圆锥曲线练习题1
中档题练习 圆锥曲线1
12.己知抛物线y2=4x的焦点为F,若点A,B是该抛物线上的点, ,
线段AB的中点M在抛物线的准线上的射影为N,则 的最大值为__ __.
13.如果双曲我的两个焦点分别为 ,其中一条渐近线的方程是 ,则双曲线的实轴长为2 .
则 的最小值为(C)
A. B. C. D.1
5.已知双曲线c: ,以右焦点F为圆心,|OF|为半径的圆交
双曲线两渐近线于点M、N(异于原点O),若|MN|= ,则双曲线C的离心率e是(D)
A. B. C. D.2
6.已知椭圆 的上焦点为 ,左、右顶点分别为 ,下顶点为 ,直线 与直线 交于点 ,若 ,则椭圆的离心率为(D)
14.己知F1,F2分别是双曲线 的左、右焦点,A是双曲线上在第一象限内的点,若|AF2|=2且 F1AF2=450.廷长AF2交双曲线右支于点B,则ΔF1AB的面积等于___4
A. B. C. D.
7.如图,F1,F2是双曲线C: (a>0,b>0)的左、右焦点,过F1的直线 与 的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为( A )
A. B. C.2D.
8.设双曲线 的左,右焦点分别为 ,过 的直线 交双曲线左支于 两点,则 的最小值为(B)
圆锥曲线易错题训练
1.由直线 上的一点向圆 引切线,则切线长的最小值为( C )
A.1 B. 2 C. D.3
2.已知双曲线 ,以C的右焦点为圆心且与C的渐近线相切
的圆的半径是( B )
A.aB. b C. D.
3.直线 与圆 没有公共点,则a的取值范围是(A)
高考数学圆锥曲线综合题题库1 含详解
1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由. 解:(Ⅰ)易知)0,1(),0,1(,1,2,521F F c b a -=∴===设P (x ,y ),则1),1(),1(2221-+=--⋅---=⋅y x y x y x PF3511544222+=--+x x x ]5,5[-∈x ,0=∴x 当,即点P 为椭圆短轴端点时,21PF PF ⋅有最小值3;当5±=x ,即点P 为椭圆长轴端点时,21PF PF ⋅有最大值4(Ⅱ)假设存在满足条件的直线l 易知点A (5,0)在椭圆的外部,当直线l 的斜率不存在时,直线l 与椭圆无交点,所在直线l 斜率存在,设为k 直线l 的方程为)5(-=x k y由方程组2222221(54)5012520054(5)x y k x k x k y k x ⎧+=⎪+-+-=⎨⎪=-⎩,得依题意220(1680)0k k ∆=-><<,得 当5555<<-k 时,设交点C ),(),(2211y x D y x 、,CD 的中点为R ),(00y x , 则45252,4550222102221+=+=+=+k k x x x k k x x.4520)54525()5(22200+-=-+=-=∴k kk k k x k y又|F 2C|=|F 2D|122-=⋅⇔⊥⇔R F k k l R F12042045251)4520(0222222-=-=+-+--⋅=⋅∴k k k k k kk k k RF ∴20k 2=20k 2-4,而20k 2=20k 2-4不成立, 所以不存在直线l ,使得|F 2C|=|F 2D| 综上所述,不存在直线l ,使得|F 2C|=|F 2D|2、(江苏省启东中学高三综合测试二)已知动圆过定点P (1,0),且与定直线L:x=-1相切,点C 在l 上.(1)求动圆圆心的轨迹M 的方程;.B ,A M 3,P )2(两点相交于的直线与曲线且斜率为设过点-(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由 (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.解:(1)依题意,曲线M 是以点P 为焦点,直线l 为准线的抛物线,所以曲线M 的方程为y 2=4x.:y x4y )1x (3y )1x (3y :AB ,)i )(2(2得消去由的方程为直线由题意得⎩⎨⎧=--=--=.3162x x |AB |),32,3(B ),332,31(A .3x ,31x ,03x 10x 321212=++=-===+-所以解得假设存在点C (-1,y ),使△ABC 为正三角形,则|BC|=|AB|且|AC|=|AB|,即),(9314y ,)332y ()34()32y (4:)316()32y ()131(,)316()32y ()13(2222222222舍不符解得相减得-=-+=++⎪⎩⎪⎨⎧=-++=+++因此,直线l 上不存在点C ,使得△ABC 是正三角形. (ii )解法一:设C (-1,y )使△ABC 成钝角三角形,.32y ,C ,B ,A ,32y 1x )1x (3y ≠=⎩⎨⎧-=--=故三点共线此时得由,9256)316(|AB |,y 3y 34928)332y ()311(|AC |222222==+-=-+--=又, , 392y ,9256y y 334928y y 3428,|AB ||AC ||BC |22222时即即当>++->+++>∠CAB 为钝角.9256y y 3428y y 334928,|AB ||BC ||AC |22222+++>+-+>即当.CBA 3310y 为钝角时∠-<22222y y 3428y 3y349289256,|BC ||AC ||AB |++++->+>即又0)32y (,034y 334y :22<+<++即.该不等式无解,所以∠ACB 不可能为钝角.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:)32(9323310≠>-<y y y 或.解法二: 以AB 为直径的圆的方程为:38 1x :L )332,35()38()332y ()35x (222的距离为到直线圆心-=-=++-. ).332,1(G L AB ,--相切于点为直径的圆与直线以所以当直线l 上的C 点与G 重合时,∠ACB 为直角,当C 与G 点不重合,且A , B ,C 三点不共线时, ∠ACB 为锐角,即△ABC 中∠ACB 不可能是钝角. 因此,要使△ABC 为钝角三角形,只可能是∠CAB 或∠CBA 为钝角. 932y 1x ).31x (33332y :AB A =-=-=-得令垂直的直线为且与过点.3310y 1x ),3x (3332y :AB B -=-=-=+得令垂直的直线为且与过点.,)32,1(C ,,32y x )1x (3y 时的坐标为当点所以解得又由-=⎩⎨⎧-=--= A ,B ,C 三点共 线,不构成三角形.因此,当△ABC 为钝角三角形时,点C 的纵坐标y 的取值范围是:).32(9323310≠>-<y y y 或3、(江苏省启东中学高三综合测试三)(1)在双曲线xy=1上任取不同三点A 、B 、C ,证明:⊿ABC 的垂心H 也在该双曲线上;(2)若正三角形ABC 的一个顶点为C(―1,―1),另两个顶点A 、B 在双曲线xy=1另一支上,求顶点A 、B 的坐标。
人教A版高中数学选修一第三章《圆锥曲线的方程》提高训练 (1)(含答案解析)
14.(多选)已知椭圆 的左、右焦点分别为F1,F2,过F1的直线l1与过F2的直线l2交于点M,设M的坐标为(x0,y0),若l1⊥l2,则下列结论正确的有()
A. B.
C. D.
三、填空题
15.已知抛物线的顶点在坐标原点,焦点 与双曲线 的左焦点重合,若两曲线相交于 , 两点,且线段 的中点是点 ,则该双曲线的离心率等于______.
3.椭圆 的左、右焦点分别为 ,过焦点 的倾பைடு நூலகம்角为 直线交椭圆于 两点,弦长 ,若三角形 的内切圆的面积为 ,则椭圆的离心率为()
A. B. C. D.
4.已知直线 垂直于抛物线 的对称轴,与E交于点A,B(点A在第一象限),过点A且斜率为 的直线与E交于另一点C,若 ,则p=( )
A. B.
C. D.
5.已知方程 表示焦点在y轴上的椭圆,则m的取值范围是()
A. B.
C. D.
6.已知椭圆C: 的长轴长为4,若点P是椭圆C上任意一点,过原点的直线l与椭圆相交于M、N两点,记直线PM、PN的斜率分别为 ,当 时,则椭圆方程为( )
A. B.
C. D.
7.已知椭圆C:x2+ =1(b>0,且b≠1)与直线l:y=x+m交于M,N两点,B为上顶点.若BM=BN,则椭圆C的离心率的取值范围是()
33.设椭圆 的的焦点为 是C上的动点,直线 经过椭圆的一个焦点, 的周长为 .
(1)求椭圆的标准方程;
(2)求 的最小值和最大值.
34.写出适合下列条件的椭圆的标准方程:
(1)两个焦点在坐标轴上,且经过 和 两点;
(2)过点 ,且与椭圆 有相同的焦点.
35.已知动点 到直线 的距离与到定点 的距离的差为 .动点 的轨迹设为曲线 .
圆锥曲线综合大题练 分类题组-2023届高三数学一轮复习
题组:圆锥曲线综合大题练题型1:定点问题1.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为√10.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.2.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.3.已知椭圆C:2222=1x ya b(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.4.如图,椭圆E:x 2a2+y2b2=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=12.过F1的直线交椭圆于A、B两点,且∆ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.5.如图,已知椭圆Γ:x 2b2+y2a2=1(a>b>0)的离心率e=√22,短轴右端点为A,M(1.0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于P,Q两点,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.题型2:定值问题1.已知椭圆C :22221+=x y a b (0a b >>)的离心率为 32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N.求证:BM AN ⋅为定值.2.如图, 在平面直角坐标系中, 抛物线的准线与轴交于点,过点的直线与抛物线交于两点, 设到准线的距离. (1)若,求抛物线的标准方程;(2)若,求证:直线的斜率的平方为定值.xOy ()220y px p =>l x M M ,A B ()11,A x y l ()20d p λλ=>13y d ==0AM AB λ+=AB3.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,点(2,√2)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.4.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,的离心率为,点A(1,√32)在椭圆C上,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1∙k2为定值.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率√22,若圆x 2+y 2=a 2被直线x − y −√2=0截得的弦长为2。
(易错题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(包含答案解析)(1)
一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =3.已知曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则实数a 的取值范围是( )A .(][),10,1-∞-B .(]1,1-C .[)1,1-D .[]()1,01,-+∞4.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 且平行于一条渐近线的直线l 与另一条渐近线交于点A ,l 与双曲线交于点B ,若2BF AB =,则双曲线的离心率为( ) A 23B 3C 2D .25.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .26.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( ) A .2B .3C .32D .527.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为2,左、右焦点分别为1F 、2F ,A 在C 的左支上,1AF x ⊥轴,A 、B 关于原点对称,四边形12AF BF 的面积为48,则12F F =( )A .8B .4C .83D .438.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A .910+B .926+C .712612+ D .832612+ 9.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切; ②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( ) A .1B .2C .3D .410.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .611.已知双曲线22221x y a b-=(0a >,0b >)的左焦点为F ,过原点的直线与双曲线分别相交于A ,B 两点.已知20AB =,16AF =,且3cos 5ABF ∠=,则双曲线的离心率为( ) A .5B .3C .2D12.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B.2C .13D二、填空题13.F 是抛物线2:4C y x =的焦点,P 是C 上且位于第一象限内的点,点P 在C 的准线上的射影为Q ,且2PQ =,则PQF △外接圆的方程为_____.14.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别是1F ,2F,直线:(l y k x =过点2F ,且与双曲线C 在第一象限交于点P .若(22()0OP OF PF +⋅=(O 为坐标原点),且()121PF a PF +=,则双曲线C 的离心率为__________.15.设12,F F 为椭圆22:14x C y +=的两个焦点,P 为椭圆C 在第一象限内的一点且点P的横坐标为1,则12PF F △的内切圆的半径为__________.16.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.17.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.18.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________.19.已知点1F ,2F 为椭圆22122:1x y C a b +=(0a b >>)和双曲线22222:1x y C a b -=''(0a '>,0b '>)的公共焦点,点P 为两曲线的一个交点,且满足01290F PF ∠=,设椭圆与双曲线的离心率分别为1e ,2e ,则221211e e +=___________. 20.抛物线24y x =的焦点为F ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,与准线l 交于点B ,且AK l ⊥于K ,如果AF BF =,那么AKF ∆的面积是______.