数字图像处理实验报告--直方图均衡化

合集下载

数字图像处理实验报告直方图均衡化

数字图像处理实验报告直方图均衡化

数字图像处理实验报告直⽅图均衡化课程设计课程名称数字图像处理题⽬名称直⽅图均衡化学⽣学院信息⼯程学院专业班级 08级电信2班学号 3208002664 学⽣姓名陈慕仪指导教师曹江中2011年7 ⽉ 1 ⽇设计题⽬:直⽅图均衡化1、直⽅图的理论基础:(1)直⽅图概念:灰度直⽅图表⽰图像中每种灰度出现的频率。

(2)直⽅图的作⽤:反映⼀幅图像的灰度分布特性(3)直⽅图的计算:式中:n k 为图像中出现r k 级灰度的像素数,n 是图像像素总数,⽽n k /n 即为频数。

2、设计⽬的:产⽣⼀幅灰度级分布具有均匀概率密度的图像,扩展像素取值的动态范围,达到了图象增强的⽬的。

3、直⽅图均衡化的效果:1)变换后直⽅图趋向平坦,灰级减少,灰度合并。

2)原始象含有象素数多的⼏个灰级间隔被拉⼤了,压缩的只是象素数少的⼏个灰度级,实际视觉能够接收的信息量⼤⼤地增强了,增加了图象的反差。

同时,也增加了图象的可视粒度。

4、离散情况下的直⽅图均衡化的算法:A 、列出原始图像的灰度级B 、统计各灰度级的像素数⽬C 、计算原始图像直⽅图各灰度级的频数D 、计算累积分布函数F 、应⽤以下公式计算映射后的输出图像的灰度级,P为输出图像灰度级的个数,其中INT 为取整符号:G 、⽤的映射关系修改原始图像的灰度级,从⽽获得直⽅图近似为均匀分布的输出图像。

3、源程序代码// cqxhistView.cpp : implementation of the CCqxhistView class #include "stdafx.h" #include "cqxhist.h"#include "cqxhistDoc.h" #include "cqxhistView.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__; #endif///////////////////////////////////////////////////////////////////////////// // CCqxhistViewIMPLEMENT_DYNCREATE(CCqxhistView, CView)BEGIN_MESSAGE_MAP(CCqxhistView, CView)1,,1,0,-=L j f j 1,,1,0,-=L j n j 1,,1,0,/)(-==L j n n f P j j f 1,,,1,0,)()(0-==∑=L k j f P f C k j jf]5.0)()[(min min max ++-=g f C g g INT g i nn r p kk =)(1,,2,1,010-=≤≤l k r k//{{AFX_MSG_MAP(CCqxhistView)ON_COMMAND(ID_OPEN_IMAGE, OnOpenImage)ON_COMMAND(ID_HIST_IMAGE, OnHistImage)//}}AFX_MSG_MAP// Standard printing commandsON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)END_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CCqxhistView construction/destruction CCqxhistView::CCqxhistView(){// TODO: add construction code here}CCqxhistView::~CCqxhistView(){}BOOL CCqxhistView::PreCreateWindow(CREATESTRUCT& cs){// TODO: Modify the Window class or styles here by modifying// the CREATESTRUCT csreturn CView::PreCreateWindow(cs);}///////////////////////////////////////////////////////////////////////////// // CCqxhistView drawingvoid CCqxhistView::OnDraw(CDC* pDC){CCqxhistDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data hereif(m_dib.m_bLoaded==true) //判断是否加载图像{//获取图像宽和⾼int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();// 显⽰图像(具体的参数见CDIB类的该函数说明)m_dib.ShowDIB(pDC,10,10,nw,nh,m_dib.m_pDIBData,m_dib.m_pBMI);m_dib.ShowDIB(pDC,400,10,nw,nh,m_dib.m_pDumpDIBData,m_dib.m_pBMI); } if(m_bHist==true){//绘制原图像的直⽅图CString str;int nh=m_dib.GetDIBHeight();int i;// 画坐标轴// 绘制坐标轴pDC->MoveTo(410,nh+20); //(410,nh+20 )是直⽅图的左上⾓坐标// 垂直轴pDC->LineTo(410,nh+200);//(410,nh+200 )是直⽅图的左下⾓坐标// ⽔平轴pDC->LineTo(710,nh+200);//(710,nh+200 )是直⽅图的右下⾓坐标// 写X轴刻度值str.Format("0");pDC->TextOut(410, nh+200+10, str);str.Format("50");pDC->TextOut(460, nh+200+10, str); str.Format("100");pDC->TextOut(510, nh+200+10, str); str.Format("150");pDC->TextOut(560, nh+200+10, str); str.Format("200");pDC->TextOut(610, nh+200+10, str); str.Format("255");pDC->TextOut(665, nh+200+10, str); // 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 10, nh+200-2); pDC->LineTo(i + 10, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 10, nh+200-2); pDC->LineTo(i + 10, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(705,nh+200-5); pDC->LineTo(710,nh+200);pDC->LineTo(705,nh+200+5);// 绘制y轴箭头pDC->MoveTo(410,nh+20);pDC->LineTo(405,nh+20+5);pDC->MoveTo(410,nh+20);pDC->LineTo(415,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_yuan[i]>max)max=m_yuan[i];for(i=0;i<256;i++){pDC->MoveTo(410+i,nh+200);pDC->LineTo(410+i,nh+200-(m_yuan[i]*160/max));}}if(m_bHist==true){//绘画直⽅图CString str;int nh=m_dib.GetDIBHeight();int i;// 画坐标轴// 绘制坐标轴pDC->MoveTo(10,nh+20); //(10,nh+20 )是直⽅图的左上⾓坐标// 垂直轴pDC->LineTo(10,nh+200);//(10,nh+200 )是直⽅图的左下⾓坐标// ⽔平轴pDC->LineTo(310,nh+200);//(310,nh+200 )是直⽅图的右下⾓坐标// 写X轴刻度值str.Format("0");pDC->TextOut(10, nh+200+10, str);str.Format("50");pDC->TextOut(60, nh+200+10, str);str.Format("100");pDC->TextOut(110, nh+200+10, str);str.Format("150");pDC->TextOut(160, nh+200+10, str);str.Format("200");pDC->TextOut(210, nh+200+10, str);str.Format("255");pDC->TextOut(265, nh+200+10, str);// 绘制X轴刻度for ( i = 0; i < 256; i += 25){if ((i & 1) == 0){// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}else{// 10的倍数pDC->MoveTo(i + 10, nh+200-2);pDC->LineTo(i + 10, nh+200+2);}}// 绘制X轴箭头pDC->MoveTo(305,nh+200-5);pDC->LineTo(310,nh+200);pDC->LineTo(305,nh+200+5);// 绘制y轴箭头pDC->MoveTo(10,nh+20);pDC->LineTo(5,nh+20+5);pDC->MoveTo(10,nh+20);pDC->LineTo(15,nh+20+5);int max=0;for(i=0;i<256;i++)if(m_hist[i]>max)max=m_hist[i];for(i=0;i<256;i++){pDC->MoveTo(10+i,nh+200);pDC->LineTo(10+i,nh+200-(m_hist[i]*160/max));}}}///////////////////////////////////////////////////////////////////////////// // CCqxhistView printing BOOL CCqxhistView::OnPreparePrinting(CPrintInfo* pInfo){// default preparationreturn DoPreparePrinting(pInfo);}void CCqxhistView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add extra initialization before printing}void CCqxhistView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add cleanup after printing}///////////////////////////////////////////////////////////////////////////// // CCqxhistView diagnostics#ifdef _DEBUGvoid CCqxhistView::AssertValid() const{CView::AssertValid();}void CCqxhistView::Dump(CDumpContext& dc) const{CView::Dump(dc);}CCqxhistDoc* CCqxhistView::GetDocument() // non-debug version is inline{ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CCqxhistDoc)));return (CCqxhistDoc*)m_pDocument;}#endif //_DEBUG///////////////////////////////////////////////////////////////////////////// // CCqxhistView message handlersvoid CCqxhistView::OnOpenImage(){// TODO: Add your command handler code here// TODO: Add your command handler code herestatic char szFilter[]="BMP⽂件(*.bmp)|*.bmp||"; //定义过滤⽂件的类型 CFileDialog dlg(TRUE,"bmp",NULL, OFN_HIDEREADONLY|OFN_OVERWRITEPROMPT,szFilter);//定义⽂件对话框对象 CString filename;int ret=dlg.DoModal(); //运⾏打开⽂件对⽅框if(ret==IDOK){filename=dlg.GetFileName(); //获取所选择图像的路径 m_dib.LoadFromFile(filename); //加载图像if(!m_dib.m_bLoaded) //判断是否加载图像成功{AfxMessageBox("图像打不开");return;}for(int i=0;i<256;i++) //初始化直⽅图数组{ m_hist[i]=0;m_yuan[i]=0;}m_bHist=false;}{int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();for(int j=0;jfor(int i=0;i{BYTE temp=m_dib.m_pdata[j*nw+i];m_yuan[temp]++;}}Invalidate(1); //刷新屏幕}void CCqxhistView::OnHistImage(){// TODO: Add your command handler code here//功能:实现直⽅图均衡化////////////////////////////判断图像是否打开,没打开,则弹出提⽰框并退出函数if(!m_dib.m_bLoaded){AfxMessageBox("图像还打开,请先打开图像!");return;}//获取图像宽和⾼int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();int i,j,k;int count[256]={0};//定义⼀个数组,⽤于存放灰度级个数float p[256];//定义⼀个数组,⽤于存放灰度级出现频率//对图像进⾏直⽅图均衡化处理for(i=0;ifor(j=0;j{k=m_dib.m_pdata[i*nw+j];//计算灰度级个数count[k]++;}for(k=0;k<256;k++)p[k]=count[k]/(nw*nh*1.0f);float c[256]={0};float sum=0.0;int ngray[256];//新的灰度级for(k=0;k<256;k++)//计算累积频率{sum+=p[k];c[k]=sum;ngray[k]=(int)(255.0*c[k]+0.5);}for(i=0;ifor(j=0;j{k=m_dib.m_pdata[i*nw+j];m_dib.m_pdata[i*nw+j]=ngray[k];}{int nw=m_dib.GetDIBWidth();int nh=m_dib.GetDIBHeight();for(int j=0;jfor(int i=0;i{BYTE temp=m_dib.m_pdata[j*nw+i];m_hist[temp]++;}}//将修改的m_pdata的数据赋值给m_pDIBData,以显⽰修改的结果m_dib.UpdateData();m_bHist=true;//将修改的m_pdata的数据赋值给m_pDIBData,以显⽰修改的结果 m_dib.UpdateData(); //刷新屏幕Invalidate();}4、实验结果C++编程结果:。

