第二章 ucos-ii工作原理

合集下载

ucosII任务切换是怎样实现的

ucosII任务切换是怎样实现的

UC/OS-II学习笔记之——任务切换是怎样实现的问题是,o Uc/OS-II如何切换任务?通过任务调度器OS_Sched(),那么谁在调用这个函数?o CPU在这里肯定有作用,因为任务切换必然涉及到CPU寄存器的入栈和出栈,那么这一块工作是如何完成的?书上讲:为了做到任务切换,运行OS_TASK_SW(),人为模仿一次中断。

中断服务子程序或陷阱处理(trap hardler),也称作事故处理(exception handler),必须给汇编语言函数OSCtxSw()提供中断向量[1.92]。

那么,“人为模仿一次中断”是什么意思?是指:OS_TASK_SW()触发了一个中断,由中断完成了任务切换?阅读源代码,查找答案……#define OS_TASK_SW()OSCtxSw()//这是一个宏调用,定义在os_cpu.h,Os_cpu_a.asm中定义了OSCtxSwNVIC_INT_CTRL EQU0xE000ED04NVIC_PENDSVSET EQU0x10000000;******************************************************************************;PERFORM A CONTEXT SWITCH(From task level);void OSCtxSw(void);;Note(s):1)OSCtxSw()is called when OS wants to perform a task context switch.This function;triggers the PendSV exception which is where the real work is done.;******************************************************************************OSCtxSwLDR R0,=NVIC_INT_CTRL;Trigger the PendSV exception(causes context switch) LDR R1,=NVIC_PENDSVSETSTR R1,[R0]BX LR注释说明该段汇编代码触发了一个PendSV的异常。

uCOS原理及应用

uCOS原理及应用
周立功单片机
• 多任务系统工作原理
操作系统的调度程序对所有任务实现运行控制 调度程序对所有任务实现运行控制; 任务切换实际就是把当前任务所占用的CPU资源用其它任务来替 任务切换 换; CPU资源包括寄存器R0-R15、CPSR、SPRS和其它一些全局变量; 调度程序由系统节拍驱动 系统节拍驱动。
移植时需要 编写的代码
用于产生 系统时钟
周立功单片机
移植简介
• 概述
要移植 移植一个操作系统到一个特定的CPU体系结构 上并不是一件很容易的事情 并不是一件很容易的事情,它对移植者有以下要求: 1. 对目标体系结构要有很深了解; 2. 对OS原理要有较深入的了解; 3. 对所使用的编译器要有较深入的了解; 4. 对需要移植的操作系统要有相当的了解; 5. 对具体使用的芯片也要一定的了解。
栈底 任务环境开始
SP
周立功单片机
• 堆栈初始化函数
OS_STK *OSTaskStkInit (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT16U opt) { OS_STK *stk; opt = opt; stk = ptos; *stk = (OS_STK) task; *--stk = (OS_STK) task; *--stk = 0; 栈底 任务入栈的 *--stk = 0; 其它数据 *--stk = 0; *--stk = 0; PC *--stk = 任务环境开始 0; LR *--stk = 0; R12 *--stk = 0; R11 *--stk = 0; R10 *--stk = 0; R9 *--stk = 0; R8 *--stk = 0; ... *--stk = 0; R2 *--stk = (unsigned int) pdata; R1 *--stk = (USER_USING_MODE|0x00); R0 *--stk = 0; OSEnterSum SP return (stk); 空闲空间 } 周立功单片机

ucosII多核移植和扩展的原理以及注意事项

ucosII多核移植和扩展的原理以及注意事项

uC/OS-II是源码开放、可固化、可移植、可裁剪、可剥夺的实时多任务OS 内核,适用于任务多、对实时性要求较高的场合。

uC/OS-II适合小型系统,具有执行效率高、占用空间小、实时性优良和可扩展性等特点,最小内核可编译至2K。

uC/OS-II内核提供任务调度与管理、时间管理、任务间同步与通信、内存管理和中断服务等功能。

所谓RTOS移植,就是使一个实时内核能在某个微处理器或微控制器上运行。

大部分的uC/OS-II代码试用C写的,但仍需要用C和ASM写一些与处理器相关的代码,这是因为uC/OS-II在读写处理器寄存器时只能通过ASM实现。

要是uC/OS-II正常运行,处理器必须满足一定的条件:处理器的C编译器能产生可重入代码;用C语言就可以打开和关闭中断;处理器支持中断,并能产生定时中断;处理器支持能够容纳一定量数据的硬件堆栈;处理器有将SP和其他CPU reg读出和存储到堆栈或内存中的指令;uC/OS-II移植工作主要包括以下三个方面的内容:(1)修改与处理器核编译器相关的代码:主要在includes.h中,修改数据类型定义说明,OS_ENTER_CRITICAL()、OS_EXIT_CRITICAL()和堆栈增长方向定义OS_STK_GROWTH。

(2)用C语言编写10个移植相关的函数:主要在OS_CPU_C.C中,包括堆栈初始化OSTaskStkInit()和各种回调函数。

(3)编写4个汇编语言函数:主要在OS_CPU_A.ASM中,包括:_OSTickISR //时钟中断处理函数_OSIntCtxSW //从ISR中调用的任务切换函数_OSCtxSW //从任务中调用的任务切换函数_OSStartHighRdy //启动最高优先级的任务uC/OS-II移植的关键问题:(1)临界区访问:uC/OS-II需要先禁止中断再访问代码临界段,并且在访问完毕后重新允许中断,这就使得uC/OS-II能够保护临界段代码免受多任务或ISR的破坏。

uCOS-II

uCOS-II

实验一、任务创建与删除1、uC/OS-II介绍对于操作系统的学习,创建任务和删除任务是最为基础的工作,uC/OS-II以源代码的形式发布,是开源软件, 但并不意味着它是免费软件。

