八年级数学试题1
八年级数学试题精选
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:如图所示,△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl.试说明△ABC≌△A1B1C1的理由.
(请你将下列说理过程补充完整).
理由:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.则∠BDC=∠B1D1C1=90°,
∵△ADM≌△NEM(已证),
∴AD=NE.
∵AD=AB,
∴AB=NE.
在△ABC和△NEC中,
∴△ABC≌△NEC.
∴AC=NC,∠ACB=∠NCE.
∴∠ACN=∠BCE=90°.
∴△ACN为等腰直角三角形.
考点:几何变换综合题
10.见解析
【解析】
试题分析:(1)
请你用含 ( 为正整数)的关系式表示上述各式子的变形规律。
13.(1)FH∥BC;理由见解析;(2)HG=DG;理由见解析.
【解析】
试题分析:(1)连接EF,根据翻折变换的性质可得∠CAE=∠EAF,∠AFE=90°,CE=EF,根据垂直的定义可得∠ADC=90°,然后根据同位角相等,两直线平行判断出EF∥CD,然后根据等角的余角相等求出∠AGD=∠AEC,再求出∠CGE=∠AEC,根据等角对等边可得CG=CE,然后求出CG=EF,再根据一组对边平行且相等的四边形是平行四边形判断出四边形CEFG是平行四边形,根据平行四边形对边平行可得GF∥CE,即FH∥BC;
参考答案
1.D.
【解析】
试题分析:根据二次根式的性质及二次根式成立的条件解答.
∵ 成立,
∴﹣ >0,即n<0,
原式=﹣ .
人教版2022-2023学年度上学期八年级期末练习数学试题1(含解析)
人教版2022-2023学年八年级上学期期末练习试题1学校:___________姓名:___________班级:___________考号:___________一、选择题1.若(a ﹣3)0有意义,则a 的取值范围是( ) A .a >3B .a <3C .a ≠0D .a ≠32.下列图标中是轴对称图形的是( )A .B .C .D .3.计算()233x y 的结果是( ) A .329x y B .629x yC .326x yD .626x y4.分式31x x +-的值为0,则x 的值是( ) A .﹣3B .0C .1D .35.下列说法正确的是( ) A .三角形的角平分线是射线B .过三角形的顶点,且过对边中点的直线是三角形的一条中线C .锐角三角形的三条高交于一点D .三角形的高、中线、角平分线一定在三角形的内部 6.计算(﹣0.25)2019•42020的结果为( )A .4B .﹣4C .14-D .147.如下图,直线L 是一条河,P ,Q 是两个村庄.欲在L 上的某处修建一个水泵站M ,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( ).A .B .C .D .8.如图,ABC 中,65B C ∠=∠=︒,BD CE =,BE CF =,若50A ∠=︒,则DEF ∠的度数是( )A .75︒B .70︒C .65︒D .60︒9.如图,在△ABC 中,CD 是边AB 上的高,BE 平分∠ABC ,交CD 于点E ,BC =10,DE =3,则△BCE 的面积为( )A .16B .15C .14D .1310.如图,点B ,E ,C ,F 共线,A D ∠=∠,AB DE =,添加一个条件,不能..判定ABC DEF ≅△△的是( )A .B DEF ∠=∠B .AC DF =C .AC DF ∥D .BE CF =11.如图,AD ,BE 是△ABC 的高线,AD 与BE 相交于点F .若AD =BD =6,且△ACD 的面积为12,则AF 的长度为( )A .4B .3C .2D .1.512.已知,关于x 的分式方程3344x m mx x++=--有增根,且2226110ma b ma b ++-+=,则a b +的值是( ) A .1B .2C .3D .4二、填空题13.人体中红细胞的直径约为0.000075m ,将0.000075用科学记数法表示为_____________. 14.如图,小强利用全等三角形的知识测量池塘两段M N 、的距离.如果30m OP ON OQ OM PQ ===,,,则池塘两段M N 、的距离为________.15.如图,已知等边ABC 的周长为24,点D 在BC 边上,点E 是AB 边上一点,连接ED ,将BDE △沿着DE 翻折得到DEF ,EF 交AC 于点G ,DF 交AC 于点O ,若OG OD =,则OGF 的周长为 _____.16.已知xy =2,x ﹣y =﹣4,则x 2+xy+y 2=_____.17.若x =3m+2,y =27m﹣8,则用x 的代数式表示y 为_____.18.如图,在ABC 中,BA BC =,D ,E 分别是边BC ,AB 上的点,且3AE BD =.以DE 为边向右作DEF ,使得DE DF =,EDF B ∠=∠,连接CF ,若1BD =,则线段CF 长度的取值范围是________.三、解答题19.将下列各式分解因式: (1)24ab a -; (2)32232a b a b ab -+. 20.计算:(1)2()(2)a b a b a +-+; (2)2211(2)m m m m+--÷. 21.符号a b c d称为二阶行列式,规定它的运算法则为a bc d=ad ﹣bc .请你根据上述法则求等式321111x x x x ++=-1中x 的值.22.如图,在ABC 中,AB BC =,点M 在线段AC 上运动(M 不与A ,C 重合),连接BM ,作BMN C ∠=∠,MN 交线段AB 于N .(1)若CM AN =,求证:BCM MAN ≌△△; (2)若30C ∠=,点M 在运动过程中,存在BMN 是等腰三角形,求此时CBM ∠的度数. 23.如图,在平面直角坐标系xOy 中,网格中小正方形的边长为1,ABC 的顶点都在格点上.(1)画出ABC 关于y 轴的对称图形111A B C △,并写出1A 、1B 、1C 的坐标; (2)在x 轴上找到一点P ,使得BP CP +的值最小(保留作图痕迹); (3)求出ABC 的面积.24.某某公司决定将一批生姜送往外地销售.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱生姜,且甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等. (1)求甲、乙两种货车每辆车可装多少箱生姜?(2)如果这批生姜有1535箱,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了55箱,其它装满,求甲、乙两种货车各有多少辆?25.已知,7张如图1的长为a ,宽为b (其中a >b )的小长方形纸片,按图2方式不重叠地放在长方形ABCD 内,长方形ABCD 的长AD=m ,未被覆盖的部分的长方形MNPD 的面积记作S 1,长方形BEFG 的面积记作S 2.(1)用含m ,a ,b 的式子表示S 1和S 2;(2)若S 1-S 2的值与m 的取值无关,求a ,b 满足的数量关系.26.如图1和图2,矩形ABCD 中,E 是AD 的中点,P 是BC 上一点,AF //PD ,FPE DPE ∠=∠.(1)作射线PE 交直线AF 于点G ,如图1. ①求证:AG DP =;②若点F 在AD 下方,2AF =,7PF =,求DP 的长.(2)若点F 在AD 上方,如图2,写出PD ,AF ,PF 的等量关系,并证明你的结论.参考答案:1.【考点】零指数幂有意义的条件【分析】根据零指数幂的底数不等于0,列出不等式,即可求解. 解:∵(a ﹣3)0有意义, ∴a ﹣3≠0, ∴a ≠3, 故选D .【点评】本题主要考查零指数幂有意义的条件,掌握零指数幂的底数不等于0,是解题的关键. 2.【考点】轴对称图形【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.解:A ,C ,D 选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形; 故选:B .【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.【考点】积的乘方和幂的乘方【分析】根据积的乘方和幂的乘方法则计算即可. 解:()236239x y x y =,故选:B .【点评】本题考查了积的乘方和幂的乘方,幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 4.【考点】分式的值为零的条件【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题. 解:∵分式31x x +-的值为0, ∴x+3=0且x ﹣1≠0, 解得:x =﹣3, 故选:A .【点评】考查了分式的值为零的条件,由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.5.【考点】三角形的角平分线、中线和高线【分析】根据三角形角平分线,中线,高线的概念,对各选项分析判断利用排除法求解. 解:A. 三角形的角平分线是线段,故本选项不符合题意;B. 过三角形的顶点,且过对边中点的线段是三角形的一条中线,故本选项不符合题意;C. 锐角三角形的三条高交于一点,正确,故此选项符合题意;D. 三角形的内部三角形的中线、角平分线一定在三角形的内部,高线不一定在三角形的内部,故本选项不符合题意. 故选:C .【点评】本题考查了三角形的角平分线、中线和高线,是基础题,熟记概念是解题的关键. 6.【考点】同底数幂的乘法,积的乘方【分析】根据同底数幂的乘法和积的乘方的法则计算即可. 解:()201920200.254⋅-=()9192012040.254⨯⨯- =()20190.2544⨯⨯-=4- 故选B .【点评】本题考查了同底数幂的乘法和积的乘方,解题的关键是掌握运算法则的逆用. 7.【考点】轴对称-最短路径问题【分析】利用轴对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离,从而可得答案.解:如图,作点P 关于直线l 的对称点P',连接QP'交直线l 于M .则,PM MQ P M MQ P Q ''+=+=根据两点之间,线段最短,可知选项D 修建的管道,则所需管道最短. 故选:D .【点评】本题考查了最短路径的数学问题.这类问题的解答依据是“两点之间,线段最短”.由于所给的条件的不同,解决方法和策略上又有所差别. 8.【考点】全等三角形的判定和性质,三角形内角和定理【分析】根据已知条件证明DBE ≌ECF △,则可得BDE CEF ∠=∠,又因为65B C ∠=∠=︒,所以18065115BDE BED ∠+∠=︒-︒=︒,即可推出115BED CEF ∠+∠=︒,由此即可得出DEF ∠的度数.解:在DBE 和ECF △中, BD CE B C BE CF =⎧⎪∠=∠⎨⎪=⎩, ∴DBE ≌ECF △()SAS , ∴BDE CEF ∠=∠,∵180********BDE BED B ∠+∠=︒-∠=︒-︒=︒, ∴115BED CEF ∠+∠=︒,∴180()18011565DEF BED CEF ∠=︒-∠+∠=︒-︒=︒, 故选C .【点评】本题考查了全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 9.【考点】角平分线的性质【分析】作EH ⊥BC 于点H ,根据角平分线的性质得出EH=DE ,最后根据三角形的面积公式进行求解. 解:如图,作EH ⊥BC 于点H ,∵BE 平分∠ABC ,CD 是AB 边上的高,EH ⊥BC , ∴EH=DE=3, ∴111031522BCE S BC EH =⋅=⨯⨯=△. 故选B .【点评】本题考查角平分线的性质,三角形面积,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.【考点】全等三角形的判定【分析】根据全等三角形的判定方法对各选项进行一一判断即可.解:A 、A D ∠=∠,AB DE =,添加B DEF ∠=∠,根据ASA ,可以推出△ABC ≌△DEF ,本选项不符合题意.B 、A D ∠=∠,AB DE =,添加AC DF =,根据AAS ,可以推出△ABC ≌△DEF ,本选项不符合题意. C 、AD ∠=∠,AB DE =,添加AC DF ∥,利用平行线性质可得∠ACB =∠DFE , 根据AAS ,可以推出△ABC ≌△DEF ,本选项符不符合题意.D 、A D ∠=∠,AB DE =,添加BE CF =,可得BC=EF ,但SSA ,不能判定三角形全等,本选项符合题意. 故选:D .【点评】本题考查了全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法;AAS ,ASA ,SAS ,SSS ,HL ,应注意SSA 与AAA 都不能判断两个三角形全等. 11.【考点】全等三角形的判定与性质【分析】利用ASA 证明△ACD ≌△BFD ,得DF =DC ,再根据三角形面积可得CD 的长,从而可得答案. ∵AD ,BE 是△ABC 的高线, ∴∠ADB =∠ADC =∠AEB =90°, ∵∠BFD =∠AFE , ∴∠DBF =∠CAD , 在△ACD 和△BFD 中,DBF CAD BD ADBDF ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ACD ≌△BFD (ASA ), ∴DF =DC ,∵△ACD 的面积为12, ∴16122CD ⨯⨯=, ∴CD =4, ∴DF =4, ∴AF =AD ﹣DF =2, 故选:C .【点评】本题主要考查了全等三角形的判定与性质,三角形的面积等知识,熟练掌握全等三角形的判定与性质是解题的关键. 12.【考点】分式方程的增根【分析】首先解分式方程,用含有字母m 的式子表示x ,再根据方程有增根求出m 的值,然后将m 的值代入得出关于a ,b 的等式,再配方根据完全平方公式的非负性求出a 和b 的值,即可得出答案. 3344x m mx x++=--, 解得=6x m -. ∵分式方程有增根, ∴x-4=0, 即x=4, ∴6-m=4, 解得m=2.当m=2时,22246110a b a b ++-+=, 即222(1)(3)0a b ++-=, 解得a=-1,b=3. 