最新-2018年全国各地中考数学真题数学试卷 精品
圆的基本性质(解析版)2018年数学全国中考真题-2
2018年数学全国中考真题圆的基本性质(试题二)解析版一、选择题1. (2018广西省柳州市,8,3分)如图,A ,B ,C ,D 是⊙O 上的四个点,⊙A =60°,⊙B =24°,则⊙C 的度数为( )第8题图 A .84° B.60°C .36°D .24°【答案】D【解析】∵AD 所对的圆周角是∠B 和∠C ,∴∠C =∠B =24°.【知识点】圆周角定理2. (2018广西贵港,9,3分)如图,点A ,B ,C 均在⊙O 上,若∠A =66°,则∠OCB 的度数是 A .24° B .28° C .33° D .48°【答案】A【解析】∵∠A =66°,∴∠BOC =2∠A =132°,又OC =OB ,∴∠OCB =12(180°-∠BOC )=24°,故选A .3. (2018贵州铜仁,5,4)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=( ) A.55° B.110° C.120° D.125°【答案】D ,【解析】设点E 是优弧AB 上的一点,连接EA 、EB ,根据同弧所对的圆周角是圆心角的一半可得∠E 的度数,再根据圆内接四边形的对角互补即可得到∠ACB 的度数.【解答过程】设点E 是优弧AB 上的一点,连接EA 、EB ,如图, ∵∠AOB=110°,∴∠AEB=12∠AOB=55°,∴∠ACB=180°-∠E=125°.4. (2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若∠BOC=40°,则∠D 的度数为 A .100° B .110°C .120°D .130°【答案】B【解析】 本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC =OB ,∠BOC =40゜,∴∠B =70゜,∴∠D =180゜-70゜=110゜,故选B .5. (2018内蒙古通辽,7,3分)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对圆周角的度数是 A .30° B .60° C .30°或150° D .60°或120° 【答案】D【解析】如答图,连接OA 、OB ,∵OC ⊥AB ,∴OC =5,OA =OB =10,又OC =12OA ,∴cos ∠AOC =12,∴∠AOC =60°∴∠AOB =120°,∴弦AB 所对的圆周角的度数是60°或120°. 故选D .6.(湖北省咸宁市,7,3)如图,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别为∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )A .6B .8 C. D.【答案】【解析】解:作OF ⊥AB 于F ,作直径BE ,连接AE ,如图, ∵∠AOB+∠COD=180°, 而∠AOE+∠AOB=180°, ∴∠AOE=∠COD , ∴AE DC ,∴AE=DC=6,∵OF ⊥AB , ∴BF=AF , 而OB=OE ,∴OF 为△ABE 的中位线, 由勾股定理可得AF=4,∴AB=8,故选择B .【知识点】圆周角定理;垂径定理;三角形中位线性质7. (2018湖北黄石,8,3分)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD =30°,BO =4,则BD 的长为( )第8题图A .23πB .43πC .2πD .83π FE【答案】D 【解析】连接OD ,则∠AOD =2∠B =60°,∴∠BOD =120°.∴l BD =120180π×4=83π.8. (2018湖南邵阳,6,3分)如图(二)所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是( )A .80°B .120°C .100°D .90°图(二)【答案】B ,【解析】根据“圆内接四边形的对角互补”可得∠BCD +∠A =180°,因为∠BCD =120°所以∠A =60°.又根据“在同圆中,同弧所对的圆心角等于圆周角的2倍”,所以∠BOD =2∠A =120°.故选B .9.(2018四川眉山,6,3分)如图所示,AB 是⊙O 的直径,P A 切⊙O 于点A ,线段PO 交⊙O 于点C ,连结BC ,若∠P =36°,则∠B 等于( )A .27°B .32°C .36°D .54°【答案】A ,【解析】由P A 是⊙O 的切线,可得⊙OAP =90°,∴∠AOP =54°,根据同弧所对的圆周角等于圆心角的一半,可得∠B =27°10. (2018辽宁锦州,7,3分)如图:在△ABC 中,∠ACB=90°,过B 、C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F ,连接BF 、CF ,若∠EDC=135°,CF=22,则AE 2+BE 2的值为A 、8B 、12C 、16D 、20D【答案】C,【解析】:如图,∠EDC=1350,∠ACB=90°,得△ACB是等腰直角三角形,ECF是等腰直角三角形,得△AEC与△BFC是全等三角形,AE=BF,△EBF是直角三角形,AE2+BE2=FE2=2FC2.二、填空题100,则弧AB所对的圆周角是°.1.(2018广东省,11,3)同圆中,已知弧AB所对的圆心角是【答案】50°【解析】同弧所对的圆周角是圆心角的一半,圆心角为100°,所以圆周角为50°.【知识点】圆周角、圆心角关系2. (2018海南省,18,4分)如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C , D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为________.【答案】(2,6)【思路分析】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,由题意可知OB 及圆的半径长,OB =CD ,由垂径定理可求得MN 的长,CN =EM ,从而求出OE 的长,进而得到点C 的坐标.【解题过程】过点M 作MN ⊥CD ,垂足为点N ,连接CM ,过点C 作CE ⊥OA ,垂足为点E ,点A 的坐标是(20,0),所以CM =OM =10,点B 的坐标是(16,0),所以CD =OB =16,由垂径定理可知,821==CD CN ,在Rt⊙CMN 中,CM =10,CN =8,由勾股定理可知MN =6,所以CE =MN =6,OE =OM ﹣EM =10﹣8=2,所以点C 的坐标为(2,6).【知识点】垂径定理,勾股定理,平行四边形的性质3. (2018黑龙江省龙东地区,6,3分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB ==1,则⊙O 的半径为________.【答案】5【解析】连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴CE =12CD ,∵CD =6,∴CE =3.设⊙O 的半径为r ,则OC =r ,∵EB =1,∴OE =4,在Rt △OCE 中,由勾股定理得OE 2+CE 2=OC 2,∴(r -1)2+32=r 2,解得r =5,∴⊙O 的半径为5.D【知识点】垂径定理;勾股定理4.(2018黑龙江绥化,16,3分)如图,△ABC是半径为2的圆内接正三角形,则图中阴影部分的面积是.(结果用含π的式子表示)【答案】4π-.【解析】解:连接OA,OB,OC,过O点作OD⊥BC于点D.∵△ABC为等边三角形,∴∠OBD=30°.∵⊙O的半径为2,∴OB=2,∴OD=1,∴∴S△ABC=3S△OBC=3×12BC·OD=D∴S阴影=4π-故答案为:4π-【知识点】含30°角的直角三角形的性质,垂径定理,三角形面积计算,圆的面积计算5.(2018黑龙江绥化,20,3分)如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升 cm【答案】10或70.【解析】解:作半径OD⊥AB于C,连接OB,由垂径定理得:BC=12AB=30,在Rt△OBC中,当水位上升到圆心以下时水面宽80 cm则OC′,水面上升的高度为:40-30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.故答案为10或70.【知识点】垂径定理,勾股定理6.7.(2018浙江嘉兴,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:xCE =OE8. (2018贵州省毕节市,19,3分)如图,AB 是⊙O 的直径,C 、D 为半圆的三等分点,CE ⊥AB 于点E , ∠ACE 的度数为______.【答案】30°.【解题过程】∵AB 是⊙O 的直径,C 、D 为半圆的三等分点,∴∠A =∠BOD =13×180°=60°,又∵CE ⊥AB ,∴∠ACE =90°-60°=30°.【知识点】圆的性质;直角三角形的性质9.(2018吉林省,13, 2分)如图,A ,B ,C ,D 是⊙O 上的四个点,=⌒BC ,,若∠AOB=58°,则∠BDC=___ 度.BO【答案】29【解析】连接CO,根据同圆中,等弧所对圆心角相等,则∠COB=∠AOB=58°,∴∠BDC=29°【知识点】圆周角定理,圆心角、弧、弦之间的关系10.(2018江苏扬州,15,3)如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则AB= .2【答案】2【思路分析】根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的2倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.【解题过程】连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2,故答案为2.【知识点】三角形的外接圆和外心,圆内接四边形对边互补,圆周角的性质11.(2018青海,9,2分)如图5,A、B、C是⊙O上的三点,若∠AOC=110°,则∠ABC= . 【答案】125°.【解析】如图所示:优弧AC上任取一点D,连接AD、CD,∵∠AOC=110°,∴∠ADC=∠AOC=×110°=55°,∵四边形ABCD内接与⊙O,∴∠ABC=180°﹣∠ADC=180°﹣55°=125°.【知识点】圆内接四边形的性质,圆周角的性质12. (2018江苏镇江,9,2分)如图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACD =________°.【答案】40°.【解析】如答图所示,连接B C . ∵AB 是⊙O 的直径, ∴∠ACB =90°.∵∠BCD =∠BAD =50°,∴∠ACD =∠ACB -∠BCD =90°-50°=40°.13. (2018内蒙古通辽,17,3分)如图,在平面直角坐标系中,反比例函数y =kx (k >0)的图象与半径为5的⊙O 相交于M 、N 两点,△MON 的面积为3.5,若动点P 在x 轴上,则PM +PN 的最小值是 .【答案】52【解析】设M (a ,b ),则N (b ,a ),依题意,得:a 2+b 2=52……①(第9题答图)(第9题图)a 2-ab -12(a -b )2=3.5……②①、②联立解得a =572,b =432所以M 、N 的坐标分别为(572,432),(432,572) 作M 关于x 轴的对称点M ′,则M ′的坐标为(572,-432), 则M ′N 的距离即为PM +PN 的最小值.由于M ′N 2=(572-432)2+(-432-572)2=50, 所以M ′N =52,故应填:52.14. (2018山东莱芜,16,3分)如图,正方形ABCD 的边长为2a ,E 为BC 边的中点,⌒AE 、⌒DE 的圆心分别在边AB 、CD 上,这两段圆弧在正方形内交于点F ,则E 、F 间的距离为_______.【答案】32a【思路分析】先用勾股定理求出⌒DFE 的所在圆的半径,再由垂径定理求出EF 的长.【解题过程】解:如图,设⌒DFE 的圆心为G ,作GH ⊥EF 于H ,连接EG .设⌒DFE 所在圆的半径为x ,在Rt △CEG 中,EG 2=CG 2+CE 2,则x 2=(2a -x )2+a 2,解得x =54a ;由垂径定理,得EF =2EH =2⎝ ⎛⎭⎪⎫54a 2-a 2=32a .故答案为32a .【知识点】正方形的性质;勾股定理;垂径定理;15. (2018湖北随州12,3分)如图,点A ,B ,C 在⊙O 上,∠A =40度,∠C =20度,则∠B =______度.EEA D【答案】60.【解析】如图,连接OA ,根据“同圆的半径相等”可得OA =OC =OB ,所以∠C =∠OAC ,∠OAB =∠B ,故∠B =∠OAB =∠OAC +∠BAC =∠C +∠BAC =20°+40°=60°.16.(2018湖北随州16,3分)如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出下列判断:①AC 垂直平分BD ;②四边形ABCD 的面积S =AC ·BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④当A 、B 、C 、D 四点在同一个圆上时,该圆的半径为256; ⑤将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,点F 到直线AB 的距离为678125.其中正确的是______________.(写出所有正确判断的序号)【答案】①③④.【解析】根据“到线段两个端点的距离相等的点在这条线段的垂直平分线上”可知,A ,C 两点都在线段BD 的垂直平分线上,又“两点确定一条直线”,所以AC 垂直平分BD ,故①正确; 如图1,取AC ,BD 的交点为点O ,则由①知OB ⊥AC ,OD ⊥AC ,所以S 四边形ABCD =S △ABC +S △ADC =12AC ·OB +12AC ·OD =12AC ·(OB +OD )= 12AC ·BD ,故②错误; 如图2,取AB ,BC ,CD ,AD 四边的中点分别为P ,Q ,M ,N ,则由三角形的中位线定理得PQ ∥AC ∥MN ,PQ =MN =12AC ,PN ∥BD ∥QM ,PN =QM =12BD ,于是知四边形PQMN 及阴影四边形都是平行四边形.又由①知AC ⊥BC ,所以可证∠AOB =∠QPN =90°,故四边形PQMN 为矩形.若AC =BD ,则有PQ =PN ,四边O ABCCBAO ABDC形PQMN 是正方形,所以顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形,故③正确;当A 、B 、C 、D 四点在同一个圆上时,四边形ABCD 是这个圆的内接四边形,则∠ABC +∠ADC =180°.根据“SSS ”可证△ABC ≌△ADC ,所以∠ABC =∠ADC =90°,则AC 是这个圆的直径.由①知BO =OD =12BD =4,在Rt △AOB 中,根据勾股定理,求得AO=3.然后,证明△AOB ∽△ABC ,得到AB 2=AO ·AC ,所以AC =253,该圆的半径为256,故④正确; 如图1,过点F 作FG ⊥AB 于点G ,过点E 作EH ⊥AB 于点H ,由折叠知,AE =2AO =6,BE =BA =5.由于BF ⊥CD ,AE ⊥BD ,可证得△BOE ∽△BFD ,所以BO BF =BE BD ,即4BF =58,BF =325.因为S △ABE =12AB ·EH=12AE ·BO ,所以EH =645⨯=245.又可证△BEH ∽△BFG ,所以EH FG =BE BF ,即245FG =5325,FG =768125,故⑤错误.17. (2018云南曲靖,10,3分)如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE =_________【答案】n °【解析】圆内接四边形的对角互补,所以∠BCD =180°-∠A ,而三点BCD 在一条直线上,则∠DCE =180°-∠BCD ,所以∠DCE =∠A =n °.18. (2018年浙江省义乌市,13,5)如图,公园内有一个半径为20米的圆形草坪,A ,B 是圆上的点,O 为圆心,∠AOB =120°,从A 到B 只有路AB ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB .通过计算可知,这些市民其实仅仅少B 走了_________步(假设1步为0.5米,结果保留整数).(参考数据:图1GFEH OABDC 图21.732,π取3.142)【答案】15【解析】作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=12(180°﹣∠AOB)=12(180°﹣120°)=30°,在Rt△AOC中,OC=12OA=10,,∴69(步);而AB的长=12020180π⨯≈84(步),AB的长与AB的长多15步.所以这些市民其实仅仅少B走了15步.