高中数学知识点津5不等式数列与排列组合

合集下载

高三数学排列和组合知识点

高三数学排列和组合知识点

高三数学排列和组合知识点数学作为一门理科学科,其中的排列和组合是高三学生必须掌握的重要知识点。

本文将为大家详细介绍高三数学排列和组合的知识,并提供一些相关例题和解析,帮助大家理解和掌握这一知识点。

一、排列的概念和性质排列是从给定的对象中选出一部分进行有序排列的方式,每个对象只能使用一次。

在排列中,对象的顺序是重要的。

下面是排列的一些基本概念和性质:1. 排列的定义:从n个不同的对象中取出m个进行有序排列,称为从n个对象中取出m个的排列,记作P(n,m)。

2. 排列的计算公式:P(n,m) = n!/(n-m)!3. 重要性质一:对于任意正整数n,有P(n,n) = n!,即n个不同的对象全排列的总数为n的阶乘。

排列数为1。

5. 重要性质三:P(n,1) = n,即从n个对象中取出一个对象进行排列的方式数为n。

二、组合的概念和性质组合是从给定的对象中选出一部分进行无序组合的方式,每个对象只能使用一次。

在组合中,对象的顺序不重要。

下面是组合的一些基本概念和性质:1. 组合的定义:从n个不同的对象中取出m个进行无序组合,称为从n个对象中取出m个的组合,记作C(n,m)。

2. 组合的计算公式:C(n,m) = n!/[(n-m)!*m!]3. 重要性质一:对于任意正整数n,有C(n,n) = 1,即n个不同的对象全组合的总数为1。

组合数为1。

5. 重要性质三:C(n,1) = n,即从n个对象中取出一个对象进行组合的方式数为n。

三、排列与组合的应用排列和组合在实际生活和数学问题中有着广泛的应用。

下面是一些常见的应用领域:1. 排列的应用:排列在一些需要考虑顺序的情况下很有用,比如密码的穷举破解和赛车比赛的计算等。

2. 组合的应用:组合在一些不考虑顺序的情况下很有用,比如从一组物品中选取特定数量的搭配问题和抽奖活动中奖的计算等。

四、例题和解析下面是一些与排列和组合相关的例题和解析,帮助大家更好地理解和应用这一知识点:例题一:有6个人参加足球比赛,其中3人是A队的球员,3人是B队的球员。

高考数学排列与组合知识点

高考数学排列与组合知识点

高考数学排列与组合知识点在高考数学中,排列与组合是一个重要的知识点。

它涉及到集合中元素的选择和排列方式,充满了逻辑思维和计算技巧。

掌握好这个知识点对于高考数学的考试是至关重要的。

下面我将从几个重要方面介绍排列与组合的基础知识和解题技巧。

一、基本概念1. 排列:排列是指从给定的元素集合中选择一部分元素,按照一定的顺序排列起来。

如果从n个不同元素中选取m个元素进行排列,那么排列的数目用P(n, m)表示,其计算公式为:P(n, m) = n! / (n-m)!其中,"!"表示阶乘运算,即n! = n(n-1)(n-2)...1。

2. 组合:组合是指从给定的元素集合中选择一部分元素,不考虑顺序的方式。

如果从n个不同元素中选取m个元素进行组合,那么组合的数目用C(n, m)表示,其计算公式为:C(n, m) = n! / [(n-m)! * m!]二、排列与组合的性质和定理1. 重复排列:当元素中有重复的情况时,排列的计算公式需要进行相应的修正。

假设有n个元素中有r1个元素相同,r2个元素相同......ri个元素相同,排列的数目可以通过以下公式计算:P(n, m) = n! / (r1! * r2! * ... * ri! * (n-m)!)2. 求整数解的排列:当要求整数解的排列时,我们可以使用分别代表每个数位的元素进行排列的方法。

比如,要求x、y、z三个整数之和为10,且满足x>0,y>0,z>0,我们可以将它们看作是从[1, 10]的元素集合中选取的排列。

3. 禁忌排列:禁忌排列是指排列中出现某些特殊情况需要剔除的情况。

比如,要求三个不同字母A、B、C排列成3位数,且BC不得出现,那么我们可以通过计算总的排列数减去BC出现的排列数得到最终的结果。

三、解题技巧1. 确定问题类型:在解决排列与组合问题时,首先需要明确题目中给出的要求是排列还是组合。

排列要考虑元素顺序,组合则不考虑。

高二数学排列和组合知识点

高二数学排列和组合知识点

高二数学排列和组合知识点排列与组合是高中数学中的重要内容,它们在解决实际问题时具有广泛的应用。

本文将详细介绍排列和组合的基本概念、公式以及解题方法,帮助学生掌握这一知识点。

基本概念排列和组合都是从一组元素中选择一定数量的元素进行分析的数学方法。

排列强调元素的顺序,而组合则不考虑元素的顺序。

排列1. 排列数公式:从n个不同元素中取出m个元素的所有排列的个数,记作A_{n}^{m},计算公式为:\[ A_{n}^{m} = \frac{n!}{(n-m)!} \]其中n!表示n的阶乘,即从1乘到n。

2. 举例说明:假设有5本不同的书,我们要选出2本来阅读。

如果考虑阅读的顺序,那么第一天读哪本书,第二天读哪本书是有区别的。

这里就有A_{5}^{2}种不同的排列方式。

组合1. 组合数公式:从n个不同元素中取出m个元素的所有组合的个数,记作C_{n}^{m},计算公式为:\[ C_{n}^{m} = \frac{n!}{m!(n-m)!} \]同样,这里的n!表示n的阶乘。

2. 举例说明:继续上述的例子,如果我们只关心选出哪2本书来阅读,而不关心阅读的顺序,那么这就是一个组合问题。

计算方法为C_{5}^{2}。

解题方法1. 区分排列与组合:首先要明确问题是要求排列还是组合。

如果问题中涉及到元素的顺序,那么就是排列问题;如果不涉及顺序,则是组合问题。

2. 公式运用:根据问题的具体要求,选择合适的排列或组合公式进行计算。

3. 实际应用:排列和组合的知识可以应用于许多实际问题,如概率计算、统计分析等。

在解题时,要结合实际情况,灵活运用所学知识。

练习题1. 有7个人排队,其中甲必须排在乙的前面,问有多少种排队的排列方式?2. 一个班级有10个男生和5个女生,从中选出3个代表,其中至少有1个女生的组合有多少种?通过以上介绍和练习题,相信学生可以更好地理解和掌握排列与组合的概念、公式及解题方法。