三、解答题21.已知椭圆C :()222210x y a b a b+=>>的左、右顶点分别为A ,B 且左、右焦点分别为1F ,2F ,点P 为椭圆C 上的动点,在点P 的运动过程中,有且只有6个位置使得12PF F 为直角三角形,且12PF F 的内切圆半径的最大值为22-.(1)求椭圆C 的标准方程;(2)过点B 作两条互相垂直的直线交椭圆C 于M ,N 两点,记MN 的中点为Q ,求点A 到直线BQ 的距离的最大值.22.已知椭圆2222:1(0)x y C a b a b +=>>的右顶点为A ,上顶点B ,离心率为32,且直线AB 与圆224:5O x y +=相切. (1)求椭圆C 的方程;(2)设p 椭圆C 上位于第三象限内的动点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,试问四边形ABNM 的面积是否为定值?若是,求出该定值;若不是,请说明理由.23.已知圆M 的方程为222260x y x y +---=,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E F ,两点,圆N 内的动点D 使得,DE DO DF ,成等比数列,求DF DE →→⋅的取值范围;(3)过点M 作两条直线分别与圆N 相交于A B ,两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行,并说明理由.24.设椭圆2222:1(0)x y C a b a b+=>>的一个顶点与抛物线2:43C x y =的焦点重合,12,F F 分别是椭圆的左、右焦点,且离心率12e =,过椭圆右焦点2F 的直线l 与椭圆交于M 、N 两点.(1)求椭圆C 的方程;(2)若2OM ON ⋅=-. 求直线l 的方程;25.已知离心率22e =的椭圆C :()222210x y a b a b +=>>的一个焦点为()1,0-.(1)求椭圆C 的方程;(2)若斜率为1的直线l 交椭圆C 于A ,B 两点,且423AB =,求直线l 的方程. 26.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(1)求动点M 的轨迹E 的方程;(2)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由32c e a ==,得2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+,∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.B解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.3.C解析:C 【分析】利用绝对值的几何意义,由3y x =+,可得0y ≥时,3yx ,0y <时,3y x =--,则可得曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),再无其它交点,把3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,分类讨论,可得结论 【详解】解:由3y x =+,可得0y ≥时,3y x,0y <时,3y x =--,所以曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),为了使曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则将3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,当1a =-时,3y =满足题意,因为曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点, 所以>0∆,且3是方程的根, 所以9(1)01a a-<+,即11a -<<时,方程两根异号,满足题意, 综上,a 的取值范围为[)1,1-, 故选:C 【点睛】此题考查曲线的交点问题,考查分析问题的能力,考查分类思想,属于中档题4.B解析:B 【分析】设直线l 的方程为()by x c a=--,求得点A 的坐标,由2BF AB =,可得出23FB FA =,利用平面向量的坐标运算求出点B 的坐标,将点B 的坐标代入双曲线的标准方程,可得出a 、c 齐次等式,由此可解得该双曲线的离心率. 【详解】 如下图所示:设直线l 的方程为()b y x c a=--,则直线OA 的方程为by x a =,联立()b y x a b y x c a ⎧=⎪⎪⎨⎪=--⎪⎩,解得22c x bc y a ⎧=⎪⎪⎨⎪=⎪⎩,即点,22c bc A a ⎛⎫ ⎪⎝⎭, 设点(),B m n ,由2BF AB =可得出23FB FA =, 即()2,,,32233c bc c bc m c n a a ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,即33c m c bc n a ⎧-=-⎪⎪⎨⎪=⎪⎩,解得233c m bc n a ⎧=⎪⎪⎨⎪=⎪⎩,则点2,33c bc B a ⎛⎫⎪⎝⎭, 将点B 的坐标代入双曲线的标准方程得222222241993c b c e a a b -==,解得e =故选:B. 【点睛】本题考查双曲线离心率的求解,利用平面向量的坐标运算求出点B 的坐标是解题的关键,考查计算能力,属于中等题.5.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2c =. 【详解】由题意,渐近线方程为by x a=±, ∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =, ∴1222OABSa b =⋅⋅=,即2ab =,∴24c ==当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方6.A解析:A 【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.7.A解析:A 【分析】设122F F c =,求出1AF,由题意可知四边形12AF BF 为平行四边形,根据四边形12AF BF 的面积为48可得出关于a 的等式,由此可求得12F F .【详解】设122F F c =,由于双曲线的离心率为2ce a==,2c a ∴=,则b =, 所以,双曲线C 的方程为222213x y a a-=,即22233x y a -=,将x c =-即2x a =-代入双曲线C 的方程可得3y a =±,13AF a ∴=,由于A 、B 关于原点对称,1F 、2F 关于原点对称,则四边形12AF BF 是平行四边形,四边形12AF BF 的面积2341248S a a a =⨯==,解得2a =,12248F F c a ∴===.故选:A. 【点睛】关键点点睛:本题考查双曲线几何性质的应用,利用四边形的面积求双曲线的焦距,解题的关键就是利用双曲线的离心率将双曲线的方程转化为只含a 的方程,在求解相应点的坐标时,可简化运算.8.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A My y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭, 又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,()()22434126BM =-+--=,所以ABM 的周长为:25112692644AB AM BM ++=++=+, 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 9.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b, 所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以1118021802180AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p , 因为2211222y y p pp ,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设(002A x px ,则002AT px k =,则直线002:x AT x x p =-,代入抛物线方程化简得0202220x px py p +=-, 则0020228x p ppx ⎛∆=- -=⎝,所以直线TA 与该抛物线相切,故④正确. 故选:D. 【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.10.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.11.A解析:A 【分析】在AFB ∆中,由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠,即可得到|BF |,设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.即可得到a ,c ,进而求得离心率. 【详解】在AFB ∆中,||20AB =,||16AF =,且3cos 5ABF ∠=, 由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠, 从而可得2(||12)0BF -=,解得||12BF =.设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.||16BF ∴'=,||10FF '=.2|1612|a ∴=-,220c =,解得2a =,10c =. 5ce a∴==. 故选:A.【点睛】本题考查余弦定理、双曲线的定义、对称性、离心率、矩形的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b--+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b --+=,因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以231c b e a a ⎛⎫==-= ⎪⎝⎭, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】由题可判断为直角三角形即外接圆的圆心为中点求出圆心和半径即可写出圆的方程【详解】由抛物线方程可知焦点准线方程为即则即为直角三角形外接圆的圆心为中点即圆心为半径为外接圆的方程为故答案为:【点睛 解析:()2212x y +-=【分析】由题可判断FPQ △为直角三角形,即PQF △外接圆的圆心为FQ 中点,求出圆心和半径即可写出圆的方程. 【详解】由抛物线方程可知焦点()1,0F ,准线方程为1x =-,2PQ =,∴12P x +=,即1P x =,则2P y =, ()()1,2,1,2P Q ∴-,FP PQ ∴⊥,即FPQ △为直角三角形,∴PQF △外接圆的圆心为FQ 中点,即圆心为()0,1,半径为122FQ = ∴PQF △外接圆的方程为()2212x y +-=.故答案为:()2212x y +-=.【点睛】本题考查抛物线的简单性质,考查圆的方程的求解,属于基础题.14.【分析】取的中点则根据得则设根据结合双曲线的定义得到然后在中利用勾股定理求解即可【详解】如图取的中点则因为所以即因为是的中位线所以由题意可得设则由双曲线的定义可知则即故在中由勾股定理得即整理得解得故解析:102【分析】取2PF 的中点H ,则22OP OF OH +=,根据22()0OP OF PF +⋅=,得2OH PF ⊥,则12PF PF ⊥,设2PF m =,根据()121PF a PF +=结合双曲线的定义得到2||2PF =,122PF a =+,然后在12Rt PF F 中,利用勾股定理求解即可.【详解】 如图,取2PF 的中点H ,则22OP OF OH +=, 因为22()0OP OF PF +⋅=,所以20OH PF ⋅=,即2OH PF ⊥.因为OH 是12PF F △的中位线,所以12PF PF ⊥.由题意可得10c =,设2PF m =,则()11PF a m =+, 由双曲线的定义可知12||2PF PF a -=,则2am a =,即2m =, 故2||2PF =,122PF a =+.在12Rt PF F 中,由勾股定理得2221122||||PF PF F F +=, 即()242240a ++=,整理得2280a a +-=, 解得2a =.故双曲线C 的离心率为10c a =. 10【点睛】本题主要考查双曲线的几何性质和定义的应用以及平面几何的知识,平面向量垂直问题,还考查了数形结合的思想和运算求解的能力,属于中档题.15.【分析】由点的横坐标为1代入得出点的纵坐标继而求得的面积S 再设的内切圆的半径为由可得答案【详解】因为点的横坐标为1所以点的纵坐标为所以的面积设的内切圆的半径为所以即所以故答案为:【点睛】本题考查椭圆解析:3【分析】由点P 的横坐标为1,代入得出点P 的纵坐标,继而求得12PF F △的面积S ,再设12PF F △的内切圆的半径为r ,由()(1212122S F F PF PF r r =++⨯=+,可得答案. 【详解】因为点P 的横坐标为1,所以点P 的纵坐标为P y =12PF F △的面积121322P F F y S ⋅==,设12PF F △的内切圆的半径为r ,所以()(1212122S F F PF PF r r =++⨯=+,即(322r +=,所以32r =-.故答案为:32-. 【点睛】本题考查椭圆的方程和椭圆的定义,以及焦点三角形的相关性质,属于中档题.16.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=,故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.17.【分析】由题意知可求的坐标由于轴可得利用抛物线的定义可得代入可取再利用即可得出的值【详解】解:如图所示与轴平行解得代入可取解得故答案为:【点睛】本题考查了抛物线的定义及其性质平行线的性质三角形面积计 解析:6【分析】由题意知可求F 的坐标.由于//AB x 轴,||2||AF CF =,||||AB AF =,可得13||||22CF AB p ==,1||||2CE BE =.利用抛物线的定义可得A x ,代入可取A y ,再利用13ACE ABC S S ∆∆=,即可得出p 的值.【详解】 解:如图所示,,02p F ⎛⎫ ⎪⎝⎭,3||2CF p =,||||AB AF =.AB 与x 轴平行,||2||AF CF =,13||||22CF AB p ∴==,1||||2CE BE =.32A p x p ∴+=,解得52A x p =,代入可取5A y p =,1113535332ACE ABC S S p p ∆∆∴===,解得6p =.故答案为:6.【点睛】本题考查了抛物线的定义及其性质、平行线的性质、三角形面积计算公式.本题的关键在于求出A 的坐标后,如何根据已知面积列出方程.18.【分析】设点的坐标为利用双曲线的定义可得于是转化求解即可【详解】解:由题意可得即则的坐标分别为由双曲线的定义得又是圆上的点圆的圆心为半径为2由图可知则的最小值为故答案为:【点睛】本题主要考查双曲线的 解析:4+61【分析】设点C 的坐标为(0,6),利用双曲线的定义,可得12||||26MF MF a -==,于是1||||MF MA +=2||||2||MF CM a CA ++-2||62CF ≥+-,转化求解即可.