则a+b=-1+3=2. 故选:B .【点评】本题主要考查了分式方程的增根,根据完全平方公式的非负性求字母的值,求出m 的值是解题的关键.13.【考点】科学记数法【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 解:0.000075=7.5×10-5, 故答案为:7.5×10-5.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 14.【考点】全等三角形的应用【分析】根据全等三角形判定定理证明(SAS)PQO NMO ≌,根据全等三角形的性质可结果. 解:∵在PQO 和NMO △中,OP ON POQ NOM OQ OM =⎧⎪∠=∠⎨⎪=⎩, ∴(SAS)PQO NMO ≌, ∴30m MN QP ==, 故答案为:30m .【点评】本题考查了全等三角形的应用,解题的关键是如何将实际问题与数学知识有机的结合在一起. 15.【考点】全等三角形的判定和性质,折叠的性质,等边三角形的性质【分析】由折叠可知,B F C ∠=∠=∠,BD FD =,易证()GOF DOC AAS ≌,所以GF DC =,所以OGF 的周长为OG OF GF OD OF DC BC ++=++=,再由等边三角形的周长为24,可得8BC =,由此可得出结论.解:∵等边ABC 的周长为24, ∴60B C ∠=∠=︒,8AB BC AC ===, ∵BDE △沿着DE 翻折得到FDE , ∴B F ∠=∠,BD FD =, ∴60F C ∠=∠=︒, 在GOF △和DOC △中, F C GOF DOC OG OD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()GOF DOC AAS ≌∴OGF的周长为:++OG OF GF=++OD OF DC=+DF DC=+BD DC=BC=,8∴OGF的周长为8.故答案为:8.【点评】本题主要考查全等三角形的判定和性质,折叠的性质,等边三角形的性质,三角形的周长等相关知识.判定三角形全等是解题关键.16.【考点】代数式求值,完全平方公式【分析】根据完全平方公式的变形公式,直接代入求解即可.解:∵xy=2,x﹣y=﹣4,∴x2+xy+y2=( x﹣y)2+3xy=(﹣4)2+3×2=22,故答案是:22.【点评】本题主要考查代数式求值,掌握完全平方公式的变形公式,是解题的关键17.【考点】幂的乘方【分析】利用等式的性质求得3m=x﹣2,然后再利用把3m用x代换即可得解.解:∵x=3m+2,∴3m=x﹣2,∴y=(x﹣2)3﹣8.故答案为:(x﹣2)3﹣8.【点评】本题主要考查了幂的乘方逆向运用及整体思想,解题的关键是把27m化为(3m)3, 再把3m用x 代换.18.【考点】等腰三角形的定义,三角形的三边关系【分析】根据题意利用线段间的数量关系可得CD-BE=2,再由三角形三边关系进行求解即可得出结果.解:由图可得:CD=BC-BD,∵BC=BA,∴BE=BA-AE,∴BE=BA-3BD=BC-3BD , ∴CD-BE=BC-BD-BC+3BD=2BD=2, ∵CF 在∆CDF 中,∴CD-DE=CD-DF<CF<CD+DF=CD+DE , ∵DE<BD+BE ,∴CD-DE>CD-BE-BD=2-1=1,CD+DE>CD+BD-BE=2+1=3, ∴1<CF<3, 故答案为:1<CF<3.【点评】题目主要考查等腰三角形的定义,三角形的三边关系等,理解题意,找准线段间的数量关系是解题关键. 19.【考点】因式分解【分析】(1)先提公因式,再利用平方差公式进行因式分解; (2)先提公因式,再利用完全平方公式进行因式分解.解:(1)()()()222244ab a a b a b b -=-+-=(2)()()322222322a b a b ab a ab b b a a b a b -+=+=--【点评】本题考查因式分解,有公因式一定要先提公因式.熟练掌握平方差和完全平方公式的结构特点是解题的关键.20.【考点】整式的混合运算,分式的化简求值【分析】(1)先利用完全平方公式与单项式乘以多项式计算整式的乘法,再合并同类项即可; (2)先计算括号内的分式的减法,再把除法转化为乘法运算,约分后可得答案. (1)解:2()(2)a b a b a +-+ 22222a ab b ab a =++-- 2b =.(2)2211(2)m m m m +--÷ 22121m m mm m +-=-()()()2111m m m -=+- 11m m -=+.【点评】本题考查的是整式的混合运算,分式的化简求值,掌握“完全平方公式的含义及分式的混合运算的运算顺序”是解本题的关键. 21.【考点】定义新运算,解分式方程 【分析】先根据题意得出方程321111xx x x ,解这个分式方程即可得解.解:∵3211111x x x x ++=-,∴321111x x x x ,∴32111x x x x x ,∴332211xx x x x x x ,∴3311x x x , 解得2x =,经检验2x =是原方程的解, ∴x 的值为2.【点评】本题考查了新定义和解分式方程,解题的关键是读懂题意,将问题转化为解分式方程. 22.【考点】等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理【分析】(1)ANM 的外角NMC A ANM BMN BMC ∠=∠+∠=∠+∠,A C BMN ∠=∠=∠,由此可知ANM BMC ∠=∠,且CM AN =,A C ∠=∠,由此即可求解;(2)30C ∠=,BMN 是等腰三角形,分类讨论:第一种情况,MB MN =;第二种情况,NB NM =;第三种情况,BN BM =.根据三角形的内角和定理,等腰三角形的性质即可求解. 解:(1)∵AB BC =,BMN C ∠=∠, ∴A C BMN ∠=∠=∠,∵ANM 的外角NMC A ANM BMN BMC ∠=∠+∠=∠+∠, ∴ANM BMC ∠=∠, ∵CM AN =,A C ∠=∠, ∴(ASA)BCM MAN ≌△△.(2)第一种情况,如图所示, MB MN =,∵30A C ∠=∠=︒,且30BMN C ∠=∠=︒,∴1803030120ABC ∠=︒-︒-︒=︒,1(18030)752MNB MBN ∠=∠=⨯︒-︒=︒,∴1207545MBC ∠=︒-︒=︒; 第二种情况,如图所示,NB NM =,∴30NMB NBM C ∠=∠=∠=︒,且1803030120ABC ∠=︒-︒-︒=︒, ∴1203090MBC ∠=︒-︒=︒;第三种情况,BN BM =,则30BMN BNM C ∠=∠=∠=︒,此时点M 与点C 重合, 又∵点M 在线段AC 上运动时,M 不与A ,C 重合, ∴不符合题意,综上所述,BMN 是等腰三角形时,CBM ∠的度数为45︒或90︒.【点评】本题主要考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的综合应用,解决问题的关键是运用分类思想进行分类讨论. 23.【考点】作轴对称图形【分析】(1)根据轴对称的性质作图,根据图写出点1A 、1B 、1C 的坐标即可. (2)过点B 作关于x 轴对称的对称点B ',连接B C ',与x 轴交于点P 即可. (3)利用割补法求三角形的面积即可. (1)解:如图,111A B C △即为所要求画三角形.由图可得:()13,4A -,()11,2B -,()15,1C -. (2)解:如图,点P 即为所找的点.(3)解:111434122235222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=,答:ABC 的面积为5.【点评】本题考查作轴对称图形,利用轴对称的性质解决最短距离问题,利用网格求图形面积问题,熟练掌握会用轴对称的性质作轴对称图形是解题的关键. 24.【考点】分式方程的应用,一元一次方程的应用【分析】(1)设乙种货车每辆车可装x 箱生姜,则甲种货车每辆可装(x+20)箱生姜,根据甲种货车装运1000箱生姜所用车辆与乙种货车装运800箱生姜所用车辆相等,即可得出关于x 的分式方程,解之经检验后即可求出每辆乙种货车的装载量,再将其代入(x+20)中即可求出每辆甲种货车的装载量;(2)设甲种货车有m 辆,则乙种货车有(16-m )辆,根据“甲种车辆刚好装满,乙种车辆最后一辆只装了55箱,且这批生姜共1535箱”,即可得出关于m 的一元一次方程,解之即可求出甲种货车的数量,再将其代入(16-x )中即可求出乙种货车的数量.解:(1)设乙种货车每辆车可装x 箱生姜,则甲种货车每辆可装(x+20)箱生姜, 依题意得:100080020x x=+, 解得:x=80,经检验,x=80是原方程的解,且符合题意,∴x+20=80+20=100.答:甲种货车每辆可装100箱生姜,乙种货车每辆可装80箱生姜.(2)设甲种货车有m辆,则乙种货车有(16-m)辆,依题意得:100m+80(16-m-1)+55=1535,解得:m=14,∴16-m=16-14=2.答:甲种货车有14辆,乙种货车有2辆.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次方程.25.【考点】列代数式,及整式的混合运算【分析】(1)根据图形可得出长方形MNPD的长MD的长MD为m-3b,宽MN为a,即可得出S1的面积,长方形BEFG的长EF为m-a,宽FG为4a,即可得出S2的面积;(2)根据(1)计算S1-S2的值与m的取值无关,即a-4b=0,即可得出答案.解:(1)∵MD=AD-AM=m-3b;MN=a,∴S1=MD•MN=(m-3b)•a=ma-3ab,∵EF=EP-FP=m-a,FG=4b,∴S2=EF•FG=(m-a)•4b=4bm-4ab;(2)S1-S2=ma-3ab-4bm+4ab=ab+ma-4bm=ab+m(a-4b),∵S1-S2的值与m的取值关,∴a-4b=0,即a=4b,所以a,b满足的数量关系a=4b.【点评】本题主要考查了列代数式,及整式的混合运算,根据题意列出代数式再根据法则进行计算是解决本题的关键.26.【考点】平行线的性质,角平分线的定义,全等三角形的判定和性质,等腰三角形的判定和性质【分析】(1)①根据平行线的性质得到∠GAE=∠PDE,∠G=∠DPE.根据全等三角形的性质即可得到结论;②等量代换得到∠G=∠FPE.求得GF=PF=7,根据线段的和差即可得到结论;(2)如图2,根据平行线的性质得到∠G=∠DPE,等量代换得到∠G=∠FPG,求得PF=FG,根据全等三角形的性质得到AG=PD,根据线段的和差即可得到结论.解:(1)①证明:∵AF∥PD,∴∠GAE=∠PDE,∠G=∠DPE.∵E是AD的中点,∴AE=DE.∴△AEG≌△DEP(AAS).∴AG=DP;②解:∵∠FPE=∠DPE,∠G=∠DPE,∴∠G=∠FPE.∴GF=PF=7,∵AF=2,∴AG=5.由①知AG=DP,∴DP=5;(2)PD=AF+PF,证明:如图2,∵AF∥PD,∴∠G=∠DPE,∵∠FPE=∠DPE,∴∠G=∠FPG,∴PF=FG,∵∠AEG=∠DEP,AE=DE,∴△AEG≌△DEP(AAS),∴AG=PD,∵AG=AF+FG,∴PD=AF+PF.【点评】本题是四边形的综合题,考查了平行线的性质,角平分线的定义,全等三角形的判定和性质,等腰三角形的判定和性质,正确的识别图形是解题的关键.。
八年级数学第一章测试题
八年级数学第一章测试题(一)1、等腰三角形的一个内角为700,则顶角为。
2、等腰三角形的一个外角为1000,则其顶角为。
3、如果等腰三角形的一个内角等于500则其余两角的度数为。
4、(1)如果等腰三角形的一条边长为3,另一边长为5,则它的周长为。
5、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为。
6、△ABC中, AB=AC, 且BD=BC=AD,则∠A的度数为。
7、已知:如图,在△ABC中,则图中等腰直角三角形共有()(A).3个;(B).4个;(C).5个;(D).6个,8、已知:如图,在△ABC中,AB=AC, ∠BAC=1200, D、E是BC上两点,且AD=BD,AE=CE,猜想△ADE是三角形。
9、如图,在△ABC中,∠ABC与∠ACB的平分线交与点O,若AB=12,AC=18,BC=24,则△ABC的周长为()(A).30;(B).36;(C).39;(D).42。
10、在△ABC中,AB=AC, ∠A=360,DE、CE是三角形的平分线且交于点O,则图中共有个等腰三角形。
11、如图,在Rt△ABC中,∠ACB=900,∠A =300,CD⊥AB,BD=1,则AB= 。
12、在△ABC中,AB=AC,∠BAC=1200,D是BC的中点,DE⊥AC,则AE:EC= 。
13、四边形ABCD中,若AB=3,BC=4,CD=12,AD=13,且AB⊥BC,求四边形ABCD的面积________。
14、如图已知∠ACB=∠BDA=90°,要使△ACB≌△BDA,还需要什么条件?把它们分别写出来。
15、如图,在Rt△ABC中,∠C=900,沿B点的一条直线BE折叠△ABC,使点C恰好落在AB的中点D处,则∠A= .16、如图,已知:AB∥CD,AB=CD,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A、∠A=∠B ;B、BF=CE;C、AE∥DF;D、AE=DF.17、下列各选项中的两个直角三角形不一定全等的是()A:两条直角边对应相等的两个直角三角形。
苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)
第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。
八年级数学题(5篇)