可以将其用于教学和私下研究;但是如果将其用于商业用途,那么必须通过Micrium获得商用许可。

uC/OS-II属于抢占式内核,最多可以支持64个任务,分别对应优先级0~63,每个任务只能对应唯一的优先级,其中0为最高优先级。

63为最低级,系统保留了4个最高优先级的任务和4个最低优先级的任务,所有用户可以使用的任务数有56个。

uC/OS-II提供了任务管理的各种函数调用,包括创建任务,删除任务,改变任务的优先级,任务挂起和恢复等。

系统初始化时会自动产生两个任务:一个是空闲任务,它的优先级最低,该任务仅给一个整型变量做累加运算;另一个是系统任务,它的优先级为次低,该任务负责统计当前cpu的利用率。

μC/OS-II可管理多达63个应用任务,并可以提供如下服务,本章将针对以下服务分别以例程的方式来介绍1)信号量2)互斥信号量3)事件标识4)消息邮箱5)消息队列6)任务管理7)固定大小内存块管理8)时间管理2、任务创建与删除想让uC/OS-II管理用户的任务,用户必须要先建立任务,在开始多任务调度(即调用OSStart())前,用户必须建立至少一个任务。

uC/OS-II提供了两个函数来创建任务:OSTask Create()或OSTaskCreateExt()。

可以使用其中任意一个即可,其函数原型如下:INT8U OSTaskCreate (void (*task)(void *pd), void *pdata, OS_STK *ptos, INT8U pri o)INT8U OSTaskCreateExt (void(*task)(void *pd),void *pdata,SD_STK *ptos,INT8U prio, INT16U id,OS_STK *pbos,INT32U stk_size, void *pext,INT16U opt)task:任务代码指针pdata:任务的参数指针ptos:任务的堆栈的栈顶指针prio:任务优先级id:任务特殊的标识符(uC/OS-II中还未使用)pbos:任务的堆栈栈底的指针(用于堆栈检验)stk_size:堆栈成员数目的容量(宽度为4字节)pext:指向用户附加的数据域的指针opt:是否允许堆栈检验,是否将堆栈清零,任务是否要进行浮点操作等等删除任务,是说任务将返回并处于休眠状态,任务的代码不再被uC/OS-II调用,而不是删除任务代码。

1-uCOS-II 工作流程图

1-uCOS-II 工作流程图

至少创建一个任务。 一般创建一个最高优 先级别 TaskStart 任 务(建议),任务调 度后,在这个任务中 再创建其他任务,初 始化硬件,并开中 断。
进入多任务管理阶 段,将就绪表中最高 优先级任务的栈指针 加载到 SP 中,并强 制中断返回。
uC/OS 的任务调度工作: ①查找就绪表中最高优先级任务。 ②实现任务切换。 分为:
⑥ ①
初始化变量 OSIint
中断

创建任务 OSTasБайду номын сангаасCreate

进入多任务管理阶段 OSStart

任务调度 OSSched/OSIntExt

用户任务 MyTask
初始化所有全局变量、数 据结构、创建最低优先级 空闲任务 OSTaskIde, (如果使用了统计任务, 也在此创建),创建 6 个 空数据链表: ①空任务控制块链表 ②空事件控制块链表 ③空队列控制块链表 ④空标志组链表 ⑤空内存控制块链表 ⑥空闲定时器控制块链表
主动让出 CPU:延时、 请求临界资源而挂起、
如果按照刚才的建议 去做,首次调度时, 肯定运行 TaskStart ,在这任 务中再创建其他任
任务调度,是内核的主要服务,是 区分裸机跟多任务系统的最大特 点。好的调度策略,能更好地发挥 系统的效率
务,并开中断(前面 已经提到)。
COPYRIGHT 2011 野火嵌入式开发工作室 uC/OS 详细工作流程图 By 野火团队:
uC/OS 的实时性就是靠定时中断来完成。 每个时钟节拍到来,就会产生一次定时中断,中断后进行任务调度,运行 就绪表中优先级最高的任务(非抢先型内核中断后继续运行被中断任 务)。即过一段时间就检测是否有重要任务需要运行,是的就转而运行更 重要的任务,从而确保实时性(裸机程序就无法这样做了)。