【详解】解:由题意可得,291625c =+=,即5c =,则1F ,2F 的坐标分别为(5,0)-,(5,0),由双曲线的定义,得12||||26MF MF a -==,又A 是圆22(6)4x y +-=上的点,圆的圆心为(0,6)C ,半径为2, 由图可知,22||||||CM MF CF +≥,12||||||||2||MF MA MF CM a CA +=++-2||62461CF ≥+-=则1||||MF MA +的最小值为4+61 故答案为:4+61 【点睛】本题主要考查双曲线的几何性质,熟练掌握双曲线的性质及其圆外一点到圆上一点距离的最小值是解题的关键,属于中档题.19.2【分析】先结合椭圆及双曲线的定义可得再结合离心率公式求解即可【详解】解:设P 为双曲线右支上的任意一点点分别为左右交点由椭圆定义有由双曲线定义有则即又则即所以即2故答案为:2【点睛】本题考查了椭圆及解析:2 【分析】先结合椭圆及双曲线的定义可得2'2a a +22c =,再结合离心率公式求解即可. 【详解】解:设P 为双曲线右支上的任意一点,点1F ,2F 分别为左、右交点, 由椭圆定义有122PF PF a +=,由双曲线定义有'122PFPF a -=,则212()PF PF +212()PF PF +-=22122()PF PF +2'24()a a =+,即2212PF PF +2'22()a a =+,又01290F PF ∠=,则222124PF PF c +=,即2'2a a +22c =,所以2'2222a a c c +=,即221211e e +=2, 故答案为:2. 【点睛】本题考查了椭圆及双曲线的定义,重点考查了离心率的求法,属中档题.20.【分析】计算得到故为正三角形计算面积得到答案【详解】抛物线的焦点准线为l :由抛物线的定义可得由直角三角形的斜边上的中线等于斜边的一半可得即有为正三角形由F 到l 的距离为则的面积是故答案为:【点睛】本题解析:【分析】计算得到AF AK =,FK AF =,故AKF ∆为正三角形,4AK =,计算面积得到答案. 【详解】抛物线24y x =的焦点()1,0F ,准线为l :1x =-,由抛物线的定义可得AF AK =, 由直角三角形的斜边上的中线等于斜边的一半,可得FK AF =, 即有AKF ∆为正三角形,由F 到l 的距离为2d =,则4AK =,AKF ∆16=.故答案为:【点睛】本题考查了抛物线中的面积问题,确定AKF ∆为正三角形是解题的关键.三、解答题21.(1) 22142x y += (2) 47【分析】(1)由条件得出当点P 位于椭圆C 的上下顶点处时,12PF F △为直角三角形,则b c =,当点P 位于椭圆C 的上下顶点处时,12PF F △的的内切圆半径的最大值,则22cbR a c==-+22222c a b a c =-=-,可求出椭圆方程. (2)由条件()2,0B ,设()()1122,,,M x y N x y ,设直线MN 的方程为x my n =+ ,与椭圆方程联立得出韦达定理,由1212122BM BN y yk k x x ⋅=⋅=---,结合韦达定理可得n 的值,从而得出点Q 的坐标,进而求出直线BQ 的方程,由点到直线的距离公式可得出答案 【详解】点P 为椭圆C 上的动点,当1PF x ⊥或2PF x ⊥时,12PF F △为直角三角形. 此时满足条件的点P 有4个,根据满足条件的点P 有6个. 则满足条件的点P 的另2个位置位于椭圆C 的上下顶点处.当点P 位于椭圆C 的上下顶点处时,12PF F △为等腰直角三角形,即b c =12PF F △的内切圆半径我为R ,则()12121211222PF F P Sc y F F PF PF R ==++ 即()P c y a c R =+,所以Pc y R a c=+ 当点P 位于椭圆C 的上下顶点处时,12PF F △的的内切圆半径的最大值.所以2cb R a c ==+,即22c a c=+22222c a b a c =-=-,即a =解得2,a b =,所以椭圆C 的标准方程为:22142x y +=(2)由条件()2,0B ,设()()1122,,,M x y N x y ,设直线MN 的方程为x my n =+由22142x my nx y =+⎧⎪⎨+=⎪⎩,得()2222240m y mny n +++-=所以212122224,,22mn n y y y y m m --+=⋅=++据条件直线BM ,BN 的斜率存在,由条件可得1212122BM BN y yk k x x ⋅=⋅=--- 即1212122y y my n my n ⋅=-+-+-,即()()()2212121222y y m y y m n y y n -=+-++-所以()()()()2212121220m y y m n y y n ++-++-=则()()()2222242122022n mn m m n n m m --++-+-=++化简可得()()2320n n --=,即23n =或2n = 当2n =时,直线MN 过点B ,不满足条件.所以 23n =,则()12222243232m m y y m m -⨯-+==++ 由MN 的中点为Q ,则()2232Q my m -=+所以()()2222433232Q m x m m m -=⨯+=++所以()()222232434232BQm m m k m m -+==+-+所以直线BQ 的方程为()2234m y x m =-+,即()23420m y mx m +-+= 所以点()2,0A -到直线BQ 的距离为d ==47=≤=当且仅当22169mm=,即243m=时取等号.所以点()2,0A-到直线BQ的距离的最大值为47【点睛】关键点睛:本题考查椭圆的几何性质和椭圆中的定点问题以及点到直线的距离的最值问题,解答本题的关键是由1212122BM BNy yk kx x⋅=⋅=---结合韦达定理得出n的值,进一步得出点Q的坐标()2232Qmym-=+,234BQmkm=+,得出直线BQ的方程为()2234my xm=-+,属于难题.22.(1)2214xy+=;(2)是定值,定值为2.【分析】(1)由题意可得==,a b的值,进而可得椭圆的方程;(2)设()()0000,0,0,P x y x y<<从而可表示出直线PA的方程,然后求出点M的坐标,得到BM的值,同理可得到AN的值,进而可求得四边形ABNM的面积,得到结论【详解】(1)解:由题意知直线:AB bx ay ab+=,所以⎧=⎪=2a=,1b=,所以椭圆C的方程为2214xy+=,(2)证明:设()()22000000,0,0,44P x y x y x y<<+=.因为()()2,0,0,1A B,所以直线PA的方程为()22yy xx=--,令x=,得022M y y x =--, 从而002112M y BM y x =-=+-. 直线PB 的方程为0011y y x x -=+令0y =,得001N xx y =--,从而00221N x AN x y =-=+-. 所以四边形ABNM 的面积0000211212212x y s AN BM y x ⎛⎫⎛⎫==+⋅+ ⎪ ⎪--⎝⎭⎝⎭‖ ()22000000000000000000444842244222222x y x y x y x y x y x y x y x y x y ++--+--+===--+--+.所以四边形ABNM 的面积为定值2. 【点睛】关键点点睛:解题的关键是由题意将BM ,AN 表示出来,从而可得四边形ABNM 的面积.23.(1)222x y +=;(2)[)10-,;(3)平行,理由见解析. 【分析】(1)根据圆心距与圆M 半径的大小,判断两圆的位置关系为内切,进而根据MN R r =-求得圆N 的半径,最后写出圆N 的方程;(2)设动点()D x y ,,根据,DE DO DF ,成等比数列求得动点D 的轨迹方程,又结合动点是在圆内的,求出D 点纵坐标y 的取值范围,再将DF DE →→⋅表示为221y -,最后求得DF DE →→⋅的取值范围.(3) 因为直线MA 和直线MB 的倾斜角互补,故直线MA 和直线MB 的斜率存在,且互为相反数,设直线MA 的斜率为k ,则直线MB 的斜率为k -.接着联立直线MA 方程和圆的方程得到A 点的横坐标,同理得到B 点的横坐标,最后求得直线AB 和MN 的斜率相等,所以直线MN 和AB 是平行的. 【详解】解:1()圆M 的方程可化为()()22118x y -+-=, 故圆心()11M ,,半径R = 圆N 的圆心坐标为()00,,因为MN =<所以点N 在圆M 内,故圆N 只能内切于圆M ,设其半径为r ,因为圆N 内切于圆M ,所以有MN R r =-r =,解得r =所以圆N 的方程为222x y +=;2()由题意可知:()E,)F ,设()D x y ,,由,DE DO DF ,成等比数列,得2DO DE DF =⋅,22x y =+,整理得221x y -=,而())DE DF x y x y →→⋅=-⋅-,,())()2222x x y x y =⋅+-=+-()2221221y y y =++-=-,由于点D 在圆N 内,故有222221x y x y ⎧+<⎨-=⎩, 由此得2102y ≤<, 所以[)10DE DF →→⋅∈-,;3()因为直线MA 和直线MB 的倾斜角互补, 故直线MA 和直线MB 的斜率存在,且互为相反数, 设直线MA 的斜率为k ,则直线MB 的斜率为k -. 故直线MA 的方程为()11y k x -=-, 直线MB 的方程为()11y k x -=--, 由()22112y k x x y ⎧-=-⎨+=⎩,得()()()222121120k x k k x k ++-+--=,因为点M 在圆N 上,故其横坐标1x =一定是该方程的解,222211A k kx k -∴+=+ 可得22211A k k x k --=+, 同理可得:22211B k k x k +-=+, 所以B AAB B Ay y k x x -=-()()3232222222222421111114212111B A MNB Ak k k k k k kk k x k x k k k k k k k k k x x k k --+-++++----+++=====+--++-++, 所以直线AB 和MN 一定平行. 【点睛】直线与圆,圆与圆的位置关系是圆锥曲线中比较常考的内容之一,需要注意一下几点: (1)圆与圆的位置关系的判断就是根据圆心距和半径和差之间的大小关系进行判断; (2)求动点的轨迹方程通常采用“建设限代化”五步骤来求动点的轨迹,切记求出方程之后,看有没有不满足题意的解,需要排除掉;(3)一般联立方程组之后,方程的两个解是直线与曲线交点的横坐标或者纵坐标,在已知一个坐标的情况下,另一个坐标可以通过韦达定理求得.24.(1)22143x y +=;(2)1)y x -或1)y x =-.【分析】(1)求出抛物线的焦点坐标,可得b =.(2)先验证直线斜率不存在时的可求,然后当直线斜率存在时,设出方程与椭圆方程联立,写出韦达定理,由12122OM ON x x y y ⋅=+=-,将韦达定理代入可得答案. 【详解】解:(1)由题意得,抛物线2:C x =的焦点为 ∴椭圆的一个顶点为,∴b =又∵12c e a ==, 222231114b e a a =-=-=, 所以2a =∴椭圆的标准方程为22143x y +=.(2)由题意可知,直线l 与椭圆必相交,①当直线斜率不存在时,直线l 的方程为:1x =,则331,,1,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭则9124OM ON ⋅=-≠-,所以不合题意, ②当直线斜率存在时,设直线l 为(1)y k x =-且1122(,),(,)M x y N x y .由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(34)84120k x k x k +-+-=, ∴221222228412,3434k k x x x x k k-+=⋅=++. ∴[]21212121212()1OM ON x x y y x x kx x x x ⋅=+=+-++2222222224124128512(1)234343434k k k k k k k k k----=+-+==-++++. ∴22k =∴k =0∆>∴直线l的方程为1)y x =-或1)y x =-. 【点睛】关键点睛:本题考查求椭圆的方程和椭圆与直线的位置关系,解得本题的关键是联立直线方程与椭圆方程结合韦达定理得到221222228412,3434k k x x x x k k -+=⋅=++,由[]21212121212()1OM ON x x y y x x k x x x x ⋅=+=+-++,然后将韦达定理代入,属于中档题.25.(1)2212x y +=;(2)1y x =+或1y x =-.【分析】(1)由离心率求出a ,再求出b ,可得椭圆方程;(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,直线方程代入椭圆方程整理后应用韦达定理得1212,x x x x +,然后代入弦长公式12AB x =-可求得参数m 值得直线方程.【详解】(1)由题意知,1c =,c e a ==,∴a = 1b =, ∴椭圆C 的方程为2212x y +=.(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,联立方程组2212x y y x m ⎧+=⎪⎨⎪=+⎩, 化简,得2234220x mx m ++-=.由已知得,()2221612228240m m m ∆=--=-+>,即23m <,∴m <<1243m x x +=-,212223m x x -=.∴213AB x =-==, 解得1m =±,符合题意,∴直线l 的方程为1y x =+或1y x =-. 【点睛】方法点睛:本题考查直线与椭圆相交弦长问题.解题方法是设而不求的思想方法,即设交。
学生版圆锥曲线(1)