八年级数学题(5篇)八班级数学题(5篇)八班级数学题范文第1篇一、选择题(每小题3分,共3’]p-0分)1、直线y=kx+b(如图所示),则不等式kx+b≤0的解集是( )A、x≤2 B、x≤-1 C、x≤0 D、x>-12、如图,小亮在操场上玩,一段时间内沿MABM的路径匀速漫步,能近似刻画小亮到动身点M的距离y与时间x之间关系的函数图像是( )3、下列各式肯定是二次根式的是( )A、 B、 C、 D、4、假如一组数据3,7,2,a,4,6的平均数是5,则a的值是( )A、8 B、5 C、4 D、35、某班一次数学测验的成果如下:95分的有3人,90分的有5人,85分的有6人,75分的有12人,65分的有16人,55分的有5人,则该班数学测验成果的众数是( )A、65分 B、75分 C、16人 D、12人6、如图,点A是正比例函数y=4x图像上一点,ABy轴于点B,则ΔAOB的面积是( )A、4 B、3 C、2 D、17、下列命题中,错误的是( )A、有一组邻边相等的平行四边形是菱形B、四条边都相等的四边形是正方形C、有一个角是直角的平行四边形是矩形D、相邻三个内角中,两个角都与中间的角互补的四边形是平行四边形8、如图,在一个由4 4个小正方形网格中,阴影部分面积与正方形ABCD的面积比是( )A、3:4 B、5:8 C、9:16 D、1:29、假如正比例函数y=(k-5)x的图像在其次、四象限内,则k的取值范围是( )A、k0 C、k>5 D、k100时,y与x的函数关系式为 ;(3)甲、乙两单位分别采纳方案一、方案二购买本场足球门赛票共700张,花去费用总计58000元,甲、乙两单位各购买门票多少张?八班级(下)期末测试(5)答案一、ACBAA CBBDB二、11、1, 12、135 13、5 14、减小 15、8 16、30 17、y=-2x-2(答案不)18、1三、19、(1)7 (2)20、化简得,代值得原式=11221、(1)y=-x (2)略22、略23、(1)y=60x+10000(2)y=100x, y=80x+2000(3)设甲购买门票a张,则乙购买门票(700-a)张,当0≤700-a≤100s时,有60a+10000+100(700-a)=58000,解得a=550.当a=550时,700-a=150>100,不符合题意,舍去;当700-a>100时,有60a+10000+80(700-a)=58000,解得a=500.当A=500时,700-a=200即甲、乙两单位各购买门票500张、200张八班级数学题范文第2篇这篇人教版八班级上册数学月考练习试题及答案的文章,是一、选择题(每小题3分,共45分) 1、下面哪个点在y=-2x-3的图象上?.........................................................( ) A、(-,-2) B、(,2) C、(,-2) D、(,2) 2、下面函数图象不经过其次象限的是............................................................() A、y=3x+2 B、y=3x-2 C、y=-3x+2 D、y=-3x-2 3、函数的自变量的取值范围是...................................................() A、≥0 B、≤0 C、≠0 D、全体实数 4、直线上的点在轴的下方时对应的自变量的范围是 ........................() A、x>2 B、x≥2 C、x<2 D、x≤2 5、已知一次函数y=kx+b的图象如图所示, 则k, b的符号是.................................( )(A)k>0,b>0 (B)k>0,b八班级数学题范文第3篇方程》-单元测试3一、单选题(总分:40分本大题共8小题,共40分)1.(本题5分)下面式子哪个是方程()A.5x=0B.3.25-3xC.2x+5<122.(本题5分)下列各式是方程的是()A.5x=0B.7x+12C.8x>53.(本题5分)下列式子中不是方程的是()A.4x+5=9.4B.3x-6C.A+2b=164.(本题5分)方程就是含有未知数的()A.式子B.等式C.算式5.(本题5分)下面的式子中,是方程的是()A.2x-16B.5x-4x=2C.7×0.5+5=8.5D.x+0.75<66.(本题5分)下面的式子是方程的是()A.x-5=4B.2x+1>0C.2+5=7D.3a+5b7.(本题5分)下面的式子中,只有()是方程.A.7.5x+2nB.7x-9<6.9C.8a÷7b=2.58.(本题5分)五(6)班60个同学做操,假如每行站7人还缺3人,问站了几行?设站了X行,正确的方程是()A.7x-3=60B.7x+3=60C.60-7x=3二、填空题(总分:25分本大题共5小题,共25分)9.(本题5分)音乐小组男生人数比女生人数的一半少1人,女生人数比男生人数的3倍少4人,这个小组一共有____人.10.(本题5分)2.5x+6含有未知数,所以它是方程.____.(推断对错)11.(本题5分)元旦期间,合益商场搞优待活动,买一箱牛奶送一盒,五(1)班一共52人,假如买4箱,正好每人一盒,每箱牛奶有____盒. 12.(本题5分)小张有2分和5分的硬币共34枚,总值1.1元,问2分的硬币有____枚;5分的硬币有____枚.13.(本题5分)一桶豆油重100千克,每天用去x千克,6天后还剩下79千克,用方程表示是____=79;x=____。
八年级数学上学期期中试题1及答案
八年级上学期期中复习数学试卷(一)一.选择题(本大题10小题,每小题3分,共30分) 1.下列“表情图”中,属于轴对称图形的是( )A B C D 2.下列长度的各组线段中,能组成三角形的是( )A. 5,9,3B. 3,11,8C. 6.3,6.3,4.4D. 15,8,6 3.点M (3,-4)关于y 轴的对称点的坐标是( )A.(3,4)B.(-3,-4)C.(-3,4)D.(-4,3) 4.下列图形中具有稳定性的是( )A.六边形B.五边形C.平行四边形D.三角形5.如图,下面是利用尺规作∠AOB 的角平分线OC 的作法,在用尺规作角平分线时,用到的三角形全等的判定方法是( )作法:①以O 为圆心,适当长为半径画弧,分别交OA ,OB 于点D ,E ; ③画射线OC ,射线OC 就是∠AOB 的角平分线.A.SSSB.SASC.ASA 6.已知图中的两个三角形全等,则∠1等于( )A.70°B.68°C.58°D.52°7.已知点A (-2,1),点B (3,2),在x 轴上求一点P ,使AP+BP 下列作法正确的是( ) A.点P 与O (0.0)重合B 连接AB 交y 轴于P ,点P 即为所求.C.过点A 作x 轴的垂线,垂足为P ,点P 即为所求D.作点B 关于x 轴的对称点C ,连接AC ,交x 轴于P ,点P 即为所求8.如图,已知AD 是△ABC 的BC 边上的高,补充下列一个条件不能使△ABD ≌△ACD 的条件是( ) A. ∠B=45° B.BD=CD C.AD 平分∠BAC D.AB=AC9.如图,在长方形网格中,每个小长方形的长为2,宽为1,A 、B 两点在网格格点上,若点C 也在网格格点上,以A 、B 、C 为顶点的三角形面积为2,则满足条件的点C 个数是( ) A.7 B.6 C.5 D.4BCB BCFBBB10.如图,在△ABC中,AC=BC,BD平分∠ABC,CD平分∠ACB,AE=CE,则∠D和∠AEC的关系为()A. ∠D=∠AECB. ∠D≠∠AECC. 2∠AEC-∠D=180°D. 2∠D-2AEC=180°第8题图第9题图第10题图第11题图二.填空题(本大题共有6小题,每小题3分,共18分)11.如图,在△ABC中,∠A=70°,点D是BC延长线上一点,∠ACD=120°,则∠B= .12.如图,AB交CD于点O,△AOC≌△DOB,若OA=6,OC=3.4,AC=5.6,则AB= .13.已知等腰三角形的一边长为4,另一边长为8,则它的周长是.14.把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点J,则∠BJI的大小为.15.如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠CAE=52°,则∠BEC= .16.如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=4cm,DE=3cm,则BC= cm.第12题图第14题图第15 题图第16题图三.解答题(本题共9题,共72分)17.(本小题满分6分)如图,∠1=∠2,∠3=∠4,∠A=80°,求∠BOC的度数AB 18.(本小题满分6分)如图,△ABC ≌△DEC ,点E 在AB 上,∠DCA=40°,请写出AB 的对应边并求∠BCE 的度数.19.(本小题满分6分)如图,AC=BD ,BC=AD ,求证:△EAB 是等腰三角形20.(本小题满分7分)如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (2,1),B (-1,3),C (-3,2)(1)作出△ABC 关于x 轴对称的△111A B C ; (2)点1A 的坐标 ,点1B 的坐标 ;(3)点P (a ,a-2)与点Q 关于x 轴对称,若PQ=8,则点P 的坐标 21.(本小题满分7分)如图,在等边△ABC 的三边上,分别取点D 、E 、F ,使AD=BE=CF ,求证:△DEF 是等边三角形.EEA 备用图图122.(本小题满分8分)如图,在等边△ABC 中,点D 为AC 上一点,CD=CE ,∠ACE=60° (1)求证:△BCD ≌△ACE ;(2)延长BD 交AE 于F ,连接CF ,若AF=CF ,猜想线段BF 、AF 的数量关系,并证明你的猜想.23.(本小题满分10分)如图,AD 是△ABC 的角平分线,点F 、E 分别在边AC ,AB 上,且BD=FD. (1)求证:∠B+∠ADF=180°; (2)如果∠B+2∠DEA=180°,试探究线段AE ,AF ,FD 之间有何数量关系,并证明你的结论.24.(本小题满分10分)如图,等腰Rt △ACB 中,∠ACB=90°,AC=BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF=AE.(1)如图1,过F 点作FG ⊥AC 交AC 于G 点,求证:△AGF ≌△ECA ;图2图3A图1图2图3(2)如图2,连接BF 交AC 于D 点,若ADCD=3,求证:E 点为BC 中点; (3)如图3,当E 点在CB 的延长线上时,连接BF 与AC 的延长线交于D 点,若43BC BE =,则AD CD =25.(本小题满分12分)已知点A 与点C 为x 轴上关于y 轴对称的两点,点B 为y 轴负半轴上一点。
八年级数学试题及答案
八年级数学试题及答案一、选择题(共10分,每题2分)1. 下列哪个数是最小的正整数?A. -3B. 0C. 1D. 2答案:C2. 计算下列哪个表达式的结果是正数?A. -1 + (-2)B. 3 - 5C. 4 × (-2)D. -3 ÷ 2答案:D3. 如果a > b > 0,那么下列哪个不等式是正确的?A. a < bB. a > bC. b > aD. a = b答案:B4. 一个数的平方根是它本身,这个数可以是:A. 0B. 1C. -1D. 2答案:A5. 下列哪个分数是最简分数?A. 6/12B. 8/16C. 5/10D. 7/3答案:D二、填空题(共10分,每题2分)6. 一个长方形的长是10厘米,宽是5厘米,它的周长是________厘米。
答案:307. 如果一个数的立方根是2,那么这个数是________。
答案:88. 一个数的绝对值是5,这个数可以是________或________。
答案:5或-59. 一个圆的半径是7厘米,它的面积是________平方厘米。
答案:153.9410. 如果一个三角形的底边长是6厘米,高是4厘米,那么它的面积是________平方厘米。
答案:12三、计算题(共30分,每题6分)11. 计算下列表达式的值:(1) (-3) × 2 + 5(2) √(16) - 4答案:(1) -6 + 5 = -1(2) 4 - 4 = 012. 解下列方程:(1) 2x + 5 = 13(2) 3y - 7 = 8答案:(1) 2x = 8,x = 4(2) 3y = 15,y = 513. 计算下列多项式的值,当x = -2时:(1) 3x^2 - 2x + 1(2) x^3 + 4x - 5答案:(1) 3 × (-2)^2 - 2 × (-2) + 1 = 12 + 4 + 1 = 17(2) (-2)^3 + 4 × (-2) - 5 = -8 - 8 - 5 = -21四、解答题(共50分,每题10分)14. 一个班级有40名学生,其中30名学生参加了数学竞赛。
八年级上册数学第一节测试题
八年级上册数学第一节测试题一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 1,2,3B. 3,4,5C. 3,1,1D. 3,4,7解析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
选项A:公式,不满足两边之和大于第三边,不能组成三角形。
选项B:公式,公式,公式,公式,公式,公式,可以组成三角形。
选项C:公式,不满足两边之和大于第三边,不能组成三角形。
选项D:公式,不满足两边之和大于第三边,不能组成三角形。
所以答案是B。
2. 在△ABC中,∠A = 50°,∠B = 60°,则∠C的度数为()A. 50°B. 60°D. 80°解析:因为三角形内角和为公式,在公式中,公式,已知公式,公式,则公式。
所以答案是C。
3. 三角形的角平分线是()A. 直线B. 射线C. 线段解析:三角形的角平分线是三角形一个内角的平分线与对边相交,这个角的顶点与交点之间的线段。
所以三角形的角平分线是线段。
答案是C。
4. 能将三角形面积平分的是三角形的()A. 角平分线B. 高C. 中线D. 外角平分线三角形的中线将三角形分成两个等底同高的三角形,根据三角形面积公式公式(公式为底,公式为高),等底同高的三角形面积相等,所以能将三角形面积平分的是三角形的中线。
答案是C。
5. 一个三角形的两边长分别为3和7,第三边长为偶数,则第三边长为()A. 4,6B. 4,6,8C. 6,8D. 8解析:设第三边为公式,根据三边关系公式,即公式,又因为第三边长为偶数,所以公式或公式。
答案是C。
6. 已知等腰三角形的两边长分别为3和6,则它的周长为()A. 12B. 15C. 12或15D. 18解析:当腰长为公式时,公式,不满足三角形三边关系,舍去。
当腰长为公式时,周长为公式。
所以答案是B。
7. 如图,在△ABC中,∠A = 40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC =()A. 110°B. 100°C. 90°D. 80°解析:因为公式点是公式和公式角平分线的交点,所以公式,公式。
《初二上学期期末试卷》(期末试卷)2(苏科版初二上)初中数学(1)