ucos-ii及其任务

ucos-ii及其任务

• 中断管理
1、uc/os-ii的概述 2、 uc/os-ii的任务 3、任务控制块 4、任务创建 5、uc/os-ii的初始化及任务启动
• uc/os-ii中的任务是一个线程,其代码通常是一个无 限循环结构/超循环结构,看起来像其它C 函数一样。 void mytask(void *pdata) //示意代码 { for (;;) { do something; waiting; do something; } }
uc/os-ii概述—性能特点
• 可剥夺性(Preemptive)与可确定性
内核可剥夺、函数调用或系统服务的执行时间具有 可确定性,是硬实时操作系统。
• 支持多任务
• 任务栈
uc/os-ii可以管理64个任务 每个任务有自己单独的栈,uc/os-ii允许每个任允 许每个任务有不同的栈空间,以便压低应用程序对 RAM的需求。
删除任 务
等待
等 待 时 间 到 创建任务 任务调度
挂 起
中断 运行 任务被占先 中断结束 中断任务
uc/os-ii的任务—优先级
uc/os-ii支持64个任务,每个任务有一个特定 的优先级。 任务的优先级别用数字表示,0表示的任务的 优先级最高,数字越大表示的优先级越低。 通过常数OS__LOWEST__PRIO(在 OS_CFG.H中)定义系统的最低优先级别,同 时限定系统能容纳的最多任务数量。 OS_LOWEST_PRIO给空闲任务, OS_LOWEST_PRIO-1给统计任务。
1、uc/os-ii的概述 2、 uc/os-ii的任务 3、任务控制块 4、任务的创建 5、uc/os-ii的初始化及任务启动
任务控制块—结构
任务控制块 (Task Control Blocks, OS_TCBs)是 ucos-ii用来存储任务堆栈指针、当前状态、优先级及 任务链表指针等属性的一个数据结构。 任务控制块是任务的身份证,每个任务都有一个属于 自已的任务控制块,当任务的CPU使用权被剥夺时, 任务的属性被保存在任务控制块中,而当任务重新得 到CPU使用权时任务控制块能确保任务从当时被中断 的那一点丝毫不差地继续执行。 OS_TCBs全部驻留在RAM中。 OS_TCBs 在任务建立的时候被初始化。

UCOSII操作系统课程设计

UCOSII操作系统课程设计

UCOSII操作系统课程设计一、课程目标知识目标:1. 理解UCOSII操作系统的基本原理和核心概念,包括任务管理、时间管理、通信与同步机制;2. 掌握UCOSII的移植方法和配置过程,学会在不同硬件平台上搭建UCOSII 操作系统环境;3. 学会使用UCOSII提供的API进行多任务编程,了解实时操作系统的任务调度和资源管理策略。

技能目标:1. 能够运用C语言在UCOSII环境下编写多任务应用程序,实现任务间的同步与通信;2. 能够分析并解决实际嵌入式系统开发中与操作系统相关的问题,提高系统稳定性和可靠性;3. 掌握UCOSII调试技巧,能够运用调试工具对操作系统运行状态进行跟踪和分析。

情感态度价值观目标:1. 培养学生对操作系统知识的好奇心和探索精神,激发学习兴趣和热情;2. 培养学生具备良好的团队合作精神和沟通能力,提高解决实际问题的能力;3. 增强学生的创新意识,鼓励他们在实际项目中积极尝试和应用所学知识。

课程性质:本课程为高年级专业课,以实际应用为导向,注重理论与实践相结合。

学生特点:学生已具备一定的C语言编程基础和嵌入式系统知识,具有较强的学习能力和实践能力。

教学要求:教师需采用项目驱动教学法,引导学生通过实际案例掌握UCOSII 操作系统的应用与开发。

在教学过程中,关注学生的个体差异,提供个性化指导,确保课程目标的实现。

同时,注重培养学生的自主学习能力和创新能力,为将来的职业发展打下坚实基础。

二、教学内容1. UCOSII操作系统概述:介绍实时操作系统的基本概念、特点及应用场景,引出UCOSII的背景、架构和优势。

教材章节:第一章 实时操作系统概述2. UCOSII内核原理:讲解UCOSII的核心组件,包括任务管理、时间管理、通信与同步机制等。

教材章节:第二章 UCOSII内核原理3. UCOSII移植与配置:介绍在不同硬件平台上移植和配置UCOSII的方法,以实际案例为例进行讲解。

uCOS-II的任务切换机理及中断调度优化

uCOS-II的任务切换机理及中断调度优化

摘要:μC/OS-II是一种适用于嵌入式系统的抢占式实时多任务操作系统,开放源代码,便于学习和使用。

介绍μC/OS-II在任务级和中断级的任务切换原理,以及这一操作系统基于嵌入式系统的对于中断的处理;相对于内存资源较少的单片机,着重讨论一种优化的实用堆栈格式和切换形式,以提高资源的利用率;结合MSP430单片机,做具体的分析。

关键词:实时多任务操作系统μC/OS MSP430 中断堆栈引言在嵌入式操作系统领域,由Jean J. Labrosse开发的μC/OS,由于开放源代码和强大而稳定的功能,曾经一度在嵌入式系统领域引起强烈反响。

而其本人也早已成为了嵌入式系统会议(美国)的顾问委员会的成员。

不管是对于初学者,还是有经验的工程师,μC/OS开放源代码的方式使其不但知其然,还知其所以然。

通过对于系统内部结构的深入了解,能更加方便地进行开发和调试;并且在这种条件下,完全可以按照设计要求进行合理的裁减、扩充、配置和移植。

通常,购买RTOS往往需要一大笔资金,使得一般的学习者望而却步;而μC/OS对于学校研究完全免费,只有在应用于盈利项目时才需要支付少量的版权费,特别适合一般使用者的学习、研究和开发。