圆锥曲线(1)一、基础训练1.若椭圆2215x y m +=的离心率e =,则m 的值是________. 2.若抛物线22y x =上的一点M 到坐标原点O则M 到该抛物线焦点的距离为________.3.双曲线22260x y -+=上一个点P 到一个焦点的距离为4,则它到另一个焦点的距离为________.4.已知双曲线2212x y a -=的一个焦点坐标为(,则其渐近线方程为________. 5.设圆锥曲线C 的两个焦点分别为1F ,2F .若曲线C 上存在点P 满足1122::4:3:2P F F F P F =,则曲线C 的离心率等于________. 6.若椭圆22221x y a b+=的焦点在x 轴上,过点1(1,2作圆221x y +=的切线,切点分别为,A B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.二、典型例题例1 (1)椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A ,B .当FAB ∆的周长最大时,FAB ∆的面积是________.(2) 已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为e ,若椭圆上存在点P ,使得12PF e PF =,则该椭圆离心率e 的取值范围是________. (3)已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是________.例2已知椭圆2222:1(0)x y C a b a b +=>>的一个顶点为(2,0)A ,离心率为2.直线(1)y k x =-与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当AMN ∆k 的值.例3已知双曲线2213y x -=,椭圆与该双曲线共焦点,且经过点(2,3) . (1)求椭圆方程;(2)设椭圆的左、右顶点分别为A ,B ,右焦点为F ,直线l 为椭圆的右准线,N 为l 上的一动点,且在x 轴上方,直线AN 与椭圆交于点M . ①若AM MN =,求AMB ∠的余弦值;②设过A ,F ,N 三点的圆与y 轴交于P ,Q 两点,当线段PQ 的中点为(0,9)时,求这个圆的方程.例4如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的离心率为2,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线20x y -+=相切. (1)求椭圆C 的方程;(2)已知点(1,0)P ,(0,2)Q .设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上.三、作业1.点P 为椭圆22221(0)x y a b a b+=>>上一点,1F ,2F 为椭圆的焦点,如果1275PF F ︒∠=,2115PF F ︒∠=,则椭圆的离心率为________.2.在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率为m 的值为________.3.已知抛物线22(0)y px p =>,过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为________.4.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是y ,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为________.5.设P 点在圆22(2)1x y +-=上移动,点Q 在椭圆2219x y +=上移动,则PQ 的最大值是________.6.已知1F ,2F 分别是椭圆14822=+y x 的左、右焦点, 点P 是椭圆上的任意一点, 则121||PF PF PF -的取值范围是 .7. 已知椭圆C :)0(12222>>=+b a by a x ,左、右两个焦点分别为1F ,2F ,上顶点),0(b A ,21F AF ∆为正三角形且周长为6.(1)求椭圆C 的标准方程及离心率;(2)O 为坐标原点,直线A F 1上有一动点P ,求||||2PO PF +的最小值.8.如图,点1(,0)F c -,2(,0)F c 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,过点1F 作x 轴的垂线交椭圆C 的上半部分于点P ,过点2F 作直线2PF 的垂线交直线2a x c=于点Q .(1)如果点Q 的坐标是(4,4) ,求此时椭圆C 的方程; (2)证明:直线PQ 与椭圆C 只有一个交点.9.设A 、B 分别为椭圆12222=+b y a x ()0>>b a 的左、右顶点,椭圆的长轴长为4,且点⎪⎪⎭⎫⎝⎛23,1在该椭圆上. (Ⅰ)求椭圆的方程;(Ⅱ)设P 为直线4=x 上不同于点()0,4的任意一点,若直线AP 与椭圆相交于异于A 的点M .证明:MBP ∆为钝角三角形.10. 如图,在平面直角坐标系xOy 中,已知点F 是椭圆2222:1(0)x y E a b a b +=>>的左焦点,A ,B ,C 分别为椭圆E 的右、下、上顶点,满足5FC BA = ,椭圆的离心率为12.(1)求椭圆的方程;(2)若P 为线段FC (包括端点)上任意一点,当PA PB取得最小值时,求点P 的坐标; (3)设点M 为线段BC (包括端点)上的一个动点,射线MF 交椭圆于点N ,若NF FM λ= ,求实数λ的取值范围.。
新人教版高中数学选修一第三单元《圆锥曲线的方程》测试(含答案解析)(1)
一、填空题1.设点P 为椭圆22:14924x y C +=上一点,1F 、2F 分别是椭圆C 的左、右焦点,且12PF F △的重心为G ,如果1212||,||,||PF PF F F 成等差数列,那么12GF F △的面积为___.2.已知O 为坐标原点,12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左右焦点,A 为椭圆的右顶点,P 为C 上一点,且2PF x ⊥轴,过点A 的直线l 与线段2PF 交于点M ,与y 轴交于点N ,若直线1F M 与y 轴交于点Q ,且3ON OQ =,则C 的离心率为___________.3.已知点P 为抛物线C :24y x =上的动点,抛物线C 的焦点为F ,且点()3,1A ,则PA PF +的最小值为_______.4.已知1F ,2F 是椭圆222:1(1)x C y a a+=>的两个焦点,且椭圆上存在一点P ,使得1223F PF π∠=,若点M ,N 分别是圆D :22(3)3x y +-=和椭圆C 上的动点,则当椭圆C 的离心率取得最小值时,2MN NF +的最大值是___________.5.已知椭圆2222:1(0)x y E a b a b+=>>的左焦点为F ,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若||3||PF QF =,且120PFQ ∠=,则椭圆E 的离心率为__.6.已知M 是抛物线24y x =上一点,F 为其焦点,点A 在圆22:(6)(1)1C x y -++=上,则||||MA MF +的最小值是__________.7.设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过F 作C 的一条渐近线的垂线垂足为A ,且||2||OA AF =,O 为坐标原点,则C 的离心率为_________.8.已知点P 是椭圆22221(0)x y a b a b+=>>上的一点,12,F F 分别为椭圆的左、右焦点,已知12F PF ∠=120°,且12||3||PF PF =,则椭圆的离心率为___________.9.已知双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为1F ,2F ,直线l 过点2F 交双曲线右支于P ,Q 两点,若123PF PF =,23PQ PF =,则双曲线 C 的离心率为__________.10.椭圆22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F ,过2F 的直线交椭圆于P ,Q 两点(P 在x 轴上方),1PF PQ =,若1PQ PF⊥,则椭圆的离心率e =______.11.已知点()1,0A -是抛物线22y px =的准线与x 轴的交点,F 为抛物线的焦点,P 是抛物线上的动点,则PFPA最小值为_____.12.已知双曲线()222210,0x y a b a b-=>>离心率为2,则其渐近线与圆()22214x a y a -+=的位置关系是________. 13.对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的过焦点且垂直于对称轴的弦的长为5; ⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1) 能使抛物线方程为y 2=10x 的条件是_____.二、解答题14.双曲线221124x y -=,1F 、2F 为其左右焦点,曲线C 是以2F 为圆心且过原点的圆.(1)求曲线C 的方程;(2)动点P 在C 上运动,M 满足1F M MP →→=,求M 的轨迹方程. 15.如图,在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,焦距为2,点P 是椭圆上的动点,且12PF F △的面积的最大值为1.(Ⅰ)求椭圆的方程;(Ⅱ)若直线l 与椭圆有且只有一个公共点P ,且l 与直线2x =-相交于Q .点T 是x 轴上一点,若总有0PT QT ⋅=,求T 点坐标.16.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,其左,右焦点分别是12,F F ,椭圆上的4个点,,,A B M N 满足:直线AB 过左焦点1F ,直线AM 过坐标原点O ,直线AN的斜率为32-,且2ABF 的周长为8 (1)求椭圆C 的方程. (2)求AMN 面积的最大值17.已知椭圆C :()222210x y a b a b+=>>过点31,2P ⎛⎫ ⎪⎝⎭,离心率12e =.(1)求椭圆C 的方程;(2)设A ,B 是椭圆C 上的两个动点,O 是坐标原点,若OA OB ⊥,证明:直线AB l 与以原点为圆心的某个定圆相切,并求这个定圆.18.在平面直角坐标系xOy 中,已知圆()22:21F x y -+=,动圆M 与直线:1l x =-相切且与圆F 外切.(1)记圆心M 的轨迹为曲线C ,求曲线C 的方程;(2)已知()2,0A -,曲线C 上一点P 满足PA ,求PAF ∠的大小. 19.已知抛物线22(0)y px p =>,其准线方程为10x +=,直线l 过点(,0)(0)T t t >且与抛物线交于A 、B 两点,O 为坐标原点. (1)求抛物线方程;(2)证明:OA OB ⋅的值与直线l 倾斜角的大小无关;(3)若P 为抛物线上的动点,记||PT 的最小值为函数()d t ,求()d t 的解析式.20.已知椭圆C :()222210x y a b a b+=>>的离心率为12,椭圆C 的中心O 关于直线250x y --= 的对称点落在直线2x a =上;(1)求椭圆C :的方程;(2)设()4,0P ,M 、N 是椭圆C 上关于x 轴对称的任意两点,连接PN 交椭圆C 于另一点E ,求直线PN 斜率的取值范围; (3)证明直线ME 与x 轴相交于定点.21.已知抛物线1C :()220y px p =>的焦点为F ,过点F 的直线l 与曲线1C 交于A ,B 两点,设()11,A x y ,()22,B x y ,则126x x +=且弦AB 的中点到准线的距离为4.(1)求曲线1C 的方程;(24的椭圆2C 的方程为()222210x y a b a b +=>>.又椭圆2C 与过点()1,0Q -且斜率存在的直线l '相交于M ,N 两点,已知45MONS =,O 为坐标原点,求直线l '的方程.22.已知集合(){}22|4300A x x ax a a =-+<>,集合B ={a 方程221382x y a a+=--表示圆锥曲线C }(1)若圆锥曲线C 表示焦点在x 轴上的椭圆,求实数a 的取值范围;(2)若圆锥曲线C 表示双曲线,且A 是B 的充分不必要条件,求实数a 的取值范围. 23.已知点(3,0)M -,点P 在y 轴上,点Q 在x 轴的正半轴上,点N 在直线PQ 上,且满足0MP PN ⋅=,12PN PQ =. (1)当P 点在y 轴上移动时,求动点N 的轨迹C 的方程;(2)过点()2,0T 作一直线交曲线C 于A ,B 两点,O 为坐标原点,若AOT 的面积是BOT 面积的2倍,求弦长AB .24.已知椭圆C :()222210x y a b a b +=>>的离心率为12,点P ⎭在C 上. (1)求椭圆C 的方程;(2)设1F ,2F 分别是椭圆C 的左,右焦点,过2F 的直线l 与椭圆C 交于不同的两点A ,B ,求1F AB 面积的最大值.25.已知椭圆C :22142x y +=.(1)求椭圆的离心率.(2)已知点A 是椭圆C 的左顶点,过点A 作斜率为1的直线m ,求直线m 与椭圆C 的另一个交点B 的坐标.(3)已知点(M ,P 是椭圆C 上的动点,求PM 的最大值及相应点P 的坐标.26.已知椭圆M 的焦点与双曲线N :22197x y -=的顶点重合,且椭圆M 短轴的端点到双曲线N 渐近线的距离为3. (1)求椭圆M 的方程;(2)已知直线l 与椭圆M 交于A ,B 两点,若弦AB 中点为()2,1,求直线l 的方程.【参考答案】***试卷处理标记,请不要删除一、填空题1.8【分析】根据条件计算出可以判断△PF1F2是直角三角形即可计算出△PF1F2的面积由△PF1F2的重心为点G 可知△PF1F2的面积是的面积的3倍即可求解【详解】∵P 为椭圆C :上一点且又且又∴易知△ 解析:8 【分析】根据条件计算出1212,,PF PF F F ,可以判断△PF 1F 2是直角三角形,即可计算出△PF 1F 2的面积,由△PF 1F 2的重心为点G 可知△PF 1F 2的面积是12GF F △的面积的3倍,即可求解. 【详解】∵P 为椭圆C :2214924x y +=上一点,且1212||,||,||PF PF F F1122||||2||PF F F PF ∴+=,又210c ==,12||102||PF PF ∴+=且12214PF PF a +==126,8PF PF ∴==,又1210F F =,∴易知△PF 1F 2是直角三角形,12121242PF F S PF PF =⋅=, ∵△PF 1F 2的重心为点G , ∴12123PF F GF F S S =△△, ∴12GF F △的面积为8. 故答案为:8 【点睛】关键点点睛:该题主要根据条件及椭圆的定义联立方程求出12,PF PF ,证明△PF 1F 2是直角三角形,求出面积后利用重心的性质可求12GF F △的面积,属于中档题.2.【分析】根据椭圆的几何性质由轴设写出的直线方程求出与轴的交点的坐标以及点的坐标根据化简得到即可求解【详解】由题意椭圆的左右焦点分别为且因为轴不妨设则直线的方程为令可得所以直线与轴的交点为又由所以化简解析:13【分析】根据椭圆的几何性质,由2PF x ⊥轴,设(,)M c t ,写出AM 的直线方程,求出AM 与y 轴的交点N 的坐标,以及Q 点的坐标,根据3ON OQ =,化简得到3a c =,即可求解. 【详解】由题意,椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,且(,0)A a ,因为2PF x ⊥轴,不妨设(,)(0)M c t t ≠, 则直线AM 的方程为()ty x a c a=--,令0x =,可得aty a c=-, 所以直线AM 与y 轴的交点为1(0,),(0,)2at N Q t a c -, 又由3ON OQ =,所以132at t a c =⨯-,化简得3a c =, 所以椭圆的离心率为13c e a ==. 故答案为:13. 【点睛】求解椭圆的离心率的三种方法:定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ; 齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;特殊值法:通过取特殊值或特殊位置,求出离心率.3.4【分析】设点在准线上的射影为则根据抛物线的定义可知进而把问题转化为求取得最小进而可推断出当三点共线时最小答案可得【详解】抛物线的准线为设点在准线上的射影为如图则根据抛物线的定义可知要求取得最小值即解析:4 【分析】设点P 在准线上的射影为D ,则根据抛物线的定义可知||||PF PD =进而把问题转化为求||||PA PD +取得最小,进而可推断出当D ,P ,A 三点共线时||||PA PD +最小,答案可得. 【详解】抛物线2:4C y x =的准线为1x =-. 设点P 在准线上的射影为D ,如图,则根据抛物线的定义可知||||PF PD =,要求||||PA PF +取得最小值,即求||||PA PD +取得最小. 当D ,P ,A 三点共线时,||||PA PD +最小,为3(1)4--=. 故答案为:4.【点睛】关键点点睛:本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D ,P ,A 三点共线时||||PA PD +最小,是解题的关键.4.【分析】根据题中条件得到的最大值不小于即可由余弦定理结合基本不等式得到点为短轴的顶点时最大;不妨设点为短轴的上顶点记得出离心率的最小值连接得到根据椭圆的定义结合三角形的性质求出的最大值即可得出结果【 解析:433+【分析】根据题中条件,得到12F PF ∠的最大值不小于23π即可,由余弦定理,结合基本不等式,得到点P 为短轴的顶点时,12F PF ∠最大;不妨设点P 为短轴的上顶点,记12F PF θ∠=,得出离心率的最小值,连接DN ,得到()()22maxmax3MN NF DN NF +=++,根据椭圆的定义,结合三角形的性质,求出2DN NF +的最大值,即可得出结果. 