历年高考理科数学真题汇编+答案解析(7):概率统计(2017-2020年)(1)

合集下载

近五年(2017-2021)高考数学真题分类汇编10 概率与统计

近五年(2017-2021)高考数学真题分类汇编10 概率与统计

近五年(2017-2021)高考数学真题分类汇编十、概率与统计一、单选题1.(2021·全国(文))为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间2.(2021·全国(理))将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.453.(2021·全国(文))将3个1和2个0随机排成一行,则2个0不相邻的概率为()A.0.3 B.0.5 C.0.6 D.0.84.(2021·全国(理))在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.79B.2332C.932D.295.(2021·全国(文))在区间10,2⎛⎤⎥⎝⎦随机取1个数,则取到的数小于13的概率为()A.34B.23C.13D.166.(2021·全国)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立7.(2020·天津)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10 B.18 C.20 D.36 8.(2020·全国(文))设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01 B.0.1 C.1 D.10 9.(2020·全国(文))如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3且j–i=4,则称a i,a j,a k为原位大三和弦;若k–j=4且j–i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()A.5 B.8 C.10 D.1510.(2020·全国(理))在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====11.(2020·全国(文))设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A .15B .25 C .12D .4512.(2020·全国(理))某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+13.(2019·浙江)设01a <<,则随机变量X 的分布列是:则当a 在()0,1内增大时 A .()D X 增大 B .()D X 减小C .()D X 先增大后减小D .()D X 先减小后增大14.(2019·全国(文))某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生15.(2019·全国(理))演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差16.(2019·全国(理))我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .111617.(2018·浙江)设01p <<,随机变量ξ的分布列如图,则当p 在()0,1内增大时,A .()D ξ减小B .()D ξ增大C .()D ξ先减小后增大D .()D ξ先增大后减小18.(2018·全国(理))某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.319.(2018·全国(理))如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p320.(2018·全国(文))某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半21.(2017·全国(理))某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳22.(2017·山东(文))下图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A .5,5B .3,5C .3,7D .5,723.(2017·全国(文))如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8π C .12D .4π 24.(2017·山东(理))为了研究某班学生的脚长x (单位厘米)和身高y (单位厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆy bx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为 A .160B .163C .166D .17025.(2017·全国(理))如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8π C .12D .4π 26.(2017·天津(文))有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .1527.(2017·浙江)已知随机变量i ξ满足P (i ξ=1)=p i ,P (i ξ=0)=1—p i ,i =1,2.若0<p 1<p 2<12,则 A .1E()ξ<2E()ξ,1D()ξ<2D()ξ B .1E()ξ<2E()ξ,1D()ξ>2D()ξ C .1E()ξ>2E()ξ,1D()ξ<2D()ξD .1E()ξ>2E()ξ,1D()ξ>2D()ξ28.(2011·湖北(理))如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为A .0.960B .0.864C .0.720D .0.576二、多选题29.(2021·全国)有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则( )A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样数据的样本极差相同30.(2020·海南)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C .第3天至第11天复工复产指数均超过80%;D .第9天至第11天复产指数增量大于复工指数的增量;31.(2020·海南)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )三、解答题32.(2021·全国)某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关. (1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列; (2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.33.(2021·全国(文))甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++34.(2021·全国(理))某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21S 和22S .(1)求x ,y ,21S ,22S ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥否则不认为有显著提高).35.(2020·海南)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO浓度有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,36.(2020·北京)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p ,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p ,试比较0p 与1p 的大小.(结论不要求证明)37.(2020·海南)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,38.(2020·江苏)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1·q1和p2·q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示) .39.(2020·全国(文))某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,40.(2020·全国(文))某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?41.(2020·全国(理))甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.42.(2020·全国(理))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.43.(2019·江苏)在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈令n nn n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).44.(2019·北京(文))改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A ,B 两种支付方式都使用的人数;(Ⅱ)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.45.(2019·北京(理))改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.46.(2019·全国(理))为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:P C的估计记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()值为0.70.(1)求乙离子残留百分比直方图中,a b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).47.(2019·天津(文))2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A B C D E F .享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中,,,,,随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.48.(2019·天津(理))设甲、乙两位同学上学期间,每天7:30之前到校的概率均为2 3 .假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.49.(2019·全国(文))某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.()分别估计这类企业中产值增长率不低于的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.50.(2019·全国(文))某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.51.(2019·全国(理))11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.52.(2019·全国(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.53.(2018·北京(理))电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系. 54.(2018·北京(文))电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)55.(2018·全国(理))某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,56.(2018·全国(文))某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)57.(2018·全国(文))下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.58.(2018·天津(理))已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.59.(2018·全国(理))某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产。

2017年普通高等学校招生全国统一考试(全国I)理科数学及答案

2017年普通高等学校招生全国统一考试(全国I)理科数学及答案

2017年普通高等学校招生全国统一考试(全国I)理科数学及答案绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x<1},B={x|},则A.B.C.D.2.如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.B.C.D.3.设有下面四个命题:若复数满足,则;:若复数满足,则;:若复数满足,则;:若复数,则.其中的真命题为A.B.C.D.4.记为等差数列的前项和.若,,则的公差为A.1B.2C.4D.85.函数在单调递减,且为奇函数.若,则满足的的取值范围是A.B.C.D.6.展开式中的系数为A.15B.20C.30D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.168.右面程序框图是为了求出满足3n?2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1000和n=n+1B.A>1000和n=n+2C.A1000和n=n+1D.A1000和n=n+29.已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16B.14C.12D.1011.设xyz为正数,且,则A.2x<3y <5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N:N>100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是A.440B.330C.22 0D.110二、填空题:本题共4小题,每小题5分,共20分。

2017年全国二卷理科数学高考真题及详解(附带答案精美版)

2017年全国二卷理科数学高考真题及详解(附带答案精美版)

2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签 字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写 的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.=++i1i 3A .i 21+B .i 21-C .i 2+D .i 2-2. 设集合{}4 2 1,,=A ,{}042=+-=m x x B ,若{}1=B A I ,则=B A .{}3 1-, B. .{}0 1, C .{}3 1, D .{}5 1, 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏C .5盏D .9盏 4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C . 24种D .36种理科数学试题 第1页(共4页)7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8.执行右面的程序框图,如果输入的1-=a ,则输出的=S A .2B .3C .4D .59.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .33210.已知直三棱柱111C B A ABC -中,ο120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为A .23 B .515 C .510 D .33 11.若2-=x 是函数12)1()(--+=x e ax x x f 的极值点,则)(x f 的极小值为A .1-B .32--eC .35-eD .112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(+⋅的最小值是A .2-B .23-C .34- D .1-二、填空题:本题共4小题,每小题5分,共20分。

2017-2019年高考真题概率统计解答题全集(含详细解析)

2017-2019年高考真题概率统计解答题全集(含详细解析)

2017-2019年高考真题概率统计解答题全集(含详细解析)1.(2019•江苏)在平面直角坐标系xOy 中,设点集{(0,0)n A =,(1,0),(2,0),⋯,(,0)}n ,{(0,1)n B =,(,1)}n ,{(0,2)n C =,(1,2),(2,2),⋯⋯,(,2)}n ,*n N ∈.令n n n n M A B C =.从集合n M 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当1n =时,求X 的概率分布;(2)对给定的正整数(3)n n …,求概率()P X n …(用n 表示). 2.(2019•天津)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A ,B ,C ,D ,E ,F .享受情况如表,其中“〇”表示享受,“⨯”表示不享受.现从这6人中随机抽取2人接受采访.()i 试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M 发生的概率.3.(2019•天津)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.4.(2019•新课标Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).5.(2019•新课标Ⅱ)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)≈.8.6026.(2019•新课标Ⅰ)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.(2019•北京)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2000元的人数有变化?说明理由.8.(2019•新课标Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求(2)P X=;(2)求事件“4X=且甲获胜”的概率.9.(2019•北京)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A ,B 两种支付方式都使用的概率; (Ⅱ)从样本仅使用A 和仅使用B 的学生中各随机抽取1人,以X 表示这2人中上个月支付金额大于1000元的人数,求X 的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化?说明理由.10.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:)min 绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,11.(2018•天津)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.()i试用所给字母列举出所有可能的抽取结果;()ii设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.12.(2018•天津)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.()i用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;()ii设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.13.(2018•新课标Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:3)m和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)14.(2018•北京)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“1k ξ=”表示第k 类电影得到人们喜欢.“0k ξ=”表示第k 类电影没有得到人们喜欢(1k =,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.15.(2018•新课标Ⅰ)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为(01)<<,且各件产品是否为不合格品相互独立.p p(1)记20件产品中恰有2件不合格品的概率为()f p,求f()p的最大值点p.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.()i若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?16.(2018•新课标Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,⋯,17)建立模型①:ˆ30.413.5=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,⋯,7) y t建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.17.(2018•北京)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)18.(2017•全国)袋中有m 个白球和n 个黑球,1m n 厖.(1)若6m =,5n =,一次随机抽取两个球,求两个球颜色相同的概率;(2)有放回地抽取两次,每次随机抽取一个球,若两次取出的球的颜色相同的概率为58,求:m n .19.(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:)kg ,其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:2()()()()K a b c d a c b d =++++. 20.(2017•新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:)cm .根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X …及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s =≈,其中i x 为抽取的第i 个零件的尺寸,1i =,2,⋯,16.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997P Z μσμσ-<<+=,160.99740.9592≈0.09≈.21.(2017•天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.22.(2017•山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者1A ,2A ,3A ,4A ,5A ,6A 和4名女志愿者1B ,2B ,3B ,4B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示. (Ⅰ)求接受甲种心理暗示的志愿者中包含1A 但不包含1B 的概率.(Ⅱ)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望EX . 23.(2017•新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:)cm .下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得16119.9716i i x x ===∑,0.212s =≈,18.439≈,161()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,1i =,2,⋯,16.(1)求(i x ,)(1i i =,2,⋯,16)的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).(2)一天内抽检零件中,如果出现了尺寸在(3x s -,3)x s +之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ⅱ)在(3x s -,3)x s +之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(i x ,)(1i y i =,2,⋯,)n的相关系数()()nii xx y y r --∑0.09≈.24.(2017•新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C)︒有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?25.(2017•北京)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),[80⋯,90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数; (Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.26.(2017•新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:C)︒有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.27.(2017•江苏)已知一个口袋有m 个白球,n 个黑球(m ,*n N ∈,2)n …,这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,⋯,m n +的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(1k =,2,3,⋯,)m n +.(1)试求编号为2的抽屉内放的是黑球的概率p ;(2)随机变量x 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明()()(1)nE X m n n <+-.28.(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:)kg ,其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较. 附:2()()()()K a b c d a c b d =++++. 29.(2017•北京)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x 和y 的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y 的值小于60的概率;(2)从图中A ,B ,C ,D 四人中随机选出两人,记ξ为选出的两人中指标x 的值大于1.7的人数,求ξ的分布列和数学期望()E ξ;(3)试判断这100名患者中服药者指标y 数据的方差与未服药者指标y 数据的方差的大小.(只需写出结论)30.(2017•山东)某旅游爱好者计划从3个亚洲国家1A ,2A ,3A 和3个欧洲国家1B ,2B ,3B 中选择2个国家去旅游.(Ⅰ)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(Ⅱ)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括1A 但不包括1B 的概率.2017-2019年高考真题概率统计解答题全集(含详细解析)参考答案与试题解析1.(2019•江苏)在平面直角坐标系xOy 中,设点集{(0,0)n A =,(1,0),(2,0),⋯,(,0)}n ,{(0,1)n B =,(,1)}n ,{(0,2)n C =,(1,2),(2,2),⋯⋯,(,2)}n ,*n N ∈.令n n n n M A B C =.从集合n M 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当1n =时,求X 的概率分布;(2)对给定的正整数(3)n n …,求概率()P X n …(用n 表示). 【解答】解:(1)当1n =时,X 的所有可能取值为1,2,X 的概率分布为2677(1)15P X C ===;2644(15P X C ==; 2622(2)15P X C ===;2622(15P X C ===; (2)设(,)A a b 和(,)B c d 是从n M 中取出的两个点, 因为()1()P X n P X n =->…,所以只需考虑X n >的情况, ①若b d =,则AB n …,不存在X n >的取法;②若0b =,1d =,则AB X n >当且仅当AB = 此时0a =.c n =或a n =,0c =,有两种情况;③若0b =,2d =,则AB =X n >当且仅当AB 此时0a =.c n =或a n =,0c =,有两种情况;④若1b =,2d =,则AB X n >当且仅当AB = 此时0a =.c n =或a n =,0c =,有两种情况; 综上可得当X n >,X且2244(n P X C+==,2242(n P X C+==,可得2246()1((1n P X n P X P X C +=-=-==-….2.(2019•天津)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如表,其中“〇”表示享受,“⨯”表示不享受.现从这6人中随机抽取2人接受采访.()i试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【解答】解:(Ⅰ)由已知,老、中、青员工人数之比为6:9:10,由于采用分层抽样从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人;(Ⅱ)()i从已知的6人中随机抽取2人的所有可能结果为{A,}B,{A,}C,{A,}D,{A,}E,{A,}F,{B,}C,{B,}D,{B,}E,{B,}F,{C,}D,{C,}E,{C,}F,{D,}E,{D,}F,{E,}F,共15种;()ii由表格知,符合题意的所有可能结果为{A,}B,{A,}D,{A,}E,{A,}F,{B,}D,{B,}E,{B,}F,{C,}E,{C,}F,{D,}F,{E,}F,共11种,所以,事件M发生的概率11 ()15P M=.3.(2019•天津)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(Ⅱ)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【解答】解:()I 甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23, 故2~(3,)3X B ,从而3321()()()33k k k P X k C -==,0k =,1,2,3.所以,随机变量X 的分布列为:随机变量X 的期望2()323E X =⨯=. ()II 设乙同学上学期间的三天中7:30到校的天数为Y ,则2~(3,)3Y B ,且{3M X ==,1}{2Y X ==⋃,0}Y =,由题意知{3X =,1}Y =与{2X =,0}Y =互斥,且{3}X =与{1}Y =,{2}X =与{0}Y =相互独立,由()I 知,()({3P M P X ==,1}{2Y X ==⋃,0}({3Y P X ===,1}{2Y P X =+=,0}Y = 824120(3)(1)(2)(0)279927243P X P Y P X P Y ===+===⨯+⨯=4.(2019•新课标Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A 、B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【解答】解:(1)C 为事件:“乙离子残留在体内的百分比不低于5.5”, 根据直方图得到P (C )的估计值为0.70. 则由频率分布直方图得: 0.200.150.70.050.1510.7a b ++=⎧⎨++=-⎩, 解得乙离子残留百分比直方图中0.35a =,0.10b =. (2)估计甲离子残留百分比的平均值为:20.1530.2040.3050.2060.1070.05 4.05x =⨯+⨯+⨯+⨯+⨯+⨯=甲.乙离子残留百分比的平均值为:30.0540.150.1560.3570.280.15 6.00x =⨯+⨯+⨯+⨯+⨯+⨯=乙.5.(2019•新课标Ⅱ)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602≈.【解答】解:(1)根据产值增长率频数表得,所调查的100个企业中产值增长率不低于40%的企业为:1470.2121%100+==, 产值负增长的企业频率为:20.022%100==, 用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%; (2)企业产值增长率的平均数1(0.120.1240.353.100y =-⨯+⨯+⨯+⨯+⨯==,产值增长率的方差52211()100i i i s n y y ==-∑ 222221[(0.4)2(0.2)240530.2140.47]100=-⨯+-⨯+⨯+⨯+⨯ 0.0296=,∴产值增长率的标准差0.020.17s ==,∴这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.6.(2019•新课标Ⅰ)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:22()()()()()n ad bc K a b c d a c b d -=++++.【解答】解:(1)由题中数据可知,男顾客对该商场服务满意的概率404505P ==,。