图像处理中的直方图均衡化技术研究

图像处理中的直方图均衡化技术研究

图像处理中的直方图均衡化技术研究随着数字图像技术的不断发展,图像处理成为了现代科学技术中的一项重要技术。

而图像处理中的直方图均衡化技术是在数字图像处理技术中最基本的一个技术。

1. 直方图的理解图像的亮度是指图像中像素点的明亮度,即黑白灰色调的色度。

直方图则是将一个灰度级别的图像的像素点分为一个个亮度级别,然后计算每个亮度级别内像素点的数量。

每个亮度级别内的像素点数量就是这个图像的亮度分布状态。

2. 直方图均衡化技术的原理直方图均衡化就是将直方图的亮度分布向均匀分布的状态转化。

通过将原图像的灰度变换到一定的亮度范围内,使得直方图分配均匀,从而增强亮度对比度。

直方图均衡化是通过非线性函数完成的,使得灰度值的取值范围从原来的0 – 255变成了均衡化后的亮度范围,即新的0 – 255。

这样做就是为了提高灰度对比度,并且使得图像整体亮度看起来更加自然。

3. 直方图均衡化技术的应用直方图均衡化技术在图像处理中被广泛使用。

例如,在医学影像学中,可以使用直方图均衡化来增强图像中的对比度以便更好地识别病变;在遥感技术中,可以通过直方图均衡化技术来提高图像中相似物体的识别率;在数字图像处理中,可以使用直方图均衡化来增强图像的视觉效果,使图像更具有艺术效果。

4. 直方图均衡化技术的实现在数字图像处理技术中,实现直方图均衡化的方法有多种,其中最简单的方法是使用电脑的图像处理软件。

对于那些具备编程能力的人,可以使用Python等编程语言来实现直方图均衡化。

Python语言中,OpenCV是常用的图像处理库,它提供了许多图像处理算法和工具,其中就包括了直方图均衡化算法。

5. 直方图均衡化技术的局限性虽然直方图均衡化技术可以有效地提高图像的对比度和视觉效果,但是它也有一些局限性。

直方图均衡化往往会放大图像中的噪点,使得图像中的背景噪音扰动增加,从而影响图像的质量。

此外,直方图均衡化还存在一些应用限制,比如处理彩色图像的效果不如处理灰度图像的效果好,这就需要更进一步的改进方法。

图像处理中直方图均衡化的使用教程

图像处理中直方图均衡化的使用教程

图像处理中直方图均衡化的使用教程图像处理中的直方图均衡化是一种常用的增强图像对比度的方法。

通过对图像的像素值进行重新分布,直方图均衡化可以使图像中的明暗区域更具有对比度,从而提高图像的质量和清晰度。

本文将介绍直方图均衡化的原理、应用场景以及具体的步骤。

1. 直方图均衡化的原理直方图均衡化的原理基于对图像的灰度级进行重新分布。

它通过将原始图像的像素值映射到新的像素值上,使得直方图在整个灰度范围内得到均匀分布。

这样就能够增强图像中的低对比度区域,提高图像的视觉效果。

2. 直方图均衡化的应用场景直方图均衡化在图像处理领域有着广泛的应用。

下面列举了一些常见的应用场景:- 增强图像的对比度:直方图均衡化可以使得图像中的亮度值更加均匀分布,提高图像的对比度,使得图像变得更加清晰。

- 增强图像的细节:直方图均衡化通过增强图像中的低对比度区域,可以使得细节更加显著,提高图像的可视化效果。

- 降低图像的噪声:直方图均衡化可以将图像中的噪声分布均匀化,从而减少噪声对图像质量的影响。

3. 直方图均衡化的步骤下面是使用直方图均衡化对图像进行处理的具体步骤:步骤 1: 将彩色图像转换为灰度图像如果原始图像是彩色图像,我们需要将其转换为灰度图像。

这是因为直方图均衡化是针对灰度级进行处理的。

步骤 2: 计算原始图像的像素值分布使用图像处理工具,计算原始图像中每个像素值的出现频率。

这样可以得到一个直方图,该直方图显示了原始图像中像素值的分布情况。

步骤 3: 计算累积分布函数通过对原始图像的直方图进行累积求和,得到一个累积分布函数。

该函数显示了每个像素值的累积出现频率。

步骤 4: 计算新的像素值根据累积分布函数,计算每个像素值的新的映射像素值。

这个计算公式可以根据具体的图像处理工具而有所不同。

步骤 5: 创建均衡化后的图像使用新的像素值替换原始图像中的像素值,将得到的图像称为均衡化后的图像。

4. 注意事项在使用直方图均衡化时,需要考虑以下几个注意事项:- 直方图均衡化可能会改变图像的整体亮度。

数字图像处理实验报告直方图均衡化

数字图像处理实验报告直方图均衡化

数字图像处理实验报告实验名称:直方图均衡化姓名:班级:学号:专业:电子信息工程(2+2)指导教师:陈华华实验日期:2012年5月24日直方图均衡化图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。

直方图均衡化是最常见的间接对比度增强方法。

直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。

直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。

直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。

直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。

缺点:1)变换后图像的灰度级减少,某些细节消失;2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。

直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过这种方法,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。

设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。

在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。

这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。

(2)对于0≤f≤L-1有0≤g≤L-1,这个条件保证了变换前后灰度值动态范围的一致性。

数字图像处理 实验 直方图均衡化实现图像增强

数字图像处理 实验 直方图均衡化实现图像增强

XXXXXXXX大学(数字图形处理)实验报告实验名称直方图均衡化实现图像增强实验时间年月日专业姓名学号预习操作座位号教师签名总评一、实验目的:掌握直方图均衡化的原理。