【详解】若想满足椭圆上存在一点P ,使得1223F PF π∠=,只需12F PF ∠的最大值不小于23π即可,由余弦定理,可得()22222112121221221424cos 22PFPF c PF PF PF PF c F PF PF PF PF PF +--=+-∠=2222221122221112b b b PF PF PF PF a =-≥-=-⎛⎫+ ⎪⎝⎭,当且仅当 12PF PF =,即点P 为短轴的顶点时,12F PF ∠的余弦值最小,即12F PF ∠最大; 如图,不妨设点P 为短轴的上顶点,记12F PF θ∠=,则 23πθ≥,于是离心率3sin ,12c e a θ⎡⎫==∈⎪⎢⎪⎣⎭, 因此当椭圆C 的离心率取得最小值32时,24a =,则椭圆 22:14x C y +=;连接DN ,根据圆的性质可得:()()22maxmax3MN NF DN NF +=++,所以只需研究2DN NF +的最大值即可;连接1NF ,1DF ,21144423DN NF DN NF DF +=+-≤+=+,当且仅当N ,D ,1F 三点共线(N 点在线段1DF 的延长线上)时,不等式取得等号, 所以2DN NF +的最大值为 423+, 因此2MN NF +的最大值是433+. 故答案为:433+. 【点睛】 关键点点睛:求解本题的关键在于根据题中条件,得到椭圆离心率,求出椭圆方程,再由椭圆的定义,以及圆的性质,将动点到两点距离的最值问题,转化为椭圆上一动点到焦点,以及到定点的距离的最值问题,即可求解.5.【分析】取椭圆的右焦点由直线过原点及椭圆的对称性可得四边形为平行四边形由及椭圆的性质可得余弦定理可得离心率的值【详解】取椭圆的右焦点连接由椭圆的对称性可得四边形为平行四边形则而所以所以在中解得:故答 解析:7【分析】取椭圆的右焦点F ',由直线l 过原点及椭圆的对称性可得四边形PFQF '为平行四边形,由||3||PF QF =及椭圆的性质可得2a PF '=,32a PF =,120PFQ ∠=︒余弦定理可得离心率 的值. 【详解】取椭圆的右焦点F ',连接QF ',PF ',由椭圆的对称性,可得四边形PFQF '为平行四边形,则PF QF '=,180********FPF PFQ ∠='=-∠-=,||3||PF QF =3||PF '=,而||||2PF PF a '+=,所以2a PF '=,所以32a PF =, 在PFF '中,2222222914||||58144cos 32332222a a c PF PF FF FPF e a PF PF a +-+-∠===-''''=⨯⨯,解得:4e =,. 【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到关于,,a b c 的等量关系.本题中,由椭圆的对称性以及椭圆的定义得到2a PF '=,所以32a PF =,然后在PFF '中,根据余弦定理得到所要求的等量关系.考查了学生的运算求解能力,逻辑推理能力.属于中档题.6.【分析】根据抛物线方程求得准线方程过点作垂直于准线于根据抛物线的定义判断问题转化为求的最小值根据在圆上判断出当三点共线时有最小值进一步求出结果【详解】解:是抛物线上一点抛物线的准线方程为过点作垂直于 解析:6【分析】根据抛物线方程求得准线方程,过点M 作MN 垂直于准线于N ,根据抛物线的定义判断MN MF =,问题转化为求||||MA MN +的最小值,根据A 在圆C 上,判断出当,,M N C 三点共线时,||||MA MN +有最小值,进一步求出结果【详解】解:M 是抛物线24y x =上一点,抛物线的准线方程为1x =-, 过点M 作MN 垂直于准线于N ,则MN MF =, 所以||||MA MF MA MN +=+,因为点A 在圆C 上,圆22:(6)(1)1C x y -++=的圆心(6,1)C -,半径为1, 所以当,,M N C 三点共线时,||||MA MN +取得最小值6, 故答案为:6【点睛】关键点点睛:此题考查了抛物线的简单性质的应用,解题的关键是利用了抛物线的定义,结合图形将||||MA MF +转化为||||MA MN +进行求解,考查数形结合的思想和转化思想,属于中档题7.【分析】由已知求出渐近线的斜率得结合转化后可求得离心率【详解】由题意可得渐近线方程为∴故故答案为:【点睛】本题考查求双曲线的离心率解题关键是列出关于的一个等式本题中利用直角三角形中正切函数定义可得 5 【分析】由已知求出渐近线的斜率,得ba,结合222c a b -=转化后可求得离心率. 【详解】由题意可得||||1tan ||2||2AF AF AOF OA AF ∠===, 渐近线方程为by x a=, ∴12b a =,222222222544a a c ab e a a a ++====,故5e = 5. 【点睛】本题考查求双曲线的离心率,解题关键是列出关于,,a b c 的一个等式,本题中利用直角三角形中正切函数定义可得.8.【解析】设由余弦定理知所以故填 13【解析】设21,3,24PF x PF x a x ===,由余弦定理知22(2)13c x =,所以c a =9.【分析】设则推出由双曲线的定义得再在和应用余弦定理得进而得答案【详解】解:设则∴由双曲线的定义得此时在和应用余弦定理得:;所以即故所以故答案为:【点睛】本题考查双曲线的简单性质的应用是基本知识的考查【分析】设2||PF m =,则1||3PF m =,3PQ m =,推出22QF m =,由双曲线的定义得14QF a m a⎧=⎨=⎩,再在1PQF △和12QF F 应用余弦定理得2225243a c a -=,进而得答案. 【详解】解:设2||PF m =,则1||3PF m =,3PQ m =,∴22QF m =,由双曲线的定义,得12112122422PF PF m aQF a m a QF QF QF m a ⎧-==⎧=⎪⇒⎨⎨=-=-=⎩⎪⎩, 此时,在1PQF △和12QF F 应用余弦定理得:2222221112116992cos 22433QF PQ PF a a a FQF QF PQa a +-+-∠===⨯⨯2222222212121221216445cos 22424QF QF F F a a c a c FQF QF QF a a a+-+--∠===⨯⨯; 所以2225243a c a -=,即2237c a =,故2273c a =,所以3c e a ==.. 【点睛】本题考查双曲线的简单性质的应用,是基本知识的考查,基础题.10.【分析】根据椭圆定义设则进而表示出由得在两个三角形中由勾股定理可得ac 的关系进而求出椭圆的离心率【详解】如图所示设根据椭圆定义得由得由椭圆的定义可得因为在中且得即①在中得即②由①②可得可得③将③代入-【分析】 根据椭圆定义,设2PF m =,则12PF a m =-,进而表示出222QF a m =-,12QF m =,由1PQ PF ⊥,得在两个三角形中由勾股定理可得a ,c 的关系,进而求出椭圆的离心率. 【详解】如图所示,设()20PF m m =>,根据椭圆定义得12PF a m =-, 由1PF PQ =,得2222QFa m m a m =--=-,由椭圆的定义可得()12222QF a a m m =--=,因为1PQ PF ⊥,在1Rt PFQ ∆中,且1PF PQ =,得22112QF PF =,即()22422m a m =-①,在12Rt PF F ∆中,得2221212F F PF PF =+,即()22242c a m m =-+②,由①-②2⨯可得222482m c m -=-,可得23m c =,③, 将③代入②可得22223233423c a c c ⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理可得:22330e e +-=,()0,1e ∈,解得63e =-.故答案为:63-.【点睛】本题考查椭圆的性质及直线与椭圆的综合,考查椭圆离心率的求法,属于中档题.11.【分析】利用已知条件求出p 设出P 的坐标然后求解的表达式利用基本不等式即可得出结论【详解】解:由题意可知:设点P 到直线的距离为d 则所以当且仅当x 时的最小值为此时故答案为:【点睛】本题考查抛物线的简单性 解析:22【分析】利用已知条件求出p ,设出P 的坐标,然后求解PFPA的表达式,利用基本不等式即可得出【详解】解:由题意可知:2p =,设点(),P x y ,P 到直线1x =-的距离为d ,则1d x +=,所以2PFd PAPA ====≥, 当且仅当x 1x =时,PF PA,此时1x =,故答案为:2. 【点睛】本题考查抛物线的简单性质的应用,基本不等式的应用,属于中档题.12.相离【分析】由双曲线的离心率可得出然后计算出圆心到双曲线的渐近线的距离并与圆的半径作大小比较由此可得出结论【详解】双曲线的离心率为可得所以双曲线的渐近线方程为圆的圆心坐标为半径为圆心到直线的距离为因解析:相离 【分析】由双曲线的离心率可得出b a =,然后计算出圆心到双曲线的渐近线的距离,并与圆的半径作大小比较,由此可得出结论. 【详解】双曲线()222210,0x y a b a b -=>>的离心率为c e a ====b a =,所以,双曲线的渐近线方程为0x y ±=,圆()22214x a y a -+=的圆心坐标为(),0a ,半径为2ar =, 圆心到直线0x y ±=的距离为122d r a ==>=, 因此,双曲线的渐近线与圆()22214x a y a -+=相离. 故答案为:相离. 【点睛】本题考查直线与圆的位置关系的判断,涉及双曲线的离心率以及渐近线方程的应用,求出b 与a 的等量关系是解答的关键,考查计算能力,属于中等题.13.②⑤【分析】设抛物线方程为根据抛物线的定义焦半径公式直线相互垂直与斜率之间的关系即可判断出结论【详解】设抛物线方程为②③抛物线上横坐标为1的点到焦点的距离等于6可得解得抛物线方程为舍去;②④抛物解析:②⑤ 【分析】设抛物线方程为22y px =.根据抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系即可判断出结论. 【详解】设抛物线方程为22y px =.②③抛物线上横坐标为1的点到焦点的距离等于6,可得162p+=,解得10p =,抛物线方程为220y x =,舍去;②④抛物线的过焦点且垂直于对称轴的弦的长为5,可得25()222pp =⨯,解得52p =,可得抛物线方程为25y x =.②⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1),可得:111222p ⨯=--,解得5p =,可得抛物线方程为210y x =,因此正确.能使抛物线方程为210y x =的条件是②⑤. 故答案为:②⑤. 【点睛】本题考查了抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二、解答题14.(1)()22416x y -+=;(2)224x y +=. 【分析】(1)求出圆心和半径即得解;(2)设动点(),M x y ,()00,P x y ,由1F M MP →→=得00242x x y y =+⎧⎨=⎩,代入圆的方程即得解. 【详解】(1)由已知得212a =,24b =,故4c ==, 所以()14,0F -、()24,0F, 因为C 是以2F 为圆心且过原点的圆,故圆心为()4,0,半径为4, 所以C 的轨迹方程为()22416x y -+=;(2)设动点(),M x y ,()00,P x y ,则()14,F M x y →=+,()00,MP x x y y →=--,由1F M MP →→=,得()()004,,x y x x y y +=--, 即()()004x x x y y y ⎧+=-⎪⎨=-⎪⎩,解得00242x x y y =+⎧⎨=⎩,因为点P 在C 上,所以()2200416x y -+=,代入得()()22244216x y +-+=,化简得224x y +=.所以M 的轨迹方程为224x y +=. 【点睛】方法点睛:求动点的轨迹方程常见的方法有:(1)直接法;(2)定义法;(3)相关点代入法;(4)消参法.要根据数学情景灵活选择方法求动点的轨迹方程.15.(Ⅰ)2212x y +=;(Ⅱ)点T 的坐标为(1,0)-.【分析】(Ⅰ)根据题意得出222121222c b c a b c ⎧⋅⋅=⎪⎪=⎨⎪=+⎪⎩,解出,a b 即可得出椭圆方程;(Ⅱ)设出直线方程,联立直线与椭圆,利用0∆=得出2221m k =+,表示出21,k P m m ⎛⎫- ⎪⎝⎭,(2,2)Q m k --,再利用0PT QT ⋅=即可得出. 【详解】解:(Ⅰ)依题意得222121222c b c a b c ⎧⋅⋅=⎪⎪=⎨⎪=+⎪⎩,解得1a b ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.(Ⅱ)当直线l 的斜率不存在时,l 与直线2x =-无交点,不符合题意, 故直线l 的斜率一定存在,设其方程为y kx m =+,由2212y kx m x y =+⎧⎪⎨+=⎪⎩,得()222214220k x kmx m +++-=, 因为直线l 与椭圆有且只有一个公共点,所以()()22221681210k m m k ∆=--+=,化简得2221m k =+,所以214242=-=-+P km k k x m ,2-=P k x m ,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭, 因为直线l 与直线2x =-相交于Q ,所以(2,2)Q m k --,设(),0T t , 所以22(2)10k k TP TQ t t m m ⎛⎫⋅=----+-= ⎪⎝⎭,即21(1)0k t t m ⎛⎫+++= ⎪⎝⎭对任意的k ,m 恒成立, 所以10t +=,即1t =-,所以点T 的坐标为(1,0)-. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.16.(1)22143x y +=;(2)【分析】(1)根据2ABF 的周长为8,解得2a =,再由离心率为12求解. ()2设直线3:2AN y x t =-+,与椭圆方程联立,由弦长公式求得AN ,点O 到直线AN 的距离,然后根据直线AM 过坐标原点,由2AMNAONSS=求解.【详解】()1由椭圆的定义知48,2a a ==,12c a =, 1c ∴=,从而2223b a c =-=,所以椭圆C 的方程为22143x y +=.()2如图所示:设直线3:2AN y x t =-+, 代入椭圆方程223412x y +=, 化简得:223330x tx t -+-=, 设()()1122,,,A x y N x y , 由()23120t ∆=->,得212t <,且()2312914t AN -=+ 而点O 到直线AN 的距离914t d =+,且直线AM 过坐标原点,()23129214914AMNAONt t SS-∴==++,()()2222121222333t t t t +--=≤=当且仅当2212t t =- , 即26t =时取等号,AMN ∴面积的最大值为3【点睛】思路点睛:解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2),弦长公式为;AB==k为直线斜率).17.(1)22143x y+=;(2)证明见解析;22127x y+=.【分析】(1)根据条件得出221914a b+=且12ca=,解出,a b即可得出方程;(2)设出直线方程,联立直线与椭圆,由OA OB⊥得0OA OB⋅=,由此可得=.【详解】(1)由椭圆经过点31,2P⎛⎫⎪⎝⎭,离心率12e=得:221914a b+=且12ca=.解得2a=,1c=,b=所以椭圆C:22143x y+=.