在实际解题过程中,要注意区分排列和组合的不同,并正确运用公式,这样才能有效地解决问题。

高中数学排列组合知识点

高中数学排列组合知识点

高中数学排列组合知识点高中数学排列组合知识点在高中数学中,排列组合是一个比较重要的知识点。

掌握了排列组合的概念和应用,不仅可以解决很多实际问题,还能够加深对数学知识体系的理解。

本文将为大家详细地介绍高中数学中排列组合的知识点。

一、排列的概念排列是指从n个不同元素中取出m个元素,一次排成一列的不同方案数。

排列分为有序排列和无序排列两种。

有序排列:从n个元素中取m个元素,一次排成一列的不同方案数用Anm表示,可以得到公式:Anm = n(n-1)(n-2)......(n-m+1)无序排列:从n个元素中取m个元素,不考虑顺序,一共有多少种排列方案,用Cnm表示,可以得到公式:Cnm = n!/[(n-m)!m!]二、组合的概念组合是指从n个不同元素中取出m个元素,不考虑它们的排列顺序,共有多少种组合方式。

组合用Cnm表示。

Cnm = n!/[(n-m)!m!]三、排列组合的应用排列组合在现实生活中应用广泛,例如:1.密码问题。

我们常用4位数字密码,如果不允许重复,那么一共有多少种不同的密码可能性?这个问题可以用无序排列来解决,答案为P48 = 4!/(4-8)! = 24×23×22×21 = 3,110,016种。

2.选课问题。

某学校有3门选修课程可供选择,学生必须选1门或2门或3门,问他有多少种选课方案。

这个问题可以用组合来解决,答案为C31 + C32 + C33 = 3+3+1=7种。

3.桥牌问题。

桥牌是一种智力游戏,每张牌有4个不同的花色,每个花色都有13张牌。

问从52张牌中取出13张牌一共有多少种取牌方案。

这个问题可以用有序排列来解决,答案为A13^52 = 52*51*50*...*40*39 = 6.6 * 10^28种。

四、注意事项在排列组合计数中,需要注意以下事项:1.选择运用有序排列、无序排列、组合的方式。

2.正确确定元素个数n和取出的元素个数m。

高三排列组合知识点大全

高三排列组合知识点大全

高三排列组合知识点大全排列组合是数学中的一个重要概念,它涉及到对对象进行选择、安排和组合的方式。

在高三数学学习中,排列组合是一个重要的知识点,既存在于基础知识的学习中,也存在于解决实际问题的应用中。

在本文中,将介绍高三排列组合知识点的大全,帮助同学们更好地掌握这一内容。

一、排列与组合的基本概念排列是指从若干不同元素中按照一定的顺序选择出一部分元素进行排列。

比如从数字1、2、3中选择两个数字进行排列,有(1,2)、(1,3)、(2,1)、(2,3)、(3,1)和(3,2)共6种排列方式。

组合是指从若干不同元素中无顺序地选择出一部分元素进行组合。

比如从数字1、2、3中选择两个数字进行组合,有(1,2)、(1,3)和(2,3)共3种组合方式。

二、排列与组合的计算公式1. 排列的计算公式排列的计算公式为:A(n,m) = n!/(n-m)!,其中n为总元素个数,m为选择的元素个数,n!表示n的阶乘。

2. 组合的计算公式组合的计算公式为:C(n,m) = n!/((n-m)!m!),其中n为总元素个数,m为选择的元素个数,n!表示n的阶乘。

三、排列与组合的性质和应用1. 唯一性在排列和组合中,每个元素只能被选择一次,保证了每种排列和组合的唯一性。

这个性质在实际问题中很重要,可以避免重复计算或重复选择。

2. 应用于实际问题排列组合在实际问题中有广泛的应用。

比如在概率中,排列与组合可以求解事件发生的可能性;在密码学中,排列与组合可以用于计算密码的强度;在组织活动中,排列与组合可以用于计算可能的活动安排等。

四、高阶排列组合问题除了基本的排列组合问题之外,高三数学中还会涉及到一些高阶的排列组合问题。

下面将介绍一些常见的高阶排列组合问题。

1. 重复元素的排列组合当有重复的元素存在时,排列与组合的计算公式需要进行相应的调整。

比如从数字1、1、2、3中选择两个数字进行排列,存在重复元素1,这时排列的总数为4!/2! = 12种。

(推荐)高中数学排列与组合知识点

(推荐)高中数学排列与组合知识点

高中数学排列与组合知识点排列组合是高中数学教学内容的一个重要组成部分,但由于排列组合极具抽象性,使之成为高中数学课本中教与学的难点.加之高中学生的认知水平和思维能力在一定程度上受到限制,所以在解题中经常出现错误.以下本人搜集整合了高中数学排列与组合相关知识点,希望可以帮助大家更好的学习这些知识。

高中数学排列与组合知识点汇编如下:一、排列1 定义(1)从n个不同元素中取出m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一排列。

(2)从n个不同元素中取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为 Amn.2 排列数的公式与性质(1)排列数的公式: Amn=n(n-1)(n-2)…(n-m+1)特例:当m=n时, Amn=n!=n(n-1)(n-2)…×3×2×1规定:0!=1二、组合1 定义(1)从n个不同元素中取出 m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合(2)从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。

2 比较与鉴别由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按一定顺序排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的顺序并成一组这一个步骤。