《初二上学期期末试卷》(期末试卷)2(苏科版初二上)doc 初中数学八年级数学试题题号一二三四五总分1-1011-20 21-25 26 27 28 29 30 31 得分第一部分〔选择题,共 30 分〕本卷须知:答卷前将密封线内的项目填写清晰一、选择题:〔本大题共10小题,每题3分,共30分.在每题给出的4个选项中,只有1项是符合题目要求的,请正确答案的序号填写在下面的括号内〕.1.以下函数中,一次函数是A.x2y B.y=5x 2 C.y=1+5x D.y=x 2+x(x-1)2.假设x<-3,那么A .-2x>6B .2x>-6C .-2x<6D .2x<63.在坐标平面内有一点P(a ,b),且a 与b 的乘积为零,那么P 的位置一定在 A.原点 B.x 轴上 C.y 轴上 D.坐标轴上4.四边形ABCD 的对角线相交于O ,且OA=OB=OC=OD ,那么那个四边形 A.仅是轴对称图形 B.仅是中心对称图形C.即是轴对称图形又是中心对称图形 D.即不是轴对称图形,又不是中心对称图形 5.8的平方根是 A.22B.-22C.±22D.不存在6.在学校对学生进行的体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0,0.1,0.1,那么在这10天中该学生的体温波动数据中不正确的选项......是.A.平均数为0.12 B.众数为0.1 C.中位数为0.1 D.平均数为0.027.五根小木棒,其长度分不为7、15、20、24、25,现想把它们摆成两个直角三角形,以下图中题号 1 2 3 4 5 6 7 8 9 10答案2024正确的选项是8a =,那么以下结论正确的选项是A.4.5 5.0a << B.5.0 5.5a <<C.5.5 6.0a << D.6.0 6.5a <<9.如图,点阵中以相邻4个点为顶点的小正方形的面积为1, 那么△ABC 的面积为 A .3 B .3.5 C .4 D .4.510.一列火车从盐城站动身,加速行驶一段时刻后开始匀速行驶,过了一段时刻,火车到达下一个车站.乘客上、下车后,火车又加速,一段时刻后再次开始匀速行驶.下面哪幅图能够近似地刻画出火车在这段时刻内的速度变化情形.第二部分〔非选择题,共 120 分〕本卷须知:第二部分试题答案用钢笔或圆珠笔直截了当写在试卷上。
八年级数学试题及解析
八年级数学试题及解析一、填空:(每题2分,共20分)考点:镜面对称.专题:几何图形问题.分析:关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相对应数字的对称性可得实际数字.解答:解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为810076,故答案为:810076.点评:考查镜面对称,得到相对应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反.2.(2分)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,你添加的条件是DF=DE .(不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知可证BD=CD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等);解答:解:添加的条件是:DF=DE(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).理由如下:∵点D是BC的中点,∴BD=CD.在△BDF和△CDE中,∵,∴△BDF≌△CDE(SAS).故答案能够是:DF=DE.点评:考查了三角形全等的判定.三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.3.(2分)如图,如果△ABC≌△DEF,△DEF周长是32cm,DE=9cm,EF=13cm,∠E=∠B,则AC= 10 cm.考点:全等三角形的性质.分析:根据△DEF周长是32cm,DE=9cm,EF=13cm就可求出第三边DF的长,根据全等三角形的对应边相等,即可求得AC的长.解答:解:DF=32﹣DE﹣EF=10cm.∵△ABC≌△DEF,∠E=∠B,∴AC=DF=10cm.点评:本题考查全等三角形的性质,解题时应注重识别全等三角形中的对应边,要根据对应角去找对应边.4.(2分)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55°.考点:全等三角形的判定与性质.分析:求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.解答:解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.点评:本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.5.(2分)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8 .考点:线段垂直平分线的性质.专题:压轴题.分析:由已知条件,利用线段的垂直平分线和已给的周长的值即可求出.解答:解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.点评:本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相对应线段相等并实行等量代换.6.(2分)如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15 cm.考点:全等三角形的判定与性质.分析:先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.解答:解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(2分)如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有4 个.考点:全等三角形的判定;角平分线的性质.分析:根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别实行分析即可.解答:解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;所以其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2分)如图,已知△ABC为等腰直角三角形,D为斜边AB上任意一点,(不与点A、B重合),连接CD,作EC⊥DC,且EC=DC,连接AE,则∠EAC为45 度.考点:全等三角形的判定与性质;等腰直角三角形.专题:计算题.分析:由等腰直角三角形ABC的两腰相等的性质推知AC=CB,再根据已知条件“∠ACB=∠DCE=90°”求得∠ACE=90°﹣∠ACD=∠DCB,然后再加上已知条件DC=EC,能够根据全等三角形的判定定理SAS判定△ACE≌△BCD;最后由全等三角形的对应角相等的性质证明结论即可.解答:解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS).∴∠B=∠EAC(全等三角形的对应角相等).∵∠B=45°,∴∠EAC=45°.故答案为45°.点评:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质.注意,在证明△ACE≌△BCD时,一定要找准相对应的边与角.9.(2分)如图,已知点P为∠AOB的角平分线上的一点,点D在边OA上.爱动脑筋的小刚经过仔细观察后,实行如下操作:在边OB上取一点E,使得PE=PD,这时他发现∠OEP 与∠ODP之间有一定的相等关系,请你写出∠OEP与∠ODP所有可能的数量关系∠OEP=∠ODP或∠OEP+∠ODP=180°.考点:全等三角形的判定与性质.分析:数量关系是∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,根据SAS证△E2OP≌△DOP,推出E2P=PD,得出此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,根据等腰三角形性质推出∠PE2E1=∠PE1E2,求出∠OE1P+∠ODP=180°即可.解答:解:∠OEP=∠ODP或∠OEP+∠ODP=180°,理由是:以O为圆心,以OD为半径作弧,交OB于E2,连接PE2,∵在△E2OP和△DOP中,∴△E2OP≌△DOP(SAS),∴E2P=PD,即此时点E2符合条件,此时∠OE2P=∠ODP;以P为圆心,以PD为半径作弧,交OB于另一点E1,连接PE1,则此点E1也符合条件PD=PE1,∵PE2=PE1=PD,∴∠PE2E1=∠PE1E2,∵∠OE1P+∠E2E1P=180°,∵∠OE2P=∠ODP,∴∠OE1P+∠ODP=180°,∴∠OEP与∠ODP所有可能的数量关系是:∠OEP=∠ODP或∠OEP+∠ODP=180°,故答案为:∠OEP=∠ODP或∠OEP+∠ODP=180°.点评:本题考查了全等三角形的性质和判定,等腰三角形的性质和判定等知识点,主要考查学生的猜想水平和分析问题和解决问题的水平,题目具有一定的代表性,是一道比较好的题目.10.(2分)长为20,宽为a的矩形纸片(10<a<20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a的值为12或15 .考点:翻折变换(折叠问题).专题:压轴题;规律型.分析:首先根据题意可得可知当10<a<20时,第一次操作后剩下的矩形的长为a,宽为20﹣a,第二次操作时正方形的边长为20﹣a,第二次操作以后剩下的矩形的两边分别为20﹣a,2a﹣20.然后分别从20﹣a>2a﹣20与20﹣a<2a﹣20去分析求解,即可求得答案.解答:解:由题意,可知当10<a<20时,第一次操作后剩下的矩形的长为a,宽为20﹣a,所以第二次操作时剪下正方形的边长为20﹣a,第二次操作以后剩下的矩形的两边分别为20﹣a,2a﹣20.此时,分两种情况:①如果20﹣a>2a﹣20,即a<,那么第三次操作时正方形的边长为2a﹣20.则2a﹣20=(20﹣a)﹣(2a﹣20),解得a=12;②如果20﹣a<2a﹣20,即a>,那么第三次操作时正方形的边长为20﹣a.则20﹣a=(2a﹣20)﹣(20﹣a),解得a=15.∴当n=3时,a的值为12或15.故答案为:12或15.点评:此题考查了折叠的性质与矩形的性质.此题难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用,注意折叠中的对应关系.二、选择:(每题3分,共27分)11.(3分)下列轴对称图形中,只有两条对称轴的图形是()A.B.C.D.考点:轴对称图形.分析:关于某条直线对称的图形叫轴对称图形,看各个图形有几条对称轴即可.解答:解:A、有两条对称轴,符合题意;B、C、都只有一条对称轴,不符合题意;D、有六条,对称轴,不符合题意;故选A.点评:轴对称的关键是寻找对称轴,两边图象折叠后可重合.12.(3分)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),能够说明△EDC≌△ABC,得ED=AB,所以测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角考点:全等三角形的应用.分析:由已知能够得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.解答:解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.点评:本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.13.(3分)如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD 于E,图中全等三角形有()A.3对B.5对C.6对D. 7对考点:全等三角形的判定.分析:根据题目的意思,能够推出△ABE≌△CDF,△AOE≌△COF,△ABO≌△CDO,△BCO≌△DOA,△ABC≌△CDA,△ABD≌△CDB,△ADE≌△CBF.再分别实行证明.解答:解:①△ABE≌△CDF∵AB∥CD,AD∥BC∴AB=CD,∠ABE=∠CDF∵AE⊥BD于E,CF⊥BD于E∴∠AEB=∠CFD∴△ABE≌△CDF;②△AOE≌△COF∵AB∥CD,AD∥BC,AC为ABCD对角线∴OA=OC,∠EOA=∠FOC∵∠AEO=∠CFO∴△AOE≌△COF;③△ABO≌△CDO∵AB∥CD,AD∥BC,AC与BD交于点O∴OD=OB,∠AOB=∠COD,OA=OC∴△ABO≌△CDO;④△BOC≌△DOA∵AB∥CD,AD∥BC,AC与BD交于点O∴OD=OB,∠BOC=∠DOA,OC=OA∴△BOC≌△DOA;⑤△ABC≌△CDA∵AB∥CD,AD∥BC∴BC=AD,DC=AB,∠ABC=∠CDA∴△ABC≌△CDA;⑥△ABD≌△CDB∵AB∥CD,AD∥BC∴∠BAD=∠BCD,AB=CD,AD=BC∴△ABD≌△CDA;⑦△ADE≌△CBF∵AD=BC,DE=BF,AE=CF∴△DEC≌△BFA.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS,ASA、HL.同时考查了平行四边形的性质,题目比较容易.14.(3分)如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA考点:全等三角形的判定;等边三角形的性质.专题:压轴题.分析:首先根据角间的位置及大小关系证明∠BCD=∠ACE,再根据边角边定理,证明△BCE≌△ACD;由△BCE≌△ACD可得到∠DBC=∠CAE,再加上条件AC=BC,∠ACB=∠ACD=60°,可证出△BGC≌△AFC,再根据△BCD≌△ACE,可得∠CDB=∠CEA,再加上条件CE=CD,∠ACD=∠DCE=60°,又可证出△DCG≌△ECF,利用排除法可得到答案.解答:解:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立,∴∠DBC=∠CAE,∵∠BCA=∠ECD=60°,∴∠ACD=60°,在△BGC和△AFC中,∴△BGC≌△AFC,故B成立,∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立,故选:D.