数值分析第五版_李庆扬__课后习题答案

合集下载

李庆扬 数值分析第五版 习题答案

李庆扬 数值分析第五版 习题答案

第2章 复习与思考题01ii i ii kx x x x 的基函数称为主要性质有 0,()1,k i kx i k()1n l x、什么是牛顿基函数?它与单项式基答:牛顿差值基函数为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n 牛顿差值基函数中带有常数项01,,...n x x x ,这有单项式基不同。

阶均差?它有何重要性质 01n 2n 01n 2n -11[,,...,,][,,...,,]n n f x x x f x x x x x xk j 0j 0j-1j j+1j -k x x x x x x x ()...()()...()和k 阶均差的性质0101k-10[,,...,][,,...,]k kf x x x f x x x x x (分子前项多xk )[a,b]上存在阶导数,且节点2n ,[a,b]x ,则1()!f n0()nn n ik k kk k i i ki kx x y l x y x x ,(j 1,2,....,n)个点的牛顿插值多项式01[,,...,]k f x x x ,(k 1,2,....,n)两者的主要差异是未知数不一致。

拉格朗日插值多项式是系数知道,但基函数不知道。

牛顿插值多项式是函数知道,但系数不知道。

与一般多项式基本相同。

y ,其中系数矩阵用下列基底作多项式插值时,120001211112222121...1...1 (1)...n n n n n nnx x x x x x x x x x x x ,无非零元素。

)拉格朗日基底为01{(),(),...,()}n l x l x l x ,已知数为未知数为01{(),(),...,()}n l x l x l x ,则系数矩阵为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n ,已,未知数为012{,,,...,}n a a a a ,则系数矩阵为102020211010100...010...01()()...0...............1()()...()n nnnnj j x x x x x x x x x x x x x x x x ,为下三角矩阵,矩阵的上三角元0。

数值分析第五版课后习题答案(李庆扬等)第一章

数值分析第五版课后习题答案(李庆扬等)第一章

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值分析报告第五版_李庆扬_王能超_易大义主编课后习题问题详解

数值分析报告第五版_李庆扬_王能超_易大义主编课后习题问题详解

第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x xe x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求nx 的相对误差。

解:设()nf x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯ 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x .其中****1234,,,x x x x 均为第3题所给的数。

解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -=-(n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =,27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。

李庆扬数值分析第五版习题答案解析清华大学出版社

李庆扬数值分析第五版习题答案解析清华大学出版社
又 且

即计算值比准确值大。
故 在 内至少有三个互异零点,
依此类推, 在 内至少有一个零点。
记为 使

其中 依赖于
分段三次埃尔米特插值时,若节点为 ,设步长为 ,即
在小区间 上
16.求一个次数不高于4次的多项式P(x),使它满足
解:利用埃米尔特插值可得到次数不高于4的多项式

其中,A为待定常数
从而
17.设 ,在 上取 ,按等距节点求分段线性插值函数 ,计算各节点间中点处的 与 值,并估计误差。
19。观测物体的直线运动,得出以下数据:
时间t(s)
0
0.9
1.9
3.0
3.9
5.0
距离s(m)
0
10
30
50
80
110
求运动方程。
解:
被观测物体的运动距离与运动时间大体为线性函数关系,从而选择线性方程


则法方程组为
从而解得
故物体运动方程为
20。已知实验数据如下:
19
25
31
38
44
19.0
32.3
将 代入得
由此得矩阵开工的方程组为
求解此方程组,得
又 三次样条表达式为
将 代入得
21.若 是三次样条函数,证明:
若 ,式中 为插值节点,且 ,则
证明:
从而有
第三章 函数逼近与曲线拟合
1. ,给出 上的伯恩斯坦多项式 及 。
解:
伯恩斯坦多项式为
其中
当 时,
当 时,
2.当 时,求证
证明:
若 ,则
3.证明函数 线性无关
解:
采用复化梯形公式时,余项为

数值分析课程第五版课后习题答案(李庆扬等)1

数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值分析课程第五版课后习题答案李庆扬等

数值分析课程第五版课后习题答案李庆扬等

数值分析课程第五版课后习题答案李庆扬等在学习数值分析这门课程的过程中,课后习题的练习与答案的参考对于我们深入理解和掌握知识点起着至关重要的作用。

李庆扬等编写的《数值分析》第五版教材,其课后习题涵盖了丰富的知识点和多种解题思路。

下面,我将为大家详细解析部分课后习题的答案。

首先,让我们来看一道关于插值法的习题。

题目是:给定函数值$f(0)=0$,$f(1)=1$,$f(2)=4$,利用线性插值和抛物插值分别计算$f(15)$的值。

对于线性插值,我们设直线方程为$L_1(x)=ax + b$。

将已知的两个点$(0,0)$和$(1,1)$代入,可得方程组:$\begin{cases}b = 0 \\ a + b = 1\end{cases}$解得$a = 1$,$b = 0$,所以$L_1(x) = x$。