排列与组合的区别在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的顺序有关。

因此,所给问题是否与取出元素的顺序有关,是判断这一问题是排列问题还是组合问题的理论依据。

三、排列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)2. 排列(有序)与组合(无序)Anm=n(n-1)(n-2)(n-3)­…(n-m+1)=n!/(n-m)! Ann=n!Cnm = n!/(n-m)!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k•k!=(k+1)!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)插空法(解决相间问题) 间接法和去杂法等等在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+­…+ Cn n-1abn-1+ Cnnbn特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

高中排列组合知识点

高中排列组合知识点

高中排列组合知识点在高中数学中,排列组合是一个重要且具有一定难度的知识点。

它不仅在数学领域有着广泛的应用,还对培养我们的逻辑思维和解决问题的能力起着关键作用。

首先,我们来了解一下什么是排列。

排列指的是从给定的元素集合中,按照一定的顺序选取若干个元素进行排列。

比如说,从 5 个不同的数字中选取 3 个进行排列,那么不同的排列方式就有很多种。

排列的计算公式是:A(n, m) = n! /(n m)!。

这里的“n”表示总数,“m”表示选取的个数。

“!”表示阶乘,比如 5! = 5 × 4 × 3 × 2 × 1 。

举个例子,从 5 个不同的元素中选取 3 个进行排列,即 A(5, 3) = 5! /(5 3)!= 5 × 4 × 3 = 60 种不同的排列方式。

接下来是组合。

组合则是从给定的元素集合中,选取若干个元素组成一组,不考虑元素的顺序。

比如从 5 个不同的水果中选取 3 个,不管选取的顺序如何,只要是这 3 个水果就算一种组合。

组合的计算公式是:C(n, m) = n! / m! ×(n m)!。

还是以从 5 个不同的元素中选取 3 个为例,组合的方式为 C(5, 3) =5! / 3! ×(5 3)!= 10 种。

在实际解题中,我们需要根据具体的问题来判断是使用排列还是组合。

如果问题中强调了顺序的重要性,那么通常使用排列;如果顺序不重要,只关注选取的元素组合,那就使用组合。

比如,安排 5 个人坐在 3 个不同的座位上,因为座位的顺序是有影响的,所以要用排列,即 A(5, 3) 。

而如果是从 5 种不同的水果中选取3 种作为礼物,不考虑选取的顺序,这时候就用组合 C(5, 3) 。

在解决排列组合问题时,还有一些常见的方法和技巧。

插空法:当要求某些元素不能相邻时,可以先将其他元素排列好,然后将不相邻的元素插入到这些元素之间的空隙中。

高中数学中的排列与组合重要知识点详解

高中数学中的排列与组合重要知识点详解

高中数学中的排列与组合重要知识点详解排列与组合是高中数学中的重要知识点之一,它们在概率统计、数论以及实际问题中的应用非常广泛。

本文将详细介绍排列与组合的相关概念、性质以及应用。

一、排列的概念与性质排列是指从给定的元素中选取一部分按照一定的顺序进行排列,其结果不同于组合。

在排列中,每个元素只能使用一次,且不同的顺序会形成不同的排列。

1. 重复排列重复排列是指从给定的元素中选取一部分进行排列,但允许元素的重复使用。

对于n个元素中选取r个进行重复排列的可能数可以表示为n^r。

2. 不重复排列不重复排列是指从给定的元素中选取一部分进行排列,但不允许元素的重复使用。

对于n个元素中选取r个进行不重复排列的可能数可以表示为A(n, r)或nPr,计算公式为A(n, r) = n!/(n-r)!。

二、组合的概念与性质组合是指从给定的元素中选取一部分,不考虑其顺序,将其组成一个集合。

在组合中,不同顺序的元素组合形成的结果是相同的。

1. 重复组合重复组合是指从给定的元素中选取一部分进行组合,允许元素的重复使用。

对于n个元素中选取r个进行重复组合的可能数可以表示为C(n+r-1, r)或C(n+r-1, n-1),计算公式为C(n+r-1, r) = (n+r-1)! / (r!(n-1)!)。

2. 不重复组合不重复组合是指从给定的元素中选取一部分进行组合,不允许元素的重复使用。

对于n个元素中选取r个进行不重复组合的可能数可以表示为C(n, r)或nCr,计算公式为C(n, r) = n! / (r!(n-r)!。

三、排列与组合的应用排列与组合既有理论上的意义,也有广泛的实际应用。

1. 概率统计排列与组合在概率统计中经常用来计算样本空间的大小,从而计算概率。

例如,在抽取彩票号码、扑克牌的发牌问题中,可以利用排列与组合的知识来计算可能的结果数量。

2. 数论排列与组合也在数论中有重要的应用。

例如,在数论中,可能出现对排列和组合的计数问题,而排列与组合的知识可以帮助解决这些问题。

高二排列组合基本知识点

高二排列组合基本知识点

高二排列组合基本知识点在高中数学中,排列组合是一个重要的知识点,它是数学中的一种计数方法。

在解决真实生活问题或者数学题目时,我们经常会遇到需要使用排列组合知识点的情况。

下面,我们将详细介绍高二阶段学习的排列组合的基本知识点。

一、排列的基本概念排列是从给定的元素中取出若干个,按一定顺序排列成一列的方式。

在排列过程中,每个元素只能使用一次。

我们用P表示排列的个数,P后面的数字表示从中选取元素的个数。

1. 从n个不同元素中取出m个元素进行排列,形成的排列数用P(n, m)表示。

其中n和m均为非负整数,且m必须小于等于n。

排列数的计算公式为:P(n, m) = n! / (n - m)!2. 当m = n 时,即从n个不同元素中取出所有元素进行排列,此时的排列数用P(n)表示,即全排列。

全排列的计算公式为:P(n) = n!二、组合的基本概念组合是从给定的元素中取出若干个,不考虑顺序地合成一组的方式。

在组合过程中,每个元素只能使用一次。

我们用C表示组合的个数,C后面的数字表示从中选取元素的个数。

1. 从n个不同元素中取出m个元素进行组合,形成的组合数用C(n, m)表示。

组合数的计算公式为:C(n, m) = n! / (m! * (n - m)!)2. 当m = n 时,即从n个不同元素中取出所有元素进行组合,此时的组合数用C(n)表示,即全组合。