故答案为15.【知识点】垂径定理;勾股定理19.(2018浙江舟山,14,4)如图,量角器的O度刻度线为AB.将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A、D,量得AD=10cm,点D在量角器上的读数为60°.则该直尺的宽度为cm.BC【解析】根据题意,抽象出数学图形根据题意可知:AD =10,∠AOD =120°,由OA =OD ,∴∠DAO =30°,设OE =x ,则OA =2x ,∵OE ⊥AD ,∴AE =DE =5,在Rt △AOE 中,x 2+52=(2x )2,解得:x ,∴CE =OE.三、解答题1. (2018年江苏省南京市,26,8分)如图,在正方形ABCD 中,E 是AB 上一点,连接DE .过点A 作AF DE ⊥,垂足为F .⊙O 经过点C 、D 、F ,与AD 相交于点G .(1)求证AFG DFC ∽△△;(2)若正方形ABCD 的边长为4,1AE =,求O 的半径.【思路分析】(1)欲证明△AFG ∽△DFC ,只要证明∠FAG=∠FDC ,∠AGF=∠FCD ; (2)首先证明CG 是直径,求出CG 即可解决问题;【解题过程】(1)证明:在正方形ABCD 中,90ADC ∠=. ∴90CDF ADF ∠+∠=. ∵AF DE ⊥. ∴90AFD ∠=.∴90DAF ADF ∠+∠=. ∴DAF CDF ∠=∠.∵四边形GFCD 是⊙O 的内接四边形, ∴180FCD DGF ∠+∠=. 又180FGA DGF ∠+∠=,O∴FGA FCD ∠=∠. ∴AFG DFC ∽△△. (2)解:如图,连接CG .∵90EAD AFD ∠=∠=,EDA ADF ∠=∠, ∴EDA ADF ∽△△. ∴EA DA AF DF =,即EA AFDA DF=. ∵AFG DFC ∽△△, ∴AG AFDC DF =. ∴AG EADC DA=. 在正方形ABCD 中,DA DC =,∴1AG EA ==,413DG DA AG =-=-=.∴5CG ===.∵90CDG ∠=, ∴CG 是⊙O 的直径. ∴⊙O 的半径为52.【知识点】相似三角形的判定和性质 正方形的性质 圆周角定理及推论2. (2018江苏徐州,28,10分) 如图,将等腰直角三角形ABC 对折,折痕为CD .展平后,再将点B 折叠再边AC 上,(不与A 、C 重合)折痕为EF ,点B 在AC 上的对应点为M ,设C D 与EM 交于点P ,连接PF .已知BC =4.(1)若点M 为AC 的中点,求CF 的长;(2)随着点M 在边AC 上取不同的位置.①△PFM 的形状是否发生变化?请说明理由; ②求△PFM 的周长的取值范围.第28题图【解答过程】 解:(1)根据题意,设BF =FM =x ,则CF =4-x ,∵M 为AC 中点,AC =BC =4,∴ CM =12AC =2,∵∠ACB =90°,∴CF 2+CM 2=FM 2,∴(4-x )2+22=x 2,解得x =52,∴CF =4-52=32; (2)①△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形,理由如下:∵等腰直角三角形ABC 中,CD ⊥AB ,∴AD =DB ,CD =12AB =DB ,∴∠B =∠DCB =45°,由折叠可得∠PMF =∠B =45°,∴∠PMF =∠DCB ,∴P 、M 、F 、C 四点共圆,∴∠FPM +∠FCM =180°,∴∠FPM =180°-∠FCM =90°,∠PFM =90°-∠PMF =45°=∠PMF ,∴△PFM 的形状不变,始终是以PM 、PF 为腰的等腰直角三角形; ②当M 与C 重合时,F 为BC 中点,CF =12BC =2,PM =PF =cos 45CF=︒此时△PFM 的周长为2+当M 与A 重合时,F 于C 重合,E 与D 重合,FM =AC =4,PM =PF =ACcos45°=,此时△PFM 的周长为4+B 不与A 、C 重合,所以△PFM 的周长的取值范围是大于2+且小于4+.3. (2018辽宁葫芦岛,25,12分)在△ABC 中,AB =BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC =90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由; (3)若|CF -AE |=2,EF =POF 为等腰三角形时,请直接写出线段OP 的长.【思路分析】(1)连接OB ,则OB ⊥AC ,进而得A 、E 、O 、B 四点共圆,B 、F 、O 、C 四点共圆.由同弧所对的圆周角相等得∠OEB =∠OAB ,∠OFC =∠OBC .又因为∠OFE =90°-∠OFC ,∠ACB =90°-∠OBC ,所以∠OFE =∠OCB ,又因为∠OAB =∠OCB ,所以∠OE B =∠OFE ,所以OE =OF ;(2)类比(1)可得OE =OF ;由∠ABC =90°,AB =BC ,可得∠OAB =∠OCB =∠OEB =∠OFE =45°,所以OE ⊥OF .(3)取EF的中点为M,则EM=FMAM并延长交CF于D,连接OM.由△AME≌△DMF,|CF-AE|=2,得OM=1.进而得OF=2.由sin∠OFM=12,得∠OFM=30°.因为点P在EF上,所以OP<OE=OF;因为AE⊥EF,∠APE、∠OPF均为锐角,故PF≠PO.当PF=OF=2时,PM=2理得OP=【解答过程】(1)OE=OF;(2)OE=OF,OE⊥OF.理由:连接OB,则OB⊥AC.∵∠AEB=∠AOB=90°,∴进而得A、E、O、B四点共圆,∴∠OEB=∠OAB.∵∠BFC=∠BOC=90°,∴B、F、O、C四点共圆.∴∠OFC=∠OBC.又∵∠OFE=90°-∠OFC,∠ACB=90°-∠OBC,∴∠OFE=∠OCB,又∵∠ABC=90°,AB=BC,∴∠OAB=∠OCB=45°.∴∠OE B=∠OFE=45°.∴OE=OF,OE⊥OF.(3)OP=223.4.(2018上海,25,14分)已知圆O的直径AB=2,弦AC与弦BD,交于点E,且OD⊥AC,垂足为点F.(1)图11,如果AC=BD,求弦AC的长;(2)如图12,如果E为BD的中点,求∠ABD的余切值(3)联结BC、CD、DA,如果BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边,求△ACD的面积.【思路分析】(1)连结CB.可以证明弧AD、弧DC、弧CB相等,从而得到∠ABC=60°.在△ABC中求出AC长.(2)运用中位线及全等转化求出CB长,再把直角三角形OBE中的两个直角边求出,即可∠ABD的余切值.(3)根据“BC是圆O的内接正n边形的一边,CD是的内接正(n+4)边形的一边”求出n值,从而求出∠AOD=45°,可得各线段长,再求△ACD的面积.【解答过程】(1)连结CB.∵AC=BD,∴弧AC=弧BD,∵OD⊥AC,∴弧AD=弧DC=12弧AC,∴弧AD=弧DC=弧CB,∴∠ABC=60°在Rt△ABC中, ∠ABC=60°,AB=2,∴AC=3(2)∵OD⊥AC,∴∠AFO=90°,AF=FC∵AO=OB,∴FO∥CB,FO=12 CB∵E为BD的中点,∴DE=EB∵FO∥CB,∴△DEF≌△BEC,∴DF=CB=2FO∴FO=13,CB=23在Rt △ABC 中,AB =2,CB =23,∴AC ,∴EC ∴EB ,∵E 为BD 的中点,OD =OB ,∴∠OEB =90°,∴EO cot ∠ABD =EB EO . (3)∵BC 是圆O 的内接正n 边形的一边,∴∠COB =360n° ∵CD 是的内接正(n +4)边形的一边,∴∠COD =3604n +° ∵弧AD =弧DC ,∴∠AOD =3604n +° ∵∠COB +∠COD +∠AOD =180°,∴360n +3604n ++3604n +=180,解得n =4 ∴∠AOD =∠COD =3604n +°=45°∵OD =OA =OC =1,∴AC ,OF ,DF =1,∴S △ACD =12×AC ×DF =2-12.5. (2018黑龙江哈尔滨,26,10)已知:⊙O 是正方形ABCD 的外接圆,点E 在弧AB 上,连接BE 、DE ,点F 在弧AD 上,连接BF 、DF 、BF 与DE 、DA 分别交于点G 、点H ,且DA 平分∠EDF .(1)如图1,求证:∠CBE =∠DHG ;(2)如图2,在线段AH 上取一点N (点N 不与点A 、点H 重合),连接BN 交DE 于点L ,过点H 作HK //BN 交DE 于点K ,过点E 作EP ⊥BN ,垂足为点P ,当BP =HF 时,求证:BE =HK ;(3)如图3,在(2)的条件下,当3HF =2DF 时,延长EP 交⊙O 于点R ,连接BR ,若△BER 的面积与△DHK 的面积的差为47,求线段BR 的长.图1 图2 图3【思路分析】(1)问利用同弧和等弧所对圆周角等与三角形外角性质易证的结论.(2)过H 作HM ⊥KD ,易证得HM =BP ,加上直角条件,可导出第三个全等条件,得到△BEP ≌△HKM ,所以BE =HK .(3)连接BD 后根据条件3HF =2DF 可得到tan ∠ABH =tan ∠ADE =ABAH =32,过点H 作HS ⊥BD 后再设边计算就能求出tan ∠BDE =tan ∠DBF =BSHS =51,在ER 上截取ET =DK ,连接BT 易证得△BET ≌△HKD ,这时21BP ·ER 21-HM ·DK =21BP (ER -DK )=21BP (ER -ET )=47,易求得BP =1,PR =5,BR =22RP BP +=2251+=26【解答过程】(1)证明:∵四边形ABCD 是正方形∴∠A =∠ABC =90°∵∠F =∠A =90°∴∠F =∠ABC∵DA 平分∠EDF ∴∠ADE =∠ADF ∵∠ABE =∠ADE ∴∠ABE =∠ADF又∵∠CBE =∠ABC +∠ABE ,∠DHG =∠F +∠ADF ∴∠CBE =∠DHG(2)证明:过H 作HM ⊥KD 垂足为点M ∵∠F =90°∴HF ⊥FD 又∵DA 平分∠EDF ∴HM =FH∵FH =BP ∴HM =BP ∵KH ∥BN ∴∠DKH =∠DLN ∵∠ELP =∠DLN ∴∠DKH =∠ELP∵∠BED =∠A =90°∴∠BEP +∠LEP =90°∵EP ⊥BN ∴∠BPE =∠EPL =90°∴∠LEP +∠ELP =90°∴∠BEP =∠ELP =∠DKH ∵HM ⊥KD ∴∠KMH =∠BPE =90°∴△BEP ≌△HKM ∴BE =HK(3)解:连接BD ∵3HF =2DF ,BP =FH ∴设HF =2a ,DF =3a ∴BP =FH =2a由(2)得HM =BP ,∠HMD =90°∵∠F =∠A =90°∴tan ∠HDM =tan ∠FDH ∴DM HM =DF FH =32 ∴DM =3a ∴四边形ABCD 是正方形∴AB =AD ∴∠ABD =∠ADB =45°∵∠ABF =∠ADF =∠ADE ,∠DBF =45°-∠ABF ,∠BDE =45°-∠ADE ∴∠DBF =∠BDE ∵∠BED =∠F ,BD =BD ∴△BED ≌△DFB ∴BE =FD =3a 过点H 作HS ⊥BD 垂足为点S ∵tan ∠ABH =tan ∠ADE =ABAH =32 ∴设AB =32m ,AH =22m ∴BD =2AB =6m DH =AD -AH =2m sin ∠ADB =DHHS =22 ∴HS =m ∴ DS =22HS DH -=m ∴BS =BD -DS =5m ∴tan ∠BDE =tan ∠DBF =BS HS =51 ∵∠BDE =∠BRE ∵tan ∠BRE =PR BP =51∵BP =FH =2a ∴RP =10a 在ER 上截取ET =DK ,连接BT 由(2)得∠BEP =∠HKD ∴△BET ≌△HKD ∴∠BTE =∠KDH ∴tan ∠BTE =tan ∠KDH ∴PT BP =32 ∴PT =3a ∴TR =RP -PT =7a ∵S △BER -S △KDH =47∴21BP ·ER 21-HM ·DK =47 ∴21BP (ER -DK )=21BP (ER -ET )=47∴21×2a ×7a =47 ∴a 2=41,a 1=21,a 2=21-(舍去)∴BP =1,PR =5 ∴BR =22RP BP +=2251+=26。
全国各地2018年中考数学真题汇编 整式(31题)【精品】
2018年中考数学真题汇编:整式(31题)一、选择题1. (2018四川内江)下列计算正确的是()A. B.C. D.【答案】D2.(2018广东深圳)下列运算正确的是( )A. B.C. D.【答案】B3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③.④ .其中做对的一道题的序号是()A. ①B.② C.③ D. ④【答案】C4.下列运算正确的是()A. B.C. D.【答案】A5.下列运算正确的是()。
A. B.C.D.【答案】C6.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1B. 2C. 3D. 4【答案】B7.下列运算正确的是()A. B.C. D.【答案】C8.计算的结果是()A. B.C.D.【答案】B9.下列运算正确的是()A. B.C. D.【答案】C10.计算的结果是()A. B.C.D.【答案】C11.下列计算正确的是()A. B. C.D.【答案】D12.下列计算结果等于的是()A. B.C.D.【答案】D13.下列运算正确的是()A.B.C.D.【答案】C14.下列运算正确的是()A. B.C. D.【答案】D15.下列计算正确的是()。
A.(x+y)2=x2+y2B.(-xy2)3=-x3y6C.x6÷x3=x2D.=2【答案】D16.下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=-4a4,③a5÷a3=a2,④a3·a4=a12。
其中做对的一道题的序号是()A. ①B.② C.③ D. ④【答案】C17.下列计算正确的是()A.a3+a3=2a3B.a3·a2=a6C.a6÷a2=a3D.(a3)2=a5【答案】A18.计算结果正确的是()A. B.C.D.【答案】B19.下列计算正确的是( )A. B. C.D.【答案】C20.在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD-AB=2时,S2-S1的值为()A.2aB.2bC.2a-2bD.-2b【答案】B二、填空题(共6题;共6分)21.计算:________.【答案】-4x722.计算的结果等于________.【答案】23.已知x,y满足方程组,则x2-4y2的值为________。
2018年中考数学真题(附答案解析)
2018年初中毕业生升学考试数学真题一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是( ) A .2-B .12-C .12D .22.下列图形中一定是轴对称图形的是A.B.C.D.3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( ) A. 3cm B. 4cm C. 4.5cmD. 5cm6.下列命题正确的是A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.估计()1230246-⋅的值应在( ) A. 1和2之间 B.2和3之间 C.3和4之间 D.4和5之间8.按如图所示的运算程序,能使输出的结果为12的是( )40°直角三角形四边形平行四边形矩形A.3,3==y xB.2,4-=-=y xC.4,2==y xD.2,4==y x9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( ) A .4B .23C .3D .2.510.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角58AED ∠=︒,升旗台底部到教学楼底部的距离7DE =米,升旗台坡面CD 的坡度1:0.75i =,坡长2CD =米,若旗杆底部到坡面CD 的水平距离1BC =米,则旗杆AB 的高度约为( )(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.6︒≈) A .12.6米 B .13.1米 C .14.7米 D .16.3米11.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.若数a 使关于x 的不等式组112352x xx x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a ay y++=--的解为非负数,则符合条件的所有整数a 的和为( ) A .3- B .2- C .1 D .2二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:02(3)π-+-=______________.14.如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是___________(结果保留π).15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 。