概率与统计(选择、填空题)(理科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

概率与统计(选择、填空题)(理科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)

专题15概率与统计(选择题、填空题)(理科专用)1.【2022年全国乙卷】某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为1,2,3,且3>2>1>0.记该棋手连胜两盘的概率为p,则()A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大【答案】D【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率;该棋手在第二盘与乙比赛且连胜两盘的概率乙;该棋手在第二盘与丙比赛且连胜两盘甲的概率丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为甲则甲=2(1−2)13+221(1−3)=21(2+3)−4123记该棋手在第二盘与乙比赛,且连胜两盘的概率为乙则乙=2(1−1)23+212(1−3)=22(1+3)−4123记该棋手在第二盘与丙比赛,且连胜两盘的概率为丙则丙=2(1−1)32+213(1−2)=23(1+2)−4123则甲−乙=21(2+3)−4123−22(1+3)−4123=21−23<0乙−丙=22(1+3)−4123−23(1+2)−4123=22−31<0即甲<乙,乙<丙,则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D2.【2022年新高考1卷】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】D【解析】【分析】由古典概型概率公式结合组合、列举法即可得解.【详解】从2至8的7个整数中随机取2个不同的数,共有C 72=21种不同的取法,若两数不互质,不同的取法有:(2,4),(2,6),(2,8),(3,6),(4,6),(4,8),(6,8),共7种,故所求概率=21−721=23.故选:D.3.【2021年甲卷理科】已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为()A 72B .132C D 【答案】A 【解析】【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF ∠=︒,由余弦定理可得2224923cos60c a a a a =+-⨯⋅⋅︒,整理可得2247c a =,所以22274a c e ==,即2e =.故选:A 【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立,a c 间的等量关系是求解的关键.4.【2021年甲卷理科】将4个1和2个0随机排成一行,则2个0不相邻的概率为()A .13B .25C .23D .45【答案】C 【解析】【分析】采用插空法,4个1产生5个空,分2个0相邻和2个0不相邻进行求解.【详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻的概率为1025103=+.故选:C.5.【2021年乙卷理科】在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A .79B .2332C .932D .29【答案】B 【解析】【分析】设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,分别求出,A Ω对应的区域面积,根据几何概型的的概率公式即可解出.【详解】如图所示:设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111SΩ=⨯=.设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中的阴影部分,其面积为13323124432A S =-⨯⨯=,所以()2332A S P A S Ω==.故选:B.【点睛】本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件,A Ω对应的区域面积,即可顺利解出.6.【2021年新高考1卷】有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立【答案】B 【解析】【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366P P P P =====甲,乙,丙丁,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁,1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙,故选:B 【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立7.【2021年新高考2卷】某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是()A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【答案】D 【解析】【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误.故选:D.8.【2020年新课标1卷理科】某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i = 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是()A .y a bx =+B .2y a bx =+C .e x y a b =+D .ln y a b x=+【答案】D 【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.9.【2020年新课标2卷理科】在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A .10名B .18名C .24名D .32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900+-=,9001850=,故至少需要志愿者18名.故选:B 【点晴】本题主要考查函数模型的简单应用,属于基础题.10.【2020年新课标3卷理科】在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是()A .14230.1,0.4p p p p ====B .14230.4,0.1p p p p ====C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====【答案】B 【解析】【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组.【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65As =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85Bs =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05Cs =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45Ds =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大.故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.11.【2020年新高考1卷(山东卷)】某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A .62%B .56%C .46%D .42%【答案】C 【解析】【分析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,然后根据积事件的概率公式()P A B ⋅=()()()P A P B P A B +-+可得结果.【详解】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅,则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.【点睛】本题考查了积事件的概率公式,属于基础题.12.【2019年新课标1卷理科】我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【点睛】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.13.【2019年新课标2卷理科】演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A .中位数B .平均数C .方差D .极差【答案】A 【解析】【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【详解】设9位评委评分按从小到大排列为123489x x x x x x ≤≤≤≤≤ .则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x ≤≤≤ ,中位数仍为5x ,∴A 正确.②原始平均数1234891()9x x x x x x x =+++++ ,后来平均数234817x x x x x '=+++ ()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()222219119S x x x x x x ⎡⎤=-+-++-⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦ 由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 可能相等可能变小,D 不正确.本题旨在考查学生对中位数、平均数、方差、极差本质的理解.14.【2019年新课标3卷理科】《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5B.0.6C.0.7D.0.8【答案】C【解析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C.【点睛】本题考查容斥原理,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.15.【2018年新课标1卷理科】某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【分析】首先设出新农村建设前的经济收入为M ,根据题意,得到新农村建设后的经济收入为2M ,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【详解】设新农村建设前的收入为M ,而新农村建设后的收入为2M ,则新农村建设前种植收入为0.6M ,而新农村建设后的种植收入为0.74M ,所以种植收入增加了,所以A 项不正确;新农村建设前其他收入我0.04M ,新农村建设后其他收入为0.1M ,故增加了一倍以上,所以B 项正确;新农村建设前,养殖收入为0.3M ,新农村建设后为0.6M ,所以增加了一倍,所以C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的30%28%58%50%+=>,所以超过了经济收入的一半,所以D 正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.16.【2018年新课标1卷理科】如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 3【答案】A 【解析】【分析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,然后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p 1,p 2,p 3的关系,从而求得结果.【详解】设,,AC b AB c BC a ===,则有222b c a +=,从而可以求得ABC ∆的面积为112=S bc ,黑色部分的面积为22221()()[()]2222c b a S bc πππ=⋅+⋅-⋅-2221(4442c b a bc π=+-+22211422c b a bc bc π+-=⋅+=,其余部分的面积为22311122282a a S bc bc ππ⎛⎫=⋅-=- ⎪⎝⎭,所以有12S S =,根据面积型几何概型的概率公式,可以得到12p p =,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.17.【2018年新课标2卷理科】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112B .114C .115D .118【答案】C【解析】【详解】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有21045C =种方法,因为7+23=11+19=13+17=30,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为31=4515,选C.点睛:古典概型中基本事件数的探求方法:(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.18.【2018年新课标3卷理科】某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.3【答案】B【解析】【详解】分析:判断出为二项分布,利用公式()()D X np 1p =-进行计算即可.()()D X np 1p =- p 0.4∴=或p 0.6=()()()()6444661010P X 41P X 61C p p C p p ==-<==-,()221p p ∴-<,可知p 0.5>故答案选B.点睛:本题主要考查二项分布相关知识,属于中档题.19.【2021年新高考1卷】有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则()A .两组样本数据的样本平均数相同B .两组样本数据的样本中位数相同C .两组样本数据的样本标准差相同D .两组样本数据的样本极差相同【答案】CD【解析】【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误.【详解】A :()()()E y E x c E x c =+=+且0c ≠,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,正确;故选:CD20.【2021年新高考2卷】下列统计量中,能度量样本12,,,n x x x 的离散程度的是()A .样本12,,,n x x x 的标准差B .样本12,,,n x x x 的中位数C .样本12,,,n x x x 的极差D .样本12,,,n x x x 的平均数【答案】AC【解析】【分析】考查所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【详解】由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选:AC.21.【2020年新高考1卷(山东卷)】信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 的信息熵21()log n i i i H X p p ==-∑.()A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n == ,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )【答案】AC【解析】【分析】对于A 选项,求得()H X ,由此判断出A 选项;对于B 选项,利用特殊值法进行排除;对于C 选项,计算出()H X ,利用对数函数的性质可判断出C 选项;对于D 选项,计算出()(),H X H Y ,利用基本不等式和对数函数的性质判断出D 选项.【详解】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确.对于B 选项,若2n =,则1,2i =,211p p =-,所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦,当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误.对于C 选项,若()11,2,,i p i n n== ,则()222111log log log H X n n nn n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且()21j m j P Y j p p +-==+(1,2,,j m = ).()2222111log log m m i i i i i iH X p p p p ===-⋅=⋅∑∑122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅ .()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅+⋅+++⋅+++ 12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++ 由于()01,2,,2i p i m >= ,所以2111i i m i p p p +->+,所以222111log log i i m i p p p +->+,所以222111log log i i i i m ip p p p p +-⋅>⋅+,所以()()H X H Y >,所以D 选项错误.故选:AC【点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.22.【2020年新高考2卷(海南卷)】我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是A .这11天复工指数和复产指数均逐日增加;B .这11天期间,复产指数增量大于复工指数的增量;C.第3天至第11天复工复产指数均超过80%;D.第9天至第11天复产指数增量大于复工指数的增量;【答案】CD【解析】【分析】注意到折线图中有递减部分,可判定A错误;注意考查第1天和第11天的复工复产指数的差的大小,可判定B错误;根据图象,结合复工复产指数的意义和增量的意义可以判定CD 正确.【详解】由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;由图可知,第3天至第11天复工复产指数均超过80%,故C正确;由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D正确;【点睛】本题考查折线图表示的函数的认知与理解,考查理解能力,识图能力,推理能力,难点在于指数增量的理解与观测,属中档题.23.【2022年全国甲卷】从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.【答案】635.【解析】【分析】根据古典概型的概率公式即可求出.【详解】从正方体的8个顶点中任取4个,有=C84=70个结果,这4个点在同一个平面的有= 6+6=12个,故所求概率==1270=635.故答案为:635.24.【2022年新高考2卷】已知随机变量X服从正态分布2,2,且o2<≤2.5)=0.36,则o>2.5)=____________.【答案】0.14##750.【解析】【分析】根据正态分布曲线的性质即可解出.【详解】因为∼2,2,所以<2=>2=0.5,因此>2.5=>2−2<≤2.5=0.5−0.36=0.14.故答案为:0.14.25.【2019年新课标1卷理科】甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.【答案】0.18【解析】【分析】本题应注意分情况讨论,即前五场甲队获胜的两种情况,应用独立事件的概率的计算公式求解.题目有一定的难度,注重了基础知识、基本计算能力及分类讨论思想的考查.【详解】前四场中有一场客场输,第五场赢时,甲队以4:1获胜的概率是30.60.50.520.108,⨯⨯⨯=前四场中有一场主场输,第五场赢时,甲队以4:1获胜的概率是220.40.60.520.072,⨯⨯⨯=综上所述,甲队以4:1获胜的概率是0.1080.0720.18.q =+=【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4:1获胜的两种情况;易错点之三是是否能够准确计算.26.【2019年新课标2卷理科】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.【答案】0.98.【解析】【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=.【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.。

