊥BF , 即k AF ·k BF =-1, 所以y 1x 1-1·y 2x 2-1=-1,即x 1x 2+y 1y 2-(x 1+x 2)+1=0, 所以x 1x 2+k 2(x 1+1)(x 2+1)-(x 1+x 2)+1=0, 所以(1+k 2)x 1x 2+(k 2-1)(x 1+x 2)+1+k 2=0,③ 把x 1+x 2=22-k2k2,x 1x 2=1代入③得2k 2-1=0,解得k =±22, 经检验k =±22适合②式. 综上所述,k =±22.2、数形结合思想一、数形结合思想在解方程或函数零点问题中的应用讨论方程的解(或函数零点)的问题一般可以构造两个函数,将方程解的个数转化为两条曲线的交点个数.构造函数时,要先对方程进行变形,尽量构造两个比较熟悉的函数. 1.(2018·咸阳模拟)函数f (x )=2x-1x的零点个数为( )A.0B.1C.2D.3 【答案】 B2.若关于x 的方程||x x +4=kx 2有四个不同的实数解,则k 的取值范围为________. 【答案】 ⎝ ⎛⎭⎪⎫14,+∞ 【解析】x =0是方程的一个实数解;当x ≠0时,方程||x x +4=kx 2可化为1k=(x +4)|x |,x ≠-4,k ≠0,设f (x )=(x +4)|x |(x ≠-4且x ≠0),y =1k,则两函数图象有三个非零交点.f (x )=(x +4)|x |=⎩⎪⎨⎪⎧x 2+4x ,x >0,-x 2-4x ,x <0,x ≠-4的大致图象如图所示,由图可得0<1k <4, 解得k >14.所以k 的取值范围为⎝ ⎛⎭⎪⎫14,+∞.3.已知函数f (x )是定义在R 上的偶函数,且f (-x -1)=f (x -1),当x ∈[-1,0]时,f (x )=-x 3,则关于x 的方程f (x )=|cos πx |在⎣⎢⎡⎦⎥⎤-52,12上的所有实数解之和为________.【答案】-7 【解析】因为函数f (x )为偶函数,所以f (-x -1)=f (x +1)=f (x -1),所以函数f (x )的周期为2.又当x ∈[-1,0]时,f (x )=-x 3,由此在同一平面直角坐标系内作出函数y 1=f (x )与y 2=|cos πx |的图象如图所示.由图象知关于x 的方程f (x )=|cos πx |在⎣⎢⎡⎦⎥⎤-52,12上的实数解有7个. 不妨设x 1<x 2<x 3<x 4<x 5<x 6<x 7,则由图得x 1+x 2=-4,x 3+x 5=-2,x 4=-1,x 6+x 7=0,所以方程f (x )=|cos πx |在⎣⎢⎡⎦⎥⎤-52,12上的所有实数解的和为-4-2-1+0=-7. 4.(2018·石嘴山模拟)已知函数f (x )⎩⎪⎨⎪⎧x 4+1,x ≤1,ln x ,x >1,则方程f (x )=ax 恰有两个不同的实根时,实数a的取值范围是________.【答案】 ⎣⎢⎡⎭⎪⎫14,1e二、数形结合思想在求解不等式或参数范围中的应用构建函数模型,分析函数的单调性并结合其图象特征研究量与量之间的大小关系、求参数的取值范围或解不等式.5.(2018·全国Ⅰ )设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A.(-∞,-1]B.(0,+∞)C.(-1,0)D.(-∞,0)【答案】D 【解析】方法一 ①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧ x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧ x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D.方法二 ∵f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,∴函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x . 此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1,满足f (x +1)<f (2x ). 此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).故选D.6.设A ={(x ,y )|x 2+(y -1)2=1},B ={(x ,y )|x +y +m ≥0},则使A ⊆B 成立的实数m 的取值范围是________.【答案】 [2-1,+∞)【解析】 集合A 是圆x 2+(y -1)2=1上的点的集合,集合B 是不等式x +y +m ≥0表示的平面区域内的点的集合,要使A ⊆B ,则应使圆被平面区域所包含(如图),即直线x +y +m =0应与圆相切或相离(在圆的左下方),而当直线与圆相切时,有|m +1|2=1,又m >0,所以m =2-1,故m 的取值范围是[2-1,+∞).7.若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则实数a 的取值范围是________.【答案】⎝ ⎛⎦⎥⎤-∞,12【解析】作出y 1=|x -2a |和y 2=12x +a -1的简图,如图所示.依题意得⎩⎪⎨⎪⎧2a ≤2-2a ,a -1<0,故a ≤12.8.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2ax ,x ≥1,2ax -1,x <1,若存在两个不相等的实数x 1,x 2,使得f (x 1)=f (x 2),则实数a的取值范围为________. 