2018年全国中考数学真题汇编全集(共21套)
2018年中考数学真题汇编:实数与代数式(解答题21题) 解答题1.计算:.【答案】原式=1-2+2=02.(1)计算:(2)化简:.【答案】(1)解:原式=1+2× -(2- )-4=1+ -2+ -4=(2)解:原式= ==3.(1)计算:(2)化简:【答案】(1)=4- +1=5-(2)=m2+4m+4+8-4=m2+124.(1).(2)化简.【答案】(1)原式(2)解:原式5.(1)计算:(2)解分式方程:【答案】(1)原式= ×3 - × +2- + ,= - +2- + ,=2.(2)方程两边同时乘以x-2得:x-1+2(x-2)=-3,去括号得:x-1+2x-4=-3,移项得:x+2x=-3+1+4,合并同类项得:3x=2,系数化为1得:x= .检验:将x= 代入最简公分母不为0,故是原分式方程的根,∴原分式方程的解为:x= .6.(1)计算:2(-1)+|-3|-(-1)0;(2)化简并求值,其中a=1,b=2。
【答案】(1)原式=4 -2+3-1=4(2)原式= =a-b当a=1,b=2时,原式=1-2=-17.(1)计算:(2)解方程:x2-2x-1=0【答案】(1)解:原式= - -1+3=2(2)解:∵a=1,b=-2,c=-1∴∆=b2-4ac=4+4=8,∴x=x=∴x1= ,x2=8.计算:+-4sin45°+.【答案】原式=9.计算:【答案】原式=2-3+8-1=610.计算:【答案】解:原式= = 11.计算:.【答案】解:原式=4+1-6=-112.计算或化简.(1);(2).【答案】(1)解:()-1+| −2|+tan60°=2+(2- )+=2+2- +=4(2)解:(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+1813.计算:【答案】解:=1+2+=1+2+4=7.14.计算:(π-2)°+4cos30°--(-)-2.【答案】解:原式= ,=-3.15.(1)计算:;(2)化简:.【答案】(1)解:原式=(2)解:原式=16.计算:.【答案】解:原式=2-2× + +1,=2- + +1,=3.17.(1)计算:. (2)解方程:.【答案】(1)解:原式=2 -2 -1+3=2;(2)解:a=1,b=-2,c=-1,△=b2-4ac=4+4=8>0,方程有两个不相等的实数根,x= ,则x1=1+ ,x2=1- .18.计算:【答案】解:原式=4-1+2- +2× ,=4-1+2- + ,=5.19.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:________;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1)(2)解:猜想:,证明:左边= = = =1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,20.对于任意实数、,定义关于“ ”的一种运算如下:.例如. (1)求的值;(2)若,且,求的值.【答案】(1)解:(2)解:由题意得∴.21.对于三个数、、,用表示这三个数的中位数,用表示这三个数中最大数,例如:,,.解决问题:(1)填空:________,如果,则的取值范围为________;(2)如果,求的值;(3)如果,求的值.【答案】(1);(2)解:①当2≤x+2时,即x≥0时,2(x+2)=x+4,解之:x=0②当x+2<2<x+4时,即-2<x<0,2×2=x+4解之:x=0(舍去)③当x+4≤2,即x≤-2时,2(x+4)=2解之:x=-3故x=0或x=-3(3)解:①当9=x2,且3x-2≥9时。
尺规作图(解析版)2018年数学全国中考真题-2
2018年数学全国中考真题尺规作图(试题二)解析版一、选择题1.(2018浙江嘉兴,8,3)用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()【答案】C 【解析】根据尺规作图以及菱形的判定方法.二、填空题△中,用直尺和圆规作AB、AC的垂直平分线,分1.(2018年江苏省南京市,14,2分).如图,在ABCBC=,则DE=cm.别交AB、AC于点D、E,连接DE.若10cm【答案】5【解析】∵用直尺和圆规作AB、AC的垂直平分线,∴D为AB的中点,E为AC的中点,∴DE是△ABC的中位线,∴DE=BC=5cm.故答案为:5.【知识点】线段垂直平分线中位线2.(2018吉林省,11, 2分)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为__________【答案】(-1,0)【解析】由题意知,OA=4,OB=3,∴AC=AB=5,则OC=1.则点C坐标为(-1,0)【知识点】尺规作图,实数与数轴的一一对应关系3.(2018山西省,14题,3分)如图,直线MN∥PQ.直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 内交于点E;③作射线AE 交PQ 于点F.若AB=2.∠ABP =60°则线段AF 的长为 .【答案】2√3【解析】解:过点A 作AG ⊥PQ 交PQ 与点G由作图可知,AF 平分∠NAB∵ MN ∥PQ ;AF 平分∠NAB ;∠ABP =60°∴ ∠AFG =30°在Rt △ABG 中,∠ABP =60°,AB=2;∴ AG =√3在Rt △AFG 中,∠AFG =30°,AG =√3;∴ AF =2√3【知识点】角平分线、特殊角三角函数4. (2018内蒙古通辽,16,3分)如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,连接A D .若AB =BD ,AB =6,∠C =30°,则△ACD 的面积为 .【答案】93【解析】依题意MN 是AC 的垂直平分线,所以∠C =∠DAC =30°,所以∠ADB =∠C +∠DAC =60°,又AB =BD ,所以△ABD 为等边三角形,∠BAD =60°,所以∠BAC =∠DAC +∠BAD =90°,因为AB =6,所以AC =63,所以△ABC 的面积为12×6×63=183.又BD =AD =DC ,所以S △ACD =12S △ABC =93,故应填:93.5. (2018辽宁省抚顺市,题号16,分值3)如图,ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆PP【答案】10【解析】由题可知,直线MN 是线段AC 的垂直平分线,∴AE=EC.∵在ABCD 中DE+EC=CD=AB=7,AD=BC=3,∴△AED 的周长为AD+DE+AE=BC+DE+EC=BC+CD=10.【知识点】用尺规作垂直平分线,垂直平分线的性质.三、解答题1. (2018广东省,题号,分值) 如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.【思路分析】(1)根据尺规作图步骤作垂直平分线,保留痕迹即可;(2)先利用菱形性质求得∠DBA 的度数,再利用垂直平分线性质求得∠ABF 的度数,进而求得∠DBF 的度数.【解题过程】(1)如图直线MN 为所求(2)解:∵四边形ABCD 是菱形∴AD =AB ,AD ∥AB ,∵∠DBC =75°,∴∠ADB =75°,CA∴∠ABD =75°∴∠A =30°∵EF 为AB 的垂直平分线∴∠A =∠FBE =30°,∴∠DBE =45°【知识点】菱形性质;线段垂直平分线性质;尺规作图2. (2018甘肃省兰州市,20,6分)如图,在Rt △ABC 中.(1)利用尺度作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长;(2)利用尺规作图,作出(1)中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)【思路分析】PC ⊥AC ,要使P 到AB 的距离(PD 的长)等于PC 的长,即求∠A 的角平分线与BC 的交点.【解题过程】(1)作∠A 的平分线AD ,交BC 于P ;(2)过点P 作直线AB 的垂线,垂中为D 。【知识点】尺规作图19题答案图2FE C DA BMN C A B第20题图3. (2018湖北省江汉油田潜江天门仙桃市,18,5分)图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O ,M ,N ,A ,B 均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON 的平分线OP ;(2)在图②中,画一个Rt △ABC ,使点C 在格点上.【思路分析】(1)在只能用直尺画角平分线的情况下,就设法将∠MON 放置在能画出角平分线的图形中,如菱形.(2)原图是由全等的小菱形组成的,∴要想找到直角就要从菱形的对角线方面入手考虑.设法找让三角形中的一个顶点处在两个菱形的对角线交点位置,并且在格点上.【解题过程】解:(1)如图①,将∠MON 放在菱形AOBC 中,连接对角线OC ,并取格点P ,OP 即为所求. 2分 如图②所示,△ABC 或△ABC 1均可.4. (湖北省咸宁市,18,7)已知:AOB ∠.求作:,'''B O A ∠使'''AO B AOB ∠=∠ 作法:(1)如图1,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)如图2,画一条射线''A O ,以点'O 为圆心OC 长为半径画弧,交于点''A O 于点'C ;(3)以点'C 为圆心,D C ,长为半径画弧,与第2 步中所画的弧交于点'D ;(4)过点 'D 画射线'OB ,则 '''AO B AOB ∠=∠. 根据以上作图步骤,请你证明AOB B O A ∠=∠'''.(第18题图) 图①图② BAO N M第18题答图 P A 图① ON MB C C 1 C图②B A【思路分析】由画一条射线''A O ,以点'O为圆心OC 长为半径画弧,交于点''A O 于点'C 可得OC =O′C′,由以点'C 为圆心,D C ,长为半径画弧,与第 2 步中所画的弧交于点'D 可得OD =O′D′,CD =C′D′,从而'''.COD C O D ∆≅∆【解题过程】证明:由作图步骤可知,在COD ∆和'''D O C ∆中,''''''OC O C OD O D CD C D ⎧=⎪=⎨⎪=⎩,'''().COD C O D SSS ∴∆≅∆COD D O C ∠=∠∴'''.即AOB B O A ∠=∠'''.【知识点】三角形全等;尺规作图5. (2018广西贵港,20,5分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a ,求作:△ABC ,使∠A =∠α,∠C =90°,AB =a .【思路分析】先作∠A 等于已知角∠α,再在角的一边上截取线段AB =a ,再过B 点作角的另一边的垂线,垂足为C ,则△ABC 即为所求.【解答过程】所作图形如下a A6.(2018江苏常州,27,10)(本小题满分10分)(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD;(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法).②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?【解答过程】(1)∵EK垂直平分BC,点F在EK上,∴FC=FB,且∠CFD=∠BFD ∵∠AFE=∠BFD,∴∠AFE=∠CFD(2)如图所示,点Q为所求作的点.(3)Q是GN的中点。
全国2018年中考数学真题汇总(含答案)
全国2018年中考数学真题汇总(含答案)图形初步、相交线、平行线(20题)一、选择题1.若一个角为,则它的补角的度数为()A. B. C. D.【答案】C【解析】一个角为,则它的补角的度数为:故答案为:C.【分析】根据补角的定义,若两个角之和为180°,则这两个角互为补角,即可求解。
2.如图,直线a,b被直线c所截,那么∠1的同位角是()A. ∠2B. ∠3C. ∠4D. ∠5【答案】C【解析】解:∵直线a,b被直线c所截,∴∠1的同位角是∠4故答案为:C【分析】两条直线被第三条直线所截,位于两条直线的同一侧,第三条直线的同旁,呈“F”形的角是同位角,即可得出答案。
3.如图,直线AB∥CD,则下列结论正确的是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180°D. ∠3+∠4=180°【答案】D【解析】:如图,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故答案为:D.【分析】根据二直线平行,同旁内角互补得出∠3+∠5=180°,根据对顶角相等及等量代换得出∠3+∠4=180°,4.如图是正方体的表面展开图,则与“前”字相对的字是()A. 认B. 真C. 复D. 习【答案】B【解析】观察正方形的展开图,可得出与“前”字相对的字是“真”.【分析】观察正方形的展开图,可得出答案。
5.如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是()A. 图①B. 图②C. 图③D. 图④【答案】A【解析】:图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.故答案为:A.【分析】根据平角的定义,同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.6.如图,直线被所截,且,则下列结论中正确的是( )A. B. C. D.【答案】B【解析】:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.7.如图,点D在△ABC的边AB的延长线上,DE∥BC,若∠A=35°,∠C=24°,则∠D的度数是()。
2018年全国中考数学真题江苏徐州中考数学(解析版-精品文档)
2018年江苏省徐州市初中毕业、升学考试数学学科满分:140分一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(2018江苏徐州,1,3分)4的相反数是A.14 B.14- C.4 D.-4【答案】D2.(2018江苏徐州,2,3分)下列计算正确的是A.2221a a-=B.22()ab ab=C.235a a a+=D.236()a a=3.(2018江苏徐州,3,3分)下列图形中,既是轴对称图形,又是中心对称图形的是A.B.C.D.【答案】A4.(2018江苏徐州,4,3分)右图是由5个相同的正方体搭成的几何体,其左视图是A.B.C.D.【答案】D5.(2018江苏徐州,5,3分)抛掷一枚质地均匀的硬币,若前3次都是正面朝上,则第4次正面朝上的概率A.小于12B.等于12C.大于12D.无法确定【答案】A6.(2018江苏徐州,6,3分)某市从不同学校随机抽取100名初中生,对“学校统一使用数学教辅用书的册数”进行调查,统计结果如下:册数0 1 2 3人数13352923关于这组数据,下列说法正确的是A.众数是2册B.中位数是2册C.极差是2册D.平均数是2册【答案】B7.(2018江苏徐州,7,3分)如图,在平面直角坐标系中,函数y kx=与2yx=-的图象交于A、B两点,过A作y轴的垂线,交函数4yx=的图象于点C.连接BC,则△ABC的面积为A.2 B.4 C.6 D.8【答案】C8.(2018江苏徐州,8,3分)若函数y kx b=+的图象如图所示,则关于x的不等式20kx b+<的解集为A.3x<B.3x>C.6x<D.6x>【答案】D二、填空题9.(2018江苏徐州,9,3分)五边形的内角和为 .【答案】540°10.(2018江苏徐州,10,3分)我国自主研发的某型号手机处理器采用10nm工艺,已知1nm=0.000 000 001m,则10nm用科学计数法可表示为 .【答案】1×10-8nm11.(2018江苏徐州,11,3分)化简:32-= .【答案】2-312.(2018江苏徐州,12,3分)若2x-在实数范围内有意义,则x的取值范围是 .【答案】x≥213.(2018江苏徐州,13,3分)若2m+n=4,则代数式6-2m-n的值为 .【答案】214.(2018江苏徐州,14,3分)若菱形的两条对角线的长分别为6cm和8cm,则其面积为cm2. 【答案】2415.(2018江苏徐州,15,3分)如图,Rt△ABC中,∠ABC=90°,D为AC的中点,若∠C=55°,则∠ABD= .【答案】35°16.(2018江苏徐州,16,3分)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为 .【答案】217.(2018江苏徐州,17,3分)如图,每个图案均有边长相等的黑、白两色正方形按规律拼接而成,照此规律,第n个图案中白色正方形比黑色正方形多个(用含n的代数式表示).【答案】4n+318.(2018江苏徐州,18,3分)如图,AB为⊙O的直径,AB=4,C为半圆AB的中点.P为AC上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q的运动路径长为 .