2020高考数学(理)专项复习《概率统计》含答案解析

2020高考数学(理)专项复习《概率统计》含答案解析

概率统计统计是研究如何合理收集、整理、分析数据的学科,为人们制定决策提供依据.概率是研究随机现象规律的学科,为人们认识客观世界提供重要的思维模式和解决问题的方法. 统计一章介绍随机抽样、样本估计总体、线性回归的基本方法,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.概率一章介绍随机现象与概率的意义、古典概型及几何概型,学习某些离散型随机变量分布列及其期望、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识.§11-1 概率(一)【知识要点】1.事件与基本事件空间:随机事件:当我们在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生也可能不发生的结果称为随机事件,随机事件简称为事件.基本事件与基本事件空间:在一次试验中我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述,这样的事件称为基本事件.所有基本事件构成的集合叫做基本事件空间,常用 表示.2.频率与概率频率:在相同的条件S 下,重复n 次试验,观察某个事件A 是否出现,称n 次试验中事件A 的出现次数m 为事件A 出现的频数,称事件A 出现的比例nm 为事件A 出现的频率. 概率:一般的,在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记做P (A ).显然有0≤P (A )≤1.不可能事件的概率为0,必然事件的概率为1,随机事件的概率在(0,1)之间.3.互斥事件的概率加法公式事件的并:由事件A 或B 至少有一个发生构成的事件C 称为事件A 与B 的并,记做C =A ∪B .互斥事件:不可能同时发生的两个事件称为互斥事件.互斥事件加法公式:如果事件A 、B 互斥,则事件A ∪B 发生的概率等于这两个事件分别发生的概率和,即P (A ∪B )=P (A )+P (B ).如果A 1,A 2,…,A n 两两互斥,那么事件A 1∪A 2∪…∪A n 发生的概率,等于这n 个事件分别发生的概率和,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A ,满足P (A )=1-P (A ).概率的一般加法公式(选学):事件A 和B 同时发生构成的事件D ,称为事件A 与B 的交(积),记作D =A ∩B .在古典概型中,P (A ∪B )=P (A )+P (B )-P (A ∩B ).4.古典概型古典概型:一次试验有下面两个特征:(1)有限性,在一次试验中可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的,则称这个试验为古典概型.古典概型的性质:对于古典概型,如果试验的n 个基本事件为A 1,A 2,…,A n ,则有P (A 1∪A 2∪…∪A n )=1且⋅=nA P i 1)( 概率的古典定义:在古典概型中,如果试验的基本事件总数为n (Ω ),随机事件A 包含的基本事件数为n (A),则p (A)=试验的基本事件总数包含的基本事件数事件A ,即⋅=)()()(Ωn A n A P 5.几何概型几何概型:一次试验具有这样的特征:事件A 理解为区域Ω的一个子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,这样的试验称为几何概型.几何概型的特点:(1)无限性:一次试验中可能出现的结果有无穷多个;(2)等可能性,每个基本事件发生的可能性相等.几何概型中事件A 的概率定义:ΩA A P μμ=)(,其中μ Ω 表示区域Ω 的几何度量,μ A 表示子区域A 的几何度量.随机数:就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会均等.计算机随机模拟法(蒙特卡罗方法)是利用模型来研究某种现象的性质的一种有效方法,可以节约大量的人力物力.6.条件概率与事件的独立性条件概率:一般的,设A 、B 为两个事件,且P (A )>0,称P (B |A )=)()(A P B A P I 为在事件A 发生的条件下,事件B 发生的概率.一般把P (B |A )读作“A 发生的条件下B 发生的概率”.在古典概型中,用n (A )表示事件A 中基本事件的个数,则有P (B |A )=)()(A n B A n I .事件的独立性:设A 、B 为两个事件,如果P (B |A )=P (B ),则称事件A 与事件B 相互独立,并称事件A 、B 为相互独立事件.若A 、B 为两个相互独立事件,则A 与A 、A 与B 、A 与B 也都相互独立.若事件A 与事件B 相互独立,则P (A ∩B )=P (A )·P (B ).【复习要求】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率.4.了解随机数的意义,了解几何概型的意义.5.在具体情境中,了解条件概率,了解两个事件相互独立的概念及独立事件的概率乘法公式,并能解决一些简单的实际问题.【例题分析】例1(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率.【分析】射击运动员一次射击只能命中1个环数,命中不同的环数是互斥事件,射中9环或10环的概率等于射中9环与射中10环的概率和.命中不足8环所包含的事件较多,而其对立事件为“至少命中8环”,可先求其对立事件的概率,再通过P (A )=1-P (A )求解.解:设事件“射击一次,命中k 环”为事件A k (k ∈N ,k ≤10),则事件A k 彼此互斥.(1)记“射击一次,射中9环或10环”为事件A ,则P (A )=P (A 10)+P (A 9)=0.60.(2)记“射击一次,至少命中8环”为事件B ,则P (B )=P (A 10)+P (A 9)+P (A 8)=0.78.(3)“射击一次,命中不足8环”为事件B 的对立事件,则P (B )=1-P (B )=0.22.【评析】解决概率问题时,要先分清所求事件由哪些事件组成,分析是否是互斥事件,再决定用哪个公式.当用互斥事件的概率加法公式解题时,要学会不重不漏的将事件拆为几个互斥事件,要善于用对立事件解题.例2 现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A 1被选中的概率;(Ⅱ)求B 1和C 1不全被选中的概率.【分析】本题是一个古典概型的问题,可以直接用概率公式)()()(Ωn A n A P =求解. 解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)} 由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而⋅==31186)(M P(Ⅱ)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”这一事件, 由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成, 所以61183)(==N P ,由对立事件的概率公式得⋅=-=-=65611)(1)(N P N P 【评析】古典概型解决概率问题时,选定基本事件空间并计算其所含基本事件的个数是重要的一步.本题中选定“从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果”为基本事件空间,计算时采用列举法,也可以利用乘法计数原理计算3×3×2=18.本题第一问还可以选定“从通晓日语的3人中选出1人的可能结果”为基本事件空间,共有3个基本事件,选出A 1只有一种可能,故所求概率为⋅31例3 一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.(1)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;(2)连续摸球2次,在第一次摸到黑球的条件下,求第二次摸到白球的概率;(3)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.【分析】本题是一个古典概型问题,因为基本事件空间中所含基本事件的个数较多,宜用排列组合公式计算,当然也可利用两个计数原理计数.本题第二问是条件概率问题.做第三问时,要分为三个事件:“第一次摸到红球”,“第一次摸到不是红球,第二次摸到红球”,“前两次摸到不是红球,第三次摸到红球”,显然三个事件是互斥事件.解:(1)从袋中依次摸出2个球共有29A 种结果,第一次摸出黑球、第二次摸出白球有3×4=12种结果,则所求概率6112291==A P (或6184931=⨯=P ). (2)设“第一次摸到黑球”为事件A ,“第二次摸到白球”为事件B ,则“第一次摸到黑球,且第二次摸到白球”为事件A ∩B ,又31)(=A P ,P (A ∩B )61=,所以或⋅==213161)|(A B P (或2184)|(==A B P ). (3)第一次摸出红球的概率为1912A A ,第二次摸出红球的概率为291217A A A ,第三次摸出红球的概率为391227A A A ,则摸球次数不超过3次的概率为⋅=++=12739122729121719122A A A A A A A A P 【评析】利用古典概型求解时,求基本事件的个数和事件发生的总数时求法要一致,若无序则都无序,若有序则都有序,分子和分母的标准要相同.在求事件个数时常用列举法(画树状图、列表、坐标系法),有时也与排列组合联系紧密,计算时灵活多变,但要注意分类讨论,做到不重不漏.要正确识别条件概率问题,理解P (A),P (A ∩B ),P (B |A )的含义.例4 (1)两根相距6米的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2米的概率是______.(2)甲乙两人约定在6点到7点之间在某处会面,并约好先到者等候另一人一刻钟,过时即可离去.则两人能会面的概率是______.(3)正方体内有一个内切球,则在正方体内任取一点,这个点在球内的概率为______.【分析】这三个题都可转化为几何概率问题求解.分别转化为线段长度、图形面积、几何体体积问题求解.解:(1)本题可转化为:“在长为6m 的线段上随机取点,恰好落在2m 到4m 间的概率为多少?” 易求得⋅=31P (2)本题可转化为面积问题:即“阴影部分面积占总面积的多少?”, 解得⋅=167)(A P (3)本题可转化为体积问题:即“内切球的体积与正方体体积之比是多少?”.解得⋅=6πP 【评析】几何概型也是一种概率模型,它具有等可能性和无限性两个特点.解题的关键是要建立模型,将实际问题转化为几何概率问题.基本步骤是:把基本事件空间转化为与之对应的区域Ω;把随机事件A 转化为与之对应的区域A ;利用概率公式)()()(ΩA A P μμ=计算.常用的几何度量包括:长度、面积、体积.例5 设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.【分析】本题第一问是古典概型问题,第二问由于a 、b 在实数区间选取,可以转化为几何概型问题求解.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为⋅==43129)(A P (Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为⋅=⨯⨯-⨯=3223221232 【评析】几何概型与古典概型的每个基本事件发生的可能性是均等的,只是几何概型的基本事件有无限个,而古典概型的基本事件有有限个.在具体问题中,不能因为古典概型的基本事件的个数多而误认为是几何概型.例6 如图,用A 、B 、C 三类不同的元件连结成两个系统N 1、N 2,当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,已知元件A 、B 、C 正常工作的概率为0.80、0.90、0.90,分别求系统N 1、N 2正常工作的概率.【分析】三个元件能否正常工作相互独立.当元件A 、B 、C 同时正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,而B 、C 至少有一个正常工作的概率可通过其对立事件计算.解:设元件A 、B 、C 正常工作为事件A 、B 、C ,则P (A )=0.8,P (B)=0.9,P (C)=0.9,且事件A 、B 、C 相互独立.(1)系统N 1正常工作的概率为p 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648.(2)元件B 、C 至少有一个正常工作的概率为1-P (B ·C )=1-P (B )·P (C )=1-0.1×0.1=0.99,所以系统N 2正常工作的概率为p 2=P (A )·(1-P (B ·C ))=0.80×0.99=0.792.【评析】本题以串、并联为背景,重点在正确理解题意.在计算几个事件同时发生的概率时,要先判断各个事件之间是否相互独立.独立事件、互斥事件、对立事件的概率各有要求,要依据题目特点,巧妙地选用相关方法.例7 每次抛掷一枚质地均匀的骰子(六个面上分别标以数字1,2,3,4,5,6).(1)连续抛掷3次,求向上的点数之和为3的倍数的概率;(2)连续抛掷6次,求向上的点数为奇数且恰好出现4次的概率.【分析】向上点数之和为3的倍数共有6种情况,计数时要不重不漏;向上点数为奇数的概率为21,连续抛掷6次是独立重复试验. 解:(1)向上的点数之和为3的结果有1种情况,为6的结果共10种情况,为9的结果共25种情况,为12的结果共25种情况,为15的结果共10种情况,为18的结果共1种情况.所以⋅=⨯⨯+++++=3166611025251012P(2)因为每次抛掷骰子,向上的点数为奇数的概率为P =21, 根据独立重复试验概率公式有⋅==⋅⋅6415)21()21(24463C P 【评析】独立重复试验是一类重要的概率问题,要善于分析模型的特点,正确合理的解题.例8 某学校进行交通安全教育,设计了如下游戏,如图,一辆车模要直行通过十字路口,此时前方交通灯为红灯,且该车模前面已有4辆车模依次在同一车道上排队等候(该车道只可以直行或左转行驶).已知每辆车模直行的概率是53,左转行驶的概率是52,该路口红绿灯转换间隔时间均为1分钟.假设该车道上一辆直行去东向的车模驶出停车线需要10秒钟,一辆左转去北向的车模驶出停车线需要20秒钟,求:(1)前4辆车模中恰有2辆车左转行驶的概率;(2)该车模在第一次绿灯亮起时的1分钟内通过该路口的概率(汽车驶出停车线就算通过路口).【分析】该车模1分钟内通过路口包含2种情况:4辆车都直行,3辆车直行1辆车左转.解:(1)设前4辆车模中恰有2辆左转行驶为事件A ,则⋅=⨯=625216)52()53()(2224C A P (2)设该车在第一次绿灯亮起时的1分钟内通过该路口为事件B ,其中4辆车模均 直行通过路口为事件B 1,3辆直行1辆左转为事件B 2,则事件B 1、B 2互斥.=+=+=)()()()(2121B B P B B P B P ⋅=⨯+62529752)53()53(334444C C 【评析】善于从复杂的背景中发现线索,体会其实质.善于转化问题的叙述,恰当的分类.练习11-1一、选择题1.下列随机事件的频率和概率的关系中哪个是正确的( )A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.从装有2个黑球2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有一个白球,都是白球B .至少有一个白球,至少有一个红球C .恰有一个白球,恰有两个白球D .至少有一个白球,都是红球3.独立工作的两套报警系统遇危险报警的概率均为0.4,则遇危险时至少有一套报警系统报警的概率是( )A .0.16B .0.36C .0.48D .0.644.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )A .751B .752C .753D .754 二、填空题5.甲、乙二人掷同一枚骰子各一次.如果谁掷的点数大谁就取胜,则甲取胜的概率为______.6.设每门高射炮命中飞机的概率都是0.6.今有一敌机来犯,要有99%的把握击中敌机,至少需要______门高射炮.7.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中概率为______.8.一个口袋中有4个白球,2个黑球.有放回的取出3个球,如果第一次取出的是白球,则第三次取出的是黑球的概率为______;不放回的取出3个球,在第一次取出的是白球的条件下,第二次取出的是黑球的概率为______.三、解答题9.已知集合A ={-4.-2,0,1,3,5},在平面直角坐标系中点M (x ,y )的坐标满足x ∈A ,y ∈A .计算:(1)点M 恰在第二象限的概率;(2)点M 不在x 轴上的概率;(3)点M 恰好落在区域⎪⎩⎪⎨⎧>>>-+0008y x y x 上的概率.10.某个高中研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1人作为代表发言.设每人每次被选中与否均互不影响;(1)求两次汇报活动都是由小组成员甲发言的概率;(2)求男生发言次数不少于女生发言次数的概率.11.3名志愿者在10月1日至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且各名志愿者的选择互不影响.求(1)这3名志愿者中在10月1日都参加社区服务工作的概率;(2)这3名志愿者中在10月1日至多有1人参加社区服务工作的概率.§11-2 概率(二)【知识要点】1.离散型随机变量及其分布列随机变量:如果随机试验的可能结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量.离散型随机变量的分布列:设离散型随机变量X 的可能取值为x 1,x 2,…,x n ,X 取到i i ii 12+…+p n =1.离散型随机变量在某个范围取值的概率等于它取这个范围内各个值的概率和.其中0<p <1,q =1-,则称离散型随机变量服从参数为p 的二点分布.二项分布:一般的,在相同条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验.在n 次独立重复试验中,事件A 恰好发生k 次的概率为==)(k X P k n k k n q p C -(其中p 为在一次试验中事件A 发生的概率,q =1-p ,k =0,1,…,n ).若将n次独立重复试验中事件A 发生的次数设为X ,则X 的分布列为超几何分布:一般的,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件(n ≤N ),这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为m C C C m X P n Nm n M N m M ≤==--0()(≤l ,其中l 为n 和M中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N 、M 、n 的超几何分布.2.随机变量的数字特征及正态分布1122i i n n 了离散型随机变量的平均取值水平.称i i n i p X E xX D ⋅-=∑=21))(()(为随机变量X 的方差,它反映了离散型随机变量X 相对于期望的平均波动大小(或说离散程度),其算数平方根)(X D 为随机变量X 的标准差,记作σ (X ),方差(或标准差)越小表明X 的取值相对于期望越集中,否则越分散.均值与方差的性质:①E (aX +b )=aE (X )+b ②D (aX +b )=a 2D (X )若X 服从两点分布,则E (X )=p ,D (X )=pq ;若X ~B (n ,p ),则E (X )=np ,D (X )=npq . 正态曲线:函数),((21)(222)(+∞∝-∈=--x e x x σμσπϕ,其中μ ∈R ,σ >0)的图象为正态分布密度曲线,简称正态曲线.其特点有:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,关于x =μ 对称;③曲线在x =μ 处达到峰值σ2π1;④曲线与x 轴之间的面积为1;⑤当σ 一定时,曲线随着μ 的变化而沿x 轴平移;⑥当μ 一定时,曲线的形状由σ 决定.σ 越小,曲线越“瘦高”,表示总体的分布越集中;σ 越大,曲线越“矮胖”,表示总体的分布越分散.正态分布:如果对于任意实数a <b ,随机变量X 满足=≤<)(b X a P dx x ba )(ϕ⎰,则称X 的分布为正态分布;随机变量X 服从参数μ 、σ 的正态分布,记作N ~(μ ,σ 2).正态分布的三个常用数据:①P (μ -σ <X <μ +σ )=68.3%;②P (μ -2σ <X <μ +2σ )=95.4%;③P (μ -3σ <X <μ +3σ )=99.7%.【复习要求】①在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.②通过实例,理解超几何分布及其导出过程,并能进行简单的应用.③通过实例,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. ④通过实例,理解取有限值的离散型随机变量期望、方差的概念,能计算简单离散型随机变量的期望、方差,并能解决一些实际问题.⑤通过实际问题,认识正态分布曲线的特点及曲线所表示的意义.【例题分析】例1 一袋中装有编号为1、2、3、4、5、6的6个大小相同的小球,现从中随机取出3个球,以X 表示取出球的最大号码,(1)求X 的分布列;(2)求X >4的概率;(3)求E (X ).【分析】随机变量X 可能取的值为3、4、5、6,应用古典概型求得X 取每一个值的概率,就可以写出分布列.解:(1)随机变量X 可能取的值为3、4、5、6,且,203)4(,2011)3(362336======C C X P C X P 3624)5(C C X P ==103206==,212010)6(3625====C C X P ,所求X 的分布列为(2)==+==>)6()5()4(X P X P X P ⋅54 (3).25.5216103520342013)(=⨯+⨯+⨯+⨯=X E 【评析】离散型随机变量的分布列反映了一次试验的所有可能结果(X 的所有可能取值),以及取得每个结果(X 的每一个值)的概率.书写分布列首先要根据具体情况正确分析X 可取的所有值,然后利用排列组合及概率的有关知识求得每个x i 所对应的概率p i ,最后列成表格.要注意不同的X 值所对应的事件之间是互斥的,求离散型随机变量在某一范围的概率等于它取这个范围内各个值的概率和.例2 袋中装有大小相同的5个红球、5个白球,现从中任取4个球,其中所含红球的个数为X ,写出X 的分布列,并求X 的期望.【分析】袋中共有10个球,从中任取4个,所含红球的个数为0、1、2、3、4,每个事件的概率可以利用古典概型求解.解:随机变量X 可取的值有0、1、2、3、4,)0(=X P =,42121054104505==⋅C C C )1(=X P =215210504103515==⋅C C C ,)2(=X P 21102101004102525===⋅C C C ,===⋅4101535)3(C C C X P 21050 215=,4212105)4(4100545==⋅==C C C X P , 分布列为2424213212211420)(=⨯+⨯-+⨯+⨯+⨯=X E 【评析】本题的随机变量X 服从参数为N ,M ,n 的超几何分布,其中N =10,M =5,n =4.例3 某人练习射击,每次击中目标的概率为31. (1)用X 表示击中目标的次数.①若射击1次,求X 的分布列和期望;②若射击6次,求X 的分布列和期望;(2)若他连续射击6次,设ξ为他第一次击中目标前没有击中目标的次数,求ξ的分布列;(3)他一共只有6发子弹,若击中目标,则不再射击,否则子弹打完为止,求他射击次数η 的分布列.【分析】射击问题常被看做是独立重复试验.ξ的取值为0到6,η 的取值为1到6. 解:(1)①X 服从二点分布⋅=31)(X E ②X 服从二项分布)6,,1,0()2()1()(),1,6(~66Λ===-k C k X P B k k k ,分布列为.236)(=⨯=X E (2)ξ的取值为0到6,ξ=k (k =0,1,…,5)表示第k +1次击中目标,前k 次都没击中目标,则P (ξ=k )=)5,,1,0(31)32(.Λ=k k ,ξ=6表示射击6次都未击中目标,==)6(ξP6)2(.ξ的分布列为(3)η 的取值为1到6.η =k (k =1,2,…,5)表示第k 次时第一次击中目标,==)(k P η 6;1)2(.1=-ηk 表示前5次都没有击中目标,5)2()6(==ξP .η 的分布列为“X =k ”.在计算满足二点分布和二项分布的随机变量的期望和方差时,可直接应用公式计算.例4 甲乙两名射手在一次射击中的得分为两个相互独立的随机变量X 和Y ,且X 和Y 的分布列为计算X 和Y 【分析】先由分布列所提供的数据用期望和方差公式计算,再根据实际意义作出分析. 解:E (X )=8.85,D (X )=2.2275;E (Y )=5.6,D (Y )=10.24.由于E (X )>E (Y ),说明甲射击的平均水平比乙高;由于D (X )<D (Y ),说明甲射击的环数比较集中,发挥比较稳定,乙射击的环数比较分散,技术波动较大,不稳定,由此可以看出甲比乙的技术好.【评析】正确记忆期望和方差的公式,在分布列中,期望是每个变量乘以它所对应的概率再相加,求方差要先求期望,再作差、平方、乘以相应概率再相加.科学对待计算结果,正确分析数据所表达的实际意义.例5 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率;(3)若η =2ξ+1,求ξ、η 的数学期望和方差;【分析】本题概率问题是古典概型,要分别求出事件中所含元素的个数,第一问事件“二次方程有实根”等价于“∆=b 2-4c ≥0”,b 、c 的值都取自{1,2,3,4,5,6};第二问是条件概率问题;第三问先求ξ的期望和方差,再由公式求η 的期望和方差.解:(1)由题意知:设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实数”为事件C ,Ω中基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个.又因为B ,C 是互斥事件,故所求概率⋅=+=+=36193617362)()(C B B P P (2)记“先后两次出现的点数中有5”为事件D ,“方程x 2+bx +c =0有实数”为事件E ,由上面分析得D P D P (,3611)(=∩367)=E ,∴⋅==117)()()|(D P E D P D E P I (Ⅱ)由题意ξ的可能取值为0,1,2,则,3617}2{,181}1{,3617}0{======&ξξξP P P 故ξ的分布列为:所以.18173617·)12(181·)11(3617·(0-0-,136172181136170222=-+-+==⨯+⨯+⨯=ξξD E 9342)12(,312)12(2==+==+=+=ξξξξηηD D D E E E 【评析】本题是一道概率的综合题,由07山东卷改编而得.在古典概型中解决条件概率问题时,概率公式是=)|(A B P )()()()(A n B A n A P B A P I I =.具有线性关系的两个随机变量的期望和方差之间的关系是b X aE b aX E +=+)()(,)()(2X D a b aX D =+.例6 (1)设两个正态分布N (μ 1,21σ)(σ 1>0)和N (μ 2,22σ)(σ 2>0)的密度函数图象如图所示.则有( )。