自1992 第1版问世以来,已有成千上万的开发者把它成功地应用于各种系统,安全性和稳定性已经得到认证,现已经通过美国FAA认证。

1 μC/OS-II的几大组成部分μC/OS-II可以大致分成核心、任务处理、时间处理、任务同步与通信,CPU的移植等5个部分。

核心部分(OSCore.c) 是操作系统的处理核心,包括操作系统初始化、操作系统运行、中断进出的前导、时钟节拍、任务调度、事件处理等多部分。

能够维持系统基本工作的部分都在这里。

任务处理部分(OSTask.c)任务处理部分中的内容都是与任务的操作密切相关的。

包括任务的建立、删除、挂起、恢复等等。

因为μC/OS-II是以任务为基本单位调度的,所以这部分内容也相当重要。

ucos-ii的工作原理

ucos-ii的工作原理

ucos-ii的工作原理自我感觉对ucos-ii已经很熟悉了,但是在一次面试的时候,被问及ucos的工作原理,却不知道怎么叙说,从那叙说,恨啊现在网络上搜了一篇,感觉写的蛮好的,借用一下,留作以后回顾(具体作者不详,所以无法署其姓名,望原创见谅)。

uC/OS-II是一种基于优先级的可抢先的硬实时内核。

要实现多任务机制,那么目标CPU必须具备一种在运行期更改PC 的途径,否则无法做到切换。

不幸的是,直接设置PC指针,目前还没有哪个CPU支持这样的指令。

但是一般CPU都允许通过类似JMP,CALL这样的指令来间接的修改PC。

我们的多任务机制的实现也正是基于这个出发点。

事实上,我们使用CALL指令或者软中断指令来修改PC,主要是软中断。

但在一些CPU上,并不存在软中断这样的概念,所以,我们在那些CPU上,使用几条PUSH指令加上一条CALL指令来模拟一次软中断的发生。

在uC/OS-II里,每个任务都有一个任务控制块(Task Control Block),这是一个比较复杂的数据结构。

在任务控制快的偏移为0的地方,存储着一个指针,它记录了所属任务的专用堆栈地址。

事实上,在uC/OS-II内,每个任务都有自己的专用堆栈,彼此之间不能侵犯。

这点要求程序员在他们的程序中保证。

一般的做法是把他们申明成静态数组。

而且要申明成OS_STK类型。

当任务有了自己的堆栈,那么就可以将每一个任务堆栈当前位置,记录到前面谈到的任务控制快偏移为0的地方。

以后每当发生任务切换,系统必然会先进入一个中断,这一般是通过软中断或者时钟中断实现。

然后系统会先把当前任务的堆栈地址保存起来,紧接着恢复要切换的任务的堆栈地址。

由于所要切换的任务堆栈里一定也存的是地址(还记得我们前面说过的,每当发生任务切换,系统必然会先进入一个中断,而一旦中断CPU就会把地址压入堆栈),这样,就达到了修改PC为下一个任务的地址的目的。

ucosII任务间通信详解

ucosII任务间通信详解

ucos II 任务间通信详解ucos II 任务间通信之一 :全局变量任务创建好了之后,只是完成了系统编程的一小步,更为重要的是任务间的通信。

比如在mcu21的项目里,有通信任务,有液晶显示任务,有控制任务。

控制任务需要用到通信任务接受到的数据,液晶显示任务也显示控制任务的数据。

这就需要用到任务间的通信了。

Mcu21总结了一下,在ucos II 里任务间通信可以采用以下几种方式。

z共享全局变量,这是最快捷有效的方式,实现这种通信可以采用以下两种方式:一是利用宏OS_ENTER_CRITICAL()和OS_EXIT_CRITICAL()来关闭中断和打开中断,二是利用函数OSSchedLock()和OSSchedUnlock()对μC/OS‐II中的任务调度函数上锁和开锁.z使用信号量z使用邮箱z使用消息队列下面介绍下共享全局变量的实现过程。

(1)宏OS_ENTER_CRITICAL()和OS_EXIT_CRITICAL()是在移植ucos II过程中由用户定义的。

在os_cpu.h这个文件中。

代码如下,这部分代码的作用是关,开中断,具体和CPU有关。

当我们调用OS_ENTER_CRITICAL()时,系统中断被关闭,我们知道,任务切换时基于定时器中断的,当系统中断别关闭时,其它中断,包括定时器中断也就被关闭,任务切换也不可能发生,所以确保在访问变量的时候,不会有其它的任务或中断也在同时访问这个变量。

这两个宏非常好用,在mcu21的项目里经常用到。

尤其在中断处理函数里面。

因为现在的很多CPU是支持中断嵌套的,为了防止中断执行的时候不被其它的中断打断,就可以调用这两个宏。

(2)第二种方法是给任务调度函数上锁,开锁。

这种方法和使用宏OS_ENTER_CRITICAL()和OS_EXIT_CRITICAL()最大的区别是:中断是可以执行的。

尽管不执行任务切换,变量依然有可以被中断函数访问。

给任务调度器上锁的函数如下void OSSchedLock (void){if (OSRunning == TRUE) {OS_ENTER_CRITICAL();OSLockNesting++;OS_EXIT_CRITICAL();}}给任务调度器解锁的函数如下void OSSchedUnlock (void){if (OSRunning == TRUE) {OS_ENTER_CRITICAL();if (OSLockNesting > 0) {OSLockNesting‐‐;if ((OSLockNesting | OSIntNesting) == 0) { (1)OS_EXIT_CRITICAL();OSSched(); (2)} else {OS_EXIT_CRITICAL();}} else {OS_EXIT_CRITICAL();}}}它实现的原理大致是这样的。