【答案】419.(2018•徐州,19①,5)计算:(1)2013112018()82--+-+;(2)2222a b a ba b a b-+÷--.【解答过程】原式=-1+1-2+2=019.(2018•徐州,19②,5)计算:(2)2222a b a ba b a b-+÷--.【解答过程】原式=()()22a b a b a ba b a b+--⨯-+=22a b-20.(2018•徐州,20①,5)解方程:2210x x-+=;【解答过程】解:把方程左边因式分解得:(2x+1)(x-1)=0,∴x1=12-,x2=1.20.(2018•徐州,20①,5)解不等式组:4281136x xx x>-⎧⎪-+⎨≤⎪⎩.【解答过程】解不等式4x>2x-8,可得x>-4,解不等式1136x x-+≤,得3x≤,所以不等式组的解集为:43x-<≤.21.(2018•徐州,21,7分)不透明的袋中装有1上红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于;(2)从中同时摸出2个球,摸到红球的概率是多少?(用树状图或列表的方法写出分析过程)【解答过程】(1)13;(2)列表如下:红球白球1 白球2红球白球1 +红球白球2+红球白球1 红球+白球1 白球2+白球1 白球2 红球+白球2 白球1 +白球2一共有6种等可能事件,摸到红球的情况有4种,所以(42 63P==摸到红球).22.(2018•徐州,22,7分)在”书香校园“活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:家庭藏书情况统计表类别家庭藏书情况统计表学生人数A 0≤m≤25 20B 26≤m≤100 aC 101≤m≤200 50D m≥201 66根据以下信息,解答下列问题:(1)该样本容量为,a=;(2)在扇形统计图中,“A”对应的扇形的圆心角为;(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.【解答过程】(1)200,64;(2)36(3)662000200⨯=660(名)答:家庭藏书200本以上的人数为660名.23.(2018•徐州,23,8分)如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.(1)求证:FH=ED;(2)当AE为何值时,△AEF的面积最大?【解答过程】(1)∵四边形CGFE 是正方形, ∴EF =CE ,∠EFC =90°, ∴∠FEH +∠CED =90°, ∵FH ⊥AD∴∠FEH +∠EFH =90°, ∴∠EFH =∠CED , 在△FEH 和△ECD 中,EFH CED FHE EDC EF EC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FEH ≌△ECD , ∴FH =ED .(2)设AE =x ,由(1)可得:FH =DE =(4-x ), ∴2111(4)2222AEF S AE FH x x x x ∆=⨯=-=-+, ∵ 102-<,∴当x =212()2-⨯-=2时, △AEF 的面积最大.24.(2018•徐州,24,8分)徐州至北京的高铁里程约为700km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80km /n ,A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?【解答过程】设B 车行驶的时间为x 小时间,则A 车行驶的时间为(1+40%)x 小时, 根据题意:70070080(140%)x x+=+,解得:x =2.5,经检验x =2.5是分式方程的解. (1+40%)x =3.5小时.答两车行驶时间分别为3.5小时和2.5小时.25.(2018•徐州,25,8分)如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.(1)CD与⊙O有怎么的位置关系?请说明理由;(2)若∠CDB=60°,AB=6,求AD的长.【解答过程】解:(1)连接OD,则OD=OB,∴∠2=∠3,∵BD平分∠ABC,∴∠2=∠1,∴∠1=∠3,∴OD∥BC,321CDOA∵∠C=90°,∴BC⊥CD,∴OD⊥CD,∴CD是⊙O的切线.(2)∵∠CDB=60°,∠C=90°,∴∠2=∠1=∠3=30°,∴∠AOD=∠2+∠3=30°+30°=60°,∵AB=6,∴OA=3,∴603180ADππ=⨯⨯=.26.(2018•徐州,26,8分)如图,1号数在2号楼的南侧,两楼的高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号数在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号数在2号楼墙面上的影高为DA.已知CD=42m.(1)求楼间距AB;(2)若2号楼共有30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47).【解答过程】解:(1)过点C,D分别作CE⊥PB,DF⊥PB,垂足分别为E,F.则有AB=CE=DF,EF=CD=42.2号楼1号楼FEDCP由题意可知:∠PCE=32.3°,∠PDF=55.7°,在Rt△PCE中,PE=CE⨯tan32.3°=0.63CE;在Rt△PDF中,PF=CE⨯tan55.7°=1.47CE;∵PF-PE=EF,∴1.47CE-0.63CE=42,∴AB=CE=50(m)答:楼间距为50m.(2)由(1)得:PE=0.63CE=31.5(m),∴AC=BP-PE=90-31.5=58.5(m),58.53÷=19.5,∴点C位于第20层答:点C位于第20层.27.(2018江苏徐州,27,10分)如图,在平面直角坐标系中,二次函数y=-x2+6x-5的图像与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l,(1)求点P、C的坐标;(2)直线l上是否存在点Q,使△PBQ的面积等于△PAC的面积的2倍?若存在,求出点Q的坐标,若不存在,请说明理由。
【精品】2018年最新全国各地中考数学真题汇编集锦(完美打印版)
2018年最新全国各地中考优秀数学真题汇编集锦目录中考数学真题汇编:不等式 .............................................................................................................. - 1 - 中考数学真题汇编:代数式 ............................................................................................................ - 11 - 中考数学真题汇编:因式分解、分式及二次根式 ........................................................................ - 24 - 中考数学真题汇编:实数 ................................................................................................................ - 33 - 中考数学真题汇编:平面直角坐标系与函数 ................................................................................ - 40 - 中考数学真题汇编:方程与不等式 ................................................................................................ - 46 - 中考数学真题汇编:有理数 ............................................................................................................ - 68 - 中考数学真题汇编:一次函数 ........................................................................................................ - 73 - 中考数学真题汇编:二次函数 ........................................................................................................ - 84 - 中考数学真题汇编:分式 .............................................................................................................. - 102 - 中考数学真题汇编:反比例函数 .................................................................................................. - 106 - 中考数学真题汇编:四边形(填空+选择40题) ............................................................................ - 118 - 中考数学真题汇编:因式分解 ...................................................................................................... - 130 - 中考数学真题汇编:图形的相似 .................................................................................................. - 133 - 中考数学真题汇编:圆(填空+选择46题) .................................................................................... - 143 - 中考数学真题汇编:实数与代数式(解答题21题) ...................................................................... - 156 - 中考数学真题汇编:平移与旋转 .................................................................................................. - 163 - 中考数学真题汇编:整式(31题) ................................................................................................... - 174 - 中考数学真题汇编:轴对称变换 .................................................................................................. - 180 - 中考数学真题汇编:锐角三角函数 .............................................................................................. - 194 -中考数学真题汇编:不等式一、单选题1.若a<b,则下列结论不一定成立的是()A. a-1<b-1B. 2a<2bC.D.【来源】江苏省宿迁市2018年中考数学试卷【答案】D2.不等式的解在数轴上表示正确的是()A. (A)B. (B)C. (C)D. (D)【来源】浙江省嘉兴市2018年中考数学试题【答案】A【解析】分析:求出已知不等式的解集,表示在数轴上即可.详解:不等式1﹣x≥2,解得:x≤-1.表示在数轴上,如图所示:故选A.点睛:本题考查了在数轴上表示不等式的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.不等式的解在数轴上表示正确的是()A. B.C. D.【来源】2018年浙江省舟山市中考数学试题【答案】A【解析】【分析】根据解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解答】在数轴上表示为:故选A.【点评】考查在数轴上表示不等式的解集,解一元一次不等式,解题的关键是解不等式.4.不等式3x+2≥5的解集是()A. x≥1B. x≥C. x≤1D. x≤﹣1【来源】浙江省衢州市2018年中考数学试卷【答案】A5.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【来源】湖北省孝感市2018年中考数学试题【答案】B6.把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为()A. B. C. D.【来源】山东省滨州市2018年中考数学试题【答案】B【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.7.不等式组的最小整数解是()A. -1B. 0C. 1D. 2【来源】湖南省娄底市2018年中考数学试题【答案】B【解析】【分析】分别求出不等式组中每一个不等式的解集,然后确定出不等式组的解集,即可求出最小的整数解.【详解】,解不等式①得,x≤2,解不等式②得,x>-1,所以不等式组的解集是:-1<x≤2,所以最小整数解为0,故选B.【点睛】本题考查了解一元一次不等式组,不等式组的整数解,熟练掌握一元一次不等式组的解法是关键. 8.不等式组有3个整数解,则的取值范围是()A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】B9.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C二、填空题10.不等式的解集是___________.【来源】安徽省2018年中考数学试题【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键. 11.不等式组的解是________.【来源】浙江省温州市2018年中考数学试卷【答案】x>412.若不等式组的解集为,则________.【来源】四川省凉山州2018年中考数学试题【答案】-1【解析】分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.详解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案为-1.点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.13.不等式组1<x﹣2≤2的所有整数解的和为_____.【来源】四川省宜宾市2018年中考数学试题【答案】1514.不等式组的解集为__________.【来源】江苏省扬州市2018年中考数学试题【答案】【解析】分析:先求出每个不等式的解集,再根据口诀求出不等式组的解集即可.详解:解不等式3x+1≥5x,得:x≤,解不等式,得:x>-3,则不等式组的解集为-3<x≤,故答案为:-3<x≤.点睛:此题考查了一元一次不等式组的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).三、解答题15.解不等式:3x-1≥2(x-1),并把它的解集在数轴上表示出来.【来源】江苏省盐城市2018年中考数学试题【答案】x≥-1,在数轴上表示见解析.16.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.【来源】天津市2018年中考数学试题【答案】解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).【解析】分析:分别求出每一个不等式的解集,根据不等式在数轴上的表示,由公共部分即可确定不等式组的解集.详解:(Ⅰ)解不等式(1),得x≥-2;(Ⅱ)解不等式(2),得x≤1;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:-2≤x≤1.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.17.