(2)当直线ABl的斜率不存在时,设直线为x m=,则由OA OB⊥可得(),A m m±,代入椭圆得22143m m+=,解得2127m=,则与直线ABl相切且圆心为原点的圆的半径为m=,即圆的方程为22127x y+=;当斜率存在时,设直线ABl的方程为:y kx b=+,()11,A x y,()22,B x y,联立方程22143y kx bx y=+⎧⎪⎨+=⎪⎩,整理得到:()()222348430k x kbx b+++-=.所以122834kbx xk+=-+,()21224334bx xk-=+.因为OA OB⊥,所以1212OA OB x x y y⋅=+=,又因为11y kx b=+,22y kx b=+,故()()12121212x x y y x x kx b kx b+=+++()()22121210k x x kb x x b=++++=,将122834km x x k +=-+,()21224334b x x k -=+代入上式,得到: ()()2222222413803434k b k b b k k+--+=++, 去掉分母得:()()()2222224138340k b k b b k +--++=,去括号得:22712120b k --=,=又因为与直线AB l相切且圆心为原点的圆的半径r === 所以该圆方程为22127x y +=, 综上,定圆方程为22127x y +=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.18.(1)28y x =;(2)π4PAF ∠=. 【分析】(1)方法一,利用直线与圆的位置关系,以及圆与圆的位置关系,转化为抛物线的定义求曲线方程;方法二,利用等量关系,直接建立关于(),x y 的方程;(2)方法一,利用条件求点P 的坐标,再求PA k ;方法二,利用抛物线的定义,转化PF 为点P 到准线的距离,利用几何关系求PAF ∠的大小. 【详解】解:(1)设(),M x y ,圆M 的半径为r . 由题意知,1MF r =+,M 到直线l 的距离为r . 方法一:点M 到点()2,0F 的距离等于M 到定直线2x =-的距离,根据抛物线的定义知,曲线C 是以()2,0F 为焦点,2x =-为准线的抛物线. 故曲线C 的方程为28y x =.方法二:因为1MF r ==+,1x r +=,1x >-,2x =+,化简得28y x =,故曲线C 的方程为28y x =.(2)方法一:设()00,P x y ,由PA ,得()()22220000222x y x y ⎡⎤++=-+⎣⎦,又2008y x =,解得02x =,故()42,P ±,所以1PA k =±,从而π4PAF ∠=. 方法二:过点P 向直线2x =-作垂线,垂足为Q .由抛物线定义知,PQ PF =,所以PA =,在APQ 中,因为π2PQA ∠=,所以sin PQ QAP PA ∠==, 从而π4QAP ∠=,故π4PAF ∠=. 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.19.(1)24y x =;(2)证明见解析;(3)()202t d t t t ⎧>⎪=⎨<≤⎪⎩.【分析】(1)根据准线方程可求p ,从而可求抛物线方程.(2)设直线方程为x my t =+,联立直线方程和抛物线方程,利用韦达定理可证OA OB ⋅为与m 无关的定值.(3)设(),P x y ,则可用x 表示||PT ,利用二次函数的性质可求()d t . 【详解】(1)因为准线方程为10x +=,故12p=,故2p =, 故抛物线方程为:24y x =.(2)设直线l :x my t =+,其中m R ∈,t 为常数,设()()1122,,,A x y B x y ,由24y x x my t⎧=⎨=+⎩可得2440y my t --=,所以124y y t .而()212212124416y y O y y x x A B t t t O +=-⋅=+=-,该值与斜率无关.(3)设(),P x y ,则PT ==0x ≥.令()()2224,0S x x t x t x =--+≥,对称轴为直线2x t =- 若02t <≤,则20t -≤,则()2min 0S S t ==,故()d t t =;若2t >,则20t ->,则()()22min 2244S S t t t t =-=--=-,故()d t =所以()2,02t d t t t ⎧>⎪=⎨<≤⎪⎩. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为关于1212,x x x x +(或1212,y y y y +的形式); (5)代入韦达定理求解.20.(1)22143x y +=(2)1(2-,0)(0⋃,1)2(3)证明见解析.【分析】(1)由题意知12c e a ==,则2a c =,求出椭圆C 的中心O 关于直线250x y --=的对称点,可求a ,即可得出椭圆C 的方程;(2)设直线PN 的方程为(4)y k x =-代入椭圆方程,根据判别式,可求直线PN 的斜率范围;(3)求出直线ME 的方程为212221()y y y y x x x x +-=--,令0y =,得221221()y x x x x y y -=-+,即可得出结论.【详解】 (1)由题意知12c e a ==,则2a c =,设椭圆C 的中心O 关于直线250x y --=的对称点(,)m n ,则·212?5022n mm n ⎧=-⎪⎪⎨⎪--=⎪⎩,4m ∴=,2n =-,椭圆C 的中心O 关于直线250x y --=的对称点落在直线2x a =上.24a ∴=,1c ∴=,b ∴=∴椭圆C 的方程为22143x y +=;(2)由题意知直线PN 的斜率存在,设直线PN 的方程为(4)y k x =-. 代入椭圆方程,可得2222(43)3264120k x k x k +-+-=.① 由2222(32)4(43)(6412)0kk k ∆=--+->,得2410k -<,1122k ∴-<< 又0k =不合题意,∴直线PN 的斜率的取值范围是:1(2-,0)(0⋃,1)2.(3)设点1(N x ,1)y ,2(E x ,2)y ,则1(M x ,1)y -. 直线ME 的方程为212221()y y y y x x x x +-=--. 令0y =,得221221()y x x x x y y -=-+.将11(4)y k x =-,22(4)y k x =-代入整理,得12121224()8x x x x x x x -+=+-.②由①得21223243k x x k +=+,2122641243k x x k -=+代入②整理,得1x =.∴直线ME 与x 轴相交于定点(1,0).【点睛】关键点点睛:本题考查椭圆的方程,设出直线与椭圆方程联立,消元后,利用二次方程的判别式求k 的取值范围,求出与x 轴交点的坐标表达式,化简即可证明交点为定点,考查直线与椭圆的位置关系,考查韦达定理,考查学生分析解决问题的能力,属于中档题. 21.(1)24y x =(2)10x y ±+=. 【分析】(1)由题意联立直线方程与抛物线方程,结合题意和韦达定理求得p 的值即可确定曲线方程;(2)首先确定曲线2C 的方程,设直线l '的方程为1x my =-,然后连线直线和椭圆方程,结合韦达定理得到关于m 的方程,解方程求得m 的值即可确定直线方程. 【详解】 (1)由已知得(,0)2p F ,设直线l 的方程为2p y x =-, ∴22230242p y x p x px y px⎧=-⎪⇒-+=⎨⎪=⎩, 123x x p ∴+=,又因为126x x +=, 所以2p =,∴曲线1C 的方程为24y x =.(2)由已知得2a =,c =1b ∴=,∴曲线2C 的方程为2214x y +=, 设直线l '的方程为1x my =-,则22221(4)23041x y m y my x my ⎧+=⎪⇒+--=⎨⎪=-⎩, 设3(M x ,3)y ,4(N x ,4)y ,34342223,44m y y y y m m +==-⋅++,∴3411||22OMNS y y =⨯⨯-==△, 因为45MONS=所以42471101m m m +-=⇒=±,∴直线l '的方程为10x y ±+=.【点睛】关键点点睛:本题主要考查抛物线方程的求解,椭圆方程的确定,直线与圆锥曲线的位置关系等知识,关键在于联立椭圆方程,由韦达定理及三角形面积公式可得出m ,求出直线方程,意在考查学生的转化能力和计算求解能力. 22.(1)1143a <<;(2)01a <≤或4a ≥. 【分析】(1)根据椭圆的标准方程,求出a 的范围;(2)再确定集合A ,由双曲线的标准方程得集合B ,然后根据充分必要条件的定义集合包含关系,从而得出a 的不等关系,求得结论.【详解】(1)由方程221382x y a a+=--表示的曲线是表示焦点在x 轴上的椭圆∴(3)(82)0a a ->->, ∴1143a << 解不等式22430(0)x ax a a -+<>可得3(0)a x a a <<>方程221382x y a a+=--表示的曲线是双曲线∴(3)(82)0a a --<, ∴4a >或3a <因为A 是B 的充分不必要条件所以(,3)a a 是(,3)(4,)-∞⋃+∞的真子集 所以033a <≤或4a ≥ 解得01a <≤或4a ≥所以a 的取值范围是01a <≤或4a ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 23.(1)()2302y x x =>;(2)2. 【分析】(1)设(),N x y ,由已知向量的数量关系及位置关系得()()3,2,0y x y ⋅-=,即可知N 的轨迹C 的方程;(2)由直线与抛物线相交关系,令直线AB 的方程为:2x my =+,()11,A x y ,()22,B x y ,联立方程,应用根与系数关系有12120323y y m y y ∆>⎧⎪⎪+=⎨⎪=-⎪⎩,结合已知条件、弦长公式即可求AB . 【详解】。
华师一附中2024届高三《圆锥曲线大题--每日一题》试题
华师一高三上每日一题(圆锥曲线)一、解答题1.已知12,F F 为椭圆C 的左、右焦点,点31,2P ⎛⎫ ⎪ ⎪⎝⎭为其上一点,且124PF PF +=.(1)求椭圆C 的标准方程;(2)已知直线y kx m =+与椭圆C 相交于,A B 两点,与y 轴交于点M ,若存在m ,使得34OA OB OM +=,求m 的取值范围.2.已知椭圆2222:1(0)x y C a b a b +=>>的焦距4,且过点63M (2,)(1)求椭圆C 的方程;(2)若斜率存在且不经过原点的直线l 交椭圆C 于,P Q 两点(,P Q 异于椭圆C 的上、下顶点),当OPQ △的面积最大时,求OP OQ k k ⋅的值.3.已知椭圆C :22221x y a b +=的离心率为32,上顶点为M ,下顶点为N ,2MN =,设点()(),20T t t ≠在直线2y =上,过点T 的直线,TM TN 分别交椭圆C 于点E 和点F ,直线EF 与y 轴的交点为P .(1)求椭圆C 的标准方程;(2)若NFP △的面积为MEP △的面积的2倍,求t 的值.4.设双曲线C :()222210,0x y a b a b -=>>的一个焦点坐标为()3,0,离心率3e =,A ,B 是双曲线上的两点,AB 的中点()1,2M .(1)求双曲线C 的方程;(2)求直线AB 方程;(3)如果线段AB 的垂直平分线与双曲线交于C 、D 两点,问A 、B 、C 、D 四点是否共圆?若共圆证之,若不共圆给予充分理由.5.已知椭圆()2222:10x y C a b a b +=>>过3(1,)2和6(2,)2两点.(1)求椭圆C 的方程;(2)如图所示,记椭圆的左、右顶点分别为A ,B ,当动点M 在定直线4x =上运动时,直线AM ,BM 分别交椭圆于两点P 和Q (不同于B ,A ).证明:点B 在以PQ 为直径的圆内.6.已知双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为(2,0)A -,不与x 轴平行的直线l 过C 的右)2-,()--1,2AB OF ⊥时,4AB =.(1)求C 的标准方程.(2)记P ,G ,Q 的横坐标分别为P x ,G x ,Q x ,判断223P Q G x x x +-是否为定值.若是,求出该定值;若不是,请说明理由.12.已知抛物线T 的顶点在原点,对称轴为坐标轴,且过()2,1-,11,4⎛⎫ ⎪⎝⎭,()2,2--,()3,2-四点中的两点.(1)求抛物线T 的方程:(2)已知圆()2223x y +-=,过点()(),13P m m -≠±作圆的两条切线,分别交抛物线T 于()11,A x y ,()22,B x y 和()33,C x y ,()44,D x y 四个点,试判断1234x x x x 是否是定值?若是定值,求出定值,若不是定值,请说明理由.13.如图3所示,点1F ,A 分别为椭圆2222:1(0)x y E a b a b+=>>的左焦点和右顶点,点F 为抛物线2:16C y x =的焦点,且124OF OA OF ==(O 为坐标原点).(1)求椭圆E 的方程;(2)过点1F 作直线l 交椭圆E 于B ,D 两点,连接AB ,AD 并延长交抛物线的准线于点M ,N ,求证:1MF N ∠为定值.14.已知抛物线2:2(0)C x py p =>,F 为C 的焦点,过点F 的直线l 与C 交于H ,I 两点,且在H ,I 两点处的切线交于点T ,当l 与y 轴垂直时,||4HI =.(1)求C 的方程;(2)证明:2||||||FI FH FT ⋅=.15.过抛物线2:2(0)E y px p =>焦点F ,斜率为1-的直线l 与抛物线交于A 、B 两点,||8AB =.(1)求抛物线E 的方程;(2)过焦点F 的直线l ',交抛物线E 于C 、D 两点,直线AC 与BD 的交点是否在一条直线上.若是,求出该直线的方程;否则,说明理由.。
0809高三数学理第16周晚练(081216)---圆锥曲线1
0809高三数学(理)第16周晚练(081216)---圆锥曲线1班级:________姓名:______________座号:_______ 评分:一.选择题:(每小题8分)1.短轴长为5,离心率为32,两个焦点分别为1F 、2F 的椭圆,过1F 作直线交椭圆于A 、B 两点,则2ABF ∆的周长为( )A .24B .12C .6D .32.椭圆12222=+b y a x 和12222=-+-λλb y a x )0(22>>>λb a 的关系是( ) A .有相同的长、短轴 B .有相同的离心率C .有相同的准线D .有相同的焦点3.双曲线的渐近方程是2y x =±,焦点在坐标轴上,焦距为10,其方程为( )A . 152022=-y xB . 152022=-y x 或152022=-x y C . 120522=-y x D . 222211205520y x x y -=-=或 4.准线方程为x=1的抛物线的标准方程是( )A. 22y x =-B. 24y x =-C. 22y x =-D. 24y x =5.双曲线221mx y +=的虚轴长是实轴长的2倍,则m =( )A .14-B .4-C .4D .146.已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)7.设等腰直角ΔAOB 内接于抛物线y 2=2px(p>0),O 为抛物线的顶点,O A⊥OB,则ΔAOB 的面积为( ) A.p 2 B.2p 2 C.4p 2 D.8p 2二.填空题:(每小题8分)8.△ABC 中, A (0,-2), B (0,2), 且CB AB CA ,,成等差数列, 则C 点的轨迹方程是 .9.以曲线y x 82=上的任意一点为圆心作圆与直线x+2=0相切,则这些圆必过一定点,则这一定点的坐标是_________. 10.设F 为抛物线24y x =的焦点,A B C ,,为该抛物线上三点,若FA FB FC ++=0 ,则FA FB FC ++= ________________三.解答题:(本题20分)11.(1) 求与椭圆221255x y +=共焦点且过点的双曲线的方程; (2)已知抛物线拱桥的顶点距水面2米,测量水面宽度为8米,当水面上升1米后,求此时水面的宽度.0809高三数学(理)第16周晚练(081216)---圆锥曲线1 答案:1-7:CDDB ACC 8、)0(1121622≠=+x x y 9、(2,0) 10、6 11、解:(1)椭圆221255x y +=的焦点为-,可以设双曲线的方程为22221x y a b-=,则2220a b +=。