嵌入式实时操作系统ucosii

嵌入式实时操作系统ucosii

医疗电子
ucosii在医疗电子领域 中应用于医疗设备、监
护仪、分析仪等。
物联网
ucosii在物联网领域中 应用于传感器节点、网
关、路由器等设备。
02
ucosii的体系结构与内核
任务管理
任务创建
ucosii提供了创建新任务的函数,如 OSTaskCreate(),用于创建新任务。
任务删除
ucosii提供了删除任务的函数,如 OSTaskDelete(),用于删除不再需要的任 务。
时间管理
01
02
03
时间节拍
ucosii通过定时器产生固 定时间间隔的节拍信号, 用于任务调度和时间管理 。
超时处理
ucosii支持超时机制,当 某个任务等待时间超过预 定阈值时触发相应的处理 函数。
时间函数
ucosii提供了一系列时间 函数,如OSTimeDly()、 OSTimeTick()等,用于时 间相关的操作和控制。
智能家居
ucosii适用于智能家居领域,可应用于 智能家电控制、家庭安全监控等场景。
02
03
医疗电子
ucosii适用于医疗电子领域,如医疗设 备控制、病人监控等,其可靠性和实 时性为医疗系统提供了有力保障。
THANKS。
应用软件的开发
任务管理
在UCOSII中,任务是用来实现应用程序功能的。在进行应用软件的开发时,需要创建和管理任务。这包括任务的创 建、删除、挂起和恢复等操作。
任务间通信
为了实现任务间的协同工作,需要进行任务间通信。UCOSII提供了信号量、消息队列、互斥量等机制来实现任务间 通信。在进行应用软件的开发时,需要利用这些机制来实现任务间的同步和数据交换。

uCOSII原理及应用

uCOSII原理及应用
通过任务函数实现特定的功能,每个任务函数 对应一个独立的执行线程。
任务控制块
用于存储任务的运行状态和控制信息,包括任 务的优先级、状态、堆栈指针等。
任务切换函数
用于实现任务之间的切换,包括保存当前任务的上下文和恢复下一个任务的上 下文。
ucosii的任务管理
创建任务
通过调用ucosii提供的函数, 创建新的任务并分配相应的 资源。
在物联网应用中,ucosii能够为各种智能硬件提供统一的操 作系统平台,实现设备的互联互通和智能化管理。同时, ucosii还提供了丰富的中间件和驱动程序,方便开发者快速 开发出各种智能硬件和应用软件。
ucosii在嵌入式系统中的应用
嵌入式系统是指嵌入到硬件中的计算机系统,具有特定的功能和性能要求。ucosii作为一种实时操作 系统,在嵌入式系统中也有着广泛的应用。
调试工具
使用JTAG、SWD等调试工具,通过串口、网络等方式与目标板进行通信,实现程序的 下载、运行、断点设置等操作。
调试步骤
首先确认硬件连接正确,然后通过调试工具将程序下载到目标板中,设置断点并运行程 序,观察程序运行过程中变量的变化和程序的执行流程。
常见问题
硬件连接问题、调试工具配置问题、程序编译错误等。
ucosii的性能分析
性能指标
响应时间、吞吐量、资源利用率等。
分析方法
通过代码审查、性能测试、瓶颈分析等方法,找出影响性能的 关键因素,如算法复杂度、内存访问模式、IO性能等。
优化建议
针对分析结果,提出优化建议,如改进算法、优化数据结 构、减少IO操作等。
ucosii的优化建议
算法优化
通过改进算法,减少计算量和复杂度,提高程序执行效率。
易用性

uCOS-II嵌入式操作系统介绍与移植

uCOS-II嵌入式操作系统介绍与移植

OSStartHighRd
1、该函数是在OSStart函数中调用 2、负责从最高优先级任务的TCB中获得该任务的堆
栈指针sp,并依次将cpu现场恢复,这时系统就将 控制权交给用户创建的该任务进程,直到该任务被 阻塞或者被其他更高优先级的任务抢占cpu 3、该函数仅在多任务启动时被执行一次,用来启 动之前创建的第一个,也就是最高优先级的任务执 行
3、可从网站上获 得全部源码及其在各种体系结构平 台上的移植范例。
uC/OS-II特点
1、uC/OS-II内核具有可抢占的实时 多任务调度功能
2、提供了许多系统服务,如信号量、 消息队列、邮箱、内存管理、时间 函数等
3、这些功能可以根据不同的需求进 行裁减。
uC/OS-II的移植
ARM处理器相关宏定义
1、退出临界区
#defineOS_ENTER_CRITICAL() ARMDisableInt()
2、进入临界区
#defineOS_EXIT_CRITICAL() ARMEnableInt()
堆栈增长方向
1、堆栈由高地址向低地址增长,这个也 是和编译器有关的,当进行函数调用时, 入口参数和返回地址一般都会保存在当 前任务的堆栈中,编译器的编译选项和 由此生成的堆栈指令就会决定堆栈的增 长方向。
#define OS_STK_GROWTH 1
OS_CPU.c的移植
1、任务堆栈初始化 2、系统hook函数 3、中断级任务切换函数
任务堆栈初始化OSTaskStkInit
1、由OSTaskCreate或OSTaskCreateExt调用 2、用来初始化任务的堆栈并返回新的堆栈指针stk。
退出/进入临界区函数 ARMDisableInt/ARMEnableInt