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【来源】湖北省孝感市2018年中考数学试题【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50-x)≤98000,解得:x≤40.W=(2500-2000)x+(2180-1800)(50-x)-ax=(120-a)x+19000,∵当70<a<80时,120-a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120-a)×40+19000=23800-40a,∴W的最大值是(23800-40a)元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.18.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)【来源】山东省泰安市2018年中考数学试题【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.19.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)20.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)【来源】四川省凉山州2018年中考数学试题【答案】至少涨到每股6.06元时才能卖出.21.“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.(1)请你为该景区设计购买两种设备的方案;(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?【来源】湖南省娄底市2018年中考数学试题【答案】(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.22.先化简,再求值:,其中是不等式组的整数解.【来源】山东省德州市2018年中考数学试题【答案】.【解析】分析:原式利用除法法则变形,约分后计算得到最简结果,求出x的值,代入计算即可求出值.详解:原式=•﹣=﹣=,不等式组解得:3<x<5,整数解为x=4,当x=4时,原式=.点睛:本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.23.解不等式组:【来源】浙江省金华市2018年中考数学试题【答案】不等式组的解集为3<x≤5.【解析】分析:首先分别解出两个不等式的解集,再求其公共解集即可.详解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x-1),得:x≤5,∴不等式组的解集为3<x≤5.点睛:此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.学科&网24.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 : 2,且里程数之比为2 : 1,为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】(1)40千米;(2)10.25.某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.(1)从年到年,该地投入异地安置资金的年平均增长率为多少?(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.【来源】贵州省安顺市2018年中考数学试题【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.26.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【来源】广东省深圳市2018年中考数学试题【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键. 27.解不等式组:【来源】江苏省连云港市2018年中考数学试题【答案】﹣3≤x<228.如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边【来源】江苏省南京市2018年中考数学试卷【答案】(1).(2)B.中考数学真题汇编:代数式一、单选题1.下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A. 1 B. 2 C. 3 D. 4【来源】山东省滨州市2018年中考数学试题【答案】B2.计算的结果是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】B【解析】分析:根据幂的乘方的性质和同底数幂的乘法计算即可.详解:==故选:B.点睛:本题主要考查了幂的乘方,同底数幂的乘法,熟练掌握运算法则和性质是解题的关键.3.下列计算结果等于的是()A. B. C. D.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】D4.下列运算正确的是()A. B.C. D.【来源】湖南省娄底市2018年中考数学试题【答案】D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.5.下列运算正确的是()A. B. C. D.【来源】山东省德州市2018年中考数学试题【答案】C6.我国南宋数学家杨辉所著的《详解九章算术》一书中,用下图的三角形解释二项式的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算的展开式中从左起第四项的系数为()A. 84B. 56C. 35D. 28【来源】山东省德州市2018年中考数学试题【答案】B7.下列运算正确的是()A. B. C. D.【来源】安徽省2018年中考数学试题【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的8.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a 万件和b 万件,则( )A.B.C. D. 【来源】安徽省2018年中考数学试题【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a ,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a 万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a 万件,即b=(1+22.1%)2a 万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.9.下列运算正确的是( )A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】D10.按如图所示的运算程序,能使输出的结果为的是( )A. B. C. D.【来源】【全国省级联考】2018年重庆市中考数学试卷(A 卷)【答案】C11.下列运算正确的是( )A. B. C. D.【来源】江苏省宿迁市2018年中考数学试卷【答案】C12.下列运算正确的是( )A. x﹣2x=﹣xB. 2x﹣y=xyC. x2+x2=x4D. (x﹣1)2=x2﹣1【来源】江苏省连云港市2018年中考数学试题【答案】A13.下列运算正确的是()A. B. C. D.【来源】江苏省盐城市2018年中考数学试题【答案】C14.下列计算正确的是()A. B.C. D.【来源】湖北省孝感市2018年中考数学试题【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.15.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【来源】山东省淄博市2018年中考数学试题【答案】C【解析】分析:首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=23=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.16.下列运算正确的是( )A. B. C. D.【来源】广东省深圳市2018年中考数学试题【答案】B17.下列运算结果正确的是A. 3a3·2a2=6a6B. (-2a)2= -4a2C. tan45°=D. cos30°=【来源】湖北省黄冈市2018年中考数学试题【答案】D【解析】分析:根据同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值进行计算.详解:A、原式=6a5,故本选项错误;B、原式=4a2,故本选项错误;C、原式=1,故本选项错误;D、原式=,故本选项正确.故选D.点睛:考查了同底数幂的乘法、幂的乘方与积的乘方、特殊角的三角函数值,属于基础计算题.18.下列计算正确的是()A. B.C. D.【来源】四川省成都市2018年中考数学试题【答案】D19.下列计算正确的是( )A. B. C. D.【来源】山东省潍坊市2018年中考数学试题【答案】C【解析】分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.详解:A、a2•a3=a5,故A错误;B、a3÷a=a2,故B错误;C、a-(b-a)=2a-b,故C正确;D、(-a)3=-a3,故D错误.故选C.点睛:本题考查合并同类项、积的乘方、同底数幂的乘除法,熟练掌握运算性质和法则是解题的关键.20.计算(﹣a)3÷a结果正确的是()A. a2B. ﹣a2C. ﹣a3D. ﹣a4【来源】浙江省金华市2018年中考数学试题【答案】B【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案详解:(-a)3÷a=-a3÷a=-a3-1=-a2,故选B.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.21.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】C22.下面是一位同学做的四道题:①.②.③.④.其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【来源】2018年浙江省绍兴市中考数学试卷解析【答案】C二、填空题23.将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是__________.【来源】山东省淄博市2018年中考数学试题【答案】2018【解析】分析:观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第8列的数是2025﹣7=2018;详解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第8列的数是2025﹣7=2018,故答案为2018.点睛:本题考查规律型﹣数字问题,解题的关键是学会观察,探究规律,利用规律解决问题.24.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【来源】湖北省孝感市2018年中考数学试题【答案】1125.若a-=,则a2+值为_______________________.【来源】湖北省黄冈市2018年中考数学试题【答案】8【解析】分析:根据完全平方公式进行变形即可求出答案.详解:∵a-=,∴(a-)2=6,∴a2-2+=6,∴a2+=8.故答案为:8.点睛:本题考查完全平方公式的变形运算,解题的关键是熟练运用完全平方公式.26.已知,,,,,,…(即当为大于1的奇数时,;当为大于1的偶数时,),按此规律,__________.【来源】四川省成都市2018年中考数学试题【答案】27.计算的结果等于__________.【来源】天津市2018年中考数学试题【答案】【解析】分析:依据单项式乘单项式的运算法则进行计算即可.详解:原式=2x4+3=2x7.故答案为:2x7.点睛:本题主要考查的是单项式乘单项式,掌握相关运算法则是解题的关键.28.若是关于的完全平方式,则__________.【来源】贵州省安顺市2018年中考数学试题【答案】7或-1【解析】【分析】直接利用完全平方公式的定义得出2(m-3)=±8,进而求出答案.详解:∵x2+2(m-3)x+16是关于x的完全平方式,∴2(m-3)=±8,解得:m=-1或7,故答案为:-1或7.点睛:此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键.29.化简(x﹣1)(x+1)的结果是_____.【来源】浙江省金华市2018年中考数学试题【答案】x2﹣130.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++ (1)=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为:9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.31.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403532.如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】1三、解答题33.先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【来源】山东省淄博市2018年中考数学试题【答案】2ab﹣1,=1.【解析】分析:先计算单项式乘以多项式与和的完全平方,再合并同类项,最后代入计算即可.详解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当,时,原式=2(+1)(-1)﹣1=2﹣1=1.点睛:本题考查了整式的混合运算﹣化简求值,能正确根据整式的运算法则进行化简是解此题的关键.34.(1)计算:;(2)化简:(m+2)2 +4(2-m)【来源】浙江省温州市2018年中考数学试卷【答案】(1)5-;(2)m2+1235.我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?【来源】四川省凉山州2018年中考数学试题【答案】43.【解析】分析:利用新定义得到101011=1×25+0×24+1×23+0×22+1×21+1×20,然后根据乘方的定义进行计算.详解:101011=1×25+0×24+1×23+0×22+1×21+1×20=43,所以二进制中的数101011等于十进制中的43.点睛:本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.36.(1)计算:;(2)解不等式:【来源】江西省2018年中等学校招生考试数学试题【答案】(1);(2)37.计算或化简.(1);(2).【来源】江苏省扬州市2018年中考数学试题【答案】(1)4;(2)【解析】分析:(1)根据负整数幂、绝对值的运算法则和特殊三角函数值即可化简求值.(2)利用完全平方公式和平方差公式即可.详解:(1)()-1+|−2|+tan60°=2+(2-)+=2+2-+=4(2)(2x+3)2-(2x+3)(2x-3)=(2x)2+12x+9-[(2x2)-9]=(2x)2+12x+9-(2x)2+9=12x+18点睛:本题考查实数的混合运算和乘法公式,负整数指数幂的运算和相反数容易混淆,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.38.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……。
2018年全国各地中考数学真题分类汇编(含答案 403页)
3.(2018·山东泰安·3 分)如图,⊙M 的半径为 2,圆心 M 的坐标为(3,4) ,点 P 是⊙M 上的任意一点, PA⊥PB,且 PA、PB 与 x 轴分别交于 A、B 两点,若点 A、点 B 关于原点 O 对称,则 AB 的最小值为( )
A. 3
B.4
C.6
D.8
【分析】由 Rt△APB 中 AB=2OP 知要使 AB 取得最小值,则 PO 需取得最小值,连接 OM,交⊙M 于点 P′,当 点 P 位于 P′位置时,OP′取得最小值,据此求解可得. 【解答】解:∵PA⊥PB, ∴∠APB=90°, ∵AO=BO, ∴AB=2PO, 若要使 AB 取得最小值,则 PO 需取得最小值, 连接 OM,交⊙M 于点 P′,当点 P 位于 P′位置时,OP′取得最小值, 过点 M 作 MQ⊥x 轴于点 Q,
A.174 B.176 C.178 D.180 【分析】连接 CI,利用三角形内角和定理可求出∠BAC 的度数,由 I 点为△ABC 的内心,可得出∠CAI、∠ ACI、∠DCI 的度数,利用三角形内角和定理可得出∠AIC、∠CID 的度数,再由∠AID=∠AIC+∠CID 即可求 出∠AID 的度数. 【解答】解:连接 CI,如图所示. 在△ABC 中,∠B=44°,∠ACB=56°, ∴∠BAC=180°﹣∠B﹣∠ACB=80°. ∵I 点为△ABC 的内心, ∴∠CAI= ∠BAC=40°,∠ACI=∠DCI= ∠ACB=28°, ∴∠AIC=180°﹣∠CAI﹣∠ACI=112°, 又 ID⊥BC, ∴∠CID=90°﹣∠DCI=62°, ∴∠AID=∠AIC+∠CID=112°+62°=174°. 故选:A.