点评:此题主要考查了三角形全等的判定以及等边三角形的性质,解决问题的关键是根据已知条件找到可证三角形全等的条件.15.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若GH的长为10cm,求△PAB的周长为()A.5cm B.10cm C.20cm D. 15cm考点:轴对称的性质.分析:先根据轴对称的性质得出PA=AG,PB=BH,由此可得出结论.解答:解:∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴PA=AG,PB=BH,∴△PAB的周长=AP+PB+AB=AG+AB+BH=GH=10cm.故选B.点评:本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.16.(3分)下列各条件不能作出唯一直角三角形的是()A.已知两直角边B.已知两锐角C.已知一直角边和一锐角D.已知斜边和一直角边考点:全等三角形的判定.分析:根据直角三角形全等的判定定理(SAS,ASA,AAS,SSS,HL)判断即可.解答:解:A、∵两直角边和直角对应相等,∴根据SAS能推推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;B、如教师用的含30度角的三角板和学生使用的含30度的三角板符合两锐角相等,但是不能化成唯一直角三角形,故本选项正确;C、根据ASA或AAS可以推出两直角三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;D、根据HL定理即可推出两三角形全等,即只能作出唯一的一个直角三角形,故本选项错误;故选B.点评:本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.17.(3分)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB 于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.专题:压轴题.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.18.(3分)如图,AD平分∠BAC,EG⊥AD于H,则下列等式中成立的是()A.∠α=(∠β+∠γ)B.∠α=(∠β﹣∠γ)C.∠G=(∠β+∠γ)D.∠G=∠α考点:全等三角形的判定与性质;三角形的外角性质.分析:由于∠α是△BEC的外角,可以得到∠α=∠β+∠G ①,而∠γ是△CFG的外角,可以得到∠γ=∠CFG+∠G ②,而∠AFE和∠CFG是对顶角,由∠AD平分∠BAC,EG⊥AD于H可以推出∠α=∠AFE,然后利用①②即可得到答案.解答:解:∵∠α是△BEC的外角,∴∠α=∠β+∠G ①,∵∠γ是△CFG的外角,∴∠γ=∠CFG+∠G ②∵AD平分∠BAC,EG⊥AD于H,AH公共边,∴△AEH≌△AFH,∴AE=AF,∴∠α=∠AFE,而∠AFE=∠CFG,∴∠AFE=∠CFG=∠α,∴∠γ=∠α+∠G ③,①﹣③得∠α﹣∠γ=∠β﹣∠α,∴2∠α=∠β+∠γ,即∠α=(∠β+∠γ).故选A.点评:此题利用了全等三角形的判定与性质,三角形的内角和外角的关系等知识解题,综合性比较强.做题时,要结合已知条件与全等的判定方法对选项逐一验证.19.(3分)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50 B.62 C.65 D.68考点:全等三角形的判定与性质.专题:压轴题.分析:由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.解答:解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90°,∠EAF+∠BAG=90°,∠ABG+∠BAG=90°⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG,AG=EF.同理证得△BGC≌△DHC得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选A.点评:本题考查的是全等三角形的判定的相关知识,是中考常见题型.三、作图(4+6=10分):20.(4分)现有三个村庄甲、乙、丙,现要新建一个水泵站P,使它到三个村庄的距离相等,应建在何处?(尺规作图,不写作法,保留痕迹)考点:作图—应用与设计作图;线段垂直平分线的性质.分析:利用线段垂直平分线的作法以及其性质得出,连接各点作出任意两边垂直平分线进而得出交点即可.解答:解:如图所示:P点即为所求.点评:此题主要考查了应用设计与作图,熟练利用线段垂直平分线的性质得出是解题关键.21.(6分)已知一个三角形的两边长分别是1cm和2cm,一个内角为40°.(1)请你借助图画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在下图画这样的三角形;若不能,请说明理由.(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°,”那么满足这一条件,且彼此不全等的三角形共有几个?分别画出草图,并在图中相应位置标明数据.(画图请保留作图痕迹,并把符合条件的图形用黑色笔画出来)考点:作图—应用与设计作图;全等三角形的判定.分析:(1)利用已知条件画出符合要求的图形即可;(2)利用已知条件画出符合要求的图形即可;(3)利用已知条件画出符合要求的图形即可.解答:解:(1)如图(1)所示:(2)如图(2)所示:(3)如图所示:.点评:此题主要考查了应用设计与作图,利用三角形的形状不确定得出是解题关键.三、解答:(共43分)22.(6分)在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:考点:全等三角形的判定与性质;命题与定理.专题:压轴题.分析:此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.解答:情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.点评:此题主要考查了全等三角形的判定与性质,此题为开放性题目,需要同学们有较强的综合能力,熟练应用全等三角形的全等判定才能正确解答.23.(6分)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC.考点:等腰三角形的性质;全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:先根据AB=AC,可得∠ABC=∠ACB,再由垂直,可得90°的角,在△BCE和△BCD 中,利用内角和为180°,可分别求∠BCE和∠DBC,利用等量减等量差相等,可得FB=FC,再易证△ABF≌△ACF,从而证出AF平分∠BAC.解答:证明:∵AB=AC(已知),∴∠ABC=∠ACB(等边对等角).∵BD、CE分别是高,∴BD⊥AC,CE⊥AB(高的定义).∴∠CEB=∠BDC=90°.∴∠ECB=90°﹣∠ABC,∠DBC=90°﹣∠ACB.∴∠ECB=∠DBC(等量代换).∴FB=FC(等角对等边),在△ABF和△ACF中,,∴△ABF≌△ACF(SSS),∴∠BAF=∠CAF(全等三角形对应角相等),∴AF平分∠BAC.点评:本题考查了等腰三角形的性质及三角形的内角和定理;等量减等量差相等的利用是解答本题的关键.24.(6分)在△ABC中,AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC 于E,l1与l2相交于点O.△ADE的周长为6cm.(1)求BC的长;(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长.考点:线段垂直平分线的性质.分析:(1)先根据线段垂直平分线的性质得出AD=BD,AE=CE,再根据AD+DE+AE=BD+DE+CE即可得出结论;(2)先根据线段垂直平分线的性质得出OA=OC=OB,再由∵△OBC的周长为16cm求出OC的长,进而得出结论.解答:解:(1)∵DF、EG分别是线段AB、AC的垂直平分线,∴AD=BD,AE=CE,∴AD+DE+AE=BD+DE+CE=BC,∵△ADE的周长为6cm,即AD+DE+AE=6cm,∴BC=6cm;(2)∵AB边的垂直平分线l1交BC于D,AC边的垂直平分线l2交BC于E,∴OA=OC=OB,∵△OBC的周长为16cm,即OC+OB+BC=16,∴OC+OB=16﹣6=10,∴OC=5,∴OA=OC=OB=5.点评:本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.25.(6分)如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.考点:全等三角形的判定与性质.分析:(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得到一对角相等,再由一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形BHF与三角形CHE相似,由相似三角形的对应角相等得到一对角相等,再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.解答:(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.点评:此题考查了全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握判定与性质是解本题的关键.26.(11分)(1)如图1,图2,图3,在△ABC中,分别以AB,AC为边,向△ABC外作正三角形,正四边形,正五边形,BE,CD相交于点O.①如图1,试说明:△ABE≌△ADC;②探究:如图1,∠BOC=120;如图2,∠BOC=90°;如图3,∠BOC=72°;(2)如图4,AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边,BE,CD的延长相交于点O,试猜想:图4中∠BOC=.(用含n的式子表示)考点:全等三角形的判定与性质;等边三角形的性质;多边形内角与外角;正方形的性质.分析:根据等边三角形的性质可以得出△DAC≌△BAE,再根据三角形的外角与内角的关系就可以求出∠BOC的值,在图2中,连结BD,然后用同样的方法证明△DAC≌△BAE,根据三角形外角与内角之间的关系就可以求出∠BOC的值,依此类推就可以得出当作n边形的时候就可以求出图4∠BOC的值.解答:①证明:如图1,∵△ABD和△AEC是等边三角,∴AD=AB,AE=AC,∠DAB=∠EAC=∠ABD=∠ADB=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS).②解:∵△DAC≌△BAE,∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠OBD,∴∠BOC=∠BDA+∠ABE+∠OBD,∴∠BOC=∠BDA+∠ADC+∠OBA,∴∠BOC=∠BDA+∠OBD=60°+60°=120°=.如图2,连结BD,∵四边形ABFD和四边形ACGE是正方形,∴AB=AD,AE=AC,∠BAD=∠CAE=90°,∠BDA=∠DBA=45°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠CAD.在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴∠CDA=∠EBA.∵∠BOC=∠BDO+∠DBO,∴∠BOC=∠BDA+∠ADO+∠DBO,∴∠BOC=∠BDA+∠ABE+∠DBO,∴∠BOC=∠BDA+∠DBA=45°+45°=90°=;如图3,连结BD,,∵五边形ABHFD和五边形ACIGO是正五边形,∴AB=AD,AE=AC,∠BAD=∠EAC=108°,∴∠BAD+∠DAE=∠EAC+∠DAE,∠ABD=∠ADB=36°∴∠BAE=∠DAC在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC.∵∠BOC=∠OBD+∠BDO,∴∠BOC=∠ADB+∠ADC+∠OBD,∴∠BOC=∠ADB+∠ABE+∠OBD,∴∠BOC=∠ADB+∠ABD=72°=.(2)以此类推,当作正n边形时,∠BOC=.故答案为:120°,90°,72°,.点评:本题考查了全等三角形的判定与性质,根据正多边形的性质证明三角形全等是解题关键.27.(8分已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF 绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=S△ABC;(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.考点:旋转的性质;直角三角形全等的判定.专题:综合题.分析:先作出恰当的辅助线,再利用全等三角形的性质进行解答.解答:解:(1)显然△AED,△DEF,△ECF,△BDF都为等腰直角三角形,且全等,则S△DEF+S△CEF=S△ABC;(2)图2成立;图3不成立.图2证明:过点D作DM⊥AC,DN⊥BC,则∠DME=∠DNF=∠MDN=90°,又∵∠C=90°,∴DM∥BC,DN∥AC,∵D为AB边的中点,由中位线定理可知:DN=AC,MD=BC,∵AC=BC,∴MD=ND,∵∠EDF=90°,∴∠MDE+∠EDN=90°,∠NDF+∠EDN=90°,∴∠MDE=∠NDF,在△DME与△DNF中,∵,∴△DME≌△DNF(ASA),∴S△DME=S△DNF,∴S四边形DMCN=S四边形DECF=S△DEF+S△CEF,由以上可知S四边形DMCN=S△ABC,∴S△DEF+S△CEF=S△ABC.图3不成立,连接DC,证明:△DEC≌△DBF(ASA,∠DCE=∠DBF=135°)∴S△DEF=S五边形DBFEC,=S△CFE+S△DBC,=S△CFE+,∴S△DEF﹣S△CFE=.故S△DEF、S△CEF、S△ABC的关系是:S△DEF﹣S△CEF=S△ABC.点评:利用作出的辅助线将不规则的三角形转化为直角三角形进行解决.。