全组合的计算公式为:C(n) = C(n, 1) + C(n, 2) + ... + C(n, n-1) + C(n, n)三、排列组合的应用排列组合在实际生活和数学问题中的应用非常广泛。

下面以几个典型的应用例子来说明:1. 生日问题假设有n个人,问至少有两人生日相同的概率是多少?这个问题可以通过排列组合的方式求解。

我们首先求出总的可能性,即将n个人的生日安排在365天中的任意一天,所以总的可能性为365^n。

然后,我们计算没有两人生日相同的情况数。

假设第一个人的生日可以任意选择,那么第二个人的生日不能与第一个人同一天,所以有365-1=364种选择,同理可推第三个人有365-2=363种选择,以此类推,得到没有两人生日相同的情况总数为365*364*363*...*(365-n+1)。

高中数学基本知识点大全

高中数学基本知识点大全

高中数学基本知识点大全高中数学基本知识点是构建数学学科体系的关键,以下是对高中数学基本知识点的总结:一、代数部分1、集合与函数:集合是数学中最基本的概念,包括集合的基本概念、集合的运算、函数的概念、函数的性质等。

2、不等式:不等式是数学中重要的工具,包括不等式的性质、一元二次不等式的解法、不等式的应用等。

3、数列:数列是数学中研究数量变化的重要工具,包括数列的概念、等差数列、等比数列的性质和通项公式等。

4、三角函数:三角函数是研究角度和边长关系的重要工具,包括正弦函数、余弦函数、正切函数等的基本性质和图像。

5、排列组合:排列组合是数学中研究组合问题的基本工具,包括排列组合的基本概念、公式和定理等。

二、几何部分1、平面几何:平面几何是数学中研究平面图形性质的重要工具,包括三角形、四边形、圆等的基本性质和定理。

2、立体几何:立体几何是数学中研究空间图形性质的重要工具,包括球、柱、锥等的基本性质和定理。

3、解析几何:解析几何是数学中用代数方法研究几何问题的重要工具,包括直线、抛物线、椭圆等的基本方程和性质。

三、概率与统计部分1、概率:概率是数学中研究随机事件发生可能性大小的重要工具,包括概率的基本概念、概率的计算和概率分布等。

2、统计:统计是数学中研究数据收集、整理和分析的重要工具,包括数据的图表展示、数据的描述性统计和推论性统计等。

四、复数部分复数是数学中研究复数域的重要工具,包括复数的概念、复数的运算和复数的性质等。

这些知识点是进一步学习和掌握数学的基础,需要同学们深入理解和掌握。

学习高中数学要注重概念的理解和定理的推导,同时多做练习题,通过练习加深对知识点的理解和掌握。

数学高三复习知识点组合与排列

数学高三复习知识点组合与排列

数学高三复习知识点组合与排列数学高三复习知识点:组合与排列在数学中,组合与排列是两个重要的概念,也是数学高三复习的重点知识点之一。

组合与排列在概率统计、离散数学等领域都具有广泛的应用。

本文将介绍组合与排列的基本概念及其相关性质,帮助高三学生复习和理解这一知识点。

一、排列的概念和性质排列是指从一组元素中按一定顺序取出若干个元素的方式。

设有n个元素,从中选取m个进行排列,则记为P(n,m)。

排列的计算公式为:P(n,m) = n!/(n-m)!其中,n!表示n的阶乘,表示从1乘到n的乘积。

排列的性质有以下几点:1. 排列的个数是固定的,对于不同的n和m,排列的个数是不同的。

2. 当m=n时,全排列的个数为n!。

3. 当m>n时,排列的个数为0。

4. 当m<n时,排列的个数为负数,表示无意义。

排列涉及的经典问题有:从n个元素中选出m个元素进行排列,问有多少种不重复的排列方式;从n个元素中选出m个元素进行排列,再将这m个元素进行重排列,问有多少种不同的结果等。

二、组合的概念和性质组合是指从一组元素中选取若干个元素的方式,不考虑元素的顺序。

设有n个元素,从中选取m个进行组合,则记为C(n,m)。

组合的计算公式为:C(n,m) = n!/((n-m)!m!)组合的性质有以下几点:1. 组合的个数是固定的,对于不同的n和m,组合的个数是不同的。

2. 当m=0或m=n时,组合数为1。

3. 当m>n时,组合数为0。

4. 当m<n时,组合数为正整数。

组合涉及的经典问题有:从n个元素中选出m个元素进行组合,问有多少种不重复的组合方式;从n个元素中选出m个元素进行组合,再将这m个元素进行重排列,问有多少种不同的结果等。

三、排列与组合的联系与应用排列与组合有很多联系与应用,在实际问题中经常出现。

以下是一些常见的联系与应用:1. 从n个元素中选取m个元素进行排列,等价于从n个元素中选取m个元素进行组合,再将这m个元素进行排列。

高中数学排列组合知识点总结

高中数学排列组合知识点总结

高中数学排列组合知识点总结排列组合是高中数学中的一个重要概念,涉及到数学中的选择、排列和组合等问题。

在解决实际问题中,排列组合常常能够提供有效的理论框架和计算方法。

本文将对高中数学中的排列组合知识点进行总结,帮助读者更好地理解和应用这一内容。

一、基本概念在开始讨论排列组合知识点之前,先来明确一些基本概念。

1.排列(Permutation)指的是从给定的一组元素中选出若干个元素按照一定的顺序进行排列。

2.组合(Combination)指的是从给定的一组元素中选出若干个元素进行组合,不考虑其顺序。

二、排列计算1.排列定义:从n个不同元素中取出m(m≤n)个元素进行排列,称为从n个不同元素中取出m个元素的排列。

记作A(n,m)或P(n,m)。

2.排列计算公式:A(n,m) = n! / (n-m)!其中,n!表示n的阶乘,表示从1到n的所有正整数相乘。

三、组合计算1.组合定义:从n个不同元素中取出m(m≤n)个元素进行组合,称为从n个不同元素中取出m个元素的组合。

记作C(n,m)。

2.组合计算公式:C(n,m) = n! / (m! * (n-m)!)四、问题求解1.排列问题求解步骤:a.明确问题的条件和要求;b.根据问题的条件和要求确定排列的范围和规模;c.根据排列计算公式进行计算;d.根据问题的要求进行答案的整理和归纳。