掌握直方图均衡化实现图像增强的实现方法。

二、实验原理:直方图是统计像数统计图,如设一张灰度图或一个通道,值0~255。

直方图如果按。

255个区分的话。

统计出来的就是,值为。

0的有几个像数,值为1的有机个像数,这样的一张表。

那么均衡化的意思就是。

这样表要均衡。

不直不于。

0有上万个像数,1只有1 个。

正常,直方图本身可以用小于255个区。

比如10个,那么这样相对图中的点就有一个映射,这时值0-9统计落在第一个区,值为10-19落第二个区。

这样的结果就会出来,10个区,10个统计数区。

这时。

你均衡就是让10区的统计数据都不会差很多。

表现出来的就是一张图上的颜色分布相对均衡。

总的来说直方图均衡化是通过灰度变换将一幅图像转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。

三、实验内容:利用直方图均衡化实现图像增强。

在资源编辑器中,在主菜单下添加一名为“直方图均衡化”的菜单步骤如前面实验。

实验代码如下:if(m_DibHead->biBitCount!=8){MessageBox("当前版本仅支持256色位图的操作!","系统提示!",MB_ICONINFORMA TION|MB_OK);return;}zftjh(m_Image,m_DibHead->biWidth,m_DibHead->biHeight);Invalidate();其中函数zftjh的实现代码如下:zftjh(unsigned char *lpDib,long lWidth,long lHeight){unsigned char *lpsrc;long lresult(0);long i,j;unsigned char bMap[256];long lCount[256];for(i=0;i<256;i++)lCount[i]=0;for(i=0;i<lHeight;i++)for(j=0;j<lWidth;j++){lpsrc=lpDib+i*lWidth+j;lCount[*lpsrc]++;}for(i=0;i<256;i++){lresult=0;for(j=0;j<=i;j++)lresult+=lCount[j];bMap[i]=(lresult*255)/lHeight/lWidth;}for(i=0;i<lHeight;i++)for(j=0;j<lWidth;j++){lpsrc=lpDib+i*lWidth+j;*lpsrc=bMap[*lpsrc];}}原图为下图的左边部分,均值化以后的图为右边的部分:。

数字图像处理中的直方图均衡化使用注意事项

数字图像处理中的直方图均衡化使用注意事项

数字图像处理中的直方图均衡化使用注意事项直方图均衡化是一种通过分布调整来改善图像对比度的方法。

它通过重新分布图像的像素值以增强其视觉效果。

在数字图像处理中,直方图均衡化是一项常用的技术,但在使用过程中需要注意以下几个方面。

首先,直方图均衡化可能会导致图像细节丢失的问题。

因为直方图均衡化会根据像素值的分布进行调整,从而扩展像素值的范围,使得亮度范围更广。

但这也可能导致低对比度区域的细节消失,从而影响图像细节。

因此,在进行直方图均衡化时,应该密切关注图像的细节信息,尽量避免过度调整图像的对比度。

其次,直方图均衡化可能引起噪声的增加。

在直方图均衡化的过程中,图像的亮度分布被调整,可能会增加图像的噪声。

这是因为噪声通常与图像的低亮度区域有关,当低亮度区域被调整时,噪声也可能被放大。

为了减少噪声的影响,可以在均衡化之前对图像进行去噪处理,或者采用自适应的直方图均衡化方法,以避免过度增加图像噪声。

另外,直方图均衡化也可能导致图像的颜色失真问题。

因为直方图均衡化是基于像素值的灰度分布进行调整,对彩色图像来说,它可能会改变图像的颜色分布,从而造成颜色失真。

为了避免这种情况,可以在进行直方图均衡化前将图像转换为HSV颜色空间,并只对亮度(Value)通道进行均衡化,这样可以避免颜色的偏移。

此外,直方图均衡化的效果可能受到图像的动态范围限制。

在某些情况下,图像的动态范围可能不足以支持完整的直方图均衡化。

比如,当图像的某些区域非常亮或非常暗时,直方图可能会在动态范围两端产生剧烈的波动,从而导致图像的细节丢失或噪声增加。

为了解决这个问题,可以采用自适应的直方图均衡化方法,以根据图像的局部动态范围来进行调整,减少对整体图像的影响。

最后,直方图均衡化的选择需要根据具体的应用需求来确定。

直方图均衡化可以改善图像的对比度,使图像更加清晰和易于处理。

但对于一些特定的图像处理任务,如目标检测、图像识别等,直方图均衡化可能并不适用。

图像处理:数字图像的灰度直方图均衡化

图像处理:数字图像的灰度直方图均衡化

图像处理:数字图像的灰度直方图均衡化简介在数字图像处理中,灰度直方图均衡化是一种常用的图像增强技术。

它通过重新分配图像中各个灰度级的像素值,使得最终的灰度直方图呈现出更均匀分布的特点,从而提高图像的对比度和视觉效果。

原理灰度直方图是描述一幅图像中每个灰度级出现频次的统计直方图。

在灰度直方图均衡化过程中,首先需要计算原始图像的累积概率密度函数(CDF),然后利用CDF进行线性变换将原始像素值映射到新的像素值上。

这个线性变换可以通过以下公式表示:G' = (G_max - G_min) \times CDF(G) + G_min其中G'是新的像素值,G是原始的像素值,G_max和G_min分别为像素值范围最大和最小值,而CDF(G)则是原始图像中小于或等于G的累积概率密度函数。

实现步骤1.读取待处理的数字图像。

2.将彩色或多通道图转化为灰度图。

3.计算原始灰度图像的像素值的频次统计,得到原始灰度直方图。

4.计算原始灰度直方图的累积概率密度函数。

5.根据累积概率密度函数进行线性变换,将原始像素值映射到新的像素值上。

6.生成处理后得到的均衡化后的图像。

7.输出均衡化后的图像。

应用场景灰度直方图均衡化在许多领域都有广泛应用,例如医学影像分析、计算机视觉和数字摄影等。

其主要作用是增强图像对比度、改善细节和提升视觉效果。

同时,该技术也能够在一些特定场景下帮助识别和检测对象。

总结通过使用灰度直方图均衡化技术,可以使得数字图像中各个灰度级的像素值更加均匀分布,从而提高图像对比度和视觉效果。

这种方法在数字图像处理中具有广泛的应用,并且简单易实现。

然而,需要注意的是,在某些特定情况下,采用该方法可能会产生过度增强或引入噪声等问题,因此在实际应用中需要谨慎使用并结合其他处理方法进行综合处理。

(精品)数字图像处理实验报告--直方图规定化

(精品)数字图像处理实验报告--直方图规定化

数字图像处理实验报告直方图匹配规定化直方图均衡化能够自动增强整个图像的对比度,但它的具体增强效果不容易控制,处理的结果总是得到全局均匀化的直方图。

实际上有时需要变换直方图,使之成为某个特定的形状,从而有选择地增强某个灰度值范围内的对比度。

这时可以采用比较灵活的直方图规定化。

一般来说正确地选择规定化的函数可以获得比直方图均衡化更好的效果。

所谓直方图规定化,就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。

所以,直方图修正的关键就是灰度映像函数。

直方图匹配方法主要有3个步骤(这里设M和N分别为原始图和规定图中的灰度级数,且只考虑N≤M的情况):(1) 如同均衡化方法中,对原始图的直方图进行灰度均衡化:(2) 规定需要的直方图,并计算能使规定的直方图均衡化的变换:(3) 将第1个步骤得到的变换反转过来,即将原始直方图对应映射到规定的直方图,也就是将所有pf(fi)对应到pu(uj)去。