国家八年级数学质量测试题(六套)
八年级数学测试题卷1一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....). 1.2的绝对值是( ). A .-2 B .21C . 21D .22.下表是世界五大洲的最低点及其海拔高度: 世界五大洲的最低点 亚洲死海 欧洲里海 非洲阿萨尔湖大洋洲北艾尔湖美洲死谷海 海拔∕m-422-28-153-16-85根据以上数据,海拔最低的是( ).A .美洲死谷海B .大洋洲北艾尔湖C .亚洲死海D .非洲阿萨尔湖 3.关于代数式a + 1的值,下列说法正确的是( ).A .比1大B .比1小C .比a 大D .比a 小 4.11在数轴上的对应点的位置大致是( ).A .B .C .D .5.一个不透明的口袋里装有红、白、黄、蓝四种颜色的球,这些球除颜色外其余特征都相同.其中红球有20个,白球有30个,黄球有40个,蓝球有35个.现从该口袋中随机摸出1个球,可能性最大的是( ).A .红球B .白球C .黄球D .蓝球 6.某地区研究人员发现,该地区PM 2.5有五个重要来源, 分别是机动车船排放、工业生产、燃煤、扬尘、民用,下图反 映了它们所占的比例,则下列结论正确的是( ).A .工业生产所占比例最高B .燃煤所占比例最低C .机动车船排放比民用高14.2%D .机动车船排放比扬尘低14.2%7.超市举行“满58元即可抽奖”的活动,林阿姨想买纸巾和洗衣液凑够58元,如果她买3包纸巾和1袋洗衣液,还差6元钱;如果买2包纸巾和2袋洗衣液,超出2元钱.设纸巾的单价为x 元,洗衣液的单价为y 元,则可列出的二元一次方程组为( ).-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6民用15%机动车船排放29.2%燃煤13.5%扬尘13.4% 工业生产28.9%A .⎩⎨⎧=+=+6022,523y x y xB .⎩⎨⎧=+=+5622,643y x y xC .⎩⎨⎧=+=+5622,523y x y xD .⎩⎨⎧=+=+6022,643y x y x8.如图,四个全等的长为m ,宽为n 的长方形围成了一个 大正方形,能表示阴影部分面积的代数式是( ).A .m 2+ n 2B .m 2-n 2C .(m + n )2D .(m -n )29.如图,蜂巢的横截面是由一些全等的正六边形紧密排列在一起而 形成的,根据图中标示的各点位置,与△ABC 全等的三角形是( ).A .△ABDB .△ECFC .△BCFD .△DEF10.小明买了一盒牛奶,如图1所示,正面有“牛奶”.右侧面有一根吸管,小明喝完牛奶后将纸盒剪开,展开如图2所示,那么在展开图中,吸管所在侧面的编号是( ).A .①B .②C .③D .④11.《铁路旅客运输规程》规定:每名旅客可免费携带的物品外部尺寸长、宽、高之和不超过160 cm ,若某行李箱高为30 cm ,长与宽的比为3:2,则符合免费携带物品要求的行李箱的宽的最大值为( )cm .A .26B .52C .64D .78 12.如图,在中Rt △ABC 中,∠A = 30︒.AB 的垂直平分线分别交AB , AC 于点D 、点E ,连接BE .则AE 与CE 之间的数量关系是( ).A .AE = CEB .AE =23CE C .AE = 2CE D .AE = 3CE 二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.解二元一次方程组:⎩⎨⎧-=+=-.432,52y x y x14.计算:a 2·a 3,并用乘方的意义解释你是如何计算的.15.乘坐某交通工具,每位乘客可免费托运行李的质量最多为20 kg ,超出20 kg 的部分按每千克10元收费.(1)如果小云托运了25 kg 的行李,她需要付多少元的托运费用?牛奶吸管牛奶②①③④ACDF B EmnBCE DA(2)当质量超过20 kg 时,求小云的托运费用y (元)与行李质量x (kg )的函数表达式. (3)画出(2)中所求函数表达式的图象.16.图1是一张风筝的图片,依据风筝的形状画出一个如图2所示的四边形,我们把它称为筝形. (1)请根据筝形的图形特点,解答下面两个问题:(2)你认为筝形具有哪些性质?(请结合图2写出三条,不必说明理由)(3)请你给筝形下一个数学定义.八年级数学测试题卷2一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.3的相反数是( ).A .3B .-3C .31D .31-2.足球比赛用球的标准质量是385 g .以385 g 为标准,高出标准的记为“+”,低于标准的记为“-”.如,一个388 g 足球的质量可记为“+3 g ”.若一个足球的质量记为“-8 g ”,则它的实际质量是( ).A .-8 gB .8 gC .377 gD .393 g3.与5最.接近的整数是( ). A .2 B .3 C .4 D .54.如图,直线a ∥b ,直线c 与直线a 、b 都相交.若∠1 = 120︒,则∠2的度数为( ). A .30︒ B .60︒ C .70︒ D .120︒ 5.将x 2-9y 2分解因式的结果是( ).A .(x + 9y )(x -9y )B .(x + 3y )(x -3y )C .(x + 3)(x -3)D .(x -3y )2 6.小红统计了班里同学的上学方式,并分别绘制了如下两个统计图,则条形统计图中阴影部分所代表的上学方式是( ).A .公共交通B .骑车C .步行D .其他7.超市举行“满58元即可抽奖”的活动,林阿姨 想买纸巾和洗衣液凑够58元.如果她买3包纸巾和1袋洗衣液,还差6元钱;如果买2包纸巾和2袋洗衣液,超出2元钱.设纸巾的单价为x 元,洗衣液的单价a bc21 骑车 步行公共交通其他上学方式人数ABCD为y 元,则可列出的二元一次方程组为( ).A .⎩⎨⎧=+=+6022,523y x y xB .⎩⎨⎧=+=+5622,643y x y xC .⎩⎨⎧=+=+5622,523y x y xD .⎩⎨⎧=+=+6022,643y x y x8.如图,四个全等的长为m ,宽为n (m >n )的长方形围成了一个大长方形,能表示阴影部分面积的代数式是( ).A .m 2 + n 2B .m 2-n 2C .(m + n )2D .(m -n )2 9.如图,蜂巢的横截面是由一些全等的正六边形紧密排列在一起而形成的. 根据图中标示的各点位置,与△ABC 全等的三角形是( ).A .△ABDB .△ECFC .△BCFD .△DEF 10.小明买了一盒牛奶,如图所示,正面写有“牛奶”,右侧面有一根吸管. 小明喝完牛奶后将纸盒剪开,展开图如后,那么在展开图中,吸管所在侧面的编 号是( ).A .①B .②C .③D .④11.《铁路旅客运输规程》规定:每名旅客可免费携带的物品外部尺寸长、宽、高之和不超过160 cm .若某行李箱高为30 cm ,长与宽的比为3:2,则符合免费携带物品要求的行李箱的宽的最大值为( )cm .A .26B .52C .64D .78 12.如图,在Rt △ABC 中,∠C = 90︒,∠A = 30︒.AB 的垂直平分线分别交 AB ,AC 于点D 、点E ,连接BE ,则AE 与CE 之间的数量关系是( ).A .AE = CEB .AE =23CE C .AE = 2CE D .AE = 3CE 二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.如图,在△ABC 中,AB = AC ,D ,E 是BC 上的两点,且AD = AE . 求证:△ABD ≌ACE .14.计算:a 2·a 3,并用乘方的意义解释你是如何计算的.15.按照国际通行的标准,当一个国家或地区60及60岁以上人口达到人口总数的10%,或65及65ACD FBEm nB CE D AABD EC牛奶吸管牛奶②①③④岁以上人口达到人口总数的7%,即意味着这个国家或地区进入老龄化社会.某中学八年级学生随机调查了某地区80名居民的年龄情况,被调查居民年龄情况的统计图如下:(1)在所调查的居民中,60及60岁以上人口占社区人口总数的百分比是多少?65及65岁以上呢? (2)根据以上数据推断,该社区是否进入了老龄化社会?并说明理由. (3)请你为该社区居委会提出一条合理化建议.(尽可能结合所学的数学知识)16.图1是一张风筝的图片,依据风筝的形状画出一个如图2所示的四边形,我们把它称为筝形.请根据筝形的图形特点,解答下面两个问题:(1)你认为筝形具有哪些性质?(请结合图2写出三条,不必说明理由) (2)请你给筝形下一个数学定义.八年级数学测试题卷3一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在答题卡的相应位置上)1.3的相反数是( ).A .3B .-3C .31D .31-2.足球比赛用球的标准质量是385 g .以385 g 为标准,高出标准的记为“+”,低于标准的记为“-”.如,一个388 g 足球的质量可记为“+3 g ”.若一个足球的质量记为“-8 g ”,则它的实际质量是( ).A .-8 gB .8 gC .377 gD .393 g 3.与5最.接近的整数是( ). A .2 B .3 C .4 D .54.如图,直线a ∥b ,直线c 与直线a 、b 都相交.若∠1 = 120︒,则∠2的度数为( ).A .30︒B .60︒C .70︒D .120︒ 5.将x 2-9y 2分解因式的结果是( ).人数年龄/岁30以下 30-54 55-59 60-64 65-69 70及以上 40 35 30 25 20 15 10 524 378542ABCDabc21A .(x + 9y )(x -9y )B .(x + 3y )(x -3y )C .(x + 3)(x -3)D .(x -3y )26.小红统计了班里同学的上学方式,并分别绘制了如下两个统计图,则条形统计图中阴影部分所代表的上学方式是( ).A .公共交通B .骑车C .步行D .其他7.小明用三根木条组成等腰三角形,则这三根木条的长度可能是( ). A .80 cm ,35 cm ,35 cm B .70 cm ,35 cm ,35 cm C .40 cm ,30 cm ,30 cm D .30 cm ,40 cm ,50 cm 8.如图,∠1,∠2,∠3,∠4,∠5分别是六边形ABCDEF 的 五个外角,且∠1 +∠2 +∠3 +∠4 +∠5 = 260︒,则∠C 等于( ).A .100︒B .90︒C .80︒D .70︒ 9.下面是某中学的平面示意图,每个方格的边长都是1, 如图旗杆所在位置的坐标为(0,0),小明所在位置的坐标为 (-6,1),那么坐标(3,-3)所代表的地点是( ).A .图书馆B .操场C .教学楼D .花坛10.小明带了20元去打印学习资料,黑白打印每页0.15元, 彩色打印每页1元,现已彩色打印15页,最多..还能黑白打印多少 页?( ).A .31B .32C .33D .3411.一滴墨水滴在了正方体的一个角上,那么正方体的展开图可能是( ).A .B .骑车 步行公共交通其他上学方式人数CDEBAF 1 23 45图书馆操场花坛教学楼 旗杆小明C .D .12.直线l 1:y = kx + b 的图象如右下图所示,直线l 2上部分点的坐标如左下表所示,那么直线l 1与l 2的交点坐标是( ).A .(3,2)B .(7,6)C .(0,-1)D .(-1,0) 二、解答题(共4题,请将解答过程写在填答卡的相应位置上.........) 13.如图,在△ABC 中,AB = AC ,D ,E 是BC 上的两点,且AD = AE . 求证:△ABD ≌△ACE .14.请你写出完全平方式(a + b )2= a 2+ 2ab + b 2的推导过程.15.按照国际通行的标准,当一个国家或地区60及60岁以上人口达到人口总数的10%,或65及65岁以上人口达到人口总数的7%,即意味着这个国家或地区进入老龄化社会.某中学八年级学生随机调查了某地区80名居民的年龄情况,被调查居民年龄情况的统计图如下:(1)在所调查的居民中,60及60岁以上人口占社区人口总数的百分比是多少?65及65岁以上呢? (2)根据以上数据推断,该社区是否进入了老龄化社会?并说明理由. (3)请你为该社区居委会提出一条合理化建议.(尽可能结合所学的数学知识)16.某校进行安全疏散演练,要求学生选择最短路线尽快到达如图所示的矩形安全区域.(1)如图1,如果小红处于点A 的位置,请用尺规作出她到达安全区域的最短路线,并说明理由(保留作图痕迹);(2)如果小明处于图1中点B 的位置,请画出他到达安全区域的最短路线,并说明理由.(3)图2中C ,D 分别表示安全区域外的另外两名同学小亮和小童所处的位置,他们中哪位同学到达x … -3 -1 3 5 … y…-123…xyl 111ABD EC人数年龄/岁30以下 30-54 55-59 60-64 65-69 70及以上 40 35 30 25 20 15 10 524 378542安全区域的最短路线的方式与小红相同?哪位同学达到安全区域的最短路线的方式与小明相同?(4)你认为安全区域的任何一名同学到达安全区域的最短路线还有其他不同的方式吗?如果有,请画出;如果没有,请说明理由.八年级数学测试题卷4一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.中新网2015年1月20日电,国家统计局发布最新人口数据:2014年末大陆人口为1367820000人,1367820000用科学记数法表示为( ).A .1.36782×108B .1.36782×109C .0.136782×1010D .13.6782×109 2.下列四个交通标志牌中,只有两条对称轴的是( ).A .B .C .D .3.图中所示是深受人们喜爱的“俄罗斯方块”的电子游戏画面.如果想使上方的方块组落下后刚好填满下方的空格,那么可以将上方的方块组( ).A .先向右平移1格,后向下平移4格B .先向右平移2格,后向下平移4格C .先向右平移3格,后向下平移3格D .先向右平移4格,后向下平移3格4.解方程3x + 5 = 2x + 7时,下列变形正确的是( ).A .3x + 2x = 7 + 5B .3x -2x = 7 + 5C .3x -2x = 7-5D .2x -3x = 7-5小明安全区域安全区域图1 图2小红·A ·B 小童 C ··D小亮5.在-1,3,2,5这四个数中,最大的数是( ).A .