∵BM 是⊙O 的切线, ∴∠OBM=90°, ∵∠MBA=140°, ∴∠ABO=50°, ∵OA=OB, ∴∠ABO=∠BAO=50°, ∴∠AOB=80°, ∴∠ACB= ∠AOB=40°,
2018年中考数学试卷含答案(精选4套真题)40
初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。
本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。
2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。
3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。
在试卷或草稿纸上答题无效。
4.如有作图需要,请用2B铅笔作答,并请加黑加粗,描写清楚。
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1.与-2的乘积为1的数是()A.2 B.-2 C.12D.12-2.函数1y x=-中自变量x的取值范围是( ) A.x>1B.x≥1C.x<1D.x≤1 3.下列运算正确的是( ) A.2233x x-=B.33a a a?C.632a a a?D.236()a a=4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是()(第4题)DCBA5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是( )A B C D6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22 人数2 5 2 2 1 则这12名队员年龄的众数、中位数分别是 ( )A .2,20岁B .2,19岁C .19岁,20岁D .19岁,19岁7.已知219M a =-,279N a a =-(a 为任意实数),则M 、N 的大小关系为( )A .M <NB .M=NC .M >ND .不能确定8.如图,矩形纸片ABCD 中,AB=4,BC=6。
2018年全国中考数学真题试题福建中考数学A卷(解析版-精品文档)
2018年福建省中考数学A试题一、选择题:本大题共10小题,每小题4分,共40分.1.(2018福建A卷,1,4)在实数3-、-2、0、π中,最小的数是()A.3- B.-2 C. 0 D. π【答案】B【解析】∵3-=3,根据有理数的大小比较法则(正数大于零,负数都小于零,正数大于一切负数,比较即可.解:∵-2<0<3-<π,∴最小的数是-2.故选C.【知识点】有理数比较大小2.(2018福建A卷,2,4)某几何体的三视图如图所示,则该几何体是()A.圆柱 B.三棱柱 C.长方体 D.四棱锥【答案】C【解析】思路一:充分发挥空间想象能力,让俯视图根据主视图长高,再利用左视图进行验证即可.思路二:分别根据球,圆柱,圆锥,立方体的三视图作出判断.三棱柱的主视图和左视图都是长方形,俯视图是三角形;四棱锥的主视图和左视图都是三角形,俯视图是有对角线的四形;长方体的三视图都是长方形,由此得这个几何体是长方体,故选C.【知识点】三视图的反向思维3.(2018福建A卷,3,4)下列各组数中,能作为一个三角形三边边长的是( ) A.1,1,2 B.1,2,4C. 2,3,4D.2,3,5【答案】C【解析】三数中,若最小的两数和大于第三数,符合三角形的三边关系,则能成为一个三角形三边长,否则不可能.解:∵1+1=2 ,∴选项A不能;∵1+2<4,∴选项B不可能;∵2+3>4,∴选项C能;∵2+3=5,∴选项D不能.故选C.【知识点】三角形三边的关系4.(2018福建A卷,4,4)一个n边形的内角和是360°,则n等于( )A.3 B.4 C. 5 D. 6【答案】B【解析】先确定该多边形的内角和是360゜,根据多边形的内角和公式,列式计算即可求解.解:∵多边形的内角和是360゜,∴多边形的边数是:360゜=(n-2)×180°,n=4.【知识点】多边形;多边形的内角和5.(2018福建A卷,5,4)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于( )A.15° B.30° C. 45° D. 60°【答案】A【解析】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD,AD是BC的垂直平分线,∴BE=CE,∴∠EBC=∠ECB=45°,∴∠ECA=-60°-45°=15°.【知识点】等边三角形性质,三线合一6.(2018福建A卷,6,4)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A.两枚骰子向上一面的点数之和大于1B. 两枚骰子向上一面的点数之和等于1C. 两枚骰子向上一面的点数之和大于12D. 两枚骰子向上一面的点数之和等于12【答案】D【解析】事先就知道一定能发生的事件是必然事件,所以两枚骰子向上一面的点数之和大于1是必然事件;事先知道它有可能发生,也有可能不发生的事件是随机事件,所以两枚骰子向上一面的点数之和等于12是随机事件;事先知道它一定不会发生的事件是不可能事件,所以两枚骰子向上一面的点数之和等于1、两枚骰子向上一面的点数之和大于12是不可能事件.故选D.【知识点】必然事件;随机事件;不可能事件;m,则以下对m的估算正确的是( )7.(2018福建A卷,7,4)已知43A.23mB. 34m C. 45m D. 56mB【答案】B【解析】本题考查了算术平方根的估算.解:因为1<3<4,所以134<<,即132<<,又∵42,∴34m.故选B.【知识点】算术平方根的概念及求法8.(2018福建A卷,8,4)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是 ( )A.5152x yx yB.5152x yx yC.525x yx yD.525x yx y【答案】A【解析】本题考查了二元一次方程组,解题的关键是找准等量关系.由“绳索比竿长5尺”,可得x=y+5;再根据“将绳索对半折后再去量竿,就比竿短5尺”,可列得方程152x y.所以符合题意的方程组是5152x yx y.【知识点】二元一次方程组的实际应用9.(2018福建A卷,9,4)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于 ( )A.40° B. 50° C. 60° D. 80°【答案】D【解析】根据同弧所对的圆周角等于这条弧所对圆心角的一半,即可求出结果. 解:∵ AB是⊙O 的直径,∴∠ABC=90°,∵∠ACB=50°,∴∠A=90°-∠A C B=40°,∠BOD=2∠A=80°.【知识点】圆;圆的有关性质;圆心角、圆周角定理10.(2018福建A 卷,10,4)已知关于x 的一元二次方程21210a x bx a 有两个相等的实数根,下列判断正确的是 ( ) A .1一定不是关于x 的方程20x bx a 的根 B.0一定不是关于x 的方程20x bx a 的根 C.1和-1都是关于x 的方程20x bx a 的根 D. 1和-1不都是关于x 的方程20x bx a 的根 【答案】D【解析】根据一元二次方程有两个相等的,方程根的判别式等于零,从而建立关于a 、b 的等式,再逐一判断20x bx a 根的情况即可. 解:由关于x 的方程21210a x bx a 有两个相等的实数根,所以△=0,所以错误!未找到引用源。
2018年全国各地中考数学真题汇编含答案
2018中考数学真题汇编目录1实数(2-9页)2整式及运算(9-14页)3因式分解(14-16页)4分式(16-20页)5因式分解、分式及二次根式(20-30页)6方程(30-50页)7不等式(50-60页)8方程与不等式(61-65页)9平面直角坐标系(65-70页)10一次函数(70-80页)11二次函数(80-97页)12反比例函数(97-109页)13四边形(109-121页)14圆(121-133页)15轴对称变换(133-147页)16平移与旋转(147-156页)17图形的相似(156-166页)18锐角三角函数(166-177页)1实数一、单选题1.若实数m、n满足,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A. 12B. 10C. 8D. 6【来源】江苏省宿迁市2018年中考数学试卷【答案】B2.与最接近的整数是()A. 5B. 6C. 7D. 8【来源】山东省淄博市2018年中考数学试题【答案】B【解析】分析:由题意可知36与37最接近,即与最接近,从而得出答案.详解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.点睛:此题主要考查了无理数的估算能力,关键是整数与最接近,所以=6最接近.3.给出四个实数,2,0,-1,其中负数是()A. B. 2 C. 0 D. -1【来源】浙江省温州市2018年中考数学试卷【答案】D【解析】分析: 根据负数的定义,负数小于0 即可得出答案.详解: 根据题意:负数是-1,故答案为:D.点睛: 此题主要考查了实数,正确把握负数的定义是解题关键.4.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【来源】四川省成都市2018年中考数学试题【答案】D【解析】分析:根据实数的大小比较解答即可.详解:由数轴可得:a<b<c<d,故选D.点睛:此题考查实数大小比较,关键是根据实数的大小比较解答.5.估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【来源】天津市2018年中考数学试题【答案】D6.的算术平方根为()A. B. C. D.【来源】贵州省安顺市2018年中考数学试题【答案】B【解析】分析:先求得的值,再继续求所求数的算术平方根即可.详解:∵=2,而2的算术平方根是,∴的算术平方根是,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.学科&网7.的值等于()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】A8.下列无理数中,与最接近的是()A. B. C. D.【来源】江苏省南京市2018年中考数学试卷【答案】C【解析】分析:根据无理数的定义进行估算解答即可.详解:4=,与最接近的数为,故选:C.点睛:本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.9.已知: 表示不超过的最大整数,例: ,令关于的函数(是正整数),例:=1,则下列结论错误..的是()A. B.C. D. 或1【来源】湖南省娄底市2018年中考数学试题【答案】C10.估计的值应在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围. 【详解】=,=,而,4<<5,所以2<<3,所以估计的值应在2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.11.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合),现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图),若有34枚图钉可供选用,则最多可以展示绘画作品( )A. 16张B. 18张C. 20张D. 21张【来源】2018年浙江省绍兴市中考数学试卷解析【答案】D二、填空题12.化简(-1)0+()-2-+=________________________.【来源】湖北省黄冈市2018年中考数学试题【答案】-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.详解:原式=1+4-3-3=-1.故答案为:-1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.13.已知一个正数的平方根是和,则这个数是__________.【来源】四川省凉山州2018年中考数学试题【答案】【解析】分析:由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.详解:根据题意可知:3x-2+5x+6=0,解得x=-,所以3x-2=-,5x+6=,∴(±)2=故答案为:.点睛:本题主要考查了平方根的逆运算,平时注意训练逆向思维.14.用教材中的计算器进行计算,开机后依次按下.把显示结果输人下侧的程序中,则输出的结果是____________.【来源】山东省潍坊市2018年中考数学试题【答案】34+9.15.对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是_____.【来源】浙江省金华市2018年中考数学试题【答案】﹣1【解析】分析:根据新定义的运算法则即可求出答案.详解:∵1*(-1)=2,∴,即a-b=2∴原式==−(a-b)=-1故答案为:-1点睛:本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.16.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.【来源】山东省滨州市2018年中考数学试题【答案】17.计算:__________.【来源】2018年甘肃省武威市(凉州区)中考数学试题【答案】018.设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数),已知,,则___________.【来源】湖南省娄底市2018年中考数学试题【答案】403519.计算:______________.【来源】【全国省级联考】2018年重庆市中考数学试卷(A卷)【答案】3三、解答题20.计算:(﹣2)2+20180﹣【来源】江苏省连云港市2018年中考数学试题【答案】﹣1【解析】分析:首先计算乘方、零次幂和开平方,然后再计算加减即可.详解:原式=4+1-6=-1.点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质.21.计算:【来源】江苏省宿迁市2018年中考数学试卷【答案】522.计算:【答案】0【解析】分析:先分别计算0次幂、负整数指数幂和立方根,然后再进行加减运算即可.详解:原式=1-2+2=023.(1)计算:;(2)化简:(m+2)2 +4(2-m)【答案】(1)5-;(2)m2+1224.计算.【答案】13.25.计算:.【答案】326.计算:.【答案】27.计算:+(﹣2018)0﹣4sin45°+|﹣2|.【答案】328.计算:.【答案】4.29.(1)计算:sin30°+(2018﹣)0﹣2﹣1+|﹣4|;(2)化简:(1﹣)÷.【答案】(1)5;(2)x+1.30.对于任意实数、,定义关于“”的一种运算如下:.例如.(1)求的值;(2)若,且,求的值.【答案】(1);(2).31.计算: .【答案】1032.(1)计算:.(2)解方程:.【答案】(1)2;(2),.33.计算:【答案】734.对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数,若四位数m为“极数”,记D(m)=.求满足D(m)是完全平方数的所有m.【答案】(1)1188, 2475; 9900(符合题意即可) (2)1188 ,2673 ,4752 ,7425.35.计算:|﹣2|﹣+23﹣(1﹣π)0.【答案】62整式一、选择题1. (2018四川内江)下列计算正确的是()A. B. C. D.【答案】D2.(2018广东深圳)下列运算正确的是( )A. B. C. D.【答案】B3.(2018浙江义乌)下面是一位同学做的四道题:①.② .③.④ .其中做对的一道题的序号是()A. ①B. ②C. ③D. ④【答案】C4.下列运算正确的是()A. B. C. D.【答案】A5.下列运算正确的是()。
2018年全国中考数学真题江苏苏州中考数学(解析版-精品文档)