2.组合问题求解步骤:a.明确问题的条件和要求;b.根据问题的条件和要求确定组合的范围和规模;c.根据组合计算公式进行计算;d.根据问题的要求进行答案的整理和归纳。

五、常见问题类型1.选择问题:从给定的选项中选择若干个进行排列或组合。

2.分组问题:将一组元素进行分组排列或组合。

3.座位问题:将若干个人或物品按不同的排列规则安排座位。

4.商业问题:涉及到商品的排列和组合。

5.应用问题:将排列组合运用到实际生活和科学研究中。

六、应用示例1.案例一:某队伍有7名运动员,其中需要选出3名队员参加比赛,有多少种不同的选择方式?解答:根据组合计算公式C(7,3),可以得到答案为35种。

高二数学排列和组合知识点

高二数学排列和组合知识点

高二数学排列和组合知识点在高二数学学习过程中,排列和组合是一个重要的知识点,也是数学中一个常用的概念。

掌握排列和组合的相关知识,对于解决实际问题以及进一步深入数学学习都非常有帮助。

本文将介绍高二数学排列和组合知识点,帮助同学们更好地理解和应用。

一、排列的概念排列是从给定的对象集合中选取若干元素按照一定的顺序进行排列的方法数。

在排列中,元素的顺序很重要,不同的排列方式被视为不同的结果。

1.1 线性排列线性排列是最基础也是最常见的排列方式。

在线性排列中,从给定的对象集合中选取若干元素按照一定的顺序进行排列,每个元素只能使用一次。

1.2 循环排列循环排列是指从给定的对象集合中选取若干元素按照一定的顺序进行排列,并且排列中的元素可以重复出现。

循环排列中的排列方式具有循环的性质,即排列的开头和结尾是相连的。

二、组合的概念组合是从给定的对象集合中选取若干元素,不考虑元素的顺序进行组合的方法数。

在组合中,元素的顺序不重要,同样的元素组合方式被视为相同的结果。

2.1 无限制组合无限制组合是指从给定的对象集合中选取若干元素,不考虑元素的顺序进行组合,并且可以重复选取元素。

2.2 有限制组合有限制组合是指从给定的对象集合中选取若干元素,不考虑元素的顺序进行组合,并且每个元素只能使用一次。

三、排列和组合的应用排列和组合在实际生活中有着广泛的应用,例如:3.1 考试座位安排在学校的考试中,考试座位需要进行排列。

通过排列的方式可以确保每个学生都能坐在一个指定的位置上,避免作弊等问题。

3.2 奖品抽取在抽奖活动中,需要从参与抽奖的人员中选取一定数量的获奖者。

通过组合的方式可以确定每个获奖者的组合方式,保证公平公正。

3.3 生肖组合在中国传统文化中,属相有十二种,根据生肖的组合可以预测一个人的命运、性格等。

通过组合的方式可以得到不同的组合结果,为人们提供参考和娱乐。

四、排列和组合的计算公式在排列和组合的计算过程中,有一些通用的计算公式可以帮助我们求解问题,例如:4.1 排列计算公式排列的计算公式为:A(n, m) = n!/(n-m)!,其中n表示对象的总数,m表示选取的元素数量。

高中数学排列与组合知识点归纳

高中数学排列与组合知识点归纳

高中数学排列与组合知识点归纳
数学中的排列与组合是高中数学中的重要内容之一。

下面对排
列与组合的相关知识点进行归纳总结。

排列
排列是指从给定元素集合中选取若干个元素按照一定的顺序排
列形成的一个整体。

以下是排列的相关知识点:
1. 排列的定义:排列是从$n$个不同元素中选取$r$个进行有序
排列的方式,记作$A_n^r$。

- 全排列:当$r=n$时,称为全排列,即从$n$个元素中选取
$n$个进行有序排列,全排列的数量为$n!$。

2. 公式计算方法:对于排列问题,可以使用公式计算:
- $A_n^r=\frac{n!}{(n-r)!}$。

3. 特殊情况:
- 环排列:当排列中的元素形成一个环状排列时,称为环排列。

组合
组合是指从给定元素集合中选取若干个元素,不考虑元素的顺序形成的一个整体。

以下是组合的相关知识点:
1. 组合的定义:组合是从$n$个不同元素中选取$r$个进行无序排列的方式,记作$C_n^r$。

- 组合数:组合数指的是从$n$个元素中选取$r$个进行组合的方式的数量。

2. 公式计算方法:对于组合问题,可以使用公式计算:
- $C_n^r=\frac{n!}{r! \cdot (n-r)!}$。

3. 组合的性质:
- 对称性质:$C_n^r=C_n^{n-r}$。

综上所述,排列与组合是高中数学中常见的概念与计算方法,掌握它们有助于解决相关的概率、统计等数学问题。

高三数学知识点排列组合

高三数学知识点排列组合

高三数学知识点排列组合在高三数学教学中,排列组合是一个重要的知识点。

它涉及到对对象的选择和排列方式的计算,对于解决实际问题和应用数学领域具有广泛的应用。

本文将介绍排列组合的基本概念、计算方法以及一些常见的应用场景。

一、排列的概念和计算方法排列是指从一组对象中按照一定的顺序选择和排列若干个对象,形成不同的排列方式。

在数学上,用P表示排列,n表示元素个数,r表示选取的元素个数。

根据排列的性质,可以得到排列的计算公式如下:P(n, r) = n! / (n - r)!其中,n!表示n的阶乘,即n! = n * (n - 1) * (n - 2) * ... * 2 * 1。

从公式中可以看出,当选取的元素个数r较小时,排列的数量较大;当选取的元素个数r较大时,排列的数量较小。

二、组合的概念和计算方法组合是指从一组对象中按照一定的顺序选择若干个对象,不考虑其排列顺序。

在数学上,用C表示组合,n表示元素个数,r表示选取的元素个数。

根据组合的性质,可以得到组合的计算公式如下:C(n, r) = n! / [(n - r)! * r!]与排列不同的是,组合中的元素个数不再影响组合的数量,只有选取的元素顺序不同,组合才会发生变化。