嵌入式实时操作系统ucosII

嵌入式实时操作系统ucosII

嵌入式实时操作系统ucosIIucosII是一款源代码公开、可免费使用的嵌入式实时操作系统。

它是由德国嵌入式系统专家brosse于1992年编写完成的,主要适用于嵌入式系统的开发。

ucosII具有源代码短小精悍、可移植性好、稳定性高等优点,被广泛应用于各种嵌入式系统中。

源代码短小精悍:ucosII的源代码只有几百KB,相对于其他RTOS来说,其代码量较小,易于理解和修改。

可移植性好:ucosII采用了可移植性的设计方法,可以在不同的处理器和编译器上进行移植和优化。

稳定性高:ucosII在各种嵌入式系统中得到了广泛应用,其稳定性和可靠性得到了充分的验证。

支持多任务:ucosII支持多任务处理,可以同时运行多个任务,提高系统的效率和响应速度。

实时性:ucosII具有较高的实时性,可以满足各种实时性要求高的应用场景。

可扩展性:ucosII具有较好的可扩展性,可以根据需要进行功能扩展和优化。

系统内核:包括任务调度、任务管理、时间管理、内存管理等核心功能。

中断处理程序:处理各种中断请求,包括硬件中断、软件中断等。

系统API:提供了一套完善的API函数,方便应用程序的开发和调试。

调试和测试工具:包括各种调试和测试工具,如内存检查工具、性能分析工具等。

ucosII被广泛应用于各种嵌入式系统中,如工业控制、智能家居、智能交通、航空航天等。

其应用场景涵盖了消费类电子产品、医疗设备、通信设备、汽车电子等领域。

ucosII作为一款源代码公开、可免费使用的嵌入式实时操作系统,具有短小精悍、可移植性好、稳定性高等优点。

它广泛应用于各种嵌入式系统中,为应用程序的开发提供了便利和支持。

其可扩展性和实时性也使得它在各种领域中具有广泛的应用前景。

随着嵌入式系统的广泛应用,对嵌入式操作系统的需求也日益增长。

uCOSII是一种流行的实时嵌入式操作系统,具有轻量级、实时性、可扩展性等优点。

本文将介绍如何在AT91平台上实现uCOSII的移植。

ucos-ii工作原理

ucos-ii工作原理

ucos-ii工作原理uC/OS-II(Micro C/Operating System-II)是一种用于嵌入式系统的实时操作系统。

它的工作原理可以简单归纳为以下几个步骤:1. 任务管理:uC/OS-II使用优先级调度算法管理多个任务。

每个任务都有一个优先级,高优先级的任务会优先执行。

uC/OS-II通过一个任务控制块(TCB)来管理每个任务的信息,包括任务的状态、堆栈信息、优先级等。

2. 中断处理:uC/OS-II可以处理多种类型的中断。

当发生中断时,uC/OS-II会根据中断类型进行相应的处理,并且可以自动切换到中断服务程序(ISR)进行执行。

中断服务程序中的代码通常是短小且高效的,用于处理特定的中断事件。

3. 任务切换:uC/OS-II使用抢占式的任务调度方式,因此任务切换可以发生在任何时刻。

当一个任务的时间片用尽或者有更高优先级的任务需要执行时,uC/OS-II会保存当前任务的上下文信息,并切换到下一个任务的执行。

任务切换时,uC/OS-II会保存当前任务的栈指针等信息,并从下一个任务的栈指针中恢复相应的上下文,以使下一个任务继续执行。

4. 事件同步:uC/OS-II提供了多种事件同步机制,如信号量、事件标志、消息邮箱等,用于任务之间的同步和通信。

这些机制可以帮助任务之间按照一定的顺序进行执行,实现数据共享和互斥访问等功能。

5. 内存管理:uC/OS-II提供了内存管理功能,可以动态分配和释放内存块。

这种内存管理机制可以帮助节省内存空间,提高系统的效率。

总而言之,uC/OS-II通过任务管理、中断处理、任务切换、事件同步和内存管理等机制,实现了对嵌入式系统的实时调度和资源管理,以提供稳定、可靠的操作系统支持。

UCOS-II-信号量的理解

UCOS-II-信号量的理解
1. 信号量的理解
(1)uc/os-ii的信号量是由两个部分组成:一部分是16位的无符号整型信号量的计数值(0~65535);另一部分是等待该信号量的任务组成的等待任务表。(另外参考事件控制块ECB)
(2)信号量可以是2值的变量(称为二值信号量),也可以是计数式的。根据信号量的值,内核跟踪那些等待信号量的任务。
----------------------------------------------------------------
互斥型信号量
1.互斥型信号量(mutex)
互斥型信号量具备uc/os-ii信号量的所有机制,但还具有其他一些特性。
任务可利用互斥型信号量来实现对共享资源的独占处理。
如果如果任务Task_A调用OSSemPend(),信号量无效(为0),那么OSSemPend()调用OS_EventTaskWait()函数,把Task_A放入等待列表中。(等待到什么时候呢?要看OSSemPost()(或者等待超时情况),由它释放信号量并检查任务执行权,见下资料)
◆OSSemPost() 发出(释放)一个信号量 (注:由任务或中断操作)
Mutex是二值信号量,1表示资源是可以使用的。
2.关于优先级反转
下面概述优先级反转原理:
假设有三个任务,分别命名为A,B,C;A的优先级最高,C的优先级最低。任务A和任务B处于挂起状态(请注意这条件),等待某一事件的发生,任务C正在运行。当任务C等待到共享资源(命名为S1)并使用后,如果任务A等待得事件到来之后,由于A的优先级最高,所以就会剥夺任务C的CPU使用权。运行过程中,任务A也要使用资源S1,但S1的信号量还被任务C占用着,所有任务A只能进入挂起状态,等待任务C对S1的信号量的释放。此时任务C得以继续运行。