2017—2020年广东省春季高考数学真题分类汇编(含答案)

2017—2020年广东省春季高考数学真题分类汇编(含答案)

20172020一、集合1、(2020)1.已知集合则M N⋃=()A. B. C. D.2、(2019)1.已知集合A={0,2,4},B={-2,0,2},则A∪B=()A.{0,2} B.{-2,4} C.[0,2] D.{-2,0,2,4}3、(2018)1.已知集合M={-1,0,1,2},N={x|-1≤x<2},则M∩N=()A.{0,1,2} B.{-1,0,1} C.M D.N4、(2017)1.已知集合M={0,2,4},N={1,2,3},P={0,3},则(M∪N)∩P等于()A.{0,1,2,3,4} B.{0,3} C.{0,4} D.{0}二、复数1.(2020)2.设是虚数单位,则复数()A. B. C. D.2、(2019)2.设i为虚数单位,则复数i(3+i)=()A.1+3i B.-1+3i C.1-3i D.-1-3i3、(2018)4.设i是虚数单位,x是实数,若复数x1+i的虚部是2,则x=()A .4B .2C .-2D .-44、(2017)3.设i 为虚数单位,则复数1-i i =( )A .1+iB .1-iC .-1+iD .-1-i 三、向量1.(2020)16.设向量,若,则_____2、(2019)4.已知向量a =(2,-2),b =(2,-1),则|a +b |=( )A .1 B. 5 C .5 D .253、(2019)13.如图,△ABC 中,AB→=a ,AC →=b ,BC →=4BD →,用a ,b 表示AD →,正确的是 A.AD →=14a +34b B.AD →=54a +14b C.AD →=34a +14b D.AD →=54a -14b 4、(2018)6.已知向量a =(1,1),b =(0,2),则下列结论正确的是( )A .a ∥bB .(2a -b )⊥bC .|a |=|b |D .a ·b =35、(2018)10.如图,O 是平行四边形ABCD 的两条对角线的交点,则下列等式正确的是( )A.DA→-DC →=AC → B.DA →+DC →=DO → C.OA→-OB →+AD →=DB → D.AO →+OB →+BC →=AC → 1-i (1-i )·i i -i i +16、(2017)7.已知三点A (-3,3), B (0, 1),C (1,0),则|AB→+BC →|等于( ) A .5 B .4 C.13+ 2 D.13-2四、直线与圆 1.(2020)直线210x y --=的斜率是( )A. B. C. 2 D.2.(2020)12.直线:20+-=l x y 被圆截得的弦长为( )A. B. 2 C. D. 13、(2019)5.直线3x +2y -6=0的斜率是( )A.32 B .-32 C.23 D .-234、(2019)12.已知圆C 与y 轴相切于点(0,5),半径为5,则圆C 的标准方程是( )A .(x -5)2+(y -5)2=25B .(x +5)2+(y -5)2=25C .(x -5)2+(y -5)2=5或(x +5)2+(y -5)2=5D .(x -5)2+(y -5)2=25或(x +5)2+(y -5)2=255、(2018)19.圆心为两直线x +y -2=0和-x +3y +10=0的交点,且与直线x +y -4=0相切的圆的标准方程是________.6、(2017)5.已知直线l 过点A (1,2),且与直线y =12x +1垂直,则直线l 的方程是( )A .y =2xB .y =-2x +4C .y =12x +32D .y =12x +527、(2017)12.已知点A (-1,8)和B (5, 2),则以线段AB 为直径的圆的标准方程是( )A .(x +2)2+(y +5)2=3 2B .(x +2)2+(y +5)2=18C .(x -2)2+(y -5)2=3 2D .(x -2)2+(y -5)2=18五、圆锥曲线(2020)19.设椭圆的两个焦点分别为,过作椭圆长轴的垂线交椭圆于A,B两点,若为等边三角形,则该椭圆的离心率为____1、(2019)15.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴为A 1A 2,P 为椭圆的下顶点,设直线P A 1,P A 2的斜率分别为k 1,k 2,且k 1·k 2=-12,则该椭圆的离心率为( ) A.32 B.22 C.12 D.142、(2018)13.设点P 是椭圆x 2a 2+y 24=1(a >2)上的一点,F 1,F 2是椭圆的两个焦点,若|F 1F 2|=43,则|PF 1|+|PF 2|=( )A .4B .8C .4 2D .473、(2018)16.双曲线x 29-y 216=1的离心率为________.4、(2017)6.顶点在坐标原点,准线为x =-2的抛物线的标准方程是( )A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y5、(2017)19.中心在坐标原点的椭圆,其离心率为12,两个焦点F 1和F 2在x 轴上,P 为该椭圆上的任意一点,若|PF 1|+|PF 2|=4,则椭圆的标准方程是________.六、线性规划与不等式(2020)10.设满足约束条件,则的最小值是( )A. B. C. D.1、(2019)6.不等式x 2-9<0的解集为( )A .{x |x <-3}B .{x |x <3}C .{x |x <-3或x >3}D .{x |-3<x <3}2、(2019)11.设x ,y 满足约束条件⎩⎨⎧x -y +3≥0,x +y -1≤0,y ≥0,则z =x -2y 的最大值为() A .-5 B .-3 C .1 D .43、(2018)9.若实数x ,y 满足⎩⎨⎧x -y +1≥0,x +y ≥0,x ≤0,则z =x -2y 的最小值为( )A .0B .-1C .-32D .-24、(2017)11.已知实数x ,y 满足⎩⎨⎧x ≤3,y ≤x ,x +y ≥2,则z =2x +y 的最大值为( )A .3B .5C .9D .105、(2017)13.下列不等式一定成立的是( )A .x +2x ≥2(x ≠0)B .x 2+1x 2+1≥1(x ∈R)C .x 2+1≤2x (x ∈R)D .x 2+5x +6≥0(x ∈R)七、数列(2020)8.在等差数列中,若51015,10,a a =-=-则( )A. B. C. 0 D. 5(2020)17.设等比数列的前n 项和为,已知,,则_____1、(2019)14.若数列{a n }的通项a n =2n -6,设b n =|a n |,则数列{b n }的前7项和为( )A .14B .24C .26D .282、(2019)17.在等比数列{a n }中,a 1=1,a 2=2,则a 4=________.3、(2018)15.已知数列{a n }的前n 项和S n =2n +1-2,则a 21+a 22+…+a 2n =( )A .4(2n -1)2B .4(2n -1+1)2 C.4(4n -1)3 D.4(4n -1+2)34、(2018)20.若等差数列{a n }满足a 1+a 3=8,且a 6+a 12=36.(1)求{a n }的通项公式;(2)设数列{b n }满足b 1=2,b n +1=a n +1-2a n ,求数列{b n }的前n 项和S n .5、(2017)10.已知数列{a n }满足a 1=1,且a n +1-a n =2,则{a n }的前n 项和S n 等于() A .n 2+1 B .n 2 C .2n -1 D .2n -16、(2017)16.已知x >0,且53,x ,15成等比数列,则x =____________.八、概率与统计(2020)3.某次歌唱比赛中,7位评委为某选手打出的分数分别为83,91,91,94,94,95,96,去掉一个最高分和一个最低分后,所剩数据的平均数为()A. 94B. 93C. 92D. 91(2020)18.从4张分别写有数字1,2,3,4卡片中随机抽取2张,则所取2张卡片上的数字之积为奇数的概率是____1、(2019)8.某地区连续六天的最低气温(单位:℃)为:9,8,7,6,5,7,则该六天最低气温的平均数和方差分别为()A.7和53 B.8和83 C.7和1 D.8和232、(2019)18.袋中装有五个除颜色外完全相同的球,其中2个白球,3个黑球,从中任取两球,则取出的两球颜色相同的概率是________.3、(2018)7.某校高一(1)班有男、女学生共50人,其中男生20人,用分层抽样的方法,从该班学生中随机选取15人参加某项活动,则应选取的男、女生人数分别是()A.6和9 B.9和6 C.7和8 D.8和74、(2018)18.笔筒中放有2支黑色和1支红色共3支签字笔,先从笔筒中随机取出一支笔,使用后放回笔筒,第二次再从笔筒中随机取出一支笔使用,则两次使用的都是黑色笔的概率为________.5、(2017)15.已知样本x1,x2,x3,x4,x5的平均数为4, 方差为3,则x1+6,x2+6,x3+6,x4+6,x5+6的平均数和方差分别为()A.4和3 B.4和9 C.10和3 D.10和96、(2017)18.从1,2,3,4这四个数字中任意选取两个不同的数字,将它们组成一个两位数,该两位数小于20的概率是____________.实用文档九、逻辑用语(2020)13.已知命题则为 ( )A.B.C. [)()0000,,ln 1x x x ∃∈+∞+≠D.1、(2019)10.命题“∀x ∈R ,sin x +1≥0”的否定是( )A .∃ x 0∈R ,sin x 0+1<0B .∀x ∈R ,sin x +1<0C .∃x 0∈R ,sin x 0+1≥0D .∀x ∈R ,sin x +1≤02、(2018)5.设实数a 为常数,则函数f (x )=x 2-x +a (x ∈R)存在零点的充分必要条件是( )A .a ≤1B .a >1C .a ≤14 D .a >143、(2017)4.已知甲:球的半径为1 cm ;乙:球的体积为4π3 cm 3,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件十、三角函数(2020)6. 若sinα>0,且cosα<0,则角α是()A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角(2020)20.已知函数.(1)求函数的最小正周期和最大值;(2)若满足,求的值1、(2019)16.已知角α的顶点与坐标原点重合,终边经过点P(4,-3),则cos α=________.2、(2018)12.函数f (x )=4sin x cos x ,则f (x )的最大值和最小正周期分别为( )A .2和πB .4和πC .2和2πD .4和2π3、(2018)17.若sin ⎝ ⎛⎭⎪⎫π2-θ=23,且0<θ<π,则tan θ=________.4、(2017)8.已知角α的顶点为坐标原点,始边为x 轴的正半轴,终边过点P (5,-2),则下列等式不正确的是( )A .sin α=-23B .sin(α+π)=23C .cos α=53D .tan α=-525、(2017)17.函数f (x )=sin x cos(x +1)+sin(x +1)cos x 的最小正周期是____________.十一、解三角形(2020)15.的内角A,B,C的对边分别为.已知,,且的面积为2,则()A. B. C. D.1、(2019)20.△ABC的内角A,B,C的对边分别为a,b,c,已知cos A=35,bc=5.(1)求△ABC的面积; (2)若b+c=6,求a的值.2、(2018)11.设△ABC的内角A,B,C的对边分别为a,b,c,若a=3,b=2,c=13,则C=()A.5π6 B.π6 C.2π3 D.π33、(2017)20.已知△ABC的内角A,B,C的对边分别为a,b,c,且acos A=bcos B.(1)证明:△ABC为等腰三角形;(2)若a=2,c=3,求sin C的值.十二、函数(2020)5.下列函数为偶函数的是()A. B. C. D.(2020)7.函数的定义域是( )A. B. C. ()(),04,-∞+∞ D. (][),04,-∞+∞(2020)9.已知函数()1,022,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪->⎩,设,则( )A. 2B.C.D.(2020)11.设,则( )A. B. C. D.1、(2019)3.函数y =log 3(x +2)的定义域为( )A .(-2,+∞)B .(2,+∞)C .[-2,+∞)D .[2,+∞)2、(2019)7.已知a >0,则a 3a 2=( )A .a 12B .a 32C .a 23D .a 133、(2019)19.已知函数f (x )是定义在(-∞,+∞)上的奇函数,当x ∈[0,+∞)时,f (x )=x 2-4x ,则当x ∈(-∞,0)时,f (x )=________.4、(2018)2.对任意的正实数x ,y ,下列等式不成立的是( )A .lg y -lg x =lg yx B .lg(x +y )=lg x +lg yC .lg x 3=3lg xD .lg x =ln xln 105、(2018)3.已知函数f (x )=⎩⎨⎧x 3-1,x ≥02x ,x <0,设f (0)=a ,则f (a )=( )A .-2B .-1C.12D .06、(2018)14.设函数f (x )是定义在R 上的减函数,且f (x )为奇函数,若x 1<0,x 2>0,则下列结论不正确的是( )A .f (0)=0B .f (x 1)>0C .f ⎝ ⎛⎭⎪⎫x 2+1x 2≤f (2)D .f ⎝ ⎛⎭⎪⎫x 1+1x 1≤f (2)7、(2017)2.函数y =lg(x +1)的定义域是( )A .(-∞,+∞)B .(0,+∞)C .(-1,+∞)D .[-1,+∞)8、(2017)9.下列等式恒成立的是( )A.13x=x -23(x ≠0) B .(3x )2=3x 2C .log 3(x 2+1)+log 32=log 3(x 2+3)D .log 313x =-x9、(2017)14.已知f (x )是定义在R 上的偶函数,且当x ∈(-∞,0]时,f (x )=x 2-sin x ,则当x ∈[0,+∞)时,f (x )=( )A .x 2+sin xB .-x 2-sin xC .x 2-sin xD .-x 2+sin x十三、立体几何(2020)14.一个棱长为2的正方体,其顶点均在同一球的球面上,则该球的表面积是( )(参考公式:球的表面积公式为,其中R 是球的半径)A. B. C. D.(2020)21.如图,直三棱柱111ABC A B C -中,底面是边长为2的等边三角形,点D ,E 分别是的中点.(1)证明:平面;(2)若,证明:平面1、(2019)9.如图,长方体ABCD-A1B1C1D1中,AB=AD=1,BD1=2,则AA1=() A.1 B. 2 C.2 D.32、(2019)21.如图,三棱锥P-ABC中,P A⊥PB,PB⊥PC,PC⊥P A,P A=PB=PC=2,E是AC的中点,点F在线段PC上.(1)求证:PB⊥AC;(2)若P A∥平面BEF,求四棱锥BAPFE的体积.(参考公式:锥体的体积公式V=13Sh,其中S是底面积,h是高.)3、(2018)8.如图所示,一个空间几何体的正视图和侧视图都是矩形,俯视图是正方形,则该几何体的体积为()A.1 B.2C.4 D.84、(2018)21.如图所示,在三棱锥P-ABC中,P A⊥平面ABC,PB=BC,F为BC的中点,DE垂直平分PC,且DE分别交AC,PC于点D,E.(1)证明:EF∥平面ABP;(2)证明:BD⊥AC.5、(2017)21.如图,在四棱锥P-ABCD中,P A⊥AB,P A⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC=2,E为PC的中点.(1) 证明:AP⊥CD;(2) 求三棱锥P-ABC的体积;(3) 证明:AE⊥平面PCD.1BC BB B =,实用文档。