2018年江苏省苏州市初中毕业、升学考试数学学科一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.(2018江苏苏州,1,3分)在下列四个实数中,最大的数是A.-3 B.0 C.32D.34【答案】C【解析】本题解答时要利用有理数大小比较的规则.根据正数大于零,零大于一切负数,可知最大的数为32,故选C.2.(2018江苏苏州,2,3分)地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为A.3.84×103B.3.84×104C.3.84×105D.3.84×106【答案】C【解析】本题解答时要确定好底数和10上的指数,384 000有6位整数,用科学记数法可表示成:53.8410⨯,故选C.3.(2018江苏苏州,3,3分)下列四个图案中,不是轴对称图案的是A. B. C.D.【答案】B【解析】本题解答时要找出图形的对称轴.A,C,D都是轴对称图形,只有B是中心对称图形,故选B.4.(2018江苏苏州,4,32x+x的取值范围在数轴上表示正确的是A .B .C .D .【答案】D【解析】 本题解答时要利用二次根式有意义的概念进行解答.由二次根式的意义可知:20x +≥,解得2x ≥-,故选D .5.(2018江苏苏州,5,3分)计算2121(1)x x x x+++÷的结果是A .x +1B .11x +C .1xx +D .1x x+ 【答案】B【解析】 本题解答时要利用分式的运算顺序和法则进行计算.原式=2111(1)x x x x x +⨯=++ ,故选B .6.(2018江苏苏州,6,3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是A .12B .13C .49D .59【答案】C【解析】 本题解答时要分别算出正方形的面积和阴影部分的面积,然后利用概率公式进行计算.设小正方形的边长为a ,则大正方形的面积为9a 2,阴影部分的面积为214242a a a ⨯⨯⨯=,则飞镖落在阴影部分的概率为:224499a a=,故选C .7.(2018江苏苏州,7,3分)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是AC 上的点.若∠BOC =40°,则∠D 的度数为A.100°B.110°C.120°D.130°【答案】B【解析】本题解答时要利用等腰三角形的性质和圆的内接四边形的对角互补的性质进行计算.∵OC=OB,∠BOC=40゜,∴∠B=70゜,∴∠D=180゜-70゜=110゜,故选B.8.(2018江苏苏州,8,3分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B 处,测得岛屿P在其北偏两30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之问的距离(即PC的长)为A.40海里B.60海里C.203海里D.403海里【答案】D【解析】本题解答时要利用直角三角形的边角关键和勾股定理来进行计算.由题意可知AB=20,∠APB=30゜,∴PA3,∵BC=2⨯20=40,∴AC=60,∴PC2222(203)60403PA AC++=,故选D.9.(2018江苏苏州,9,3分)如图,在△ABC中,延长BC至D,使得CD=12BC.过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD.连接DF,若AB=8,则DF的长为() A.3 B.4 C.3 D.2【答案】B【解析】本题解答时要取AB的中点,然后利用三角形的中位线和平行四边形的判定和性质来解答.取AB的中点M,则ME∥BC,ME=12BC,∵EF∥CD,∴M,E,F三点共线,∵EF=2CD,∴MF=BD,∴四边形MBDF是平行四边形,∴DF=BM=4,故选B.E FMBA10.(2018江苏苏州,10,3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y =kx在第一象限内的图像经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=34,则k的值为()A.3 B.23 C.6 D.12【答案】A【解析】本题解答时要把三角形函数数值化,用参数表示D的坐标,再求出E点的坐标,利用点在反比例函数上,得到方程,解这个方程即可求出k.设AD=3m,OA=4m,∵BC=AD,∴BC=3m,∵CE=2BE,∴BE=m,∴点E的坐标为(4m+4,m),∵点D,E都在反比例函数kyx=上,∴3m⨯4m=m(4m+4),解得m=12,∴k=3m⨯4m=3,故选A.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上.11.(2018江苏苏州,11,3分)计算:a4÷a=.【答案】a3【解析】本题解答时要利用同底数幂的除法法则.43÷=.a a a12.(2018江苏苏州,12,3分)在“献爱心”捐款活动中,某校7名同学的捐款数如下(单位:元):5,8,6,8,5,10,8,这组数据的众数是.【答案】8【解析】本题解答时要掌握众数的概念.在这组数据中,由8出现了3次为最多,所以这组数据的众数为8.13.(2018江苏苏州,13,3分)若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n =.【答案】-2【解析】本题解答时要把方程的解代入方程进行计算.把x=2代入方程有:4+2m+2n=0,∴m+n=-2.14.(2018江苏苏州,14,3分)若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为.【答案】12【解析】本题解答时要把要求值的代数式进行因式分解变形,然后整体代入即可.22+--=+-+=⨯=.a b a b a b(1)(1)()(2)431215.(2018江苏苏州,15,3分)如图,△ABC是一块直角三角板,∠BAC=90°,∠B=30°.现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC 与直尺的两边分别交于点E,F.若∠CAF=20°,则∠BED的度数为°.【答案】80【解析】本题先用直角的性质求出∠CAF的度数,再利用平行线求出∠BDE的度数,最后利用三角形的内角和定理求出∠BED的度数.∵∠CAB=90゜,∠CAF=20゜,∴∠FAB=70゜,∵DE∥FA,∴∠BDE=∠FAD=70゜,∴∠BED=180゜-30゜-70゜=80゜.16.(2018江苏苏州,16,3分)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则12rr的值为.【答案】23【解析】本题解答时要注意圆锥展开图是扇形,扇形的弧长是圆锥底面圆的周长.12180AOBr OAππ∠=⨯,22180AOBr OBππ∠=⨯,∴12r OAr OC=,∵AB∥CD,∴4263OA ABOC CD===,∴1223r OAr OC==17.(2018江苏苏州,17,3分)如图,在Rt△ABC中,∠B=90°,AB=25,BC=5.将△ABC 绕点A按逆时针方向旋转90°得到△AB C'',连接B C',则sin∠ACB'=.【答案】45【解析】本题解答时要过B’作B’D⊥AC于D,利用用等角的三角函数值相等中,旋转的性质,直角三角形三边的关系以及勾股定理来进行计算.过点B’作B’D⊥AC于D,由旋转可知:∠B’AB=90゜,AB’=AB5,∴∠AB’D+∠B’AD=∠B’AD+∠CAB,∴∠AB’D=∠CAB.∵AB=25,BC5AC=5∴B’D=AB’sin'AB D∠ ==AB’sin CAB∠=5252⨯=,∴CD=5-2=3,∴B’D=22(25)24-=,∴B’C=5,∴sin∠ACB’='4'5B DB C=.DC'B'CA18.(2018江苏苏州,18,3分)如图,已知AB=8,P为线段AB上的一个动点,分别以AP,PB 为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N 分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之问的距离最短为(结果保留根号).【答案】23【解析】本题解答时要连接MP,PN,利用菱形的性质,得出△PMN为直角三角形,然后利用勾股定理,求出用PA的长来表示的MN的长,最后利用二次函数的性质求出MN的最小值.连接PM,PN,∵四边形APCD,PBFE是菱形,∴PA=PC,∵AM=MC,∴PM⊥AC,同理PN⊥BE.∴∠CPM+∠CPN=119022APC BPE∠+∠=゜,∵∠DAP=60゜,∴∠CAP==∠NPB=30゜,设AP=x,则PB=8-x,∴PM=12x,PN3)x-FAP∴==∴当x=6时,MN有最小值,最小值为三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(2018江苏苏州,19,5分)(本题5分)计算:21(22-.【思路分析】解答本题时要分别求出绝对值,二次根式,乘方的值,然后再做加减运算.【解答过程】原式=12+3-12=3.20.(2018江苏苏州,20,5分)(本题5分)解不等式组:3242(21)x xx x≥+⎧⎨+<-⎩.【思路分析】解答本题时,先分别求出两个不等式的解集,然后再根据“同大取大,同小取小,大于小数小于大数取中间,大于大数小于小数无解”来求不等式组的解集.【解答过程】由3x>x+2,解得x≥1,由x+4<2(2x-1),解得x>2,∴不等式组的解集是x>2.21.(2018江苏苏州,21,6分)如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【思路分析】解答本题时,先根据边角边判定△ABC≌△DEF,再由全等三角形的性质得到∠BCA=∠EFC,由此判别BC∥EF.【解答过程】证明:∵AB∥DE,∴∠A=∠D.∵AF=DC,∴AC=DF.在△ABC和△DEF中,AB=DE,∠A=∠D,AC=DF,∴△ABC≌△DEF(SAS).∴∠ACB=∠DFE,∴BC∥EF.22.(2018江苏苏州,22,6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为__________;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字.求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).【思路分析】本题考查概率的应用.解答(1)时,这一小题是一步事件,直接应用概率公式进行计算;解答第(2)时,这一小题是二步事件,先用树状图或列表法找出所有的等可能事件,然后再找出满足题目条件的情况,最后利用公式进行计算.【解答过程】(1)23;(2)用“树状图”或利用表格列出所有可能的结果∴P(两个数字之和是3的倍数)=39=13.23.(2018江苏苏州,23,8分)某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择,为了估计全校学生对这四个活动项日的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?【思路分析】本题考查与条形统计图和扇形统计图相关的计算.(1)由乒乓球人数和所占的百分比求出样本容量,再利用样本容量和已知组的人数求出羽毛球的人数,再补全条形图;(2)求出篮球人数的百分比,乘以360゜即可;(3)用样本的百分率来估算总体.【解答过程】(1)1428%=50,答:参加这次调查的学生人数为50人,补全条形统计图如图所示:(2)1050×360°=72°.答:扇形统计图中“篮球”项目所对应扇形的圆心角度数为72°.(3)600×850=96.答:估计该校选择“足球”项目的学生有96人.24.(2018江苏苏州,24,8分)某学校准备购买若干台A型电脑和B型打印机.如果购买1台A 型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多l台,那么该学校至多能购买多少台B型打印机?【思路分析】本题考查了二元一次方程组和不等式的应用.解答第(1)时,根据题意列出地二元一次方程组来解决问题;解答第(2)时,根据题目中的不等式关系列出不等式来解决问题.【解答过程】(1)设每台A型电脑的价格为x元,每台B型打印机的价格为y元.根据题意得:25900229400x yx y+=⎧⎨+=⎩,解这个方程组,得x=3500,y=1200.答:每台A型电脑的价格为3500元,每台B型打印机的价格为1200元.(2)设学校购买胛台B型打印机,则购买A型电脑为(n-l)台,根据题意得:3500(n-1)+1200n≤20000,解这个不等式,得n≤5.答:该学校至多能购买5台B型打印机.25.(2018江苏苏州,25,8分)如图,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B 的左侧),C为顶点.直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C'.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC'平行于直线AD,求新抛物线对应的函数表达式.【思路分析】本题本题考查二次函数与一元二次方程的关系.解答第(1)时,分别求出A,D两点的坐标,然后利用勾股定理可求出AD的长;解答第(2)时,把二次函数配成顶点式,得到C’点的坐标,再求出直线CC’的解析式,最后把C’点的坐标解入直线即可求出二次函数的解析式.【解答过程】解:(1)由x2-4=0解得x1=2,x2=-2.∵点A位于点B的左侧,∴A(-2,0).∵直线y=x+m经过点A,∴-2+m=0,∴m=2,∴D(0,2).∴AD22+2.OA OD(2)解法一:设新抛物线对应的函数表达式为y =x 2+bx +2,∴y =x 2+bx +2=(x +2b )2+2-24b .∵直线CC '平行于直线AD ,并且经过点C (0,-4),∴直线CC '的函数表达式为y =x -4.∴2-24b =-2b-4,整理得b 2-2b -24=0,解得b 1=-4,b 2=6.∴新抛物线对应的函数表达式为y =x 2-4x +2或y =x 2+6x +2. 解法二:∵直线CC '平行于直线AD ,并且经过点C (0,-4), ∴直线CC '的函数表达式为y =x -4.∵新抛物线的顶点C '在直线y =x -4上,∴设顶点C '的坐标为(n ,n -4), ∴新抛物线对应的函数表达式为y =(x -n )2+n -4. ∵新抛物线经过点D (0,2),∴n 2+n -4=2,解得n 1=-3,n 2=2.∴新抛物线对应的函数表达式为y =(x +3)2-7或y =(x -2)2-2.26.(2018江苏苏州,26,10分)如图,AB 是⊙O 的直径,点C 在⊙O 上,AD 垂直于过点C 的切线,垂足为D ,CE 垂直AB ,垂足为E .延长DA 交⊙O 于点F ,连接FC ,FC 与AB 相交于点G ,连接OC .(1)求证:CD =CE ;(2)若AE =GE ,求证:△CEO 是等腰直角三角形.【思路分析】 本题本题考查圆的切线的性质,圆的基本性质以及全等三角形的判定和性质等. (1)连接AC ,BC ,证明△CDA ≌△CEA ,即可得CD =CE ;(2)利用(1)中的全等形,和直径所对的圆周是直角等性质求出∠AOC =2∠F =45゜,即可证明△CEO是等腰直角三角形.【解答过程】证明:(1)连接AC.∵CD为OO的切线,∴OC⊥CD.又∵AD⊥CD,∴∠DCO=∠D=90°.∴AD∥OC,∴∠DAC=∠ACO.又∵OC=OA,∴∠CAO=∠ACO,∴∠DAC=∠CAO.又∵CE⊥AB,∴∠CEA=90°.在△CDA和△CEA中,∵∠D=∠CEA,∠DAC=∠EAC,AC=AC,∴△CDA≌△CEA(AAS),∴CD=CE.(2)证法一:连接BC.∵△CDA≌△CEA,∴∠DCA=∠ECA,∵CE⊥AG,AE=EG,∴CA=CG.∴∠ECA=∠ECG.∵AB是⊙O直径,∴∠ACB=90°.又∵CE⊥AB,∴∠ACE=∠B.又∵∠B=∠F,∴∠F=∠ACE=∠DCA=∠ECG.又∵∠D=90°.∴∠DCF+∠F=90°.∴∠F=∠DCA=∠ACE=∠ECG=22.5.∴∠AOC=2∠F=45°.∴△CEO是等腰直角三角形,证法二:设∠F=x°.则∠AOC=2∠F=2x°.∵AD∥OC,∴∠OAF=∠AOC=2x°.∴∠CGA=∠ECA+∠F=3x°.∵CE⊥AG,AE=EG,∴CA=CG,∴∠EAC=∠CGA,∴∠DAC=∠EAC=∠CGA=3x°.义∵∠DAC+∠EAC+∠OAF=180°.∴3x°+3x°+2x°=180°.