圆锥曲线专题训练试卷(1)教师
圆锥曲线专题训练试卷(1)第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题(题型注释)( )【答案】B 【解析】试题分析:由椭圆方程知2100,10a a =∴=,236,6b b =∴=,那么22236,6c a b c =-=∴=,可得椭圆离心率为 考点:椭圆的标准方程与几何意义.2.下列曲线中焦点坐标为)0,1(-的是( )A .y =-4x 2C 【答案】A【解析】a 2b 2故c2=a2+b2=1,一个焦点为(-1,0),符合题意;抛物线y =-4x 2中,焦点为(0,,不符合题意;0)0,±1),不符合题意.故选A【知识点】圆锥曲线的性质3.方程1cos 2sin 22=+θθy x 表示椭圆,则θ的取值范围ABC D 【答案】D 【解析】试题分析:方程1cos 2sin 22=+θθy x 表示椭圆,则必须满足的条件为:sin 20,cos 0θθ>>,且sin 2cos θθ≠解不等式:sin 20cos 0θθ>⎧⎨>⎩,解得:)(26k ππ+Z k ∈,故正确选项D .考点:①椭圆的简单性质;②三角函数不等式.4.点P 在双曲线上,21,F F 为焦点,且21PF PF ⊥,-( )B. 102C. 【答案】D【解析】由双曲线定义得:12||||2,PF PF a -=12||3,||PF a PF a ∴==222121212,||||||PF PF PF PF F F ⊥∴+=。
即2222594,()22c c a a c a a +==⇒=故选D5.已知0a b >>,12,e e 12lg lg e e +的值为( )A .正数B .负数C .零D .不确定【答案】B 【解析】试题分析:12lg lg e e +)lg(21e e =01lg =<,所以选C.考点:圆锥曲线的性质及对数的运算.6A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为( ) A 、049=--y x B 、059=-+y xC 、022=-+y xD 、022=+-y x 【答案】B 【解析】A ,B 两点,设),(),,(2211y x B y x A则1)(2),由(1)(2)联立并相减得:点p 是AB 的中点所以1,12121=+=+y y x x ,所以,,则直线AB 的方程整理得059=+-y x . 考点:点差法求直线方程.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)7.(2014·武汉模拟)圆(x-a)2+y 2=1与双曲线x 2-y 2=1的渐近线相切,则a 的值是________. 【答案】±√2【解析】双曲线x 2-y 2=1的渐近线为y=±x,不妨取y=x,若直线y=x 与圆相切,则有圆心(a,0)到直线x-y=0的距离d=√2=1,即|a|=√2,所以a=±√2.8表示焦点在y 轴上的椭圆,则m 的取值范围是 . 【答案】(1,2) 【解析】试题分析:因为方程表示焦点在y 轴上的椭圆,所以013>->-m m ,解得21<<m考点:椭圆的性质9.一动点到y 轴距离比到点(2, 0)的距离小2,则此动点的轨迹方程为 . 【答案】)0(0)0(82<=≥=x y x x y 或【解析】设动点为(,),P x y ||2;x =+平方得244||y x x =+ 当0x ≥时,8;y x =当0x <时,0.y =所以动点的轨迹方程为)0(0)0(82<=≥=x y x x y 或10.12F F 、是椭圆的左、右焦点,点P 在椭圆上运动,则12PF PF •的最大值是 【答案】1 【解析】试题分析:设),(y x P ,,22-≤-x ,12PF PF •=又42≤x ,所以,即12PF PF ⋅的最大值是1。
圆锥曲线大题
绝密★启用前数学组卷圆锥大题学校:___________姓名:___________班级:___________考号:___________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一.解答题(共40小题)1.(2019•新课标Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由.2.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |. 3.(2018•新课标Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .4.(2018•新课标Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (﹣2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN . 5.(2017•新课标Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,√32),P 4(1,√32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.6.(2017•新课标Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.7.(2016•新课标Ⅰ)设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.8.(2016•新课标Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求|OH||ON|;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 9.(2015•新课标Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(Ⅰ)当k =0时,分別求C 在点M 和N 处的切线方程.(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?(说明理由) 10.(2015•新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围;(2)若OM →•ON →=12,其中O 为坐标原点,求|MN |. 11.(2014•新课标Ⅰ)已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 12.(2014•新课标Ⅰ)已知点P (2,2),圆C :x 2+y 2﹣8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.13.(2013•新课标Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.14.(2012•新课标)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点;(1)若∠BFD =90°,△ABD 的面积为4√2,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.15.(2011•新课标)在平面直角坐标系xOy 中,已知点A (0,﹣1),B 点在直线y =﹣3上,M 点满足MB →∥OA →,MA →⋅AB →=MB →•BA →,M 点的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.16.(2011•新课标)在平面直角坐标系xOy 中,曲线y =x 2﹣6x +1与坐标轴的交点都在圆C 上.(Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线x ﹣y +a =0交与A ,B 两点,且OA ⊥OB ,求a 的值. 17.(2010•全国新课标)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (Ⅰ)求|AB |;(Ⅱ)若直线l 的斜率为1,求b 的值.18.(2009•全国卷Ⅰ)如图,已知抛物线E :y 2=x 与圆M :(x ﹣4)2+y 2=r 2(r >0)相交于A 、B 、C 、D 四个点. (Ⅰ)求r 的取值范围;(Ⅱ)当四边形ABCD 的面积最大时,求对角线AC 、BD 的交点P 的坐标.19.(2008•海南)在直角坐标系xOy 中,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.F 2也是抛物线C 2:y 2=4x 的焦点,点M 为C 1与C 2在第一象限的交点,且|MF 2|=53. (Ⅰ)求C 1的方程;(Ⅱ)平面上的点N 满足MN →=MF 1→+MF 2→,直线l ∥MN ,且与C 1交于A ,B 两点,若OA →⋅OB →=0,求直线l 的方程.20.(2007•海南)在平面直角坐标系xOy 中,已知圆x 2+y 2﹣12x +32=0的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆Q 相交于不同的两点A ,B . (Ⅰ)求k 的取值范围;(Ⅱ)是否存在常数k ,使得向量OA →+OB →与PQ →共线?如果存在,求k 值;如果不存在,请说明理由.21.(2007•陕西)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√63,短轴一个端点到右焦点的距离为√3. (Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为√32,求△AOB 面积的最大值.22.(2006•全国卷Ⅱ)已知抛物线x 2=4y 的焦点为F ,A 、B 是抛物线上的两动点,且AF →=λFB →(λ>0).过A 、B 两点分别作抛物线的切线,设其交点为M . (Ⅰ)证明FM →.AB →为定值;(Ⅱ)设△ABM 的面积为S ,写出S =f (λ)的表达式,并求S 的最小值.23.(2006•福建)已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点.(I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;(II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.24.(2019•新课标Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为C上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围.25.(2019•新课标Ⅱ)已知点A (﹣2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:△PQG 是直角三角形; (ii )求△PQG 面积的最大值.26.(2018•新课标Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 27.(2017•新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=√2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =﹣3上,且OP →•PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .28.(2016•新课标Ⅱ)已知椭圆E :x 2t+y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围. 29.(2016•新课标Ⅱ)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (I )当|AM |=|AN |时,求△AMN 的面积 (II )当2|AM |=|AN |时,证明:√3<k <2. 30.(2015•陕西)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,﹣1),且离心率为√22. (Ⅰ)求椭圆E 的方程;(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.31.(2015•新课标Ⅱ)椭圆C :x 2a 2+y 2b 2=1,(a >b >0)的离心率√22,点(2,√2)在C 上.(1)求椭圆C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与l 的斜率的乘积为定值.32.(2014•大纲版)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (Ⅰ)求C 的方程;(Ⅱ)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l ′与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程. 33.(2014•陕西)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b 2=1(a >b >0,y ≥0)和部分抛物线C 2:y =﹣x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为√32. (Ⅰ)求a ,b 的值;(Ⅱ)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),若AP ⊥AQ ,求直线l 的方程.34.(2014•新课标Ⅱ)设F 1,F 2分别是C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . 35.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点.(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程.36.(2019•新课标Ⅲ)已知曲线C :y =x 22,D 为直线y =−12上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.37.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.38.(2018•新课标Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <−12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→,证明:2|FP →|=|FA →|+|FB →|. 39.(2017•新课标Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx ﹣2与x 轴交于A 、B 两点,点C 的坐标为(0,1),当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A 、B 、C 三点的圆在y 轴上截得的弦长为定值.40.(2017•新课标Ⅲ)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,﹣2),求直线l 与圆M 的方程.数学组卷参考答案与试题解析一.解答题(共40小题)1.