【答案】 [0,+∞)三、数形结合思想在解析几何中的应用在解析几何的解题过程中,通常要数形结合,挖掘题中所给的代数关系式和几何关系式,构建解析几何模型并应用模型的几何意义求最值或范围; 常见的几何结构的代数形式主要有:①比值——可考虑直线的斜率;②二元一次式——可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑两点间的距离.9.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A.7 B.6 C.5 D.4 【答案】B10.设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点分别为A 1,A 2,左、右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P .若以A 1A 2为直径的圆与直线PF 2相切,则双曲线C 的离心率为( ) A. 2 B. 3 C.2 D. 5 【答案】D【解析】如图所示,设以A 1A 2为直径的圆与直线PF 2的切点为Q ,连接OQ ,则OQ ⊥PF 2.又PF 1⊥PF 2,O 为F 1F 2的中点, 所以|PF 1|=2|OQ |=2a . 又|PF 2|-|PF 1|=2a , 所以|PF 2|=4a .在Rt △F 1PF 2中,由|PF 1|2+|PF 2|2=|F 1F 2|2,得4a 2+16a 2=20a 2=4c 2,即e =c a= 5.11.已知抛物线的方程为x 2=8y ,F 是其焦点,点A (-2,4),在此抛物线上求一点P ,使△APF 的周长最小,此时点P 的坐标为________. 【答案】⎝ ⎛⎭⎪⎫-2,12 【解析】因为(-2)2<8×4,所以点A (-2,4)在抛物线x 2=8y 的内部, 如图,设抛物线的准线为l ,12.已知P 是直线l :3x +4y +8=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,则四边形PACB 面积的最小值为________. 【答案】 2 2 【解析】连接PC ,由题意知圆的圆心C (1,1),半径为1,从运动的观点看问题,当动点P 沿直线3x +4y +8=0向左上方或右下方无穷远处运动时,Rt △PAC 的面积S △PAC =12|PA ||AC |=12|PA |越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形PACB变小,显然,当点P 到达一个最特殊的位置,即CP垂直于直线l 时,S四边形PACB有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3,从而|PA |=|PC |2-|AC |2=22,所以(S 四边形PACB )min =2×12×|PA |×|AC |=2 2.【配套练习】1.(2018·咸阳模拟)已知定义在R 上的函数f (x )的导函数为f ′(x ),且f (x )+f ′(x )>1,设a =f (2)-1,b =e[f (3)-1],则a ,b 的大小关系为( )A.a <bB.a >bC.a =bD.无法确定【答案】A2.(2018·宣城调研)定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有( )A.f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫14B.f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32C.f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14 D.f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14 【答案】C【解析】 因为f (x +2)=-f (x )=f (-x ),所以函数f (x )的图象关于直线x =1对称,又T =4,作图,由图知f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14.3.在三棱锥A -BCD 中,△ABC 为等边三角形,AB =23,∠BDC =90°,二面角A -BC -D 的大小为150°,则三棱锥A -BCD 的外接球的表面积为( ) A.7π B.12π C.16π D.28π 【答案】D【解析】满足题意的三棱锥A -BCD 如图所示,设三棱锥A -BCD 的外接球的球心为O ,半径为R ,△BCD ,△ABC 的外接圆的圆心分别为O 1,O 2,可知O ,O 1,O 2在同一平面内,由二面角A -BC -D 的大小为150°,得∠OO 1O 2=150°-90°=60°.依题意,可得△BCD ,△ABC 的外接圆的半径分别为r 1=BC 2=232=3,r 2=23×sin 60°×23=2,所以⎩⎪⎨⎪⎧ R 2=OO 21+r 21,R 2=OO 22+r 22,sin ∠OO 1O 2=OO2OO1,即⎩⎪⎨⎪⎧R 2=OO 21+3,R 2=OO 22+4,OO 2=32OO 1,解得R =7,所以三棱锥A -BCD 的外接球的表面积为4πR 2=28π.4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 作直线y =-b ax 的垂线,垂足为A ,交双曲线左支于B 点,若FB→=2FA →,则该双曲线的离心率为( ) A. 3 B.2 C. 5 D.7 【答案】C5.记实数x 1,x 2,…,x n 中最小数为min{x 1,x 2,…,x n },则定义在区间[0,+∞)上的函数f (x )=min{x 2+1,x +3,13-x }的最大值为( ) A.5 B.6 C.8 D.10 【答案】C【解析】在同一坐标系中作出三个函数y 1=x 2+1,y 2=x +3,y 3=13-x 的图象如图.