一、A图直方图规定B图Matlab程序:%直方图规定化clear allA=imread('C:\Users\hp\Desktop\A.tif'); %读入A图像imshow(A) %显示出来title('输入的A图像')%绘制直方图[m,n]=size(A); %测量图像尺寸B=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255B(k+1)=length(find(A==k))/(m*n); %计算每级灰度出现的概率,将其存入B中相应位置endfigure,bar(0:255,B,'g'); %绘制直方图title('A图像直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.015])C=imread('C:\Users\hp\Desktop\B.tif');%读入B图像imshow(C) %显示出来title('输入的B图像')%绘制直方图[m,n]=size(C); %测量图像尺寸D=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255D(k+1)=length(find(C==k))/(m*n); %计算每级灰度出现的概率,将其存入D中相应位置endfigure,bar(0:255,D,'g'); %绘制直方图title('B图像直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.015])S1=zeros(1,256);for i=1:256for j=1:iS1(i)=D(j)+S1(i); %计算B灰度图累计直方图endendcounts=Bfigure,bar(0:255,counts,'r')title('A图像直方图 ')S2=zeros(1,256);for i=1:256for j=1:iS2(i)=counts(j)+S2(i);endend; %"累计"规定化直方图%对比直方图,找到相差最小的灰度级for i=1:256for j=1:255if S1(j)<=S2(i)&S1(j+1)>=S2(i)if abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;else T(i)=j+1;endendendend%确定变换关系,重组直方图H=zeros(1,256);H(1)=S2(1);for i=2:255if T(i-1)>0for k=(T(i-1)+1):T(i)H(i)=H(i)+D(k);endelse H(i)=0;endendfigure,bar(0:255,H,'g') %显示规定化后的直方图title('A规定B后的直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.6])%显示规定图PA=C; %将各个像素归一化后的灰度值赋给这个像素for i=1:mfor j=1:nfor k=2:255if T(k-1)<=C(i,j)&C(i,j)<=T(k)PA(i,j)=k;break;endendendendfigure,imshow(PA) %显示规定化后的图像title('A规定B后图像')imwrite(PA,'guidinghua.bmp');二、用已知直方图规定A图规定灰度为[zeros(1,49),0.3,zeros(1,49),0.1,zeros(1,49),0.2,zeros(1,49),0.1,zeros(1,49 ),0.2,zeros(1,49),0.1]Matlab程序:clear allA=imread('C:\Users\hp\Desktop\B.tif'); %读入A图像imshow(A) %显示出来title('输入的A图像')%绘制直方图[m,n]=size(A); %测量图像尺寸B=zeros(1,256); %预创建存放灰度出现概率的向量for k=0:255B(k+1)=length(find(A==k))/(m*n); %计算每级灰度出现的概率,将其存入B中相应位置endfigure,bar(0:255,B,'g'); %绘制直方图title('A图像直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.015])S1=zeros(1,256);for i=1:256for j=1:iS1(i)=B(j)+S1(i); %计算原灰度图累计直方图endendcounts=[zeros(1,49),0.3,zeros(1,49),0.1,zeros(1,49),0.2,zeros(1,49),0.1,zer os(1,49),0.2,zeros(1,49),0.1];%规定化直方图figure,bar(1:300,counts,'r')title('规定化直方图')S2=zeros(1,256);for i=1:256for j=1:iS2(i)=counts(j)+S2(i);endend; %"累计"规定化直方图%对比直方图,找到相差最小的灰度级for i=1:256for j=1:256if S1(j)<=S2(i)&S1(j+1)>=S2(i)if abs(S1(j)-S2(i))<=abs(S1(j+1)-S2(i)) T(i)=j;else T(i)=j+1;endendendend%确定变换关系,重组直方图H=zeros(1,256);H(1)=S2(1);for i=2:256if T(i-1)>0for k=(T(i-1)+1):T(i)H(i)=H(i)+B(k);endelse H(i)=0;endendfigure,bar(0:255,H,'g') %显示规定化后的直方图title('规定化后的直方图')xlabel('灰度值')ylabel('出现概率')axis([0,260,0,0.6])%显示规定图PA=A; %将各个像素归一化后的灰度值赋给这个像素for i=1:mfor j=1:nfor k=2:256if T(k-1)<=A(i,j)&A(i,j)<=T(k)PA(i,j)=k;break;endendendendfigure,imshow(PA) %显示规定化后的图像title('规定化后图像')imwrite(PA,'guidinghua.bmp');。

数字图像处理中的直方图均衡化算法研究

数字图像处理中的直方图均衡化算法研究

数字图像处理中的直方图均衡化算法研究数字图像处理技术的进步,极大地推动了人们对数字图像质量的要求。

直方图均衡化算法是数字图像处理中最常用的方法之一,它可以增强图像的对比度和亮度,使图像更加清晰、自然。

本文将对直方图均衡化算法的基本原理、优缺点以及改进方法进行研究探讨,以期为相关研究提供一定的参考。

一、直方图均衡化算法基本原理直方图均衡化算法是通过重新分配图像像素的灰度级,使得每个灰度级的像素个数尽可能地分散到整个灰度级范围内,以达到增强图像的目的。

算法的基本思想是,将输入图像的灰度直方图进行变换,使其变为均匀分布的直方图,然后再将均衡后的直方图映射到输出图像上,即可得到均衡后的图像。

直方图均衡化算法可以分为两个阶段:直方图计算和直方图映射。

直方图计算是指将输入图像的灰度级进行统计,得到输入图像的灰度直方图。

直方图映射是指将均衡后的直方图与输出图像进行映射,即将原始图像中的像素灰度值通过均匀分布的方法重新映射到输出图像中。

最终,均衡后的输出图像将比原始图像更加清晰、明亮。

二、直方图均衡化算法的优缺点直方图均衡化算法具有以下优点:一是可以增强图像的对比度和亮度,提升图像的清晰度;二是算法简单,易于实现;三是不需要先验知识,适用于各种类型的图像;四是可用于图像增强、图像分割、图像识别等领域。

然而,直方图均衡化算法也存在一些缺点:一是直方图均衡化算法会平均分布灰度,并且无法忽略图像噪点,因此会产生噪声和边缘效应;二是对于一些特定场合,如医学图像和遥感图像等具备较多特殊要求的图像,用该算法处理的结果不理想;三是在处理一些灰度变化十分剧烈的图像时,该算法难以适应,不能很好地保留图像的细节信息。

三、直方图均衡化算法改进方法为了克服直方图均衡化算法的短处,在实际应用中,提出了一些改进的方法。

1. 自适应直方图均衡化算法自适应直方图均衡化算法是对传统的直方图均衡化算法进行改进,它是一种基于局部对比度的算法。

自适应直方图均衡化算法将图像分成若干个小区域,通过计算每个小区域的局部累积分布函数,再通过将小区域的灰度级均匀地分配到整个灰度级范围内来达到图像增强的目的。

数字图像处理实验报告(matlab)

数字图像处理实验报告(matlab)

学院:自动化学院班级:电081班姓名:***学号:********2011年10月实验一直方图均衡化一、实验目的:1. 熟悉图像数据在计算机中的存储方式;2. 掌握图像直方图均衡化这一基本处理过程。

二、实验条件:PC微机一台和MATLAB软件。

三、实验内容:1.读入图像数据到内存中,并显示读入的图像;2.实现直方图均衡化处理,显示处理前后图像的直方图。

3.显示并保存处理结果。

四、实验步骤:1.打开Matlab编程环境;2.获取实验用图像。

用’imread’函数将图像读入Matlab;用’imshow’函数显示读入的图像。

3.获取输入图像的直方图:用’imhist’函数处理图像。

4.均衡化处理:用’histeq’函数处理图像即可。

5.获取均衡化后的直方图并显示图像:用’imhist’和’imshow’函数。

6.保存实验结果:用’imwrite’函数处理。

五、实验程序及结果:1、实验程序subplot(6,2,1);i=imread('test1-1.jpg');imhist(i);title('test1-1 hist');subplot(6,2,2);i=im2double(i);imshow(i);title('test1-1 Ô-ͼÏñ');subplot(6,2,3);s=histeq(i);imhist(s);title('test1-1 balancedhist');subplot(6,2,4);imshow(s);title('test1-1 ¾ùºâ»¯ºóµÄͼÏñ');subplot(6,2,5);i=imread('test1-2.jpg');imhist(i);title('test1-2 hist');subplot(6,2,6);i=im2double(i);imshow(i);title('test1-2 Ô-ͼÏñ');subplot(6,2,7);s=histeq(i);imhist(s);title('test1-2 balancedhist'); subplot(6,2,8);imshow(s);title('test1-2 ¾ùºâ»¯ºóµÄͼÏñ');subplot(6,2,9);i=imread('test1-3.jpg');imhist(i);title('test1-3 hist');subplot(6,2,10);i=im2double(i);imshow(i);title('test1-3 Ô-ͼÏñ');subplot(6,2,11);s=histeq(i);imhist(s);title('test1-3 balancedhist'); subplot(6,2,12);imshow(s);title('test1-3 ¾ùºâ»¯ºóµÄͼÏñ');2、实验结果test1-1 hist050100150200250test1-1 原图像test1-1 balancedhist00.10.20.30.40.50.60.70.80.91test1-1 均衡化后的图像test1-2 hist050100150200250test1-2 原图像test1-2 balancedhist00.10.20.30.40.50.60.70.80.91test1-2 均衡化后的图像0test1-3 hist050100150200250test1-3 原图像test1-3 balancedhist00.10.20.30.40.50.60.70.80.91test1-3 均衡化后的图像六、实验思考1.数字图像直方图均衡化之后直方图为什么不是绝对平坦的?答:直方图均衡化是将一已知灰度概率密度分布的图像,经过某种变换,变成一幅具有均匀灰度概率密度分布的新图像。