-1B .3C .2D .5 6.⎩⎨⎧-=-=1,2y x 是下面哪个方程的解?( ).A .2x + y = 0B .2x + y -5 = 0C .2x + y + 5 = 0D .2x -y = 0 7.小明用三根木条组成等腰三角形,则这三根木条的长度可能是( ). A .80 cm ,35 cm ,35 cm B .70 cm ,35 cm ,35 cm C .40 cm ,30 cm ,30 cm D .30 cm ,40 cm ,50 cm 8.如图,∠1,∠2,∠3,∠4,∠5分别是六边形ABCDEF 的 五个外角,且∠1 +∠2 +∠3 +∠4 +∠5 = 260︒,则∠C 等于( ).A .100︒B .90︒C .80︒D .70︒ 9.下面是某中学的平面示意图,每个方格的边长都是1, 如图旗杆所在位置的坐标为(0,0),小明所在位置的坐标为(-6,1),那么坐标(3,-3)所代表的地点是( ).A .图书馆B .操场C .教学楼D .花坛10.小明带了20元去打印学习资料,黑白打印每页0.15元, 彩色打印每页1元,现已彩色打印15页,最多..还能黑白打印 多少页?( ).A .31B .32C .33D .34二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.计算:2422-÷-x xx x .14.请你写出完全平方式(a + b )2 = a 2 + 2ab + b 2 的推导过程.15.如图1,公路上依次有A ,B ,C 三点,AB 间的距离为2 km ,BC 间的距离为4 km ,小张和小丽分别从A ,B 两地同时出发匀速去往C 地,图2是小张和小丽出发t (h )后分别与A 地相距s 1(km )和s 2(km )的函数图像.CDEBAF 1 2345 图书馆操场花坛教学楼 旗杆小明(1)图2中,表示小张运动过程的线段是 ,表示小丽运动过程的线段是 ; (2)分别求出s 1 ,s 2与t 的函数关系式; (3)说出图2中点N 的实际意义.16.某校进行安全疏散演练,要求学生选择最短路线尽快到达如图所示的矩形安全区域.(1)如图1,如果小红处于点A 的位置,请用尺规作出她到达安全区域的最短路线,并说明理由(保留作图痕迹);(2)如果小明处于图1中点B 的位置,请画出他到达安全区域的最短路线,并说明理由.(3)图2中C ,D 分别表示安全区域外的另外两名同学小亮和小童所处的位置,他们中哪位同学到达安全区域的最短路线的方式与小红相同?哪位同学达到安全区域的最短路线的方式与小明相同?(4)你认为安全区域的任何一名同学到达安全区域的最短路线还有其他不同的方式吗?如果有,请画出;如果没有,请说明理由.八年级数学测试题卷5一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.中新网2015年1月20日电,国家统计局发布最新人口数据:2014年末大陆人口为1367820000人,1367820000用科学记数法表示为( ).A .1.36782×108B .1.36782×109C .0.136782×1010D .13.6782×109 2.下列四个交通标志牌中,只有两条对称轴的是( ).s/km6 4 NQP Ot/h0.42ABC小张 小丽小明安全区域安全区域图1 图2小红·A ·B 小童 C ··D小亮A.B.C.D.3.图中所示是深受人们喜爱的“俄罗斯方块”的电子游戏画面.如果想使上方的方块组落下后刚好填满下方的空格,那么可以将上方的方块组().A.先向右平移1格,后向下平移4格B.先向右平移2格,后向下平移4格C.先向右平移3格,后向下平移3格D.先向右平移4格,后向下平移3格4.解方程3x + 5 = 2x + 7时,下列变形正确的是().A.3x + 2x = 7 + 5 B.3x-2x = 7 + 5 C.3x-2x = 7-5 D.2x-3x = 7-55.在-1,3,2,5这四个数中,最大的数是().A.-1 B.3 C.2D.56.⎩⎨⎧-=-=1,2yx是下面哪个方程的解?().A.2x + y = 0 B.2x + y-5 = 0 C.2x + y + 5 = 0 D.2x-y = 07.小明和小华约定同时各自从家骑车出发去附近的早餐店吃早餐.如图,每一个小方格的边代表实际长度为100 m的街道,他们各自选择沿小方格的边......以最短路线去早餐店,经过t min同时到达,那么小明的速度比小华的速度快().A.t500m∕min B.t400m∕min C.t300m∕minD.t200m∕min 8.平面直角坐标系内有五个点:A(4,2),B(4,-2),C(-4,2),D(-4,-2),E(3,-1),将点A,B,C,D分别与点E连接,在所得的线段中,与x轴及y轴都相交的线段是().A.AE B.BE C.CE D.DE9.下图分别是某中学七年级和八年级男、女学生人数的分布图,关于这两个年级女生人数说法正确的是().A.七年级较多B.八年级较多C.一样多D.无法比较10.在矩形ABCD中,AD = 5,AB = 4,以A为圆心,小华家早餐店小明家女生60%男生40%女生54%男生46%八年级男、女学生人数分布七年级男、女学生人数分布AD 长为半径画弧,交BC 于点E ,那么BE 的长为( ).A .1B .2C .3D .411.一次函数y = kx + b 中x ,y 的几组对应值如下表,可以得到m 的值为( ).x … -2 0 2 4 … y…4m810…A .5B .6C .7D .012.用两个图钉将一个橡皮筋的两个端点A ,B 固定在桌面上,拉动橡皮筋构成△ABP ,点C 、点D 分别为AP ,BP 的中点,拉动点P 至P ′ 的过程中,CD 的长度( ).A .增长B .缩短C .不变D .先增长后缩短三、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.计算:2422-÷-x xx x . 14.已知A ,B ,C 三点不在一条直线上,请你只用一把带有刻度........的直尺,画出平行四边形ABCD ,简述你的理由.15.如图1,公路上依次有A ,B ,C 三点,AB 间的距离为2 km ,BC 间的距离为4 km ,小张和小丽分别从A ,B 两地同时出发匀速去往C 地,图2是小张和小丽出发t (h )后分别与A 地相距s 1(km )和s 2(km )的函数图像.(1)图2中,表示小张运动过程的线段是 ,表示小丽运动过程的线段是 ; (2)分别求出s 1 ,s 2与t 的函数关系式; (3)说出图2中点N 的实际意义.16.计算从11到19这九个两位数中任何两个数的乘积, 有一些有趣的做法,例如:11×12 =(11 + 2)×10 + 1×2 = 130 + 2 = 132; 13×17 =(13 + 7)×10 + 3×7 = 200 + 21 = 221; 17×16 =(17 + 6)×10 + 7×6 = 230 + 42 = 272. (1)类比上述做法,再写出1个相同类型的式子; (2)请用字母表示上述做法的规律,并说明其合理性; (3)受到上述过程的启发,请你再提出1个数学问题.A BCEDAB CDPP ′ s/km6 4NQP Ot/h0.42ABC小张 小丽八年级数学测试题卷6一、选择题(共12题,每小题只有一个答案是正确的,请将正确选项前的字母代号填涂在填答卡的....相应位置上.....) 1.2的绝对值是( ). A .-2 B .21C .21D .22.下表是世界五大洲的最低点及其海拔高度 世界五大洲的最低点亚洲死海 欧洲里海 非洲阿萨尔湖大洋洲北艾尔湖美洲死谷海 海拔∕m-422-28-153-16-85根据以上数据,海拔最低的是( ).A .美洲死谷海B .大洋洲北艾尔湖C .亚洲死海D .非洲阿萨尔湖 3.关于代数式a + 1的值,下列说法正确的是( ).A .比1大B .比1小C .比a 大D .比a 小 4.11在数轴上的对应点的位置大致是( ).A .B .C .D .5.一个不透明的口袋里装有红、白、黄、蓝四种颜色的球,这些球除颜色外其余特征都相同.其中红球有20个,白球有30个,黄球有40个,蓝球有35个.现从该口袋中随机摸出1个球,可能性最大的是( ).A .红球B .白球C .黄球D .蓝球6.某地区研究人员发现,该地区PM 2.5有五个重要来源,分别是机动车船排放、工业生产、燃煤、扬尘、民用,下图反映了它们所占的比例,则下列结论正确的是( ).A .工业生产所占比例最高B .燃煤所占比例最低C .机动车船排放比民用高14.2%D .机动车船排放比扬尘低14.2% 7.小明和小华约定同时各自从家骑车出发去附近的早餐店吃早餐. 如图,每一个小方格的边代表实际长度为100 m 的街道,他们各自选择 沿小方格的边......以最短路线去早餐店,经过t min 同时到达,那么小明的 速度比小华的速度快( ).-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6-2 -1 0 1 2 3 4 5 6民用15%机动车船排放29.2%燃煤13.5%扬尘13.4% 工业生产28.9%小华家早餐店小明家A .t 500m ∕min B .t 400m ∕min C .t300m ∕min D .t 200m ∕min8.平面直角坐标系内有五个点:A (4,2),B (4,-2),C (-4,2),D (-4,-2),E (3,-1),将点A ,B ,C ,D 分别与点E 连接,在所得的线段中,与x 轴及y 轴都相交的线段是( ).A .AEB .BEC .CED .DE 9.下图分别是某中学七年级和八年级男、女学生人数的 分布图,关于这两个年级女生人数说法正确的是( ).A .七年级较多B .八年级较多C .一样多D .无法比较10.在矩形ABCD 中,AD = 5,AB = 4,以A 为圆心, AD 长为半径画弧,交BC 于点E ,那么BE 的长为( ).A .1B .2C .3D .411.一次函数y = kx + b 中x ,y 的几组对应值如下表,可以得到m 的值为( ).x … -2 0 2 4 …y…4m810…A .5B .6C .7D .012.用两个图钉将一个橡皮筋的两个端点A ,B 固定在桌面上,拉动橡皮筋构成△ABP ,点C 、点D 分别为AP ,BP 的中点,拉动点P 至P ′的过程中,CD 的长度( ).A .增长B .缩短C .不变D .先增长后缩短 二、解答题(共4题,请将解答过程写在填答卡的相应位置........上) 13.解二元一次方程组:⎩⎨⎧-=+=-.432,52y x y x14.已知A ,B ,C 三点不在一条直线上,请你只用一把带有刻度........的直尺,画出平行四边形ABCD ,简述你的理由.15.乘坐某交通工具,每位乘客可免费托运行李的质量最多为20 kg ,超出20 kg 的部分按每千克10元收费.(1)如果小云托运了25 kg 的行李,她需要付多少元的托运费用?(2)当质量超过20 kg 时,求小云的托运费用y (元)与行李质量x (kg )的函数表达式; (3)画出(2)中所求函数表达式的图象.女生 60%男生 40%女生 54%男生 46%八年级男、女学生人数分布七年级男、女学生人数分布 ABCEDAB CDPP ′16.计算从11到19这九个两位数中任何两个数的乘积,有一些有趣的做法,例如:11×12 =(11 + 2)×10 + 1×2 = 130 + 2 = 132;13×17 =(13 + 7)×10 + 3×7 = 200 + 21 = 221;17×16 =(17 + 6)×10 + 7×6 = 230 + 42 = 272.(1)类比上述做法,再写出1个相同类型的式子;(2)请用字母表示上述做法的规律,并说明其合理性;(3)受到上述过程的启发,请你再提出1个数学问题.。
八年级数学上册测试题(附答案)
八年级数学上册测试题(附答案)八年级数学上册测试题(附答案)第一部分:选择题1. 下列哪个数是有理数?A.√2B.πC.eD.√52. 若a^2 + b^2 = 25,且a > 0,b > 0,下列哪个不是可能的数对?A.(4,3)B.(5,0)C.(0,5)D.(0,√24)3. 常见的二次函数图像为下列哪种形状?A.直线B.抛物线C.圆D.三角形4. 在一条直线上,点A和点B分别位于直线同一侧的两个点C和点D之间。
若AC=CD,下列结论正确的是:A.AC=CBB.AC=BDC.CD=CBD.CB=BD5. ∠AOC 和∠BOC 的度数之和等于多少?A. 90°B. 180°C. 270°D. 360°6. 若正方形ABCD的边长为3,点E和点F分别位于边AB和边AD上,且AE:EB = 1:2,AF:FD = 2:1。
则三角形CEF的面积为多少?A. 2B. 4C. 6D. 97. 在一个几何图形中,如果两条边相等,那么它们的夹角是多少度?A. 45°B. 90°C. 120°D. 180°8. 已知三角形ABC,AB=4,AC=6,BC=7,下列哪个是正确的?A. ∠BAC<∠ACBB. ∠ACB<∠ABCC. ∠ABC<∠BACD. 三个角都相等第二部分:填空题9. 在直角坐标系中,点(2,3)和点(-2,3)关于y轴的对称点分别是__________和__________。
10. 若两个相等的角互为补角,则每个角的度数为__________。
11. 过点A(3, 5)且垂直于直线y=2x+4的直线方程是__________。
12. 截长为5cm的直线段分为3等分,每个等分的长为__________。
13. (16)÷(-2)×(4)=-__________。
八年级上册数学单元测试题(一)