历年高考理科数学真题汇编+答案解析(7):概率统计(2017-2020年)

历年高考理科数学真题汇编+答案解析(7):概率统计(2017-2020年)

每个小区至少安排 1 名同学,则不同的安排方法共有 种.
【解析】根据题意,先把 4 名同学分为 3 组,其中 1 组有两人,2 组各有一人,即从 4 名同学中任
选两人即可,故有 C42 种选法;将分成的 3 组同学安排到 3 个小区,共有 A33 种方法;所以
不同的安排方法共有 C42 A33 36 种. 【答案】36
的数学意义可知,与平均值距离大的数据的频率越高,则标准差越大. 比较四个选项,B
选项中 1 和 4 的频率最高,因此可以推断 B 选项的标准差最大.
【答案】B
7.(2020
全国
III
卷理
14)
x2
2 x
6
的展开式中常数项是__________(用数字作答).
【解析】展开式的通项公式为 Tr1
C xr 2(6r ) 6
的关系,在 20 个不同的温度条件下进行种子的发芽实验,由实验数据(xi , yi )(i 1,2,…,20)得到 下面的散点图:
由此散点图,在 10 C 至 40 C 之间,下面四个回归方程类型中最适宜作为发芽率 y 和温度 x 的回归 方程类型的是 A. y a bx B. y a bx2 C. y a bex D. y a b ln x 【解析】根据散点图的趋势和已学函数图象可知,本题的回归方程类型为对数函数,故选 D 选项. 【答案】D 2.(2020 全国 I 卷理 8) (x y2 )(x y)5 的展开式中 x3 y3 的系数为
份,其中 1200 份不需要志愿者,志愿者只需负责 900 份,故需要 900÷50=18 名志愿者. 【答案】B 4.(2020 全国 II 卷理 12 )0-1 周期 序列 在通 信技 术中 有着 重要 应用 ,若序 列 a1a2 an... 满足

高考数学概率统计大题综合试题含答案解析

高考数学概率统计大题综合试题含答案解析

概率统计大题综合知识点总结1.数字样本特征(1)众数:在一组数据中出现次数最多的数(2)中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数(3)平均数:x =x 1+x 2+⋯⋯+x nn ,反映样本的平均水平(4)方差:s 2=(x 1−x )2+(x 2−x )2+⋯⋯(x n −x )2n反映样本的波动程度,稳定程度和离散程度;s 2越大,样本波动越大,越不稳定;s 2越小,样本波动越小,越稳定;(5)标准差:σ=s 2,标准差等于方差的算术平方根,数学意义和方差一样(6)极差:等于样本的最大值−最小值2.求随机变量X 的分布列的步骤:(1)理解X 的意义,写出X 可能取得全部值;(2)求X 取每个值的概率;(3)写出X 的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.3.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量X 的期望、方差,求aX +b a ,b ∈R 的期望与方差,利用期望和方差的性质E aX +b =aE X +b ,D aX +b =a 2D X 进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若ξ~B (n ,p ),则Eξ=np ,Dξ=np (1-p ).4.求解概率最大问题的关键是能够通过P ξ=k ≥P ξ=k +1P ξ=k ≥Pξ=k -1构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算x ,y,ni =1x i 2 ,ni =1x i y i 的值;(2)计算回归系数a ,b ;(3)写出回归直线方程y =b x +a.线性回归直线方程为:y =b x +a ,b=ni =1x i −x y i −yni =1x i −x2=ni =1x i y i −nx yni =1x i 2−nx2,a =y −b x其中x ,y为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱)r=ni=1x i−xy i−yni=1x i−x2ni=1y i−y2=ni=1x i y i−nx yni=1x i2−nx 2ni=1y i2−ny 2r>0,正相关;r<0,负相关r ≤1,且r 越接近于1,线性相关性越强;r 越接近于0,线性相关性越弱,几乎不存在线性相关性6.独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:K2=n ad-bc2a+bc+da+cb+d模拟训练一、解答题1.(2023·福建三明·统考三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取3局2胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手M对乙队每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队最终2:1获胜且种子选手M上场的概率;(2)已知甲队2:1获得最终胜利,求种子选手M上场的概率.2.(2023·湖北武汉·统考模拟预测)“英才计划”最早开始于2013年,由中国科协、教育部共同组织实施,到2022年已经培养了6000多名具有创新潜质的优秀中学生,为选拔培养对象,某高校在暑假期间从武汉市的中学里挑选优秀学生参加数学、物理、化学、信息技术学科夏令营活动.(1)若化学组的12名学员中恰有5人来自同一中学,从这12名学员中选取3人,ξ表示选取的人中来自该中学的人数,求ξ的分布列和数学期望;(2)在夏令营开幕式的晚会上,物理组举行了一次学科知识竞答活动.规则如下:两人一组,每一轮竞答中,每人分别答两题,若小组答对题数不小于3,则取得本轮胜利,假设每轮答题结果互不影响.已知甲、乙两位同学组成一组,甲、乙答对每道题的概率分别为p1,p2,且p1+p2=43,如果甲、乙两位同学想在此次答题活动中取得6轮胜利,那么理论上至少要参加多少轮竞赛?3.(2023·福建宁德·校考二模)某科研团以为了考察某种药物预防疾病的效果,进行动物实验,得到如下列联表.患病未患病总计服用药物1045末服用药物50总计30(1)请将上面的列联表补充完整.(2)认为“药物对预防疾病有效”犯错误的概率是多少?(3)为了进一步研究,现按分层抽样的方法从未患病动物中抽取10只,设其中未服用药物的动物数为ξ,求ξ的分布列与期望.下面的临界值表供参考:P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.0722706 3.841 5.024 6.6357.87910.828(参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d)4.(2023·江苏常州·校考一模)设X,Y是一个二维离散型随机变量,它们的一切可能取的值为a i,b j,其中i,j∈N*,令p ij=P X=a i,Y=b j,称p ij i,j∈N*是二维离散型随机变量X,Y的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;X,Yb1b2b3⋅⋅⋅a1p11p12p13⋅⋅⋅a2p21p22p23⋅⋅⋅a3p31p32p33⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅现有n n∈N*个球等可能的放入编号为1,2,3的三个盒子中,记落入第1号盒子中的球的个数为X,落入第2号盒子中的球的个数为Y.(1)当n=2时,求X,Y的联合分布列,并写成分布表的形式;(2)设p k=nm=0P X=k,Y=m,k∈N且k≤n,求nk=0kp k的值.(参考公式:若X~B n,p,则nk=0kC k np k1-pn-k=np)5.(2023·江苏南京·南京市第九中学校考模拟预测)某种疾病可分为A,B两种类型,为了解该疾病的类型与患者性别是否相关,在某地区随机抽取了若干名该疾病的患者进行调查,发现女性患者人数是男性患者的2倍,男性患A型疾病的人数占男性患者的56,女性患A型疾病的人数占女性患者的13.A型病B型病合计男女合计(1)填写2×2列联表,若本次调查得出“在犯错误的概率不超过0.005的前提下认为‘所患疾病的类型'与‘性别'有关”的结论,求被调查的男性患者至少有多少人?(2)某团队进行预防A型疾病的疫苗的研发试验,试验期间至多安排2个周期接种疫苗,每人每个周期接种3次,每次接种费用为m m>0元.该团队研发的疫苗每次接种后产生抗体的概率为p0<p<1,如果一个周期内至少2次出现抗体,则该周期结束后终止试验,否则进入第二个周期.若p=23,试验人数为1000人,试估计该试验用于接种疫苗的总费用.K2=n ad-bc2a+bc+da+cb+d,P K2≥k00.100.050.010.0050.001k0 2.706 3.841 6.6357.87910.8286.(2023·安徽蚌埠·统考三模)某校为了丰富学生课余生活,组建了足球社团.为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,部分数据如表所示:喜欢足球不喜欢足球合计男生40女生30合计(1)根据所给数据完成上表,依据α=0.001的独立性检验,能否认为该校学生喜欢足球与性别有关?(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球射门.已知这两名男生进球的概率均为23,这名女生进球的概率为12,每人射门一次,假设各人射门相互独立,求3人进球总次数X的分布列和数学期望.附:χ2=n ad-bc2a+bc+da+cb+dα0.10.050.010.0050.001 xα 2.706 3.841 6.6357.87910.8287.(2023·海南海口·海南华侨中学校考模拟预测)在以视觉为主导的社交媒体时代,人们常借助具有美颜功能的产品对自我形象进行美化.移动端的美颜拍摄类APP 主要有两类:A 类是以自拍人像、美颜美妆为核心功能的APP ;B 类是图片编辑、精修等图片美化类APP .某机构为调查市民对上述A ,B 两类APP 的使用情况,随机调查了部分市民.已知被调查的市民中使用过A 类APP 的占60%,使用过B 类APP 的占50%,设个人对美颜拍摄类APP 类型的选择及各人的选择之间相互独立.(1)从样本人群中任选1人,求该人使用过美颜拍摄类APP 的概率;(2)从样本人群中任选5人,记X 为5人中使用过美颜拍摄类APP 的人数,设X 的数学期望为E X ,求P X =E X ;(3)在单独使用过A ,B 两类APP 的样本人群中,按类型分甲、乙两组,并在各组中随机抽取8人,甲组对A 类APP ,乙组对B 类APP 分别评分如下:甲组评分9486929687939082乙组评分8583859175908380记甲、乙两组评分的平均数分别为x 1 ,x 2 ,标准差分别为s 1,s 2,试判断哪组评价更合理.(设V i=s ix i (i =1,2),V i 越小,则认为对应组评价更合理.)参考数据:0.1925≈0.439,0.2325≈0.482.8.(2023·广东·统考模拟预测)某工厂车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是14,且一台机器的故障由一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲乙两人共同维护6台机器,丙负责其他工作.(1)对于方案一,设X 为甲维护的机器某一时刻发生故障的台数,求X 的分布列与数学期望E (X );(2)在两种方案下,分别计算某一时刻机器发生故障时不能得到及时维修的概率,并以此为依据来判断,哪种方案能使工厂的生产效率更高?9.(2023·福建福州·福建省福州第一中学校考模拟预测)相关统计数据显示,中国经常参与体育锻炼的人数比例为37.2%,城乡居民达到《国民体质测定标准》合格以上的人数比例达到90%以上.某健身连锁机构对其会员的年龄等级和一个月内到健身房健身次数进行了统计,制作成如下两个统计图.图1为会员年龄分布图(年龄为整数),其中将会员按年龄分为“年轻人”(20岁-39岁)和“非年轻人”(19岁及以下或40岁及以上)两类;图2为会员一个月内到健身房次数分布扇形图,其中将一个月内到健身房锻炼16次及以上的会员称为“健身达人”,15次及以下的会员称为“健身爱好者”,且已知在“健身达人”中有56是“年轻人”.(1)现从该健身连锁机构会员中随机抽取一个容量为100的样本,根据图表数据,补全2×2列联表,并依据小概率值α=0.05的独立性检验,是否可以认为“健身达人”与年龄有关?年轻人非年轻人合计健身达人健身爱好者合计(2)该健身机构在今年年底将针对全部的150名会员举办消费返利活动,预设有如下两种方案.方案1:按分层抽样从健身爱好者和健身达人中总共抽取20位“幸运之星”给予奖励.其中,健身爱好者和健身达人中的“幸运之星”每人分别奖励500元和800元.方案2:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球.若摸到红球的总数为2,则可获得100元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励.如果每位健身爱好者均可参加1次摸奖游戏;每位健身达人均可参加3次摸奖游戏(每次摸奖的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.附:χ2=n(ad-bc)2a+bc+da+cb+d.α0.100.050.0250.0100.0050.001χα 2.706 3.841 5.024 6.6357.87910.82810.(2023·云南昭通·校联考模拟预测)为了检测某种抗病毒疫苗的免疫效果,需要进行临床人体试验.研究人员将疫苗注射到200名志愿者体内,一段时间后测量志愿者的某项指标值,按0,20 ,20,40 ,40,60 ,60,80 ,80,100 分组,绘制频率分布直方图如图所示.试验发现志愿者体内产生抗体的共有160人,其中该项指标值不小于60的有110人.假设志愿者注射疫苗后是否产生抗体相互独立.(1)填写下面的2×2列联表,并根据列联表及小概率值α=0.05的独立性检验,判断能否认为注射疫苗后志愿者产生抗体与指标值不小于60有关.抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40名志愿者进行第二次注射疫苗,结果又有m 名志愿者产生抗体.(i )用频率估计概率,已知一名志愿者注射2次疫苗后产生抗体的概率p =0.9,求m 的值;(ⅱ)以(i )中的概率p 作为人体注射2次疫苗后产生抗体的概率,再进行另一组人体接种试验,记110名志愿者注射2次疫苗后产生抗体的数量为随机变量X ,求P X =k 最大时的k 的值.参考公式:χ2=n ad -bc 2a +b c +d a +c b +d(其中n =a +b +c +d 为样本容量).α0.500.400.250.150.1000.0500.025x α0.4550.7081.3232.0722.7063.8415.02411.(2023·湖南长沙·长沙市实验中学校考二模)首批全国文明典范城市将于2023年评选,每三年评选一次,2021年长沙市入选为全国文明典范城市试点城市,目前我市正全力争创首批全国文明典范城市,某学校号召师生利用周末从事创建志愿活动.高一(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择,每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为12;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为12,每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求:(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.12.(2023·江苏南京·南京市第一中学校考模拟预测)为了宣传航空科普知识,某校组织了航空知识竞赛活动.活动规定初赛需要从8道备选题中随机抽取4道题目进行作答.假设在8道备选题中,小明正确完成每道题的概率都是34且每道题正确完成与否互不影响,小宇能正确完成其中6道题且另外2道题不能完成.(1)求小明至少正确完成其中3道题的概率;(2)设随机变量X表示小宇正确完成题目的个数,求X的分布列及数学期望;(3)现规定至少完成其中3道题才能进入决赛,请你根据所学概率知识,判断小明和小宇两人中选择谁去参加市级比赛(活动规则不变)会更好,并说明理由.13.(2023·广东·校联考模拟预测)某商场在五一假期间开展了一项有奖闯关活动,并对每一关根据难度进行赋分,竞猜活动共五关,规定:上一关不通过则不进入下一关,本关第一次未通过有再挑战一次的机会,两次均未通过,则闯关失败,且各关能否通过相互独立,已知甲、乙、丙三人都参加了该项闯关活动.(1)若甲第一关通过的概率为23,第二关通过的概率为56,求甲可以进入第三关的概率;(2)已知该闯关活动累计得分服从正态分布,且满分为450分,现要根据得分给共2500名参加者中得分前400名发放奖励.①假设该闯关活动平均分数为171分,351分以上共有57人,已知甲的得分为270分,问甲能否获得奖励,请说明理由;②丙得知他的分数为430分,而乙告诉丙:“这次闯关活动平均分数为201分,351分以上共有57人”,请结合统计学知识帮助丙辨别乙所说信息的真伪.附:若随机变量Z∼Nμ,σ2,则Pμ-σ≤X≤μ+σ≈0.6827;Pμ-2σ≤X≤μ+2σ≈0.9545;Pμ-3σ≤X≤μ+3σ≈0.9973.14.(2023·广东韶关·统考模拟预测)研究表明,如果温差本大,人们不注意保暖,可能会导致自身受到风寒刺激,增加感冒患病概率,特别是对于几童以及年老体弱的人群,要多加防范某中学数学建模社团成员研究了昼夜温差大小与某小学学生患感冒就诊人数多少之间的关系,他们记录了某六天的温差,并到校医室查阅了这六天中每天学生新增感冒就诊的人数,得到数据如下:日期第一天第二天第三天第四天第五天第六天昼夜温差x (°C )47891412新增感就诊人数y (位)y 1y 2y 3y 4y 5y 6参考数据:6iy 2i=3463,6iy i -y 2=289(1)已知第一天新增感冒就的学生中有4位男生,从第一天多增的感冒就诊的学生中随机取2位,其中男生人数记为X ,若抽取的2人中至少有一位女生的概率为56,求随机变量X 的分布列和数学期望;(2)已知两个变量x 与y 之间的样本相关系数r =1617,请用最小二乘法求出y 关于x 的经验回归方程y =b x +a ,据此估计昼夜温差为15°C 时,该校新增感冒就诊的学生人数. 参考数据:r =n ix i -x y i -y n i =1x i -x 2 ⋅ni =1y i -y2,b =ni x i -x y i -yni =1x i -x 2 15.(2023·重庆·统考模拟预测)某地区由于农产品出现了滞销的情况,从而农民的收入减少,很多人开始在某直播平台销售农产品并取得了不错的销售量.有统计数据显示2022年该地利用网络直播形式销售农产品的销售主播年龄等级分布如图1所示,一周内使用直播销售的频率分布扇形图如图2所示,若将销售主播按照年龄分为“年轻人”(20岁~39岁)和“非年轻人”(19岁及以下或者40岁及以上)两类,将一周内使用的次数为6次或6次以上的称为“经常使用直播销售用户”,使用次数为5次或不足5次的称为“不常使用直播销售用户”,且“经常使用直播销售用户”中有34是“年轻人”.(1)现对该地相关居民进行“经常使用网络直播销售与年龄关系”的调查,采用随机抽样的方法,抽取一个容量为200的样本,请你根据图表中的数据,完成2×2列联表,依据小概率值α=0.05的χ2独立性检验,能否认为经常使用网络直播销售与年龄有关?使用直播销售情况与年龄列联表年轻人非年轻人合计经常使用直播销售用户不常使用直播销售用户合计(2)某投资公司在2023年年初准备将1000万元投资到“销售该地区农产品”的项目上,现有两种销售方案供选择:方案一:线下销售、根据市场调研,利用传统的线下销售,到年底可能获利30%,可能亏损15%,也可能不是不赚,且这三种情况发生的概率分别为35,15,15;方案二:线上直播销售,根据市场调研,利用线上直播销售,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为12,310,15.针对以上两种销售方案,请你从期望和方差的角度为投资公司选择一个合理的方案,并说明理由.参考数据:独立性检验临界值表α0.150.100.050.0250.0100.0050.001xα 2.072 2.706 3.841 5.024 6.6357.87910.828其中χ2=n ad-bc2a+bc+da+cb+d,n=a+b+c+d.16.(2023·河北衡水·衡水市第二中学校考三模)某医疗科研小组为研究某市市民患有疾病A 与是否具有生活习惯B 的关系,从该市市民中随机抽查了100人,得到如下数据:疾病A 生活习惯B 具有不具有患病2515未患病2040(1)依据α=0.01的独立性检验,能否认为该市市民患有疾病A 与是否具有生活习惯B 有关?(2)从该市市民中任选一人,M 表示事件“选到的人不具有生活习惯B ”,N 表示事件“选到的人患有疾病A ”,试利用该调查数据,给出P N M的估计值;(3)从该市市民中任选3人,记这3人中具有生活习惯B ,且末患有疾病A 的人数为X ,试利用该调查数据,给出X 的数学期望的估计值.附:χ2=n (ad -bc )2a +b c +d a +c b +d,其中n =a +b +c +d .α0.100.050.0100.001 x α2.7063.8416.63510.82817.(2023·江苏扬州·统考模拟预测)随着网络技术的迅速发展,各种购物群成为网络销售的新渠道.在凤梨销售旺季,某凤梨基地随机抽查了100个购物群的销售情况,各购物群销售凤梨的数量情况如下:凤梨数量(盒)100,200 200,300 300,400 400,500 500,600购物群数量(个)12m2032m(1)求实数m的值,并用组中值估计这100个购物群销售风梨总量的平均数(盒);(2)假设所有购物群销售凤梨的数量X服从正态分布Nμ,σ2,其中μ为(1)中的平均数,σ2=12100.若该凤梨基地参与销售的购物群约有1000个,销售风梨的数量在266,596(单位:盒)内的群为“一级群”,销售数量小于266盒的购物群为“二级群”,销售数量大于等于596盒的购物群为“优质群”.该凤梨基地对每个“优质群”奖励1000元,每个“一级群”奖励200元,“二级群”不奖励,则该风梨基地大约需要准备多少资金?(群的个数按四舍五入取整数)附:若X服从正态分布X~Nμ,σ2,则P(μ-σ<X<μ+σ)≈0.683,P(μ-2σ<X<μ+2σ)≈0.954,P(μ-3σ<X<μ+3σ)≈0.997.18.(2023·浙江·校联考模拟预测)某校有一个露天的篮球场和一个室内乒乓球馆为学生提供锻炼场所,甲、乙两位学生每天上下午都各花半小时进行体育锻炼,近50天天气不下雨的情况下,选择体育锻炼情况统计如下:上下午体育锻炼项目的情况(上午,下午)(篮球,篮球)(篮球,乒乓球)(乒乓球,篮球)(乒乓球,乒乓球)甲20天15天5天10天乙10天10天5天25天假设甲、乙选择上下午锻炼的项目相互独立,用频率估计概率.(1)分别估计一天中甲上午和下午都选择篮球的概率,以及甲上午选择篮球的条件下,下午仍旧选择篮球的概率;(2)记X 为甲、乙在一天中选择体育锻炼项目的个数,求X 的分布列和数学期望E (X );(3)假设A 表示事件“室外温度低于10度”,B 表示事件“某学生去打乒乓球”,P (A )>0,一般来说在室外温度低于10度的情况下学生去打乒乓球的概率会比室外温度不低于10度的情况下去打乒乓球的概率要大,证明:P (A |B )>P (A |B).19.(2023·广东深圳·统考二模)某校体育节组织定点投篮比赛,每位参赛选手共有3次投篮机会.统计数据显示,每位选手投篮投进与否满足:若第k 次投进的概率为p (0<p <1),当第k 次投进时,第k +1次也投进的概率保持p 不变;当第k 次没能投进时,第k +1次能投进的概率降为p2.(1)若选手甲第1次投进的概率为p (0<p <1),求选手甲至少投进一次的概率;(2)设选手乙第1次投进的概率为23,每投进1球得1分,投不进得0分,求选手乙得分X 的分布列与数学期望.20.(2023·湖北武汉·华中师大一附中校考模拟预测)2021年春节前,受疫情影响,各地鼓励外来务工人员选择就地过年.某市统计了该市4个地区的外来务工人数与就地过年人数(单位:万),得到如下表格:A 区B 区C 区D 区外来务工人数x /万3456就地过年人数y /万2.5344.5(1)请用相关系数说明y 与x 之间的关系可用线性回归模型拟合,并求y 关于x 的线性回归方程y =a +bx 和A 区的残差(2)假设该市政府对外来务工人员中选择就地过年的每人发放1000元补贴.①若该市E 区有2万名外来务工人员,根据(1)的结论估计该市政府需要给E 区就地过年的人员发放的补贴总金额;②若A 区的外来务工人员中甲、乙选择就地过年的概率分别为p ,2p -1,其中12<p <1,该市政府对甲、乙两人的补贴总金额的期望不超过1400元,求p 的取值范围.参考公式:相关系数r =ni =1x i y i -nx yn i =1x 2i -nx 2ni =1y 2i -ny2,回归方程y =a +bx 中斜率和截距的最小二乘估计公式分别为b =ni =1x i y i -nx yni =1x 2i -nx2,a =y -b x .21.(2023·山西运城·山西省运城中学校校考二模)甲、乙两人进行象棋比赛,赛前每人发3枚筹码.一局后负的一方,需将自己的一枚筹码给对方;若平局,双方的筹码不动,当一方无筹码时,比赛结束,另一方最终获胜.由以往两人的比赛结果可知,在一局中甲胜的概率为0.3、乙胜的概率为0.2.(1)第一局比赛后,甲的筹码个数记为X,求X的分布列和期望;(2)求四局比赛后,比赛结束的概率;(3)若P i i=0,1,⋯,6表示“在甲所得筹码为i枚时,最终甲获胜的概率”,则P0=0,P6=1.证明:P i+1-P ii=0,1,2,⋯,5为等比数列.22.(2023·湖北襄阳·襄阳四中校考三模)为倡导公益环保理念,培养学生社会实践能力,某中学开展了旧物义卖活动,所得善款将用于捐赠“圆梦困境学生”计划.活动共计50多个班级参与,1000余件物品待出售.摄影社从中选取了20件物品,用于拍照宣传,这些物品中,最引人注目的当属优秀毕业生们的笔记本,已知高三1,2,3班分别有12,13,14的同学有购买意向.假设三个班的人数比例为6:7:8.(1)现从三个班中随机抽取一位同学:(i)求该同学有购买意向的概率;(ii)如果该同学有购买意向,求此人来自2班的概率;(2)对于优秀毕业生的笔记本,设计了一种有趣的“掷骰子叫价确定购买资格”的竞买方式:统一以0元为初始叫价,通过掷骰子确定新叫价,若点数大于2,则在已叫价格基础上增加1元更新叫价,若点数小于3,则在已叫价格基础上增加2元更新叫价;重复上述过程,能叫到10元,即获得以10元为价格的购买资格,未出现叫价为10元的情况则失去购买资格,并结束叫价.若甲同学已抢先选中了其中一本笔记本,试估计其获得该笔记本购买资格的概率(精确到0.01).23.(2023·广东茂名·统考二模)春节过后,文化和旅游业逐渐复苏,有意跨省游、出境游的旅客逐渐增多.某旅游景区为吸引更多游客,计划在社交媒体平台和短视频平台同时投放宣传广告并进行线上售票,通过近。