数字图像处理实验二(直方图均衡化)

数字图像处理实验二(直方图均衡化)

数字图像处理实验二直方图均衡化(直方图均衡化实质上是减少图象的灰度级以换取对比度的加大)例如:假设原图的灰度分布级为126(最大为256,也就是从0到255的级上的灰度都有或多或少的出现),经过直方图均衡化后,灰度分布级别将会小于126。

编程的时候请按照直方图均衡化公式进行。

下面给出大致的编程思路和源代码:其中黑框部分需要自己编写源代码1)利用第一次实验课提供的dhc.h 和dhc.c文件以获取位图的高宽以及从文件头到实际的位图数据的偏移字节数,从而实现对位图实际数据的操作。

利用include命令#include <stdio.h>#include <stdlib.h>#include <memory.h>#include "hdr.h"思考问题:#include <*.h> 和#include "*.h"在程序运行中有什么差别?2)定义结构指针struct bmphdr *hdr;定义用于直方图变量unsigned char *bitmap, new_color[256];定义计算灰度分布,灰度累计分布的数组int count[256], acum[256];3)main()函数编写//定义整数i,j 用于函数循环时的,nr_pixels为图像中像素的个数int i, j, nr_pixels;//定义两个文件指针分别用于提取原图像的数据和生成直方图均衡化后的图像FILE *fp, *fpnew;//定义主函数的参数包括:输入的位图文件名和输出的位图文件名,此处内容可以不要,在DOS下执行命令的时候再临时输入也可,为了方便演示,我这里直接把函数的参数确定了。

argc=3;argv[1]="test.bmp";argv[2]="testzf.bmp";//参数输入出错显示if (argc != 3) {printf("please input the name of input and out bitmap files\n");exit(1);}// 获取位图文件相关信息hdr = get_header(argv[1]);if (!hdr) exit(1);//以二进制可读方式打开输入位图文件fp = fopen(argv[1], "rb");if (!fp) {printf("File open error!\n");exit(1);}// 文件指针指向数据区域fseek(fp, hdr->offset, SEEK_SET);//计算位图像素的个数nr_pixels = hdr->width * hdr->height;bitmap = malloc(nr_pixels);//读取位图数据到bitmap中fread(bitmap, nr_pixels, 1, fp);fclose(fp);memset(count, 0, sizeof(count));//计算每个灰度级上像素的个数结果存入count[]数组中memcpy(acum, count, sizeof(acum));//计算灰度的累计分布for (i = 1; i < 256; i++)acum[i] += acum[i-1];//灰度直方图的均衡化(核心程序部分,请仔细分析)为了方便大家编程实现,这里直接给出了源代码,本实验最核心的部分就在这里//}//对所有的像素灰度值按照均衡化得到的灰度对应规则进行转换,结果存入bitmap[]中//fpnew = fopen(argv[2], "wb+");//由于位图文件的头部信息并没有因直方图均衡化而改变,因此输出图像的头部信息从原位图文件中拷贝即可:fwrite(hdr->signature, 2, 1, fpnew);fwrite(&hdr->size, 4, 1, fpnew);fwrite(hdr->reserved, 4, 1, fpnew);fwrite(&hdr->offset, 4, 1, fpnew);fwrite(&hdr->hdr_size, 4, 1, fpnew);fwrite(&hdr->width, 4, 1, fpnew);fwrite(&hdr->height, 4, 1, fpnew);fwrite(&hdr->nr_planes, 2, 1, fpnew);fwrite(&hdr->bits_per_pixel, 2, 1, fpnew);fwrite(&hdr->compress_type, 4, 1, fpnew);fwrite(&hdr->data_size, 4, 1, fpnew);fwrite(&hdr->resol_hori, 4, 1, fpnew);fwrite(&hdr->resol_vert, 4, 1, fpnew);fwrite(&hdr->nr_colors, 4, 1, fpnew);fwrite(&hdr->important_color, 4, 1, fpnew);if (hdr->offset > 54)fwrite(hdr->info, (hdr->offset - 54), 1, fpnew);////关闭fclose(fpnew);//释放内存(优化程序必需)free(hdr);free(bitmap);return 0;}。

【数字图像处理】直方图均衡化

【数字图像处理】直方图均衡化

【数字图像处理】直⽅图均衡化全局直⽅图均衡化直⽅图均衡化通过调整图像的直⽅图来增强图像的对⽐度,经常使⽤在医学图像分析中。

例如⼀幅8*8图像像素值如下:对各个像素值进⾏计数:得到累计概率分布:其中均衡化后的像素值计算公式为:前⾯的标题全局直⽅图均衡化,代表着直⽅图在整个图像计算,这样会有⼀个缺点,图像的部分区域会显得过暗或者过亮。

这个时候就需要使⽤⾃适应直⽅图均衡化(Adaptive histogram equalization)。

⾃适应直⽅图均衡化,⾸先将图像分为⼏个部分,然后对每个部分分别计算直⽅图进⾏均衡化,同时对边缘像素进⾏插值处理。

由图中可以看出⾃适应直⽅图均衡化对⾼亮区域的处理要⽐常规的直⽅图均衡化好的多。

1import os2from PIL import Image3from skimage import exposure4import numpy as np5import matplotlib.pyplot as plt678 img = Image.open('/home/vincent/Pictures/work/Unequalized_Hawkes_Bay_NZ.jpg')9 img = np.array(img)10 img_eq = exposure.equalize_hist(img)11 img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.04)1213 plt.figure(0)14 plt.imshow(img)15 plt.title('low contrast image')16 plt.figure(1)17 plt.imshow(img_eq)18 plt.title('high constrast image using normal histogram equalization')19 plt.figure(2)20 plt.imshow(img_adapteq)21 plt.title('high constract image using adaptive histogram euqalization')22 plt.show()。

数字图像处理实验一-直方图均衡化

数字图像处理实验一-直方图均衡化

实验一数字图像处理编程实习(设计性实验)一、实验名称:数字图像处理编程实验一之灰度直方图统计与均衡化。

二、实验目的和要求:本设计性实验专为印刷工程专业的《数字图像处理》课程设计。

熟悉Matlab与Visual C++编程环境,实现对输入图像进行灰度直方图均衡化处理。

通过本实验教学环节,可以使学生对图像文件格式、图像文件的读写、图像处理程序的基本结构、处理方式和编程基本方法有进一步的认识,获得对图像处理原理和编程方法的进一步认识。

实验的基本要求是:利用Matlab或Visual C++编程环境编制图像处理程序,对一幅灰度图像进行灰度直方图统计与均衡化处理。

三、实验基本内容:1.图像处理程序用户界面设计;2.灰度直方图统计与均衡化;四、实验设备及环境:1.计算机;2.Matlab与Visual C++编程环境。

五、实验原理:1、数字图像直方图均衡化处理原理:A)图像直方图统计:根据图像的灰度等级统计该灰度等级的象素个数;B)图像直方图均衡化:直方图均衡化是将原图像通过某种变换,得到一幅灰度直方图为均匀分布的新图像的方法。