八年级上册单元测试题(一)(内容:第一、二章,测试时间120分钟、满分120分)姓名___________ 班级____________ 学号______________ 得分______________ 一. 选择题(每题3分,共21分)1.下列构成直角三角形三边的是 ( )A 6 8 10B 2 3 4C 4 5 6D 5 10 12 2.下列各数是无理数的是 ( )A 0.37B 16C -2πD 03、下列说法正确的是 ( )A .带根号的数都是无理数B .不带根号的数都是有理数C .无理数是无限小数D .无限小数是无理数4、如果梯子的底端离建筑物5米,13米长的梯子可以达到该建筑物的高度是 ( )A. 12米B. 13米C. 14米D. 15米5.若2a = a, 则实数a 在 数轴上的对应点一定是 ( )A 原点左侧B 原点右侧C 原点或原点左侧D 原点或原点右侧 6.若三角形的三边长分别等于9,40,41,则三角形的面积等于( )A 360 B 180 C 90 D457.已知(a -5)2+|b -4|=0,则ba的平方根是 ( )A25 B ±25 C45 D±45 二.填空题 (每题3分,共24分)8. 在∆ABC 中, ∠C=900, AB=13, AC=12, 则BC=_______.9. 有六根细木棒,它们的长分别是2,4,6,8,10,12 (单位:cm),首尾连接能搭成直角三角形的三根木棒的长分别是____________.10.等腰三角形的腰长为13cm ,底边上的高为5cm ,则它的面积为__________. 11.9的算术平方根是_____________.12. 当代数式-2-12+x 的值最大时,x 的值为__________.13. 若a -1是64的算术平方根,则a 的立方根是_____________.14= ; 15.下列各数:① 0 ,③227,1010010001.0…(相邻两个1之间0的个数逐次增加1)2π-,无理数有 _____三.解答题 (7题,共75分)16.化简 (每小题5分,共20分)(1)18×2-1 (2)(5-3)2(3)40-5101+10 (4)3125.0+1613+32)81(-17.若x 、y都是实数,且8y =,求x+3y 的立方根。
八年级数学测试题及答案
八年级数学测试题及答案一、选择题(本大题共12题,每小题3分,共36分)1.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是().a、21:10b、10:21c、10:51d、12:01u第1题图2、点m(1,2)关于x轴对称点的座标为().a.(-1,-2)b.(-1,2)c.(1,-2)d.(2,-1)3.例如图△abc中,ab=ac,∠b=30°,ab⊥ad,ad=4cm,则bc的短为().a、8mb、4mc、12md、6m4、若等腰三角形的周长为26cm,一边为6cm,则腰长为().a.6cmb.10cmc.6cm或10cmd.以上都不对5.如图,∠bac=110°若mp和nq分别垂直平分ab和ac,则∠paq的度数是()a、70°b、40°c、50°d、60°6.等腰三角形一腰上的低与另选贤任能的夹角为300,则顶上角度数为()a、300b、600c、900d、1200或6007.下面是某同学在一次测验中的计算摘录①3a?2b?5ab;②4m3n?5mn3??m3n;③3x3?(?2x2)??6x5④4a3b?(?2a2b)??2a;⑤?a3?2?a5;⑥??a?3aa2.其中正确的个数有()a.1个b.2个c.3个d.4个8.下列各式是完全平方式的是().a.x2-x+14b.1+x2c.x+xy+1d.x2+2x-1;9.例如(x+m)与(x+3)的乘积中不不含x的一次项,则m的值().a.-3b.3c.0d.1[来源学科网z.x.x.k]10.(?5a2?4b2)(______)?25a4?16b4括号内应填()a、5a?4bb、5a?4bc、?5a?4bd、?5a?4b11.以下水解因式恰当的就是()a.x3?x?x(x2?1).b.(a?3)(a?3)?a2?9c.a2?9?(a?3)(a?3).d.x2?y2?(x?y)(x?y).12.下列各式从左到右的变形,正确的是().a.-x-y=-(x-y)b..(y?x)2?(x?y)2c.(x?y)2?(?x?y)2d.(a?b)3?(b?a)3二、填空题(每小题4分后,共24分后)13、等腰三角形的一内角等于50°,则其它两个内角各为.14.计算(-3x2y)2(222222221231xy)=__________.()2021?(?1)2021?34315.若3x=10,3y=5,则32x―y=.216.已知4x+mx+9是完全平方式,则m=_________17、例如图:点p为∠aob内一点,分别做出p点关于oa、ob的对称点p1,p2,相连接p1p2交oa于m,交ob于n,△pmn的周长为15cm,p1p2=.18.a+1+a(a+1)+a(a+1)+......+a(a+1)2021=.三、解答题:(602p1mpa分)第17题图onp2b19.(6分)如图:某地有两所大学和两条相交叉的公路,(点m,n表示大学,ao,bo表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等。
数学测试题及答案八年级
数学测试题及答案八年级一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的平方等于它本身,这个数是:A. 0B. 1C. -1D. 0和1答案:D3. 计算下列哪个表达式的结果等于9?A. 3 * 3B. 2 * 4 + 1C. 5 - 4D. 6 / 2答案:A4. 一个等腰三角形的两个底角相等,如果一个底角是40度,那么顶角的度数是:A. 40度B. 100度C. 140度D. 160度答案:B5. 下列哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 所有选项答案:B6. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 20厘米C. 25厘米D. 15厘米答案:A8. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0、1和-1答案:D9. 计算下列哪个表达式的结果等于-8?A. 2 * (-4)B. (-2) * 4C. -2 * (-4)D. 4 * (-2)答案:A10. 一个直角三角形的两个锐角分别是30度和60度,那么斜边的长度是:A. 2倍的较短直角边B. 3倍的较短直角边C. 4倍的较短直角边D. 5倍的较短直角边答案:A二、填空题(每题4分,共20分)1. 一个数的相反数是-8,那么这个数是______。
答案:82. 如果一个数的平方等于36,那么这个数可以是______。
答案:±63. 一个三角形的内角和等于______度。
答案:1804. 一个数的立方根是2,那么这个数是______。
答案:85. 一个数除以它本身等于______。
答案:1(非零数)三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 5答案:x = 42. 计算:(3x - 2)(x + 4) = 0,求x的值。
八年级数学第一章测试题
八年级数学第一章测试题一、选择题(每题3分,共30分)A. 1cm,2cm,3cmB. 2cm,3cm,4cmC. 4cm,6cm,10cmD. 5cm,12cm,6cm解析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
A选项,1 + 2=3,不满足两边之和大于第三边,不能组成三角形。
B选项,2+3 > 4,3 + 4>2,2+4>3,且4 2 < 3,4 3<2,3 2<4,可以组成三角形。
C选项,4+6 = 10,不满足两边之和大于第三边,不能组成三角形。
D选项,5+6<12,不满足两边之和大于第三边,不能组成三角形。
答案:B2. 三角形按角分类可以分为()A. 锐角三角形、直角三角形、钝角三角形B. 等腰三角形、等边三角形、不等边三角形C. 直角三角形、等腰直角三角形、等边三角形解析:三角形按角分类分为锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。
答案:A3. 一个三角形的三个内角的度数之比为2:3:4,则这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形解析:设三个内角分别为2x,3x,4x,因为三角形内角和为180°,则2x+3x +4x=180°,9x = 180°,x = 20°。
所以三个角分别为40°,60°,80°,都是锐角,这个三角形是锐角三角形。
答案:A4. 能将三角形的面积平分的是三角形的()A. 角平分线B. 高C. 中线解析:三角形的中线把三角形分成两个等底同高的三角形,所以能将三角形的面积平分。
答案:C5. 已知等腰三角形的两边长分别为3和6,则它的周长为()A. 12B. 15C. 12或15D. 18解析:当3为腰长时,三边为3,3,6,因为3+3 = 6,不满足三角形三边关系,不能构成三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期期末数学模拟试题(一)
一、选择题:本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题3分,选错、不选或选出的答案超过一个,均记零分
1.下列图案中,轴对称图形是()
A.B.C. D.
2.如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是()
A.25°B.55°C.65°D.155°
3.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()
A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°
4.下列语句中,是命题的有()个.
(1)过直线外一点P,作这条直线的平行线
(2)连接三角形的顶点和对边中点的线段
(3)若明天是星期五,那么后天就是星期六
(4)若a>b,a>c,那么b=c.
A.1 B.2 C.3 D.4
5.分式的值为零,则x的值为()
A.﹣1 B.0 C.±1 D.1
6.若=,则的值为()
A.1 B.C.D.
7.如图,在直角三角形ABC中,∠C=90°,把直角边BC沿过点B的某条直线折叠,使点C落到斜边AB上的一点D处,当∠A=()度时,点D恰为AB的中点.
A.30 B.25 C.32.5 D.45
8.下列选项中,能够反映一组数据离散程度的统计量是()
A.平均数B.中位数C.众数 D.方差
9.一个等腰三角形的两边长分别为2和5,则它的周长为()
A.7 B.9 C.12 D.9或12
10.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()
A.13 B.14 C.15 D.16
11.如图,△ABC中,∠ABC与∠ACB的平分线交于点O,过点O作MN∥BC,分别交AB,AC 于点M,N,若AB=12,AC=18,BC=24,则△AMN的周长为()
A.30 B.36 C.39 D.42
12.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()
A.30°B.40°C.50°D.60°
13.四川雅安发生地震灾害后,某中学九(1)班学生积极捐款献爱心,如图是该班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是()
A.20,10 B.10,20 C.16,15 D.15,16
14.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()
①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上.
A.0 B.1 C.2 D.3
15.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从2015~2016
A.130m3B.135m3C.6.5m3D.260m3
16.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC 长是()
A.3 B.4 C.6 D.5
17.如图,坐标平面上,△ABC≌△DEF,其中A、B、C的对应顶点分别为D,E,F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点的纵坐标都是﹣3,D、E两点在y轴上,则点F到y轴的距离为()
A.2 B.3 C.4 D.5
18.如图,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分线交于点E,∠AEC等于()
A.56°B.66°C.76°D.无法确定
19.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()
A.B.C.D.
20.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=3cm,PN=4cm,MN=4.5cm,则线段QR的长为()
A.4.5 B.5.5 C.6.5 D.7
二、填空:本大题共4个小题,满分12分,只要求填写最后结果,每小题3分
21.如图,在△ABC中,D是BC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是.(不再添加辅助线和字母)
22.一组数据2,4,5,1,a的平均数为a,这组数据的方差为.
23.若关于x的方程无解,则m=.
24.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A′处,且点A′在△ABC外部,则阴影部分图形的周长为cm.
三、解答题:本大题共6小题,满分48分,解答应写出必要的文字说明、证明过程或推演步骤
25.(1)先化简,再求值:(﹣)÷,其中,x=﹣4.
(2)解方程:﹣=.
26.如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C (﹣5,2).
①请画出△ABC关于x轴对称的△A1B1C1.
②通过作图在x轴上找一点P,使PC+PB最短,并根据图形直接写出P点的坐标.
27.如图,四边形ABCD中,BD平分∠ABC,AD=DC,求证:∠A与∠C互补.
28.某学校要成立一支由6名女生组成的礼仪队,初三两个班各选6名女生,分别组成甲队和乙队
(2)求乙队身高的平均数;
(3)如果选拔标准是身高越整齐越好,那么甲乙两个队哪个队被录取?请说明理由.
29.近几年我国的雾霾越来越严重,汽车尾气是造成雾霾的重要原因之一.为减少雾霾,黎明响应“绿色出行”的号召,上班由自驾车改为乘坐地铁.已知黎明家距离上班地点16千米,他乘坐地铁平均每小时走的路程比他自驾车平均每小时行驶的路程的2倍还多8千米,他从家出发到上班地点,乘
坐地铁所用时间是自驾车所用时间的.问黎明乘坐地铁上班平均每小时走多少千米?
30.如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.
求证:AE∥BC.。