(全国Ⅰ卷)2017-2020年高考理科数学全国卷1试卷试题真题及答案

(全国Ⅰ卷)2017-2020年高考理科数学全国卷1试卷试题真题及答案


z
x
7
y
的最大值为
.
y 1≥0,
数学试卷 第 3页(共 70页)
14.设 a , b 为单位向量,且 a b 1,则 a b
.
15.已知 F
为双曲线 C :
x2 a2
y2 b2
1a>0,b>0 的右焦点,
A为C
的右顶点, B 为 C

的点,且 BF 垂直于 x 轴,若 AB 的斜率为 3,则 C 的离心率为
(一)公比不为 1 的等比数列, a1为 a2 , a3 的等差中项. (1)求an 的公比; (2)若 a1 1 ,求数列 nan 的前 n 项和.
18.(12 分) 如图, D 为圆锥的顶点, O 是圆锥底面的圆心, AE 为
底面直径, AE AD . △ABC 是底面的内接正三角形, P 为 DO 上一点, PO 6 DO .
(1)当 k 1 时, C1 是什么曲线? (2)当 k 4 时,求 C1 与 C2 的公共点的直角坐标.
23.[选修 4—5:不等式选讲](10 分)
已知函数 f x 3x 1 2 x 1 . (1)画出 y f x 的图像; (2)求不等式 f x>f x 1 的解集.
数学试卷 第 6页(共 70页)
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- ------------------ ------------------- ------------------- ------------------- ------------------- ------------------- ---------------------------------

(2017-2019)高考理数真题分类汇编专题15 概率与统计(解答题)(学生版)

(2017-2019)高考理数真题分类汇编专题15 概率与统计(解答题)(学生版)

专题15 概率与统计(解答题)1.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).2.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成1010平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方1010平后,甲先发球,两人又打了个球该局比赛结束.(1)求P(=2);(2)求事件“=4且甲获胜”的概率.3.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.4.【2019年高考北京卷理数】改革开放以,人们的支付方式发生了巨大转变.近年,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,求的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.5.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为. (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性.6.【2018年高考全国Ⅰ卷理数】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p . (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?7.【2018年高考全国Ⅱ卷理数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.8.【2018年高考全国Ⅲ卷理数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,9.【2018年高考北京卷理数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第类电影得到人们喜欢,“0k ξ=”表示第类电影没有得到人们喜欢(=1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.10.【2018年高考天津卷理数】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用表示抽取的3人中睡眠不足的员工人数,求随机变量的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.11.【2017年高考全国Ⅰ卷理数】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅰ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈0.09≈.12.【2017年高考全国Ⅱ卷理数】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:g).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50g,新养殖法的箱产量不低于50g”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,22()()()()()n ad bcKa b c d a c b d-=++++13.【2017年高考全国Ⅲ卷理数】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?14.【2017年高考天津卷理数】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111 ,, 234.(1)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.15.【2017年高考北京卷理数】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)。

历年高考理科数学真题汇编+答案解析(7):概率统计

历年高考理科数学真题汇编+答案解析(7):概率统计

14.(2017
全国
I
卷理
6)
(1
1 x2
)(1
x)6
展开式中
x2
的系数为
A.15B.20C.30D.35
【解析】(1
1 x2
)(1
x)6
6
C6i xi
i0
1 x2
6
C6i xi
i0
,展开式中含 x2 项的为 C62 x2
1 x2
C64 x4 =30x2 ,故展开式
中 x2 的系数为 30.
【解析】由题意可知,“甲队以 4∶1 获胜”包含有四种情况:
①前 5 场比赛中,第一场负,另外 4 场全胜,其概率为 P1 0.4 0.6 0.5 0.5 0.6 0.036 .
②前 5 场比赛中,第二场负,另外 4 场全胜,其概率为 P2 0.6 0.4 0.5 0.5 0.6 0.036 .
∴ (x+y)(2x-y)5 的展开式中含有 x 3 y 3 的单项式为 22 (1)3C52 x3 y3 和 23 (1)2 C53x3 y3 ,
故展开式中 x 3 y 3 的系数为 22 (1)3C52 22 (1)3C53 40 .
【答案】C
【考点】选修 2-3 二项式定理
x 10 0.97 20 0.98 10 0.99 0.98 10 20 10
【考点】必修 3 用样本估计总体
5.(2019 全国 III 卷理 3)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称
为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了 100 位学生,其中阅
12.(2018 全国 III 卷理 8)某群体中的每位成员使用移动支付的概率都为 p,各成员的支付方式相互独立,