具体为:1)统计图像直方图;2)计算归一化的累计直方图;3)计算均衡后的直方图sk=int[(N-1)tk+0.5];4)根据均衡后的直方图将图像的每一个像素都映射到新的直方图上;六、实验具体要求:1.用户界面设计:用户界面可以自由设计,但应包括如下物件:窗体、菜单或命令按钮、图像显示框。

程序功能:图像像素行列数输入、打开图像、图像灰度直方图统计、图像灰度直方图均衡化、图像存储、退出。

七、对程序和实验报告的要求:1.将编制完成的Matlab或Visual C++程序作为附件交给实习老师;2.实验报告:所要求具有下列内容:图像处理程序编制的总体方案;程序用户界面的设计思路;图像处理算法;遇到的问题和解决过程;结果分析。

八、附件:附:实习示例程序:%《数字图像处理》课程实习%图像文件直方图统计显示实验程序by 武汉大学印刷与包装系易尧华I=imread('C:\Documents and Settings\hapxqpy\桌面\test-yy.bmp'); %将图像文件testimage.bmp的数据读入并赋值给变量I;figure(1); %新建用于图像显示的窗口;imshow(I); %在窗口中显示图像;figure(2); %新建用于图像直方图的窗口;imhist(I); %在窗口中显示图像直方图;J=histeq(I); %图像直方图均衡化处理;figure(3); %新建用于图像直方图的窗口;imshow(J); %在窗口中显示均衡化后的图像;figure(4); %新建用于显示均衡化后的图像直方图;imhist(J); %在窗口中显示均衡化后图像直方图;。

直方图均衡化实验报告

直方图均衡化实验报告

直方图均衡化实验报告直方图均衡化实验报告引言:直方图均衡化是一种常用的图像处理技术,它可以增强图像的对比度和细节,使得图像更加清晰明亮。

本实验旨在通过实际操作验证直方图均衡化的效果,并探讨其在不同场景下的应用。

实验步骤:1. 图像获取与预处理:选择一张高对比度的彩色图像作为实验对象,通过图像处理软件将其转换为灰度图像。

确保图像的亮度范围适中,避免过亮或过暗的情况。

2. 直方图均衡化算法:实现直方图均衡化算法的代码,可以使用Python等编程语言。

算法的核心思想是将原始图像的像素值映射到新的像素值,使得新图像的直方图均匀分布在整个灰度范围内。

3. 实验结果展示:将经过直方图均衡化处理后的图像与原始图像进行对比展示。

通过观察图像的对比度、亮度和细节等方面的变化,评估直方图均衡化算法的效果。

实验结果与分析:经过直方图均衡化处理后,图像的对比度明显增强,细节更加清晰可见。

原本过亮或过暗的区域得到了适当的修正,使得整个图像的亮度分布更加均匀。

同时,图像中的细节也得到了突出,使得观察者能够更好地识别和分析图像中的内容。

在实际应用中,直方图均衡化可以用于图像增强、目标检测、图像匹配等领域。

例如,在安防监控系统中,直方图均衡化可以提高图像的对比度,使得目标物体更加明显,有利于目标检测和识别。

在医学图像处理中,直方图均衡化可以增强图像的细节,有助于医生对病灶的判断和诊断。

然而,直方图均衡化也存在一些局限性。

首先,直方图均衡化是一种全局操作,对整个图像进行处理,可能会导致某些局部细节的损失。

其次,直方图均衡化对于亮度变化较大的图像效果较差,可能会导致过度亮化或过度暗化的问题。

因此,在实际应用中,需要根据具体情况选择合适的图像处理方法。

结论:通过本次实验,我们验证了直方图均衡化在图像处理中的有效性。

直方图均衡化可以增强图像的对比度和细节,使得图像更加清晰明亮。

然而,直方图均衡化也存在一些局限性,需要根据具体情况选择合适的图像处理方法。

数字图像处理实验报告直接灰度变换和直方图均衡

数字图像处理实验报告直接灰度变换和直方图均衡

实验二:直接灰度变换和直方图均衡一、代码线性变换:LinearTransformFunc.m分段线性变换:StretchFunc.m对数变化:LogFunc.m指数变换:ExponentFunc.mLinearTransformFunc.mfunction [new]= LinearTransformFunc( original, k, d )new=original;m=size(original,1);n=size(original,2);for i=1:mfor j=1:nnew(i,j)=original(i,j)*k+d;endendnew=original*k+d;endStretchFunc.mfunction [ new ] = StretchFunc(original, x1,y1,x2,y2)new = original;w = size(new, 1);h = size(new, 2);k1 = y1 / x1;dk1 = (y2 - y1) / (x2 - x1);dk2 = (255 - y2) / (255 - x2);for i = 1 : wfor j = 1 : hx = new(i, j);if x < x1new(i, j) = k1 * x;elseif x < x2new(i, j) = dk1 * (x - x1) + y1;elsenew(i, j) = dk2 * (x - x2) + y2;endendendLogFunc.mfunction [new] = LogFunc(original,c)new=original;m=size(original,1);n=size(original,2);for i=1:mfor j=1:nnew(i,j)=c*log(double(original(i,j))+1);endendnew=c*log(double(original)+1);endExponentFunc.mfunction [new] = ExponentFunc(original,c,d)new=original;m=size(original,1);n=size(original,2);for i=1:mfor j=1:nnew(i,j)=c*original(i,j).^d;endendnew=c*original.^d;end命令行窗口调用上述.m文件:i=imread('C:\Users\Administrator\Desktop\shiyanyi.png'); i_gray=rgb2gray(i);I=double(i_gray)/255;I_LinearTransform=LinearTransformFunc(I, 1, 0.01);imshow(I_LinearTransform);I_Stretch=StretchFunc(I,0.01,0.03,0.4,0.5); imshow(I_Stretch);I_Log=LogFunc(I,1.5);imshow(I_Log);I_Exponent=ExponentFunc(I,1.1,2); imshow(I_Exponent);I1=imadjust(I,[],[0 1]);imhist(I);imhist(I1);I_junhenghua=histeq(I);imshow(I)imshow(I_junhenghua)输出图像以及直方图如下:(原图)(线性变换)(分段线性变换)(对数变换)(指数变换)(均衡化)(直方图)实验总结:1、用imadjust函数将原图像的灰度值调整到[0 1],调整后图片并没有改变,直方图也没有改变;2、图像归一化处理后设置的参数大小不同,归一化后参数设置需要很小,以避免超出所显示的范围后出现空白现象;3、线性变换、分段限行变换、指数变换、对数变换需要设置参数,参数设置的合理性对输出的图像有很大影响,很有可能因为参数设置不合理达不到预想的效果;而直方图的均衡化处理不需要设置参数,可以明显提高图像的视觉效果。

数字图像处理直方图均衡实验报告

数字图像处理直方图均衡实验报告

数字图像报告班级:姓名:学号:一、直方图均衡:直方图均衡化也叫做直方图平坦化,是一种常用的灰度增强算法。

目的:曾强对比度目标:均匀分度原理:假设灰度级为归一化至范围[0,1]内的连续量,并令Pr (r)表示某给定图像中的灰度级的概率密度函数(PDF),其下标用来区分输入图像和输出图像的PDF。

假设我们对输入灰度级执行如下变换,得到(处理后的)输出灰度级s:S=T(r)=∫0r Pr(w)dw式中w 是积分的哑变量。

可以看出,输出灰度级的概率密度函数是均匀的,即a.当0≤s≤1 时,Ps(s)=1b.当s 为其他时,Ps(s)=0换言之,前述变换生成一幅图像,该图像的灰度级较为均衡化,且覆盖了整个范围[0,1]。