由图可知,在实数集R 上,min{x 2+1,x +3,13-x }为y 2=x +3上A 点下方的射线,抛物线AB 之间的部分,线段BC 与直线y 3=13-x 在点C 下方的部分的组合体.显然,在区间[0,+∞)上,在C 点时,y =min{x 2+1,x +3,13-x }取得最大值.解方程组⎩⎪⎨⎪⎧y 2=x +3,y 3=13-x ,得点C (5,8).所以f (x )max =8.6.已知函数f (x )=|lg(x -1)|,若1<a <b 且f (a )=f (b ),则a +2b 的取值范围为( ) A.(3+22,+∞) B.[3+22,+∞) C.(6,+∞) D.[6,+∞)【答案】C由对勾函数的性质知,当b ∈⎝ ⎛⎭⎪⎫22+1,+∞时,f (b )=2(b -1)+1b -1+3单调递增, ∵b >2, ∴a +2b =bb -1+2b >6.7.(2018·东莞模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≥1,x 2-3x +2,x <1,若不等式f (x )≥mx 恒成立,则实数m 的取值范围为( )A.[-3-22,-3+22]B.[-3+22,0]C.[-3-22,0]D.(-∞,-3-22]∪[-3+22,+∞) 【答案】C8.(2018·德阳诊断)已知函数f (x )=3x-13x +1+x +sin x ,若存在x ∈[-2,1],使得f (x 2+x )+f (x -k )<0成立,则实数k 的取值范围是( ) A.(-1,+∞) B.(3,+∞) C.(0,+∞) D.(-∞,-1)【答案】A 【解析】由题意知函数f (x )=3x-13x +1+x +sin x 的定义域为R ,f (-x )=3-x-13-x +1+(-x )+sin(-x )=-⎝ ⎛⎭⎪⎫3x -13x +1+x +sin x =-f (x ),即函数f (x )为奇函数,且f ′(x )=2ln 3·3x3x +12+1+cos x >0在R 上恒成立,即函数f (x )在R 上单调递增.若∃x 0∈[-2,1],使得f (x 20+x 0)+f (x 0-k )<0成立, 即f (x 20+x 0)<-f (x 0-k ),所以f (x 20+x 0)<f (k -x 0),即x 20+x 0<k -x 0,则问题转化为∃x 0∈[-2,1],k >x 20+2x 0,令g (x )=x 2+2x ,x ∈[-2,1]. 则k >g (x )min =g (-1)=-1故实数k 的取值范围是(-1,+∞). 9.已知正四棱锥的体积为323,则正四棱锥的侧棱长的最小值为________.【答案】2 3【解析】如图所示,设正四棱锥的底面边长为a ,高为h .则该正四棱锥的体积V =13a 2h =323,故a 2h =32,即a 2=32h.则其侧棱长为l =⎝ ⎛⎭⎪⎫2a 22+h 2=16h+h 2.10.若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________. 【答案】(0,2)【解析】由f (x )=|2x -2|-b 有两个零点, 可得|2x-2|=b 有两个不等的实根,从而可得函数y 1=|2x-2|的图象与函数y 2=b 的图象有两个交点,如图所示.结合函数的图象,可得0<b <2.11.已知椭圆C 1:x 29+y 24=1和圆C 2:x 2+(y +1)2=r 2(r >0),若两条曲线没有公共点,则r 的取值范围是______________. 【答案】(0,1)∪⎝⎛⎭⎪⎫3305,+∞因此,求使圆C 2与椭圆C 1有公共点的r 的集合,等价于在定义域为y ∈[-2,2]的情况下,求函数r 2=f (y )=-54y 2+2y +10的值域.由f (-2)=1,f (2)=9,f ⎝ ⎛⎭⎪⎫45=545,可得f (y )的值域为⎣⎢⎡⎦⎥⎤1,545,即r ∈⎣⎢⎡⎦⎥⎤1,3305, 它的补集就是圆C 2与椭圆C 1没有公共点的r 的集合,因此,两条曲线没有公共点的r 的取值范围是(0,1)∪⎝⎛⎭⎪⎫3305,+∞. 方法二 联立C 1和C 2的方程消去x ,得到关于y 的方程-54y 2+2y +10-r 2=0.①两条曲线没有公共点,等价于方程-54y 2+2y +10-r 2=0要么没有实数根,要么有两个根y 1,y 2∉[-2,2].若没有实数根,则Δ=4-4×⎝ ⎛⎭⎪⎫-54×(10-r 2)<0,解得r >3305或r <-3305⎝ ⎛⎭⎪⎫由于r >0,则r <-3305舍去.若两个根y 1,y 2∉[-2,2],设φ(y )=-54y 2+2y +10-r 2,其图象的对称轴方程为y =45∈[-2,2].则⎩⎪⎨⎪⎧φ2=9-r 2>0,φ-2=1-r 2>0,又r >0,解得0<r <1.因此,两条曲线没有公共点的r 的取值范围是(0,1)∪⎝⎛⎭⎪⎫3305,+∞. 12.若关于x 的不等式e x-x 22-1-⎝ ⎛⎭⎪⎫a -94x ≥0在⎣⎢⎡⎭⎪⎫12,+∞上恰成立,则实数a 的取值集合为________.【答案】{2e} 【解析】 关于x 的不等式e x -x 22-1-⎝ ⎛⎭⎪⎫a -94x ≥0在⎣⎢⎡⎭⎪⎫12,+∞上恰成立⇔函数g (x )=e x -x 22-1x 在⎣⎢⎡⎭⎪⎫12,+∞上的值域为⎣⎢⎡⎭⎪⎫a -94,+∞.故g (x )在⎣⎢⎡⎭⎪⎫12,+∞上单调递增, 则g (x )≥g ⎝ ⎛⎭⎪⎫12=12e -18-112=2e -94, 所以a -94=2e -94, 解得a =2e ,所以a 的取值集合为{2e}.。

相关文档
最新文档