第二章uc-os概述__嵌入式操作系统

第二章uc-os概述__嵌入式操作系统

任务调度
调度工作
最高优先级任务 的寻找
通过建立就绪列表实现 u C / O S 中的每一个任 务都有独立的堆栈空间 ,并有一个称为任务控 制块TCB(Task Control Block)的数据结构,其 中第一个成员变量就是 保存的任务堆栈指针。
任务切换
任务调度模块首先用 变量 OSTCBHighRdy 记 录当前最高级就绪任 务的TCB 地址,然 后调用 OS_TASK_SW()函 数来进行任务切换
uC/OS-II 体系结构
用户应用程序 uC/OS-II与应用程序相关 uC/OS-II与处理器无关的代码 OS_CORE.C OS_Q.C 的代码 OS_FLAG.C OS_SEM.C OS_MBOX.C OS_TASK.C OS_CFG.H OS_MEM.C OS_TIME.C OS_MUTEX.C uC/OS-II.C INCLUDES.H uC/OS-II.H
任务间通信与同步
同步对象
信号量
事件
邮箱
消息队列
任务调度



uC/OS-II 采用的是可剥夺型实时多任务 内核。可剥夺型的实时内核在任何时候都 运行就绪了的最高优先级的任务。 uC/os-II的任务调度是完全基于任务优先 级的抢占式调度,也就是最高优先级的任 务一旦处于就绪状态,则立即抢占正在运 行的低优先级任务的处理器资源。 为了简化系统设计,uC/OS-II规定所有 任务的优先级不同,因为任务的优先级也 同时唯一标志了该任务本身
嵌入式操作系统uc/os概述
2.1 uc/os简介
2.2 uC/OS-II工作原理
2.3 uC/OS-II基本系统服务
2.4 uC/OS-II体系结构 2.5 uC/OS-II移植 2.6 uC/OS-II开发
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用户任务代码的一般结构
// 任务的初始化 //超循环构成任务体
void MyTask(void *pdata)
{ …… for ( ; ; ) {
可被中断的用户代码片断; OS_ENTER_CRITICAL();
//进入临界区(关中断)
不可被中断的用户代码片断; OS_EXIT_CRITICAL(); //退出临界区(开中断) 可被中断的用户代码片断; }
系统为任务配备 了任务控制块且 在任务就绪表中 进行了就绪登记, 这时任务的状态 叫做就绪状态。 处于就绪状态的 任务如果经调度 器判断获得了 CPU的使用权, 则任务就进入运 行状态
一个正在运行的 。 任务一旦响应中 断申请就会中止 运行而去执行中 断服务程序,这 时任务的状态叫 做中断服务状态

……;
while (1) {
//任务初始化部分
……;
} }
//任务功能代码
8
);
OSStart(); }
2.2.1 任务的基本概念
系统任务 统计任务( OSTaskStat( ))使用说明: 空闲任务(OSTaskIdel( ))使用说明: 1 空闲任务( OSTaskIdel( )) 、功能完成用户任务 CPU 使用率的统计,结果以百分 1、uC/OS-II 规定用户程序中必须使用 OSTaskIdel。 比的形式存放在变量 OSCPUsage 原型: void OSTaskIdel(void* pdata) 中。 22 、该任务不能用软件删除。 、该任务用户可选择使用。OS_CFG.H文件中的常数
//任务的优先级别
OSTaskCreate( ) 函数使用举例:
在系统 “创建” 任务 task_A 定义任务 task_A void task_A(void* pdata) { void main(void) { OSInit(); //系统初始化部分 …… OSTaskCreate( task_A, void * 0, &MystackTop,
任务管理
实时操作系统(RTOS) 中间层 D/A A/D 硬件层 I/O 人机交互接口 嵌入式计算机系统 嵌入式 微处理器 BSP/HAL 硬件抽象层/板极支持包 通用接口 ROM SDRAM
硬件抽象层的引入

嵌入式实时系统自底向上包含三个部分


硬件环境 嵌入式实时操作系统——RTOS 嵌入式实时应用程序


OSTaskCreate( )) 函数原型: OSTaskCreate( ---- 创建任务系统函数。

INT8U OSTaskCreate( OSStart( ) ---- 启动 uC/OS-II 任务调度器。 void (*task)(void *pd) , //指向任务的指针 OS_ENTER_CRITICAL( ) ---- 进入临界区 (宏) void *pdata , //传递给任务的参数 OS_EXIT_CRITICAL( ) ---- 退出临界区 (宏) OS_STK *ptos , //任务堆栈栈顶的指针 INT8U prio )
HAL简介

硬件抽象层(Hardware Abstraction Layer,HAL)是体系 结构相关的底层程序

处理系统启动、硬件初始化以及中断与异常


硬件抽象层对内核其它部分提供统一的调用接口
HAL可以提供BSP(board support package,板级支持包)
规范,提供跨平台可移植性
void (*task) (void *pd), //指向任务的指针 void * pdata, //传递给任务的参数 //任务的优先级别 MyTaskStk[ MyTaskStkSize-1 ], //任务堆栈栈顶的指针 INT8U prio )
2.2.2 任务堆栈