灰度级均衡化处理的最终结果是一幅扩展了动态范围的图像,它具有较高的对比度。

该变换函数只不过是一个累积分布函数(CDF)。

二、直方图均衡程序:clc主程序:picture=input('please input the filename:','s');fid=fopen(picture);dat=fread(fid);d=dat';B=reshape(d,256,256);h=length(d);newname=input('输入新的文件名:','s');zhi(h,newname,B,d);子程序:function y=zhi(h,newname,B,d)figure(1);imshow(uint8(B'));N=zeros(1,256);for i=0:255for j=1:hif i==d(j)N(i+1)=N(i+1)+1;endendendi=0:255;p=N/h;figure(2)stem(i,p,'.')title('原始直方图')m=zeros(1,256);for k=1:256if k==1m(k)=p(k);elsem(k)=m(k-1)+p(k);endendfor k=1:256r=round(m*255);ends=zeros(1,256);for a=1:256for b=1:256if r(a)==r(b)s(a)=N(a)+N(b);endendendq=s/h;for j=1:256k(j)=r(j);endfigure(3);stem(k,q,'.');title('均衡直方图');M=zeros(1,h);for i=1:hk=d(i);M(i)=r(k+1);endR=reshape(M,256,256);figure(4);imshow(uint8(R'));jht=fopen(newname,'wb');g=fwrite(jht,M);fclose('all');原图像原始直方图均衡直方图均衡后的图像:三、体会:通过本次设计,让我学会了从问题的高度来考虑设计的方方面面,对程序的设计和研究有了更深刻的体会;让我了解到程序的设计是建立在对理论知识了解的基础上的,特别是对直方图均衡化的原理要有较为详细的了解,此外对直方图均衡化算法也要进行了解;在编写程序时,进行模块化设计,以严谨的态度进行编程,避免出现低级错误。

数字图像处理之直方图均衡化

数字图像处理之直方图均衡化

数字图像处理之直⽅图均衡化直⽅图均衡化是图像处理领域中利⽤图像直⽅图对对⽐度进⾏调整的⽅法。

直⽅图均衡化要达到的效果:基本思想:把原始图的直⽅图变换为均匀分布的形式,这样就增加了像素灰度值的动态范围,从⽽达到增强图像整体对⽐度的效果使⽤的⽅法是灰度级变换:s = T(r)原理:s=T(r) 0≤r≤1T(r)满⾜下列两个条件:(1)T(r)在区间0≤r≤1中为单值且单调递增(2)当0≤r≤1时,0≤T(r) ≤1条件(1)保证原图各灰度级在变换后仍保持从⿊到⽩(或从⽩到⿊)的排列次序条件(2)保证变换前后灰度值动态范围的⼀致性Pr(r)是r的概率密度函数,Ps(s)是s的概率密度函数,Pr(r)和T(r)已知,且T-1(s) 满⾜上述条件(1),所以有已知⼀种重要的变换函数:关于上限的定积分的导数就是该上限的积分值(莱布尼茨准则)对于离散值:其中r k 是第k个灰度级,k = 0,1,2,…,L-1. n k是图像中灰度级为r k的像素个数. n是图像中像素的总数.已知变换函数的离散形式为:sk称作直⽅图均衡化将输⼊图像中灰度级为rk(横坐标)的像素映射到输出图像中灰度级为sk (横坐标)的对应像素得到.实现代码:/******************************************************************************* 作⽤: 灰度均衡函数* 参数:* pixel 原始像素数组* tempPixel 保存变换后图像的像素数组* width 原始图像宽度******************************************************************************/void GrayEqualize(BYTE* pixel, BYTE* tempPixel, UINT width, UINT height){// 灰度映射表BYTE map[256];long lCounts[256];memset(lCounts, 0, sizeof(long) * 256);// 计算各灰度值个数for (UINT i = 0; i < width * height; i++){int x = pixel[i * 4];lCounts[x]++;}// 保存运算中的临时值long lTemp;for (int i = 0; i < 256; i++){lTemp = 0;for (int j = 0; j <= i; j++)lTemp += lCounts[j];map[i] = (BYTE)(lTemp * 255.0f / width / height);}// 变换后的值直接在映射表中查找for (UINT i = 0; i < width * height; i++){int x = pixel[i * 4];tempPixel[i*4] = tempPixel[i*4+1] = tempPixel[i*4+2] = pixel[i * 4]; tempPixel[i*4+3] = 255;}}View Code彩⾊图直⽅图均衡化:更清晰:opencv代码:////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////#include "opencv2/highgui/highgui.hpp"#include "opencv2/imgproc/imgproc.hpp"#include <iostream>using namespace cv;using namespace std;int main( int argc, const char** argv ){Mat img = imread("MyPic.JPG", CV_LOAD_IMAGE_COLOR); //open and read the imageif (img.empty()) //if unsuccessful, exit the program{cout << "Image cannot be loaded..!!" << endl;return -1;}vector<Mat> channels;Mat img_hist_equalized;cvtColor(img, img_hist_equalized, CV_BGR2YCrCb); //change the color image from BGR to YCrCb formatsplit(img_hist_equalized,channels); //split the image into channelsequalizeHist(channels[0], channels[0]); //equalize histogram on the 1st channel (Y)merge(channels,img_hist_equalized); //merge 3 channels including the modified 1st channel into one imagecvtColor(img_hist_equalized, img_hist_equalized, CV_YCrCb2BGR); //change the color image from YCrCb to BGR format (to display image properly)//create windowsnamedWindow("Original Image", CV_WINDOW_AUTOSIZE);namedWindow("Histogram Equalized", CV_WINDOW_AUTOSIZE);//show the imageimshow("Original Image", img);imshow("Histogram Equalized", img_hist_equalized);waitKey(0); //wait for key pressdestroyAllWindows(); //destroy all open windowsreturn0;}View Code代码中使⽤的函数:New OpenCV functionscvtColor(img, img_hist_equalized, CV_BGR2YCrCb)This line converts the color space of BGR in 'img' to YCrCb color space and stores the resulting image in 'img_hist_equalized'.In the above example, I am going to equalize the histogram of color images. In this scenario, I have to equalize the histogram of the intensity component only, not the color components. So, BGR format cannot be used because its all three planes represent color components blue, green and red. So, I have to convert the original BGR color space to YCrCb color space because its 1st plane representsthe intensity of the image where as other planes represent the color components.void split(const Mat& m, vector<Mat>& mv )This function splits each channel of the 'm' multi-channel array into separate channels and stores them in a vector, referenced by 'mv'. Argument listconst Mat& m - Input multi-channel arrayvector<Mat>& mv - vector that stores the each channel of the input arrayequalizeHist(channels[0], channels[0]);Here we are only interested in the 1st channel (Y) because it represents the intensity information whereas other two channels (Cr and Cb) represent color components. So, we equalize the histogram of the 1st channel using OpenCV in-built function, 'equalizeHist(..)' and other two channels remain unchanged.void merge(const vector<Mat>& mv, OutputArray dst )This function does the reverse operation of the split function. It takes the vector of channels and create a single multi-channel array. Argument listconst vector<Mat>& mv - vector that holds several channels. All channels should have same size and same depthsOutputArray dst - stores the destination multi-channel arraycvtColor(img_hist_equalized, img_hist_equalized, CV_YCrCb2BGR)This line converts the image from YCrCb color space to BGR color space. It is essential to convert to BGR color space because 'imshow(..)' OpenCV function can only show images with that color space.This is the end of the explanation of new OpenCV functions, found in the above sample code. If you are not familiar with other OpenCV functions, please refer to the previous lessons.参考博客:http://opencv-srf.blogspot.jp/2013/08/histogram-equalization.html。

数字图像处理实验报告(直方图均衡化、直方图匹配)

数字图像处理实验报告(直方图均衡化、直方图匹配)

实验二报告一.实验内容:⑴直方图均衡化(Histogram equalization),⑵直方图匹配(Histogram matching),二.实验结果:1.将mountain.jpg图像文件读入Matlab,对其作直方图均衡化,结果如下:2、对mountain.jpg图像做直方图匹配运算3、利用mountain.jpg图像的直方图(imhist函数可生成),编写直方图均衡化函数。

function [ imeq ] = Fhisteq( space,h )%FHISTEQ 此处显示有关此函数的摘要% 此处显示详细说明% 原始图像space 必须是[0 1]之间的%直方图均衡化函数L=length(h);pdf=h/numel(space);cdf=cumsum(pdf);f=zeros(1,L);for i=1:Lf(i)=cdf(i)*255;end[dimx,dimy]=size(space);imeq=zeros(dimx,dimy);for i=1:dimxfor j=1:dimyimeq(i,j)=f(round(space(i,j)*255)+1);endendend结果如下:4、直方图均衡化分析:直方图均衡化就是一种能仅靠输入图像直方图信息自动达到这种效果的变换函数。