∴x=22.5,∴∠AOC=2x°=45°.∴△CEO是等腰直角三角形.27.(2018江苏苏州,27,10分)问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S'.(1)当AD=3时,SS'=_______;(2)设AD=m,请你用含字母m的代数式表示SS'.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=12BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S'.请你利用问题1的解法或结论,用含字母n的代数式表示SS'.【思路分析】本题考查相似三角形的性质以及三角形面积的计算.问1:(1)先求出△ADC的面积,再求出△CDE的面积与△ADC的面积的比,最后求出两三角形的面积比;(2)类比(1)中的方法进行求解;问题2:把梯形的问题转化为三角形的问题,仍然利用平行线截得线段成比例,相似三角形的面积比等于相似比的平方以及等式的性质来求解.【解答过程】解:问题1:(1)316;(2)解法一:∵AB=4,AD=m.∴BD=4-m.又∵CE∥BC,∴4CE BD mEA DA m-==,∴4DECADES mS m-=.又∵CE∥BC,∴△ADE∽△ABC,∴216ADEABCS mS=.∴22441616DEC DEC ADEABC ADE ABCS S S m m m mS S S m--+=⨯=⨯=.即2416S m mS-+=′.解法二:过点B作BH⊥AC,垂足为H,过点D作DF⊥AC,垂足为F.则DF∥BH,∴△ADF∽△ABH.∴4DF AD mBH AB==.∵DE∥BC,∴44CE BD mCA BA-==,∴21442144162DECABCCE DFS m m m mS CA BH⋅--+==⨯=⋅.即2416S m mS-+=′.问题2:解法一:分别延长BA,CD,相交于点D.∵AD∥BC,∴△OAD∽△OBC,∴12OA ADOB BC==.∴OA=AB=4,∴OB=8.∵AE=n,∴OE=4+n.∵EF∥BC.由问题1的解法可知24416()4864CEF CEF OEFOBC OEF OBCS S S n n nS S S n-+-=⨯=⨯=+,∵21()4OAD ABCD S OA S OB ==.∴23()4ABCD OBC S OA S OB ==. ∴22416163364484CEF CEF ABCD OBC S S n n S S --==⨯=△△△,即S S=′21648n -. 解法二:连接AC 交EF 于M . ∵AD ∥BC ,且AD =12BC ,∴12ADC ABC S S =△△. ∴S △ADC =13S ,S △ABC =23S .由问题1的结论可知,EMC ABCSS=2416n n-+. ∴S △EMC =2416n n -+×23S =2424n n S -+.∵MF ∥AD , ∴△CFM ∽△CDA , ∴243()143CFM CFM CFM CDA S S S n S S S -==⨯=△△△△, ∴S △CFM =2(4)48n S -.∴S △EFC =S △EMC +S △CFM =2424n n S -++2(4)48n S -=21648n S -,∴S S=′21648n -.28.(2018江苏苏州,28,10分)如图①,直线l 表示一条东西走向的笔直公路,四边形ABCD 是一块边长为100米的正方形草地,点A ,D 在直线l 上.小明从点A 出发,沿公路l 向两走了若干米后到达点E 处,然后转身沿射线EB 方向走到点F 处,接着又改变方向沿射线FC 方向走到公路l 上的点G 处,最后沿公路l 回到点A 处.设AE =x 米(其中x >0),GA =y 米.已知y 与x 之间的函数关系如图②所示.(1)求图②中线段MN 所在直线的函数表达式;(2)试问小明从起点A 出发直至最后回到点A 处,所走过的路径(即△EFG )是否可以是一个等腰三角形?如果可以,求出相应x 的值;如果不可以,说明理由.【思路分析】本题考查一次函数的性质以及动点问题中等腰三角形存在性质的探究.(1)利用待定系数法坟出y与x之间的函数关系式;(2)用含x的代数式来表示AE,AG,GD的长度,然后分EF=FG,FG=EG,EF=EG来进行讨论,利用勾股定理和相似三角形和性质来求x.【解答过程】解:(1)设线段MN所在直线的函数表达式为y=kx+b.∵M,N两点的坐标分别为(30,230),(100,300),∴30230100300k bk b+=⎧⎨+=⎩,解这个方程组,得1200kb=⎧⎨=⎩.∴线段MN所在直线的函数表达式为y=x+200.(2)①第一种情况:考虑FE=FG是否成立,连接EC.∵AE=x,AD=100,GA=x+200,∴ED=GD=x+100.又∵CD⊥EG,∴CE=CG,∴∠CGE=∠CEG,∴∠FEG>∠CGE.∴FE≠FG.②第二种情况:考虑FG=EG是否成立,∵四边形ABCD是正方形,∴BC∥EG,∴△FBC≌△FEG.假设FG=EG成立,则FC=BC亦成立.∴FC=BC=100.∵AE=x,GA=x+200,∴FG=EG=AE+GA=2x+200,∴CG=FG-FC=2x+200-100=2x+100.在Rt△CDG中,CD=100,GD=x+100,CG=2x+100,∴1002+(x+100)2=(2x+100)2,.解这个方程,得x1=-100,x2=1003.∵x>0,∴x=1003③第三种情况:考虑EF=EG是否成立.与②同理,假设EF=EG成立,则FB=BC亦成立.∴BE=EF-FB=2x+200-100=2x+100.在Rt△ABE中,AE=x,AB=100,BE=2x+100,∴1002+x2=(2x+100)2,(不合题意,均舍去).解这个方程,得x1=0,x2=-4003综上所述,当x=100时,△EFG是一个等腰三角形.3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年全国各地中考数学压轴题赏析2018年全国各地中考数学试题压轴题多姿多彩,经学习、研究后有不少体会。
这些成功试题值得大家进行深入分析,细细品味。
本人从中选取一部分加以分析,供教学、命题和研究参考。
希望从考试试题的研究出发,在研究、讨论中我们共同获得对数学和数学教学的启发,进而提高对数学和数学教学的认识。
试题1(湖北省十堰市)已知矩形ABCD 中,AB =2,AD =4,以AB 的垂直平分线为x 轴,AB 所在的直线为y 轴,建立平面直角坐标系(如图)。
(1)写出A 、B 、C 、D 及AD 的中点E 的坐标;(2)求以E 为顶点、对称轴平行于y 轴,并且经过点B 、C 的抛物线的解析式; (3)求对角线BD 与上述抛物线除点B 以外的另一交点P 的坐标;(4)△PEB 的面积S △PEB 与△PBC 的面积S △PBC 具有怎样的关系?证明你的结论。
略解:(1)所求各点坐标为A (0,1),B (0,-1),C (4,-1),D (4,1),E (2,1)。
(2)设抛物线的解析式为1+=22)-(x a y ,由于抛物线经过点B(0,-1),可求得21-a =,所以抛物线的解析式为121+=22)-(x -y ,经验证,该抛物线过C 。
(3)直线BD 的解析式为121x -y =,与抛物线解析式联列,解得点P 坐标为),(213P 。
(4)PBC ΔPEB ΔS S 21=。
赏与析: 第(2)小题看起来有多余条件,但实际上正好考查学生解题中的自检能力,如果学生用顶点式求抛物线解析式,根据点B 坐标求出解析式后须检查C 在抛物线上。
如果学生运用一般式求解,根据E 、B 、C 的坐标求出解析式后,须检验E 是顶点。
这一自检步骤不可忽略,也不可默认。
试题2(泰安市,非课改)如图,在ABC △中,90BAC ∠=,AD 是BC 边上的高,E 是BC 边上的一个动点(不与B C ,重合),EF AB ⊥,EG AC ⊥,垂足分别为F G ,。
(1)求证:EG CGAD CD=; (2)FD 与DG 是否垂直?若垂直,请给出证明;若不垂直,请说明理由; (3)当AB AC =时,FDG △为等腰直角三角形吗?并说明理由。
略解:(1)可证ADC EGC ∴△∽△,EG CGAD CD∴=。
(2)FD 与DG 垂直。
先证四边形AFEG 为矩形,AF EG ∴=,由(1)知EG CG AD CD =,AF CGAD CD∴=。
ABC △为直角三角形,AD BC ⊥,FAD C ∴∠=∠,AFD CGD ∴△∽△,ADF CDG ∴∠=∠。
又90CDG ADG ∠+∠=,90ADF ADG ∴∠+∠=,FD DG ∴⊥。
(3)当AC AB =时,FDG △为等腰直角三角形。
AB AC =,90BAC ∠=,AD DC ∴=,由(2)知:AFD CGD △∽△,1FD ADGD DC∴==,FD DG ∴=。
又90FDG ∠=, FDG ∴△为等腰直角三角形。
赏与析:(1)本题对几何图形的性质作了比较有趣的研究,探究其中比较有意义的数量关系、位置关系、形状关系等,形成一类探索性试题的特点。
(2)试题较有整体感,小题设计之间、小题解法之间联系均较B紧密,对于探究性问题中研究主题不断生成,环环相扣,又不断解决有一种流畅感。
试题3(安徽省)按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。
(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求;(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。
(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程) 略解:(1)当P=12时,y=x +()11002x -,即y=1502x +。
∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)。
又当x=20时,y=502021+×=60,当x=100时,y=1100502⨯+=100。
而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;(2)本题是开放性问题,答案不唯一。
若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求。
如:()212060160y x =-+。
赏与析:(1)用流程图的方法叙述函数关系,比较生动。
同时这也是对函数的意义作了一个形象化的解释。
其实函数的表达有多种方法,用解析式表示只是其中一种,而且不是所有函数都可以用解析式表示的。
(2)通过隐含的方法对函数的几个有意思的性质,比如值域、单调性等进行描述、探究,引导学生学习数学研究的方法。
(3)问题设计考虑到验证性证明和构造性证明等,试题比较注重数学思想方法的考查。
试题4(淮安市)在平面直角坐标系中,放置一个如图所示的直角三角形纸片AOB ,已知OA=2,∠AOB=30°,D 、E 两点同时从原点O 出发,D 点以每秒3个单位长度的速度沿x 轴的正方向运动,E 点以每秒1个单位长度的速度沿y 轴的正方向运动,设D 、E 两点运动的时间为t 秒。
(1)点A 的坐标为 ,点B 的坐标为 。
(2)在点D 、E 运动的过程中,直线DE 与直线OA 垂直吗?请说明理由 (3)当t 在什么范围时,直线DE 与线段OA 有公共点?(4)将直角三角形纸片AOB 在直线DE 下方的部分沿直线DE 向上折叠,设折叠后重叠部分的面积为s ,请写出s 与t 的函数关系式,并求出s 的最大值。
略解:(1)),(),,(3031B A 。
(2)可求得),(),,(t E t D 003,这时可得∠EDO=30°,∴ED ⊥OA.(3)0≤t≤334。
(4)当0≤t ≤332时,283t S =,当332<t ≤3时,223238323)(-t -t -S =,_ 结_ 输y _y 与 x 的关系_ 输x _ 开当3<t ≤334时,223223)(t -S =。
S 最大值略。
赏与析:(1)几何图形随着问题的展开慢慢展开,一点一点变得丰富起来。
各小题的问题解决过程也是慢慢生成,每一小题的解法和结论对后一小题都有一定的启发性。
(2)本题对于点的运动位置要进行分类讨论,要求还是比较高的。
分类讨论是初中数学比较重要的思想方法,讨论的两个难题,一是想到要用讨论的方法求解,一是确定讨论分界的不重不漏。
试题5(武汉市)填空或解答:点B 、C 、E 在同一直线上,点A 、D 在直线CE 的同侧,AB =AC ,EC =ED ,∠BAC =∠CED ,直线AE 、BD 交于点F 。
(1)如图①,若∠BAC =60°,则∠AFB =____;如图②,若∠BAC =90°,则∠AFB =_____; (2)如图③,若∠BAC =α,则∠AFB =_________(用含α的式子表示);(3)将图③中的△ABC 绕点C 旋转(点F 不与点A 、B 重合),得图④或图⑤。
在图④中,∠AFB 与∠α的数量关系是__________;在图⑤中,∠AFB 与∠α的数量关系是___________。
请你任选其中一个结论证明。
略解:(1)∠AFB =60°, ∠AFB =45°。
(2)∠AFB =90°-α21。
(3)∠AFB =90°-α21,∠AFB =90°+α21。
证明略。
赏与析:(1)“填空或解答”,这是一种试题类型,这种类型试题的考查容量比较大,同时又让学生可以避免重复书写类似解题过程。
比如本题中的三角形全等、三角形相似的书写过程。
试题类型视为考查服务的,不同的题型的产生都是为了提高考查的有效性,所以试题类型值得我们一起去研究。
(2)容易看出这道试题并不是原创的,但是在一道传统试题的基础上进行改编,挖掘出新意来,也会是一道有意思的试题,由此使我们体会到,学生和教师在学习或教学中,经常去改编、挖掘陈题,这是一项很有意义的劳动,这是一种试题研究,也是一种数学研究和教学研究,但是要注意的是应避免原题对新题的负面干扰。
试题6(北京市课标卷)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形. (1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称; (2)如图,在ABC △中,点D E ,分别在AB AC ,上, 设CD BE ,相交于点O ,若60A ∠=°,12DCB EBC A ∠=∠=∠.请你写出图中一个与A ∠相等的角,并猜想图中哪个四边形是等对边四边形;(3)在ABC △中,如果A ∠是不等于60°的锐角,点D E ,分别在A B A C ,上,且12D C BE B C A ∠=∠=∠.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.略解:(1)答案不唯一,如平行四边形,等腰梯形等。
(2)∠BOD=A ∠。
猜想四边形BCED 是等对边四边形。
(3)作CD BF ⊥于F ,BE CG ⊥于G ,可先证△BCF ≌△CBG ,从而BF=CG 。
然后可证△BFD ≌△CGE ,所以BD=CE 。
即四边形BCED 是等对边四边形。
赏与析:这是一道围绕着鲜明主题的主题研究式学习试题,它可以引导学生步步深入地研究、解剖一个有A ABCD D EFF图①图② 图③ A ABB C CDD E EFF 图④图⑤BOADEC意义的数学主题。
引导学生接受试题暗示的启发,学会分析思考。
而且第(2)小题只要猜想不要证明,与第(3)小题的配合,设计比较合理巧妙,有错落的层次感,而避免小题解答书写时的雷同、重复。
另外,本题第(3)小题还可以在BE 上截取F ,使得BF=CD ,进而证明CE=CF=BD 。
试题7(常德市)如图1,已知四边形ABCD 是菱形,G 是线段CD 上的任意一点时,连接BG 交AC 于F ,过F 作FH CD ∥交BC 于H ,可以证明结论FH FGAB BG=成立(考生不必证明). (1)探究:如图2,上述条件中,若G 在CD 的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(2)计算:若菱形ABCD 中660AB ADC ==,∠,G 在直线..CD 上,且16CG =,连接BG 交AC 所在的直线于F ,过F 作FH CD ∥交BC 所在的直线于H ,求BG 与FG 的长. (3)发现:通过上述过程,你发现G 在直线CD 上时,结论FH FGAB BG=还成立吗? 略解:(1)结论BGFGAB FH =成立。