2020高考数学分类汇编--概率统计

2020高考数学分类汇编--概率统计

2020年普通高等学校招生全国统一考试一卷理科数学5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+ D .ln y a b x =+19.(12分)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束. 经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率. 5.D6.B7.C 8.C19.解:(1)甲连胜四场的概率为116. (2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684 ---=.(3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为11117 8168816+++=.2020年普通高等学校招生全国统一考试理科数学3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A.10名B.18名C.24名D.32名18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据()()20,,2,1,⋯=iyxii ,其中ix和i y分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑==20160iix,∑==2011200i iy,()∑==-201280i ix x,()∑==-20129000i iyy,()()080201∑==--i i iy y x x.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本()()20,,2,1,⋯=i y x i i 的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数()()()()∑∑∑===----=ni ini i ni ii y y x x yyx x r 12121,414.12≈.2020年普通高等学校招生全国统一考试理科数学3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A .14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====4.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(53)()=1e t K I t --+,其中K 为最大确诊病例数.当*()0.95I t K =时,标志着已初步遏制疫情,则t *约为(ln193)≈A .60B .63C .66D .6918.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关? 附:K3.B4.C18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=.(3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2020年普通高等学校招生全国统一考试文科数学5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+17.(12分)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:乙分厂产品等级的频数分布表(1(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务? 5.D 17.解:(1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为A 级品的概率的估计值为400.4100=; 乙分厂加工出来的一件产品为A 级品的概率的估计值为280.28100=. (2)由数据知甲分厂加工出来的100件产品利润的频数分布表为因此甲分厂加工出来的100件产品的平均利润为65402520520752015100⨯+⨯-⨯-⨯=.由数据知乙分厂加工出来的100件产品利润的频数分布表为因此乙分厂加工出来的100件产品的平均利润为70283017034702110100⨯+⨯+⨯-⨯=.比较甲乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.2020年普通高等学校招生全国统一考试文科数学4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名 B .18名C .24名D .32名18. (12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i ) (i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((. (1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i ) (i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=))niix y x y --∑((=1.414.4.B18.解:(1)由己知得样本平均数20160120i iy y===∑,从而该地区这种野生动物数量的估计值为60×200= 12 000. (2)样本(,)i i x y (1,2,,20)i =的相关系数20))0.943i ix yrx y--===≈∑((.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.2020年普通高等学校招生全国统一考试文科数学3.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为A.0.01B.0.1C.1D.104.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:0.23(53)()=1e tIKt--+,其中K为最大确诊病例数.当I(*t)=0.95K时,标志着已初步遏制疫情,则*t约为(ln19≈3)A.60B.63C.66D.6918.(12分)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,3.C4.C18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1(100203003550045)350100⨯+⨯+⨯=. (3)根据所给数据,可得22⨯列联表:根据列联表得22100(3382237) 5.82055457030K ⨯⨯-⨯=≈⨯⨯⨯.由于5.820 3.841>,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2020年普通高等学校招生全国统一考试(北京卷)数 学(18)(本小题14分)某校为举办甲乙两项不同活动,分别设计了相应的活动方案:方案一、方案二、为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(Ⅰ)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率:(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(Ⅲ)将该校学生支持方案二的概率估计值记为0p,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为1p,试比较0p与1p的大小.(结论不要求证明)2020年普通高等学校招生全国统一考试(江苏卷)4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲ .4.1 923.(本小题满分10分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示) .23.满分10分.解:(1)113111133C C 1C C 3p =⋅=,113211133C C 2C C 3q =⋅=,11113121211111*********C C C C 1270(1)C C C C 3927p p q p q p q =⋅⋅+⋅⋅+⋅--=+=,1111111133222112211111111111133333333C C C C C C C C ()(1)C C C C C C C C q p q p q =⋅⋅+⋅+⋅⋅+⋅⋅--11216=9327q -+=.(2)当2n ≥时,1111312111111111113333C C C C 120(1)C C C C 39n n n n n n n p p q p q p q ------=⋅⋅+⋅⋅+⋅--=+,①111111113322211211111111111133333333C C C C C C C C ()(1)C C C C C C C C n n n n n q p q p q ----=⋅⋅+⋅+⋅⋅+⋅⋅--112=93n q --+,②2⨯+①②,得()1111124121222399333n n n n n n n p q p q q p q -----+=+-+=++. 从而1112(211)3n n n n p q p q ---+-+=,又111312p q -+=,所以11112()1()3331n nn n p q -+++==,*n ∈N .③由②,有1313()595n n q q --=--,又135115q -=,所以1113()1595n n q -=-+,*n ∈N . 由③,有13111()210111()()33925n n n n n p q =+=-+-+[],*n ∈N . 故311111()()109235n n n n p q --=--+,*n ∈N . n X 的概率分布则*1()0(1)121(),3n n n n n n E X p q q p n =⨯--+⨯+⨯=+∈N .2020年普通高等学校招生全国统一考试(天津卷)数学4.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A.10 B.18 C.20 D.3613.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.4.B13.16;232020年普通高等学校招生全国统一考试5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62%B .56%C .46%D .42%12.信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑.A .若n =1,则H (X )=0B .若n =2,则H (X )随着i p 的增大而增大C .若1(1,2,,)i p i n n==,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+=,则H (X )≤H (Y )19.(12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,5.C 12.AC19.解:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且2SO 浓度不超过150的天数为32186864+++=,因此,该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150的概率的估计值为640.64100=. (2)根据抽查数据,可得22⨯列联表:(3)根据(2)的列联表得22100(64101610)7.48480207426K ⨯⨯-⨯=≈⨯⨯⨯. 由于7.484 6.635>,故有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关.2020年普通高等学校招生全国统一考试(浙江卷)数 学16.盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______. 16.1,13。

2017年高考数学真题分类汇编(理数)_专题7概率与统计(解析版)

2017年高考数学真题分类汇编(理数)_专题7概率与统计(解析版)

2017年高考真题分类汇编(理数):专题7 概率与统计(解析版)一、单选题1、(2017•新课标Ⅰ卷)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A、B、C、D、2、(2017•新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A、月接待游客量逐月增加B、年接待游客量逐年增加C、各年的月接待游客量高峰期大致在7,8月D、各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳3、(2017•山东)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A、B、C、D、4、(2017•山东)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+ ,已知x i=225,y i=1600,=4,该班某学生的脚长为24,据此估计其身高为()A、160B、163C、166D、1705、(2017•浙江)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<,则()A、E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B、E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C、E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D、E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)二、填空题6、(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.7、(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=________.8、(2017•江苏)记函数f(x)= 定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是________.三、解答题9、(2017•山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(12分)(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.10、(2017·天津)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.11、(2017•北京卷)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40), (80)90],并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.12、(2017•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.13、(2017•新课标Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(12分)(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P (X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得= =9.97,s= = ≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3 +3 )之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.14、(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(Ⅰ)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(Ⅱ)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(Ⅲ)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k) 0.050 0.010 0.001K 3.841 6.635 10.828K2= .15、(2017•新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40)以最高气温位于各区间的频率代替最高气温位于该区间的概率.(Ⅰ)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(Ⅱ)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?答案解析部分一、单选题1、【答案】B【考点】几何概型【解析】【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S= ,则对应概率P= = ,故选:B【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.2、【答案】A【考点】命题的真假判断与应用【解析】【解答】解:由折线图中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据可得:月接待游客量逐月有增有减,故A错误;年接待游客量逐年增加,故B正确;各年的月接待游客量高峰期大致在7,8月,故C正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D正确;故选:A【分析】根据折线图中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,逐一分析给定四个结论的正误,可得答案.3、【答案】C【考点】排列、组合及简单计数问题【解析】【解答】解:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有=36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有=20种,故抽到在2张卡片上的数奇偶性不同的概率P= = ,故选:C.【分析】计算出所有情况总数,及满足条件的情况数,代入古典概型概率计算公式,可得答案.4、【答案】C【考点】线性回归方程【解析】【解答】解:由线性回归方程为=4x+ ,则= x i=22.5,= y i=160,则数据的样本中心点(22.5,160),由回归直线经过样本中心点,则= ﹣4x=160﹣4×22.5=70,∴回归直线方程为=4x+70,当x=24时,=4×24+70=166,则估计其身高为166,故选C.【分析】由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将x=24代入回归直线方程即可估计其身高.5、【答案】A【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【解答】解:∵随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2,…,0<p1<p2<,∴<1﹣p2<1﹣p1<1,E(ξ1)=1×p1+0×(1﹣p1)=p1,E(ξ2)=1×p2+0×(1﹣p2)=p2,D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)= ,D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)= ,D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).故选:A.【分析】由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.二、填空题6、【答案】18【考点】分层抽样方法【解析】【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为= ,则应从丙种型号的产品中抽取300× =18件,故答案为:18【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.7、【答案】1.96【考点】离散型随机变量的期望与方差,二项分布与n次独立重复试验的模型【解析】【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.【分析】判断概率满足的类型,然后求解方差即可.8、【答案】【考点】一元二次不等式的解法,几何概型【解析】【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P= = ,故答案为:【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.三、解答题9、【答案】解:(I)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)= = .(II)X的可能取值为:0,1,2,3,4,∴P(X=0)= = ,P(X=1)= = ,P(X=2)= = ,P(X=3)= = ,P(X=4)= = .∴X的分布列为X 0 1 2 3 4PX的数学期望EX=0× +1× +2× +3× +4× =2.【考点】古典概型及其概率计算公式,离散型随机变量及其分布列,离散型随机变量的期望与方差,组合及组合数公式【解析】【分析】(Ⅰ)利用组合数公式计算概率;(Ⅱ)使用超几何分布的概率公式计算概率,得出分布列,再计算数学期望.10、【答案】解:(Ⅰ)随机变量X的所有可能取值为0,1,2,3;则P(X=0)=(1﹣)×(1﹣)(1﹣)= ,P(X=1)= ×(1﹣)×(1﹣)+(1﹣)× ×(1﹣)+(1﹣)×(1﹣)× = ,P(X=2)=(1﹣)× × + ×(1﹣)× + × ×(1﹣)= ,P(X=3)= × × = ;所以,随机变量X的分布列为X 0 1 2 3P随机变量X的数学期望为E(X)=0× +1× +2× +3× = ;(Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)•P(Z=1)+P(Y=1)•P(Z=0)= × + ×= ;所以,这2辆车共遇到1个红灯的概率为.【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差,条件概率与独立事件【解析】【分析】(Ⅰ)随机变量X的所有可能取值为0,1,2,3,求出对应的概率值,写出它的分布列,计算数学期望值;(Ⅱ)利用相互独立事件同时发生的概率公式计算所求事件的概率值.11、【答案】解:(Ⅰ)由频率分布直方图知:分数小于70的频率为:1﹣(0.04+0.02)×10=0.4故从总体的400名学生中随机抽取一人,估计其分数小于70的概率为0.4;(Ⅱ)已知样本中分数小于40的学生有5人,故样本中分数小于40的频率为:0.05,则分数在区间[40,50)内的频率为:1﹣(0.04+0.02+0.02+0.01)×10﹣0.05=0.05,估计总体中分数在区间[40,50)内的人数为400×0.05=20人,(Ⅲ)样本中分数不小于70的频率为:0.6,由于样本中分数不小于70的男女生人数相等.故分数不小于70的男生的频率为:0.3,由样本中有一半男生的分数不小于70,故男生的频率为:0.6,即女生的频率为:0.4,即总体中男生和女生人数的比例约为:3:2.【考点】频率分布直方图,用样本的频率分布估计总体分布,古典概型及其概率计算公式【解析】【分析】(Ⅰ)根据频率=组距×高,可得分数小于70的概率为:1﹣(0.04+0.02)×10;(Ⅱ)先计算样本中分数小于40的频率,进而计算分数在区间[40,50)内的频率,可估计总体中分数在区间[40,50)内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.进而得到答案.12、【答案】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d= = ,∴当s= 时,d取得最小值= .【考点】二次函数在闭区间上的最值,点到直线的距离公式,参数方程化成普通方程,函数最值的应用【解析】【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.13、【答案】(1)解:由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)= ×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)由(1)知尺寸落在(μ﹣3σ,μ+3σ)之外的概率为0.0026,由正态分布知尺寸落在(μ﹣3σ,μ+3σ)之外为小概率事件,因此上述监控生产过程方法合理;(ⅱ)因为用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,且= =9.97,s= = ≈0.212,所以﹣3 =9.97﹣3×0.212=9.334,+3 =9.97+3×0.212=10.606,所以9.22∉(﹣3 +3 )=(9.334,10.606),因此需要对当天的生产过程进行检查,剔除(﹣3 +3 )之外的数据9.22,则剩下的数据估计μ= =10.02,将剔除掉9.22后剩下的15个数据,利用方差的计算公式代入计算可知σ2≈0.008,所以σ≈0.09.【考点】用样本的数字特征估计总体的数字特征,离散型随机变量的期望与方差,二项分布与n次独立重复试验的模型,正态分布曲线的特点及曲线所表示的意义【解析】【分析】(1.)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2.)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3 +3 )=(9.334,10.606),进而需剔除(﹣3 +3 )之外的数据9.22,利用公式计算即得结论.14、【答案】解:(Ⅰ)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(Ⅱ)2×2列联表:箱产量<50kg 箱产量≥50kg总计旧养殖法 62 38 100新养殖法 34 66 100总计 96 104 200则K2= ≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(Ⅲ)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+ ≈52.35(kg),所以新养殖法箱产量的中位数的估计值52.35(kg).【考点】频率分布直方图,用样本的数字特征估计总体的数字特征,独立性检验,相互独立事件的概率乘法公式【解析】【分析】(Ⅰ)由题意可知:P(A)=P(BC)=P(B)P(C),分布求得发生的频率,即可求得其概率;(Ⅱ)完成2×2列联表:求得观测值,与参考值比较,即可求得有99%的把握认为箱产量与养殖方法有关:(Ⅲ)根据频率分布直方图即可求得其平均数.15、【答案】解:(Ⅰ)由题意知X的可能取值为200,300,500,P(X=200)= =0.2,P(X=300)= ,P(X=500)= =0.4,∴X的分布列为:X 200 300 500P 0.2 0.4 0.4(Ⅱ)当n≤200时,Y=n(6﹣4)=2n≤400,EY≤400,当200<n≤300时,若x=200,则Y=200×(6﹣4)+(n﹣200)×2﹣4)=800﹣2n,若x≥300,则Y=n(6﹣4)=2n,∴EY=p(x=200)×(800﹣2n)+p(x≥300)×2n=0.2(800﹣2n)+0.8=1.2n+160,∴EY≤1.2×300+160=520,当300<n≤500时,若x=200,则Y=800﹣2n,若x=300,则Y=300×(6﹣4)+(n﹣300)×(2﹣4)=1200﹣2n,∴当n=300时,(EY)max=640﹣0.4×300=520,若x=500,则Y=2n,∴EY=0.2×(800﹣2n)+0.4(1200﹣2n)+0.4×2n=640﹣0.4n,当n≥500时,Y= ,EY=0.2(800﹣2n)+0.4(1200﹣2n)+0.4(2000﹣2n)=1440﹣2n,∴EY≤1440﹣2×500=440.综上,当n=300时,EY最大值为520元.【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】【分析】(Ⅰ)由题意知X的可能取值为200,300,500,分别求出相应的概率,由此能求出X 的分布列.(Ⅱ)当n≤200时,Y=n(6﹣4)=2n≤400,EY≤400;当200<n≤300时,EY≤1.2×300+160=520;当300<n≤500时,n=300时,(EY)max=640﹣0.4×300=520;当n≥500时,EY≤1440﹣2×500=440.从而得到当n=300时,EY最大值为520元.。