它的主要思想是扩展图像原有灰度级分布,使图像能够在更大的灰度级范围内分布,从而提高了对比度和灰度色调的变化,使图像更加清晰。

从上面的图像可以清楚的看到原有的mountain图像整体偏暗,直方图集中在灰度级偏小的一侧。

但是直方图均衡化后每个灰度级上的图像点数量有了明显提高,直方图中间部分的数值也有了明显的增强,图像的视觉效果也明显变好了。

而使用直方图匹配的算法则能够更好的让原有图像朝着我们预期的直方图分布去变换,这对于有特定的显示要求来说是一种比较好的选择。

图像处理实验三:直方图均衡化

图像处理实验三:直方图均衡化

图像处理实验三:直方图均衡化最后完成时间:2010/10/30 基本原理(数学公式):归一化累计直方图程序源代码(附注释):HistogramEqualization.m%直方图均衡化HistogramEqualization%读取显示原图像I=imread('tire.tif');figure,subplot(2,2,1);imshow(I);title('原始图像');[m,n]=size(I);%原始图像灰度级for k=0:255s0(k+1)=length(find(I==k))/(m*n);end%原始直方图subplot(2,2,3);bar(0:255,m*n*s0,'g');title('原始图像直方图');%计算累计直方图各项tkt1=zeros(1,256);for x=1:256for y=1:xt1(x)=s0(y)+t1(x);endend%取整扩展t2=round(255*t1+0.5);%确定映射关系sk-tkfor x=1:256t3(x)=sum(s0(find(t2==x)));end%根据映射关系计算均衡化直方图subplot(2,2,4);bar(0:255,m*n*t3,'b');title('均衡化后直方图');图像处理实验三:直方图均衡化%显示均衡化后图像t=I;for x=0:255t(find(I==x))=t2(x+1);endsubplot(2,2,2);imshow(t);title('均衡化后图像');实验结果与分析:直方图均衡化增强了图像的对比度与动态范围2。

实验报告2:直方图的均衡

实验报告2:直方图的均衡

实验报告1.数字图像直方图均衡的算法原理直方图均衡的主要原理是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布,通过将不同灰度值的像素数量进行统计,并将图像的像素值进行重新分配,把一定范围的像素过于密集的灰度值重新分配到较广的灰度区域内,使得整体灰度范围内每个灰度值的像素数量基本相同。

2.数字图像直方图均衡的算法步骤I.设均衡前图像在(x,y)处灰度值为f(x,y),均衡后图像的灰度值为g(x,y)II.设直方图变换函数为g(x,y)=M(f(x,y))III.令M(t)在(0,L-1)上单调递增,且使得f(x,y)和g(x,y)均属于(0,L-1)。

IV.计算每个灰度级的频数p(x,y)=f(x,y)/NV.此时计算累计分布函数C(x,y)=Σp(x,y)VI.利用M(t)计算均衡后的灰度级:g(x,y)=INT[(gmax-gmin)C(x,y)+gmin+0.5]3.MATLAB代码对RGB通道独立地进行直方图均衡的代码实现:RGB=imread('yuanban.jpg');R=RGB(:,:,1);G=RGB(:,:,2);B=RGB(:,:,3);subplot(4,2,1),imshow(RGB);title('原始真彩色图像');subplot(4,2,3),imshow(R);title('真彩色图像的红色分量');subplot(4,2,4), imhist(R);title('真彩色图像的红色分量直方图');subplot(4,2,5),imshow(G);title('真彩色图像的绿色分量');subplot(4,2,6), imhist(G);title('真彩色图像的绿色分量直方图');subplot(4,2,7),imshow(B);title('真彩色图像的蓝色分量');subplot(4,2,8), imhist(B);title('真彩色图像的蓝色分量直方图');r=histeq(R);g=histeq(G);b=histeq(B);figure,subplot(3,2,1),imshow(r);title('红色分量均衡化后图像');subplot(3,2,2), imhist(r);title('红色分量均衡化后图像直方图');subplot(3,2,3),imshow(g);title('绿色分量均衡化后图像');subplot(3,2,4), imhist(g);title('绿色分量均衡化后图像直方图');subplot(3,2,5), imshow(b);title('蓝色分量均衡化后图像');subplot(3,2,6), imhist(b);title('蓝色分量均衡化后图像直方图');figure,newimg = cat(3,r,g,b);imshow(newimg,[]);title('均衡化后分量图像还原输出原图');4.均衡效果对比:原图:Matlab直方图均衡后效果图:PS均衡后效果图:差别:原图颜色较暗,并且大部分区域灰度值偏低,仅有部分地方灰度值较亮。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理实验报告
实验名称:直方图均衡化

班级:
学号:
专业:电子信息工程(2+2)
指导教师:华华
实验日期:2012年5月24日
直方图均衡化
图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法。

直方图均衡化是最常见的间接对比度增强方法。

直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。

直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度围的均匀分布。

直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度围的像素数量大致相同。

直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。

缺点:
1)变换后图像的灰度级减少,某些细节消失;
2)某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。

直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过这种方法,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态围从而可达到增强图像整体对比度的效果。

设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。

在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):
(1)EQ(f)在0≤f≤L-1围是一个单值单增函数。

这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。

(2)对于0≤f≤L-1有0≤g≤L-1,这个条件保证了变换前后灰度值动态围的一致性。

累积分布函数即可以满足上述两个条件,并且通过该函数可以完成将原图像f的分布转换成g的均匀分布。

此时的直方图均衡化映射函数为: gk = EQ(fk) = (ni/n) = pf(fi) ,
(k=0,1,2,……,L-1)
上述求和区间为0到k,根据该方程可以由源图像的各像素灰度值直接得到直方图均衡化后各像素的灰度值。

在实际处理变换时,一般先对原始图像的灰度情况进行统计分析,并计算出原始直方图分布,然后根据计算出的累计直方图分布求出fk到gk的灰度映射关系。

在重复上述步骤得到源图像所有灰度级到目标图像灰度级的映射关系后,按照这个映射关系对
源图像各点像素进行灰度转换,即可完成对源图的直方图均衡化。

一,调用matlab系统函数方式
(1)实验程序
clear all;
f=imread('cameraman.tif');
figure(1)
imshow(f);
figure(2)
imhist(f); %绘制图象f的直方图
ylim('auto');
g=histeq(f,256); %对f进行直方图均衡,输出图象的灰度级数为256
figure(3)
imshow(g);
figure(4)
imhist(g);
ylim('auto');
(2)实验结果:
图1:原图图2: 原图的直方图
图3:处理后的图图4: 处理后的直方图
二:不用系统函数
(1)实验程序:
f=imread('cameraman.tif'); %读取原图象
[m,n]=size(f);
figure(1)
imshow(f);
gp=zeros(1,256); %创建一个全零矩阵,1×256,计算各灰度出现的概率
for i=1:256
gp(i)=length(find(f == (i-1)))/(m*n);
end
figure,bar(0:255,gp);
newGp=zeros(1,256); %计算新的各灰度出现的概率
S1=zeros(1,256);
S2=zeros(1,256);
tmp=0;
for i=1:256
tmp=tmp+gp(i);
S1(i)=tmp; %各会灰度的累计概率
S2(i)=round(S1(i)*256); %将取整后的值存储在S2
end
for i=1:256
newGp(i)=sum(gp(find(S2==i)));
end
figure,bar(0:255,newGp);
for i=1:256
newGrayPic(find(f==(i-1)))=S2(i); %用新的灰度填充以前旧的灰度值
end
figure,imshow(newGrayPic);
(2)实验结果:
图5:原图图6: 原图的直方图
图7: 处理后的图图8: 处理后的直方图三:对比用这两种方式实现效果上的差异
调用系统函数的结果未调用系统函数的结果
尽管两者直方图的统计方式不同,左边是统计每个灰度值总的像素,右边是统计每个灰度值出现的概率,但形状基本相同。

I = imread('1.bmp');
J=imread('2.bmp');
Iq = imsubtract(I,J);%两幅图相减
imview(Iq)。

相关文档
最新文档