因此,当选取的元素个数相同时,组合的数量是相等的。

三、排列组合的应用场景1. 彩票中奖概率计算:在彩票中,通过排列组合可以计算出中奖的概率。

例如,从1到10共有10个号码,中奖号码为5个,那么从10个号码中选中5个号码的中奖概率可以通过计算C(10, 5)来得到。

2. 字母的排列和组合:在密码破解和密码生成中,排列组合的知识可以应用到字母的排列和组合。

例如,某个密码由4个字母组成,且可以重复使用相同的字母,那么可以通过计算出排列的数量来确定密码的可能性。

3. 座位的安排:在会议或者活动中,可能需要安排参与者的座位。

通过排列组合的知识,可以计算出不同座位的安排方式。

例如,有10个人和10个座位,每个人只能坐一个座位,那么可以通过计算P(10, 10)来得到不同座位安排的数量。

高三数列与不等式知识点

高三数列与不等式知识点

高三数列与不等式知识点在高中数学中,数列和不等式是数学学科中非常重要的知识点。

它们在解题过程中经常出现,具有广泛的应用价值。

本文将详细介绍高三数列与不等式的相关知识点,帮助读者更好地理解和应用这些知识。

一、数列数列是按照一定顺序排序的一组数。

我们常见的数列包括等差数列、等比数列和递推数列等。

接下来将依次介绍这些数列的特点和求解方法。

1. 等差数列等差数列是指数列中相邻两项之差都相等的数列。

设数列的首项为a₁,公差为d,则等差数列的通项公式为:an = a₁ + (n - 1)d其中,an表示数列的第n项。

对于等差数列,我们常常需要求其前n项和Sn。

求解方法有两种常见的方式:一种是利用求和公式,如果数列的首项为a₁,末项为an,共有n项,则等差数列前n项和Sn的计算公式为:Sn = (a₁ + an) * n / 2另一种是利用递推关系式,通过依次累加求得:S₁ = a₁S₂ = a₁ + a₂S₃ = a₁ + a₂ + a₃...Sn = a₁ + a₂ + ... + an2. 等比数列等比数列是指数列中相邻两项之比都相等的数列。

设数列的首项为a₁,公比为q,则等比数列的通项公式为:an = a₁ * q^(n - 1)等比数列的前n项和Sn的计算公式为:Sn = (a₁ * (q^n - 1)) / (q - 1)需要注意的是,当公比q为1时,等比数列将退化为等差数列。

3. 递推数列递推数列是一种通过前一项或前几项直接得到下一项的数列。

递推数列无法使用通项公式表示,但可以根据题目给出的递推关系式逐步求解。

以斐波那契数列为例,斐波那契数列的递推关系式为:Fn = Fn−1 + Fn−2其中,F₁ = 1,F₂ = 1为斐波那契数列的前两项。

二、不等式不等式是数学中用于表示数之间大小关系的一种符号组合。

常见的不等式包括一元一次不等式、二次不等式和绝对值不等式等。

下面将分别介绍这些不等式的解集表示法和求解方法。

高中数学知识点总结排列与组合

高中数学知识点总结排列与组合

高中数学知识点总结排列与组合高中数学知识点总结——排列与组合排列与组合是高中数学中的重要知识点,涉及到集合内元素的选择、排列和组合方式。

在解决实际问题的过程中,排列与组合可以帮助我们计算可能的情况数,进而推断问题的解决方法。

本文将对排列与组合的基本概念、公式及应用进行总结。

一、排列与组合的基本概念1. 排列排列是指从给定的元素中按照一定顺序选取若干元素的方式。

排列问题中,每个元素只能使用一次。

n个不同元素的全排列数可以表示为 n!(n的阶乘)。

n个元素中取出m个元素的排列数可以表示为A(n, m)=n!/(n-m)!2. 组合组合是指从给定的元素中无序地选取若干元素的方式。

组合问题中,每个元素只能使用一次。

n个不同元素的取m个元素的组合数可以表示为C(n, m)=n!/[(n-m)! * m!]二、常用排列与组合公式1. 全排列公式全排列是指将n个不同元素排成一排的所有可能情况的总数。