2017全国各地数学高考真题及其答案汇编(理科)

2017全国各地数学高考真题及其答案汇编(理科)

2017年普通高等学校招生全国统一考试试题汇编目录(理科)2017年普通高等学校招生全国统一考试(1) (1)2017年普通高等学校招生全国统一考试(2) (7)2017年普通高等学校招生全国统一考试(新课标Ⅲ) (12)2017年普通高等学校招生全国统一考试(山东卷) (18)2017年普通高等学校招生全国统一考试(江苏卷) (22)2017年普通高等学校招生全国统一考试(浙江卷) (29)2017年普通高等学校招生全国统一考试(天津卷) (42)2017年普通高等学校招生全国统一考试(北京卷) (54)绝密★启用前2017年普通高等学校招生全国统一考试(1)理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x<},则A. {|0}A B x x =<B. A B =RC. {|1}A B x x =>D. A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.14 B. π8 C. 12 D. π43.设有下面四个命题1:p 若复数z 满足1z∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =;4:p 若复数z ∈R ,则z ∈R .其中的真命题为A.13,p pB.14,p pC.23,p pD.24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B . [1,1]-C . [0,4]D . [1,3]6.621(1)(1)x x++展开式中2x 的系数为 A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.168.右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A.A >1000和n =n +1B.A >1000和n =n +2C.A ≤1000和n =n +1D.A ≤1000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是 A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14 C .12 D .1011.设xyz 为正数,且235x y z==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了―解数学题获取软件激活码‖的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分。

2020年高考理科数学《概率与统计》题型归纳与训练及答案解析

2020年高考理科数学《概率与统计》题型归纳与训练及答案解析

2020年高考理科数学《概率与统计》题型归纳与训练【题型归纳】题型一 古典概型与几何概型例1、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 . 【答案】【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为. 例2、市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同;(2)现从样本中月收入在)20,10[和)70,60[的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率. 【答案】(1)详见解析;(2)2011. 【解析】(1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,故赞成人数的频率为52,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,故赞成人数的频率为7564, ∵527564>,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高.(2) 将月收入在)20,10[内,不赞成的3人记为321,,a a a ,赞成的2人记为54,a a ,将月收入在)70,60[内,不赞成的1人记为1b ,赞成的3人记为,,,432b b b 从月收入在)20,10[和)70,60[内的人中各随机抽取1人,基本事件总数20=n ,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有5840155408-=),(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(1514433323423222413121b a b a b a b a b a b a b a b a b a b a b a 共11个,∴抽取的两个人恰好对该措施一个赞成一个不赞成的概率2011=P . 【易错点】求解古典概型问题的关键:先求出基本事件的总数,再确定所求目标事件包含基本事件的个数,结合古典概型概率公式求解.一般涉及“至多”“至少”等事件的概率计算问题时,可以考虑其对立事件的概率,从而简化运算. 【思维点拨】1. 求复杂互斥事件概率的方法一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式()()1P A P A =-,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.2.求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件A 包含的基本事件个数;代入公式,求出()P A ;几何概型的概率是几何度量之比,主要使用面积、体积之比与长度之比. 题型二 统计与统计案例例1、某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:],90,80[,),40,30[),30,20[Λ并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间)50,40[内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(Ⅰ)4.0;(Ⅱ)20;(Ⅲ)2:3.【解析】(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为6.010)04.002.0(=⨯+,所以样本中分数小于70的频率为4.06.01=-.(Ⅱ)根据题意,样本中分数不小于50的频率为,分数在区间内的人数为.所以总体中分数在区间内的人数估计为. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为6010010)04.002.0(=⨯⨯+,所以样本中分数不小于70的男生人数为302160=⨯.所以样本中的男生人数为60230=⨯,女生人数为4060100=-,男生和女生人数的比例为2:340:60=,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为2:3. 【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1,当小矩形等高时,说明频率相等,计算时不要漏掉其中一个. 【思维点拨】1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少.2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 4.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 5.求回归直线方程的关键①正确理解计算^^,a b 的公式和准确的计算.②在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关(0.010.020.040.02)100.9+++⨯=[40,50)1001000.955-⨯-=[40,50)540020100⨯=系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 6.独立性检验的关键①根据22⨯列联表准确计算2K ,若22⨯列联表没有列出来,要先列出此表. ②2K 的观测值k 越大,对应假设事件0H 成立的概率越小,0H 不成立的概率越大. 题型三 概率、随机变量及其分布例1、“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为; ②若,则, .【答案】(1) (2) (3)的分布列为;.【解析】(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为A x Z ()2,N μσZ ()14.55,38.45()10,30X X 11.95σ=≈()2~,Z N μσ()0.6826P Z μσμσ-<≤+=(22)0.9544P Z μσμσ-<≤+=26.5x =0.6826X ()2E X =x.(2)①∵服从正态分布,且, ,∴, ∴落在内的概率是. ②根据题意得, ; ; ; ; . ∴的分布列为∴. 50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=Z ()2,N μσ26.5μ=11.95σ≈(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=Z ()14.55,38.450.68261~4,2X B ⎛⎫ ⎪⎝⎭()404110216P X C ⎛⎫=== ⎪⎝⎭()41411124P X C ⎛⎫=== ⎪⎝⎭()42413228P X C ⎛⎫=== ⎪⎝⎭()43411324P X C ⎛⎫=== ⎪⎝⎭()444114216P X C ⎛⎫=== ⎪⎝⎭X ()1422E X =⨯=【思维点拨】1.条件概率的两种求解方法: (2)基本事件法,借助古典概型概率公式,先求事件A 包含的基本事件数)(A n ,再求事件AB 所包含的基本事件数()AB n ,得)()()|(A n AB n A B P =. 2.判断相互独立事件的三种常用方法:(1)利用定义,事件B A ,相互独立⇔)()()(B P A P AB P ⋅=.(2)利用性质,A 与B 相互独立,则A 与A B ,与B ,B A 与也都相互独立. (3)具体背景下,①有放回地摸球,每次摸球的结果是相互独立的. ②当产品数量很大时,不放回抽样也可近似看作独立重复试验.3. 求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.4. 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检验该概率模型是否满足公式k n k k n p p C k X P --==)1()(的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.5. 求离散型随机变量的均值与方差的基本方法有:(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量X 的均值、方差,求X 的线性函数b aX Y +=的均值、方差,可直接用均值、方差的性质求解,即b X aE b aX E +=+)()(,)()(2X D a b aX D =+(b a ,为常数).(3)如能分析所给随机变量服从常用的分布,可直接利用它们的均值、方差公式求解,即若X 服从两点分布,则p X E =)(,)1()(p p X D -=;若),(~p n B X ,则np X E =)(,)1()(p np X D -=.【巩固训练】题型一 古典概型与几何概型1.已知,,则函数在区间上为增函数的概率是( )A .B .C .D . {}0 1 2a ∈,,{}1 1 3 5b ∈-,,,()22f x ax bx =-()1 +∞,512131416【答案】A【解析】①当时,,情况为符合要求的只有一种; ②当时,则讨论二次函数的对称轴要满足题意则产生的情况表示: ,8种情况满足的只有4种; 综上所述得:使得函数在区间为增函数的概率为:1251214=+=P .2.在区间上任取一数,则的概率是( )A .B .C .D . 【答案】C【解析】由题设可得,即;所以,则由几何概型的概率公式.故应选C .(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.【答案】(1) 0.4;(2) 45;(3)74. 【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为0a =()2f x bx =- 1 1 3 5b =-,,,1b =-0a ≠22b b x a a -=-=1ba≤() a b ,()()()1 1 1 1 1 3-,,,,,()()()()()1 5 2 1 2 1 2 3 2 5-,,,,,,,,,()22f x ax bx =-()1 +∞,()0,4x 1224x -<<12131434211<-<x 32<<x 4,1==D d 41=P考向二 统计与统计案例1.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只, (Ⅰ)求列联表中的数据,,,的值; (Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效? (Ⅲ)能够有多大把握认为疫苗有效?22⨯x y A B【答案】(Ⅰ),,,;(Ⅱ)详见解析;(Ⅲ)至少有%9.99的把握认为疫苗有效.【解析】(Ⅰ)设“从所有试验动物中任取一只,取到“注射疫苗”动物”为事件A, 由已知得,所以,,,.发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率.10y =40B =40x =60A =302()1005y P A +==10y =40B =40x =60A =未注射 注射. 所以至少有%9.99的把握认为疫苗有效.2.在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在市的区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个分店的年收入之和.(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程; (Ⅱ)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(Ⅰ)中的线性回归方程,估算该公司应在区开设多少个分店,才能使区平均每个分店的年利润最大? 参考公式:, , .【答案】(1);(2)公司应在区开设4个分店,才能使区平均每个分店的年利润最大.【解析】(1)10085)())(()(,4,42112121^=---=--===∑∑∑∑====x x y yx x x n xyx n yx b y x ni ini iini ini iiΘ,6.0^^=-=x b y a , ∴y 关于x 的线性回归方程6.085.0+=x y .(2) ,区平均每个分店的年利润 ,∴时, 取得最大值,故该公司应在区开设4个分店,才能使区平均每个分店的年利润最大.10000005016.6710.8285020603=≈>⨯⨯S A x y x y x y x A z ,x y 20.05 1.4z y x =--A A y b x a ∧∧∧=+1221ni i i nii x y nxyb x nx ∧==-==-∑∑()()()121niii n ii x x y y x x ==---∑∑a y b x ∧∧=-0.850.6y x =+A A 20.05 1.4z y x =--=20.050.850.8x x -+-A 0.80.050.85z t x x x ==--+800.0150.85x x ⎛⎫=-++ ⎪⎝⎭4x =t A A3. 某商场对商品30天的日销售量y (件)与时间t (天)的销售情况进行整理,得到如下数据,经统计分析,日销售量y (件)与时间t (天)之间具有线性相关关系.(1)请根据表中提供的数据,用最小二乘法求出y 关于t 的线性回归方程a t b y +=. (2)已知商品30天内的销售价格z (元)与时间t(天)的关系为,),200(,20),3020(,100⎩⎨⎧∈<<+∈≤≤+-=N t t t N t t t z 根据(1)中求出的线性回归方程,预测t 为何值时,商品的日销售额最大.参考公式:2121^)(t n tyt n yt b ni ini ii--=∑∑==,t b y a ^^-=.【答案】(1)40^+-=t y ;(2)预测当20=t 时,商品的日销售额最大,最大值为1600元. 【解析】(1)根据题意,6)108642(51=++++⨯=t ,34)3033323738(51=++++⨯=y , 980301033832637438251=⨯+⨯+⨯+⨯+⨯=∑=i i i y t ,22010864222222512=++++=∑=i i t ,所以回归系数为1652203465980)(22121^-=⨯-⨯⨯-=--=∑∑==t n tyt n yt b ni ini ii,406)1(34^^=⨯--=-=t b y a ,故所求的线性回归方程为40^+-=t y . (2)由题意得日销售额为,,3020),40)(100(,200),40)(20(⎩⎨⎧∈≤≤+-+-∈<<+-+=Nt t t t Nt t t t L当N t t ∈<<,200时,900)10(80020)40)(20(22+--=++-=+-+=t t t t t L , 所以当;90010max ==L t 时,当N t t ∈≤≤,3020时,900)70(4000140)40)(100(22--=+-=+-+-=t t t t t L , 所以当.160020max ==L t 时,综上所述,预测当20=t 时,A 商品的日销售额最大,最大值为1600元. 题型三 概率、随机变量及其分布A A A A1.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者654321,,,,,A A A A A A 和4名女志愿者4321,,,B B B B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I )求接受甲种心理暗示的志愿者中包含1A 但不包含的频率。

(2017-2019)高考理数真题分类汇编专题15 概率与统计(解答题)(学生版)

(2017-2019)高考理数真题分类汇编专题15 概率与统计(解答题)(学生版)

专题15 概率与统计(解答题)1.【2019年高考全国Ⅲ卷理数】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).2.【2019年高考全国Ⅱ卷理数】11分制乒乓球比赛,每赢一球得1分,当某局打成1010平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方1010平后,甲先发球,两人又打了个球该局比赛结束.(1)求P(=2);(2)求事件“=4且甲获胜”的概率.3.【2019年高考天津卷理数】设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(2)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.4.【2019年高考北京卷理数】改革开放以,人们的支付方式发生了巨大转变.近年,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,求的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.5.【2019年高考全国Ⅰ卷理数】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为. (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列; (ii)求4p ,并根据4p 的值解释这种试验方案的合理性.6.【2018年高考全国Ⅰ卷理数】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)10(<<p p ,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为)(p f ,求)(p f 的最大值点0p . (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用. (i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ; (ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?7.【2018年高考全国Ⅱ卷理数】下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1217,,…,)建立模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.8.【2018年高考全国Ⅲ卷理数】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,9.【2018年高考北京卷理数】电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第类电影得到人们喜欢,“0k ξ=”表示第类电影没有得到人们喜欢(=1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.10.【2018年高考天津卷理数】已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用表示抽取的3人中睡眠不足的员工人数,求随机变量的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.11.【2017年高考全国Ⅰ卷理数】为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅰ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得16119.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2≈0.09≈.12.【2017年高考全国Ⅱ卷理数】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:g).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50g,新养殖法的箱产量不低于50g”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:,22()()()()()n ad bcKa b c d a c b d-=++++13.【2017年高考全国Ⅲ卷理数】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?14.【2017年高考天津卷理数】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111 ,, 234.(1)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.15.【2017年高考北京卷理数】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)。

2017-2019三年高考真题理科数学试题分类汇编:专题15概率与统计(解答题)

2017-2019三年高考真题理科数学试题分类汇编:专题15概率与统计(解答题)
33
0,1,2,3 .
13 分. 7 : 30 之前到校的概率均为
2 ,故 3
X
0
1
2
3
1
2
P
27
9
4
8
9
27
随机变量 X 的数学期望 E ( X )
2 3
2.
3
(2)设乙同学上学期间的三天中 7: 30 之前到校的天数为 Y ,
则Y
~
2 B (3, ) ,且
M
{X
3,Y
1} { X
2,Y
0} .
3
( 1)由题意知,样本中仅使用 A 的学生有 18+9+3=30 人,仅使用 B的学生有 10+14+1=25 人, A ,B 两种支
付方式都不使用的学生有 5人.

故样本中 A, B两种支付方式都使用的学生有 100-30-25-5=40 人. 所以从全校学生中随机抽取 1人,该学生上个月 A , B两种支付方式都使用的概率估计为 (2) X的所有可能值为 0, 1, 2.
元的人数,求 X 的分布列和数学期望;
(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用
A 的学生中,随机抽查 3 人,
发现他们本月的支付金额都大于 2000 元.根据抽查结果,能否认为样本仅使用
A 的学生中本月支付金
额大于 2000 元的人数有变化?说明理由.
【答案】( 1) 0.4;(2)分布列见解 +析, E( X) =1;( 3)见解 +析.
2
8 2 4 1 20

27 9 9 27 243
4.【 2019 年高考北京卷理数】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档