任务堆栈的使用注意事项

__ 存在两种堆栈形式
2.2.3 任务控制块及任务控制块链表

任务控制块(TCB)---- 任务在系统中的身份 证

TCB ---- uC/OS-II 中用于记录任务信息(任务堆栈指针、 任务当前状态、任务优先级别等)的数据结构。 uC/OS-II 将系统中的所有 TCB 构成两个链表 (OSTCBList、OSTCBFreeList)进行任务管理。 空任务控制块链表 ---- 未被分配的 TCB 链 OSTCBFreeList。

μC/OS-II中的数据类型
备注:这些类型定义在 ARM\OS_CPU.H 文件中。
2.2 uC/OS-II中的任务
2.2.1 任务的基本概念




复杂问题 “分而治之” 的问题解题思路。 针对目标系统拆分后的 “小且易” 的问题的 具体处理方法编码和数据结构 ---- 任务。 uC/OS-II的两种任务:系统任务、用户任务。 任务的组成:
硬件抽象层接口定义和代码设计特点



硬件抽象层具有与硬件密切相关性 硬件抽象层具有与操作系统无关性 接口定义的功能应包含硬件或系统所需硬件支 持的所有功能 接口定义简单明了,太多接口函数会增加软件 模拟的复杂性 具有可测性的接口设计有利于系统的软硬件测 试和集成
常见的嵌入式操作系统
实时嵌入式操作系统的种类繁多,大体 上可分为两种,商用型和免费型。 商用型的实操作系统功能稳定、可靠,有 完善的技术支持和售后服务,但往往价格 昂贵,如Vxworks、QNX、WinCE、Palm OS 等。 免费型的实时操作系统在价格方面具有优 势,目前主要有Linux,μC/OS是一种源码 开放的商业RTOS
任务控制块 ---- uC/OS-II进行任务管理用的一个数据结构。 任务代码 ---- 描述任务算法的程序编码。 任务堆栈 ---- 任务的工作现场环境。
2.2.1 任务的基本概念
2.2.1

任务的基本概念
各个任务在多任务系统中也随着环境条 “宏观” 上的多任务并发,实际上是 任务的 5 种状态: Sleep ----进行多任务处理,“微观” 仅有编码未激活。 用单 件的情况而具有不同的状态。 CPU 任 Ready ---- 已激活并“万事俱备,只欠调度” 何时刻,只能运行一个任务,存在 CPU资 任务状态划分也是多任务操作系统的管 Running ---- 正占用 CPU 运行自己。 源竞争 ---- 任务调度、任务现场。 理手段。 Wait ---- 等待某事件发生。

ISR_Sta ---- Running状态的任务被中断后进 入的状态。
任务在没有被配备 任务控制块或被剥 夺了任务控制块时 的状态叫做任务的 睡眠状态
正在运行的任务,需要 等待一段时间或需要等 待一个事件发生再运行 时,该任务就会把CPU 的使用权让给别的任务 而使任务进入等待状态
任务的状态及其转换
}
void MyTask1(void *pdata) { …… } • 用户应用程序的一般结构 void MyTask2(void *pdata) { …… }

void main( ) “用户任务” 代码形式上很像 C函数,但他不是 { 函数! ……

“任务” OSInit( ); 不能被主函数 main( ) 或其他函数调用, 只能被主函数或已激活任务创建。 ……
----- 在创建任务的同时,任务堆栈即被创建。
MyTaskStkSize 64 MyTaskStk[ MyTaskStkSize ] //在 OS_CPU.H中定义 OS_STK
举例:
#define OS_STK
……
INT8U OSTaskCreate(
// typedef INT32U OS_STK



任务控制块链表 ---- 已分配的 TCB 链 OSTCBList。
2.2.3 任务控制块及任务控制块链表

任务控制块(TCB)的结构
任务控制块结构的主要成员 typedef struct os_tcb { struct os_tcb *OSTCBNext; //指向下一个TCB的指针 struct os_tcb *OSTCBPrev; //指向前一个TCB的指针 OS_STK *OSTCBStkPtr; //指向任务堆栈栈顶的指针 …… INT16U OSTCBDly; //任务等待时间 INT8U OSTCBStat; //任务的当前状态标志 INT8U OSTCBPrio; //任务的优先级别 …… } OS_TCB;


学习嵌入式操作系统



学习一种实时操作系统RTOS,如 C/OS-Ⅱ,掌握实时系统的概念和设 计方法 嵌入式系统以应用为中心,要选择 “适用”的操作系统 嵌入式Linux 自己尝试“写”RTOS
2.1 嵌入式 RTOS uC/OS-II 简介
uC/OS由 Jean J. Labrosse 先生(加拿大)1992编写 的RTOS,1999年改写后命名为uC/OS-II 。 2000年被美航空管理局认证。 uC/OS-II中的代码 90%用C语言编写,只有少 量的相 关于硬件的代码用汇编编写,易移植到各类体系结构 的8位、16位、32位处理器。 官方网站:

OS_TASK_STAT_EN 设置为 1,使能该函数。 3 、该任务是 uC/OS-II 初始化时自动创建,其任务优先 统计任务( OSTaskStat( )) 级固定为最低级,用户也可修改该任务的业务。 3原型: 、用户在 OS_CFG.H 中使能该任务后,系统自动创建 void OSTaskStat(void* pdata) 该任务,但在用户使用统计数据前必须调用系统 4、目的 ---- 使 CPU 在没有用户任务可执行时也有事可 函数 OSStatInit() 先进行初始化。 做。 4、该任务固定拥有次末任务优先级。
相关文档
最新文档