例如,由字母A、B、C组成的全排列数为3! = 3 × 2 × 1 = 6。

2. 有重复元素的排列公式当给定的元素中存在重复元素时,全排列的计算需要考虑到重复元素的情况。

例如,在由字母A、A、B组成的全排列中,根据重复性质,总排列数为3!/(2! * 1!) = 3。

3. 无重复元素的组合公式组合是指从给定的元素中取出若干元素,不考虑顺序的情况下的可能数。

例如,由字母A、B、C中取出2个元素的组合数为C(3, 2) = 3!/[(3-2)! * 2!] = 3。

4. 有重复元素的组合公式当给定的元素中存在重复元素时,组合的计算需要考虑到重复元素的情况。

例如,在由字母A、A、B中取出2个元素的组合中,总组合数为C(3, 2) = 3!/[(3-2)! * 2!] = 3。

三、排列与组合的应用排列与组合在实际问题中具有广泛的应用,主要包括以下几个方面:1. 抽奖问题排列与组合可以用于计算抽奖问题中中奖号码的可能性。

05 衡水中学高三数学一轮复习资料——不等式与排列组合二项定理

05 衡水中学高三数学一轮复习资料——不等式与排列组合二项定理

衡水中学高三数学一轮复习资料——不等式与排列组合二项定理一、不等式考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式.(4)掌握简单不等式的解法.(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│知识要点1.不等式的基本概念(1)不等(等)号的定义:(2)不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3)同向不等式与异向不等式.(4)同解不等式与不等式的同解变形.2.不等式的基本性质(1)(对称性)(2)(传递性)(3)(加法单调性)(4)(同向不等式相加)(5)(异向不等式相减)(6)(7)(乘法单调性)(8)(同向不等式相乘)(异向不等式相除)(倒数关系)(11)(平方法则)(12)(开方法则)3.几个重要不等式(1).;;0babababababa<⇔<-=⇔=->⇔>-abba<⇔>cacbba>⇒>>,cbcaba+>+⇒>dbcadcba+>+⇒>>,dbcadcba->-⇒<>,bcaccba>⇒>>0,.bcaccba<⇒<>0,bdacdcba>⇒>>>>0,0(9)0,0a ba b c dc d>><<⇒>11(10),0a b aba b>>⇒<)1,(0>∈>⇒>>nZnbaba nn且)1,(0>∈>⇒>>nZnbaba nn且,0||,2≥≥∈aaRa则若(2)(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么(当仅当a=b 时取等号)极值定理:若则: ○1如果P 是定值, 那么当x=y 时,S 的值最小; ○2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.(当仅当a=b=c 时取等号)(当仅当a=b 时取等号)(7) 4.几个著名不等式(1)平均不等式: 如果a ,b 都是正数,那么 (当仅当a=b时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数): 特别地,(当a = b 时,)幂平均不等式: 注:例如:.常用不等式的放缩法:①(2)柯西不等式:(3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点有)2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若.2a b ab +,,,,x y R x y S xy P +∈+==3,3a b c a b c R abc +++∈(4)若、、则0,2b aab a b>+≥(5)若则2222(6)0||;||a x a x a x a x a x a x a a x a >>⇔>⇔<-><⇔<⇔-<<时,或||||||||||||,b a b a b a R b a +≤±≤-∈则、若222.1122a ba b ab a b+++222()22a b a b ab ++≤≤222()22a b a b ab ++==),,,(332222时取等c b a R c b a c b a c b a ==∈⎪⎭⎫ ⎝⎛+++≥++⇒22122221)...(1...n n a a a na a a +++≥+++22222()()()ac bd a b c d +≤++21111111(2)1(1)(1)1n n n n n n n n n n -==-≥++--p p 11(1)121n n n n n n n nn n +==-≥+++-pp时取等号当且仅当(则若nn n n n n n n b a b a b a b a b b b b a a a a b a b a b a b a R b b b b R a a a a ====+++++++≤++++∈∈ΛΛΛΛΛΛ332211223222122322212332211321321))(();,,,,,,,,1212,(),x x x x ≠则称f(x)为凸(或凹)函数.5.不等式证明的几种常用方法比较法、综合法、分析法、换元法、反证法、放缩法、构造法.6.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论;②一元二次不等式ax 2+bx +c >0(a ≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则(3)无理不等式:转化为有理不等式求解 1○2○3 (4).指数不等式:转化为代数不等式(5)对数不等式:转化为代数不等式(6)含绝对值不等式○1应用分类讨论思想去绝对值; ○2应用数形思想; ○3应用化归思想等价转化注:常用不等式的解法举例(x 为正数): ① 12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩()0()()()0()()f x f x g x g x f x g x ⎧≥⎫⇒⎪⎬≥⎨⎭⎪>⎩定义域⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f ()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩⎩⎨⎧>-<>≤⇔>⎩⎨⎧<<->⇔<)()()()(0)()0)(),((0)()(|)(|)()()(0)()(|)(|x g x f x g x f x g x g x f x g x g x f x g x f x g x g x g x f 或或不同时为231124(1)2(1)(1)()22327x x x x x -=⋅--≤=②类似于,③2222232(1)(1)12423(1)()22327x x xy x x y y--=-⇒=≤=⇒≤22sin cos sin(1sin)y x x x x==-111||||||()2x x xx x x+=+≥与同号,故取等二、排列组合二项定理考试内容:分类计数原理与分步计数原理. 排列.排列数公式.组合.组合数公式.组合数的两个性质. 二项式定理.二项展开式的性质. 考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.知识要点一、两个原理.1. 乘法原理、加法原理.2. 可以有重复元素.......的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n个元素可重复排列数m ·m ·… m = m n.. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:种)二、排列.1. ⑴对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n 个不同元素中取出m (m ≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号表示. ⑷排列数公式:注意: 规定0! = 1规定 2. 含有可重元素......的排列问题. nm mn A ),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ!)!1(!n n n n -+=⋅111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 10==nn n C C对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于.例如:已知数字3、2、2,求其排列个数又例如:数字5、5、5、求其排列个数?其排列个数.三、组合.1. ⑴组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式: ⑶两个公式:① ②①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有一类是不含红球的选法有)②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C 种,依分类原理有.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑸①几个常用组合数公式②常用的证明组合等式方法例.!!...!!21k n n n n n =3!2!1)!21(=+=n 1!3!3==n )!(!!!)1()1(m n m n C m m n n n A A C mn mmm n mn-=+--==Λ;m n n mn CC -=m n m n m n C C C11+-=+1m n 111m nC C C--=⋅m n C 1-m nmn mn m n m n C C C11+-=+n n nn n n C C C 2210=+++Λλ11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C ΛΛΛi. 裂项求和法. 如:(利用) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用递推)如:.vi. 构造二项式. 如:证明:这里构造二项式其中的系数,左边为,而右边四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某个元素必相邻的排列有个.其中是一个“整体排列”,而则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为. ②有n 件不同商品,若其中A 、B 排在一起有. ③有n 件不同商品,若其中有二件要排在一起有. 注:①③区别在于①是确定的座位,有种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?(插空法),当n – m+1≥m, 即m ≤时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有种,个元素的全排列有种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一)!1(11)!1(!43!32!21+-=++++n n n Λ!1)!1(1!1n n n n --=-mn m n m n C C C 11+-=+413353433+=+++n n C C C C C Λnn n n n n C C C C 222120)()()(=+++Λnn n x x x 2)1()1()1(+=++n x 22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅--ΛΛnn C 2=)(n m m ≤m m m n m n A A ⋅+-+-1111+-+-m n m n A mm A -2n A 2211A A n ⋅-2211A A n n ⋅--112--⋅n n n A A 22A mm n m n m n A A 1+---⋅21+n nn A )(n m m πmm A定,共有种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法). ⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有(平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少? ()注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法?有,当n – m+1 ≥m, 即m ≤时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为显然,故()是方程的一组解.反之,方程的任何一组解,对应着惟一的一种在12个球之间插入隔板的方式(如图 所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数.注意:若为非负数解的x 个数,即用中等于,有,进而转化为求a 的正整数解的个数为.⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:;不在某一位置上:或(一类是不取出特殊元素a ,有,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1m mn n A A mm n n A A /k knnn n k n kn A C C C Λ)1(-⋅3!224=C !2/102022818C C C P =mm mm n mn m n A A A /1+---⋅21+n 124321=+++x x x x 4321,,,x x x x 124321=+++x x x x 4321,,,x x x x ),,,(4321y y y y 311C n a a a ,...,21i a 1+i x A a a a A x x x x n n =-+-+-⇒=+++1...11...213211-+n n A C rk rn r r A A --11--m n A 11---m n m n A A 11111----⋅+m n m m n A A A mn A 1-x x 24个元素中取m-1,这与用插空法解决是一样的) ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。