则$f(15) \approxL_1(15) = 15$。

对于抛物插值,设抛物线方程为$L_2(x)=ax^2 + bx + c$。

将三个点$(0,0)$,$(1,1)$,$(2,4)$代入,得到方程组:$\begin{cases}c = 0 \\ a + b + c = 1 \\ 4a + 2b + c =4\end{cases}$解这个方程组,可得$a = 1$,$b = 0$,$c = 0$,所以$L_2(x) = x^2$。

则$f(15) \approx L_2(15) = 225$。

接下来是一道关于数值积分的题目。

求积分$\int_{0}^{1} x^2 dx$的数值解,分别使用梯形公式和辛普森公式。

梯形公式为:$T =\frac{b a}{2} \times f(a) + f(b)$,代入$a = 0$,$b = 1$,$f(x) = x^2$,可得:$T =\frac{1 0}{2} \times 0^2 + 1^2 = 05$辛普森公式为:$S =\frac{b a}{6} \times f(a) + 4f(\frac{a + b}{2})+ f(b)$,代入可得:$S =\frac{1 0}{6} \times 0^2 + 4 \times (\frac{1}{2})^2 + 1^2 =\frac{1}{3}$再看一道关于解线性方程组的习题。

数值分析课程第五版课后习题答案(李庆扬等)1之欧阳地创编

数值分析课程第五版课后习题答案(李庆扬等)1之欧阳地创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x ,相对误差为****ln ln )(ln )(ln xxx x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e nk k kεεεε;(3)*4*2/x x 。

数值分析课程第五版课后习题答案(李庆扬等)(OCR)

数值分析课程第五版课后习题答案(李庆扬等)(OCR)

根是x,,2…,x-,且V。x,x…·,x)=V,Cx6,x…·)(x-x)…(x-x)。
V,(xo,x,…x-x)=11】 -x,)用a-x,)
[证明]由
可得求证。
=V,(Cx8,x,…,xX))11(x-x)
2、当x=1-1,2时,f(x)=0,-3.4,求f(x)的二次插值多项式。
L,(x)=y%((xx6--xx,)((xx-2x-x22))
y=f(x)=f0.5)=-0.693147,y2=f(x)=f(0.6)=-0.510826,则
L2(x)=y。 (x-x)(x-x2)
(x6-x)x-x)
(x-x)(x-x)
(x-x)(x-x2)
(x-xo)(x-x) (x2-xo)(x2-x)
=-0.916291×.(0(.x4-0-.05.)5()x(-00..64)-0.6-.
30—+2—9.x9583x31 ̄02'=0.8336×104
14、试用消元法解方程x组1+10"x=100
x+x2=2
,假定只有三位数计算,问结果是否
可靠?
[解]精确解为x1=0100-*1 10"-2 ,当使用三位数运 算时,得到
x =1,x2=1,结果可靠。
15、已知三角形面积s=s去= absinc,其中c为弧度,0<c< 且测量a,b,c
位有效数字;x=56.430有5位有效数字;x=7×10有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中x,x;,x,x;均为第3题所给
的数。
(1)x+x2+x:
e(x+x写+x)=>
[解]
E(x)=E(x)+E(x)+E(x;)
3+tx10=1.05×103
(2)xxx;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 绪论1.设0x >,x 的相对误差为δ,求ln x 的误差。

解:近似值*x 的相对误差为*****r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈进而有(ln *)x εδ≈2.设x 的相对误差为2%,求n x 的相对误差。

解:设()n f x x =,则函数的条件数为'()||()p xf x C f x = 又1'()n f x nx-=, 1||n p x nx C n n-⋅∴== 又((*))(*)r p r x n C x εε≈⋅ 且(*)r e x 为2((*))0.02n r x n ε∴≈3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =⨯解:*11.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =⨯是二位有效数字。

4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。

解:*41*32*13*34*151()1021()1021()1021()1021()102x x x x x εεεεε-----=⨯=⨯=⨯=⨯=⨯***124***1244333(1)()()()()1111010102221.0510x x x x x x εεεε----++=++=⨯+⨯+⨯=⨯ ***123*********123231132143(2)()()()()1111.10210.031100.031385.610 1.1021385.6102220.215x x x x x x x x x x x x εεεε---=++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯≈**24****24422*4335(3)(/)()()110.0311056.430102256.43056.43010x x x x x x xεεε---+≈⨯⨯+⨯⨯=⨯=5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少?解:球体体积为343V R π=则何种函数的条件数为23'4343p R V R R C V R ππ===(*)(*)3(*)r p r r V C R R εεε∴≈=又(*)1r V ε=故度量半径R 时允许的相对误差限为1(*)10.333r R ε=⨯≈6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…)计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差?解:1n n Y Y -=10099Y Y ∴=9998Y Y =9897Y Y =……10Y Y =依次代入后,有1000100Y Y =-即1000Y Y =,27.982≈, 100027.982Y Y ∴=-*310001()()(27.982)102Y Y εεε-∴=+=⨯100Y ∴的误差限为31102-⨯。

7.求方程25610x x -+=的两个根,使它至少具有4位有效数字27.982=)。

解:25610x x -+=,故方程的根应为1,228x =故 1282827.98255.982x =≈+=1x ∴具有5位有效数字211280.0178632827.98255.982x =-=≈=≈+2x 具有5位有效数字8.当N 充分大时,怎样求1211N Ndx x++⎰解121arctan(1)arctan 1N Ndx N N x +=+-+⎰设arctan(1),arctan N N αβ=+=。

则tan 1,tan .N N αβ=+=12211arctan(tan())tan tan arctan1tan tan 1arctan1(1)1arctan 1N N dx x N NN NN N αβαβαβαβ++=-=--=++-=++=++⎰ 9.正方形的边长大约为了100cm ,应怎样测量才能使其面积误差不超过21cm ? 解:正方形的面积函数为2()A x x =(*)2*(*)A A x εε∴=.当*100x =时,若(*)1A ε≤,则21(*)102x ε-≤⨯故测量中边长误差限不超过0.005cm 时,才能使其面积误差不超过21cm10.设212S gt =,假定g 是准确的,而对t 的测量有0.1±秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减少。

解:21,02S gt t =>2(*)(*)S gt t εε∴=当*t 增加时,*S 的绝对误差增加2*2*(*)(*)*(*)1()2(*)2r S S S gt t g t t tεεεε===当*t 增加时,(*)t ε保持不变,则*S 的相对误差减少。

11.序列{}n y 满足递推关系1101n n y y -=- (n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗? 解:02 1.41y =≈201(*)102y ε-∴=⨯又1101n n y y -=-10101y y ∴=- 10(*)10(*)y y εε∴= 又21101y y =-21(*)10(*)y y εε∴=220(*)10(*)......y y εε∴=101001028(*)10(*)1101021102y y εε-∴==⨯⨯=⨯计算到10y 时误差为81102⨯,这个计算过程不稳定。

12.计算61)f =≈1.4,利用下列等式计算,哪一个得到的结果最好?,3(3-,, 99- 解:设6(1)y x =-,若x =* 1.4x =,则*11102x -ε()=⨯。

计算y 值,则***7***7**1(1)6(1)y x x y x x y x ε()=--6⨯ε()+ =ε()+ =2.53ε()若通过3(3-计算y 值,则**2******(32)632y x x y x xy x ε()=-3⨯2⨯-ε() =ε()- =30ε()计算y 值,则 ***4***7**1(32)1(32)y x x y x x y x ε()=--3⨯ε()+ =6⨯ε()+ =1.0345ε()计算后得到的结果最好。

13.()ln(f x x =,求(30)f 的值。

若开平方用6位函数表,问求对数时误差有多大?若改用另一等价公式。

ln(ln(x x =- 计算,求对数时误差有多大? 解()ln(f x x =, (30)ln(30f ∴=设(30)u y f == 则*u =29.9833*412u -∴ε()=⨯10故****310.0167y u uu -1ε()≈-ε()30- =ε()≈3⨯10若改用等价公式ln(ln(x x =-则(30)ln(30f =-+ 此时,****7159.9833y u uu -1ε()=∣-∣ε()30+ =⋅ε()≈8⨯10第二章 插值法1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。

解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+--则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+-2.给出()ln f x x =的数值表解:由表格知,01234012340.4,0.5,0.6,0.7,0.8;()0.916291,()0.693147()0.510826,()0.356675()0.223144x x x x x f x f x f x f x f x ======-=-=-=-=-若采用线性插值法计算ln0.54即(0.54)f , 则0.50.540.6<<2112122111122()10(0.6)()10(0.5)()()()()()x x l x x x x x x l x x x x L x f x l x f x l x -==----==---=+ 6.93147(0.6) 5.10826(0.5)x x =---1(0.54)0.62021860.620219L ∴=-≈-若采用二次插值法计算ln0.54时,1200102021101201220212001122()()()50(0.5)(0.6)()()()()()100(0.4)(0.6)()()()()()50(0.4)(0.5)()()()()()()()()()x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x L x f x l x f x l x f x l x --==------==-------==----=++500.916291(0.5)(0.6)69.3147(0.4)(0.6)0.51082650(0.4)(0.5)x x x x x x =-⨯--+---⨯--2(0.54)0.615319840.615320L ∴=-≈-3.给全cos ,090x x ≤≤的函数表,步长1(1/60),h '==若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界。

解:求解cos x 近似值时,误差可以分为两个部分,一方面,x 是近似值,具有5位有效数字,在此后的计算过程中产生一定的误差传播;另一方面,利用插值法求函数cos x 的近似值时,采用的线性插值法插值余项不为0,也会有一定的误差。

因此,总误差界的计算应综合以上两方面的因素。

当090x ≤≤时, 令()cos f x x = 取0110,()606018010800x h ππ===⨯=令0,0,1,...,5400i x x ih i =+= 则5400902x π==当[]1,k k x x x -∈时,线性插值多项式为11111()()()k kk k k k k kx x x x L x f x f x x x x x ++++--=+--插值余项为111()cos ()()()()2k k R x x L x f x x x x ξ+''=-=-- 又在建立函数表时,表中数据具有5位有效数字,且[]cos 0,1x ∈,故计算中有误差传播过程。

相关文档
最新文档