高中数学必修五数列知识点总结归纳

高中数学必修五数列知识点总结归纳

高中数学必修五数列知识点总结
归纳
一、数列的概念和简单表示法
1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).
2.了解数列是自变量为正整数的一类函数.
二、等差数列
1.理解等差数列的概念.
2.掌握等差数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.
4.了解等差数列与一次函数的关系.
三、等比数列
1.理解等比数列的概念.
2.掌握等比数列的通项公式与前n项和公式.
3.能在具体的问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应的问题.
4.了解等比数列与指数函数的关系.
四.数列的定义、分类与通项公式
(1)数列的定义
①数列:按照一定顺序排列的一列数.
②数列的项:数列中的每一个数.
(2)数列的分类
(3)数列的通项公式
如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.
五.数列的递推公式
如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an-1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫做数列的递推公式.
1.辨明两个易误点
(1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.
(2)易混项与项数两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.
2.数列与函数的关系
数列是一种特殊的函数,即数列是一个定义在正整数集N*或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学知识点津5不等式数列与排列组合41.||||||||||会用不等式证明较简单的不等问题a b a b a b -≤±≤+如:设,实数满足f x x x a x a ()||=-+-<2131 求证:f x f a a ()()(||)-<+21证明:|()()||()()|f x f a x x a a -=-+--+221313=-+--<=-+-<+-≤++|()()|(||)||||||||||x a x a x a x a x a x a x a 11111又,∴||||||||||x a x a x a -≤-<<+11 ()∴f x f a a a ()()||||-<+=+2221(按不等号方向放缩)42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题) 如:恒成立的最小值a f x a f x <⇔<()() a f x a f x >⇔>()()恒成立的最大值 a f x a f x >⇔>()()能成立的最小值例如:对于一切实数,若恒成立,则的取值范围是x x x a a -++>32(设,它表示数轴上到两定点和距离之和u x x =-++-3223 ()u a a m i n =--=><32555,∴,即()()或者:,∴)x x x x a -++≥--+=<323255 43. 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d nn =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ⇔=+ 0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即:当,,解不等式组可得达到最大值时的值。

a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。

a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331 ()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27)44. 等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q q q n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 45.由求时应注意什么?S a n n(时,,时,)n a S n a S S n n n ==≥=--12111 46. 你熟悉求数列通项公式的常用方法吗?例如:(1)求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a∴a n n =+21 ∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144== n a S S n n n n ≥=-==--23411时,……·(2)叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133==(3)等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥-- ()()a n n=-1231 (4)等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1 ()⇒=+--a ca c x n n 11令,∴()c x d x dc -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111 ∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-84311(5)倒数法例如:,,求a a a a a n nn n 11122==++由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ∴a n n =+2147. 你熟悉求数列前n 项和的常用方法吗? 例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

{}如:是公差为的等差数列,求a d a a n k k k n111+=∑ 解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠∴11111111a a d a a k k k nkk k n+=+=∑∑=-⎛⎝ ⎫⎭⎪=-⎛⎝⎫⎭⎪+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥=-⎛⎝ ⎫⎭⎪++11111111111223111d a a a a a a d a a n n n ……[练习] 求和:…………111211231123+++++++++++n(…………,)a S n n n ===-+211(2)错位相减法:{}{}{}若为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n{}和,可由求,其中为的公比。

S qS S q b n n n n -如:……S x x x nx n n =+++++<>-12341231()x S x x x x n x nx n n n ·……=+++++-+<>-234122341()<>-<>-=++++--121121:……x S x x x nx n n n ()()x S x x nx xnnn≠=----11112时,()x S n n n n ==++++=+112312时,……(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

S a a a a S a a a a n n n n n n =++++=++++⎫⎬⎪⎭⎪--121121…………相加()()()21211S a a a a a a n n n n =++++++-………… [练习]已知,则f x x xf f f f f f f ()()()()()=+++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪=2211212313414(由f x f x x x x x x x x ()+⎛⎝ ⎫⎭⎪=++⎛⎝ ⎫⎭⎪+⎛⎝ ⎫⎭⎪=+++=1111111112222222 ∴原式=++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥++⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥f f f f f f f ()()()()1212313414=+++=12111312) 48. 你知道储蓄、贷款问题吗?△零存整取储蓄(单利)本利和计算模型:若每期存入本金p 元,每期利率为r ,n 期后,本利和为:()()()()S p r p r p nr p n n n r n =++++++=++⎡⎣⎢⎤⎦⎥112112…………等差问题△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)若贷款(向银行借款)p 元,采用分期等额还款方式,从借款日算起,一期(如一年)后为第一次还款日,如此下去,第n 次还清。

如果每期利率为r (按复利),那么每期应还x 元,满足 ()()()p r x r x r x r x n n n ()111112+=+++++++--……()()()=-+-+⎡⎣⎢⎢⎤⎦⎥⎥=+-x r r x r r n n111111 ()()∴x pr r r nn=++-111p ——贷款数,r ——利率,n ——还款期数49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

相关文档
最新文档