(2019•新课标Ⅰ)已知点A ,B 关于坐标原点O 对称,|AB |=4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,|MA |﹣|MP |为定值?并说明理由.【分析】(1)由条件知点M 在线段AB 的中垂线x ﹣y =0上,设圆的方程为⊙M 的方程为(x ﹣a )2+(y ﹣a )2=R 2(R >0),然后根据圆与直线x +2=0相切和圆心到直线x +y =0的距离,半弦长和半径的关系建立方程组即可;(2)设M 的坐标为(x ,y ),然后根据条件的到圆心M 的轨迹方程为y 2=4x ,然后根据抛物线的定义即可得到定点.【解答】解:∵⊙M 过点A ,B 且A 在直线x +y =0上, ∴点M 在线段AB 的中垂线x ﹣y =0上,设⊙M 的方程为:(x ﹣a )2+(y ﹣a )2=R 2(R >0),则 圆心M (a ,a )到直线x +y =0的距离d =√2, 又|AB |=4,∴在Rt △OMB 中, d 2+(12|AB |)2=R 2,即(|2a|√2)2+4=R 2① 又∵⊙M 与x =﹣2相切,∴|a +2|=R ② 由①②解得{a =0R =2或{a =4R =6,∴⊙M 的半径为2或6;(2)∵线段AB 为⊙M 的一条弦O 是弦AB 的中点,∴圆心M 在线段AB 的中垂线上, 设点M 的坐标为(x ,y ),则|OM |2+|OA |2=|MA |2, ∵⊙M 与直线x +2=0相切,∴|MA |=|x +2|, ∴|x +2|2=|OM |2+|OA |2=x 2+y 2+4, ∴y 2=4x ,∴M 的轨迹是以F (1,0)为焦点x =﹣1为准线的抛物线,∴|MA |﹣|MP |=|x +2|﹣|MP | =|x +1|﹣|MP |+1=|MF |﹣|MP |+1,∴当|MA |﹣|MP |为定值时,则点P 与点F 重合,即P 的坐标为(1,0), ∴存在定点P (1,0)使得当A 运动时,|MA |﹣|MP |为定值.【点评】本题考查了直线与圆的关系和抛物线的定义,考查了待定系数法和曲线轨迹方程的求法,属难题.2.(2019•新课标Ⅰ)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若AP →=3PB →,求|AB |.【分析】(1)根据韦达定理以及抛物线的定义可得.(2)若AP →=3PB →,则y 1=﹣3y 2,⇒x 1=﹣3x 2+4t ,再结合韦达定理可解得t =1,x 1=3,x 2=13,再用弦长公式可得.【解答】解:(1)设直线l 的方程为y =32(x ﹣t ),将其代入抛物线y 2=3x 得:94x 2﹣(92t +3)x +94t 2=0,设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=92t+394=2t +43,①,x 1x 2=t 2②,由抛物线的定义可得:|AF |+|BF |=x 1+x 2+p =2t +43+32=4,解得t =712, 直线l 的方程为y =32x −78.(2)若AP →=3PB →,则y 1=﹣3y 2,∴32(x 1﹣t )=﹣3×32(x 2﹣t ),化简得x 1=﹣3x 2+4t ,③由①②③解得t =1,x 1=3,x 2=13, ∴|AB |=√1+94√(3+13)2−4=4√133. 【点评】本题考查了抛物线的性质,属中档题. 3.(2018•新课标Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .【分析】(1)先得到F 的坐标,再求出点A 的方程,根据两点式可得直线方程, (2)分三种情况讨论,根据直线斜率的问题,以及韦达定理,即可证明. 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22),∴直线AM 的方程为y =−√22x +√2,y =√22x −√2,证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k(x 1−2)(x 2−2),将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1,∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0从而k MA +k MB =0, 故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB .【点评】本题考查了直线和椭圆的位置关系,以韦达定理,考查了运算能力和转化能力,属于中档题.4.(2018•新课标Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (﹣2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .【分析】(1)当x =2时,代入求得M 点坐标,即可求得直线BM 的方程;(2)设直线l 的方程,联立,利用韦达定理及直线的斜率公式即可求得k BN +k BM =0,即可证明∠ABM =∠ABN .【解答】解:(1)当l 与x 轴垂直时,x =2,代入抛物线解得y =±2, 所以M (2,2)或M (2,﹣2),直线BM 的方程:y =12x +1,或:y =−12x ﹣1.(2)证明:设直线l 的方程为l :x =ty +2,M (x 1,y 1),N (x 2,y 2), 联立直线l 与抛物线方程得{y 2=2x x =ty +2,消x 得y 2﹣2ty ﹣4=0,即y 1+y 2=2t ,y 1y 2=﹣4,则有k BN +k BM =y 1x 1+2+y 2x 2+2=(y 222×y 1+y 122×y 2)+2(y 1+y 2)(x 1+2)(x 2+2)=(y 1+y 2)(y 1y22+2)(x 1+2)(x 2+2)=0,所以直线BN 与BM 的倾斜角互补, ∴∠ABM =∠ABN .【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查韦达定理,直线的斜率公式,考查转化思想,属于中档题. 5.(2017•新课标Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(﹣1,√32),P 4(1,√32)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.【分析】(1)根据椭圆的对称性,得到P 2(0,1),P 3(﹣1,√32),P 4(1,√32)三点在椭圆C 上.把P 2(0,1),P 3(﹣1,√32)代入椭圆C ,求出a 2=4,b 2=1,由此能求出椭圆C 的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l :y =kx +t ,(t ≠1),联立{y =kx +tx 2+4y 2−4=0,得(1+4k 2)x 2+8ktx +4t 2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l 过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P 3(﹣1,√32),P 4(1,√32)两点必在椭圆C 上, 又P 4的横坐标为1,∴椭圆必不过P 1(1,1), ∴P 2(0,1),P 3(﹣1,√32),P 4(1,√32)三点在椭圆C 上. 把P 2(0,1),P 3(﹣1,√32)代入椭圆C ,得: {1b 2=11a 2+34b2=1,解得a 2=4,b 2=1, ∴椭圆C 的方程为x 24+y 2=1.证明:(2)①当斜率不存在时,设l :x =m ,A (m ,y A ),B (m ,﹣y A ), ∵直线P 2A 与直线P 2B 的斜率的和为﹣1, ∴k P 2A +k P 2B =y A −1m +−y A −1m =−2m=−1, 解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设l :y =kx +t ,(t ≠1),A (x 1,y 1),B (x 2,y 2), 联立{y =kx +tx 2+4y 2−4=0,整理,得(1+4k 2)x 2+8ktx +4t 2﹣4=0, x 1+x 2=−8kt 1+4k 2,x 1x 2=4t 2−41+4k2, 则k P 2A +k P 2B =y 1−1x 1+y 2−1x 2=x 2(kx 1+t)−x 2+x 1(kx 2+t)−x 1x 1x 2=8kt 2−8k−8kt 2+8kt1+4k 24t 2−41+4k2=8k(t−1)4(t+1)(t−1)=−1,又t ≠1,∴t =﹣2k ﹣1,此时△=﹣64k ,存在k ,使得△>0成立, ∴直线l 的方程为y =kx ﹣2k ﹣1, 当x =2时,y =﹣1, ∴l 过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.6.(2017•新课标Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【分析】(1)设A (x 1,x 124),B (x 2,x 224),运用直线的斜率公式,结合条件,即可得到所求;(2)设M (m ,m 24),求出y =x 24的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得m ,即有M 的坐标,再由两直线垂直的条件:斜率之积为﹣1,可得x 1,x 2的关系式,再由直线AB :y =x +t 与y =x 24联立,运用韦达定理,即可得到t 的方程,解得t 的值,即可得到所求直线方程.【解答】解:(1)设A (x 1,x 124),B (x 2,x 224)为曲线C :y =x 24上两点,则直线AB 的斜率为k =x 124−x 224x 1−x 2=14(x 1+x 2)=14×4=1; (2)设直线AB 的方程为y =x +t ,代入曲线C :y =x 24, 可得x 2﹣4x ﹣4t =0,即有x 1+x 2=4,x 1x 2=﹣4t , 再由y =x 24的导数为y ′=12x , 设M (m ,m 24),可得M 处切线的斜率为12m ,由C 在M 处的切线与直线AB 平行,可得12m =1, 解得m =2,即M (2,1), 由AM ⊥BM 可得,k AM •k BM =﹣1,即为x 124−1x 1−2•x 224−1x 2−2=−1,化为x 1x 2+2(x 1+x 2)+20=0, 即为﹣4t +8+20=0, 解得t =7.则直线AB 的方程为y =x +7.【点评】本题考查直线与抛物线的位置关系,注意联立直线方程和抛物线的方程,运用韦达定理,考查直线的斜率公式的运用,以及化简整理的运算能力,属于中档题. 7.(2016•新课标Ⅰ)设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【分析】(Ⅰ)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB =ED ,再由圆的定义和椭圆的定义,可得E 的轨迹为以A ,B 为焦点的椭圆,求得a ,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x =my +1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN |,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),求得A 到PQ 的距离,再由圆的弦长公式可得|PQ |,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围. 【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4, 由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m 3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y1﹣y 2|=√1+m 2•√36m 2(3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =√1+m 2=√1+m 2,|PQ |=2√r 2−d 2=2√16−4m 21+m2=√2√1+m 2, 则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2, 当m =0时,S 取得最小值12,又11+m2>0,可得S <24•√33=8√3, 即有四边形MPNQ 面积的取值范围是[12,8√3).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.8.(2016•新课标Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (Ⅰ)求|OH||ON|;(Ⅱ)除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【分析】(Ⅰ)求出P ,N ,H 的坐标,利用|OH||ON|=|y H ||y N |,求|OH||ON|;(Ⅱ)直线MH 的方程为y =p2tx +t ,与抛物线方程联立,消去x 可得y 2﹣4ty +4t 2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l 与抛物线方程联立,解得P (t 22p,t ),∵M 关于点P 的对称点为N , ∴x N +x M2=t 22p,y N +y M2=t ,∴N (t 2p,t ), ∴ON 的方程为y =ptx , 与抛物线方程联立,解得H (2t 2p,2t )∴|OH||ON|=|y H ||y N |=2;(Ⅱ)由(Ⅰ)知k MH =p 2t, ∴直线MH 的方程为y =p2tx +t ,与抛物线方程联立,消去x 可得y 2﹣4ty +4t 2=0, ∴△=16t 2﹣4×4t 2=0,∴直线MH 与C 除点H 外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.9.(2015•新课标Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(Ⅰ)当k =0时,分別求C 在点M 和N 处的切线方程.(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?(说明理由)【分析】(I )联立{y =ay =x 24,可得交点M ,N 的坐标,由曲线C :y =x 24,利用导数的运算法则可得:y ′=x2,利用导数的几何意义、点斜式即可得出切线方程.(II )存在符合条件的点(0,﹣a ),设P (0,b )满足∠OPM =∠OPN .M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为:k 1,k 2.直线方程与抛物线方程联立化为x 2﹣4kx ﹣4a =0,利用根与系数的关系、斜率计算公式可得k 1+k 2=k(a+b)a.k 1+k 2=0⇔直线PM ,PN 的倾斜角互补⇔∠OPM =∠OPN .即可证明.【解答】解:(I )联立{y =ay =x 24,不妨取M (2√a ,a),N (−2√a ,a),由曲线C :y =x 24可得:y ′=x 2, ∴曲线C 在M 点处的切线斜率为2√a 2=√a ,其切线方程为:y ﹣a =√a(x −2√a),化为√ax −y −a =0.同理可得曲线C 在点N 处的切线方程为:√ax +y +a =0. (II )存在符合条件的点(0,﹣a ),下面给出证明:设P (0,b )满足∠OPM =∠OPN .M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为:k 1,k 2.联立{y =kx +a y =x 24,化为x 2﹣4kx ﹣4a =0,∴x 1+x 2=4k ,x 1x 2=﹣4a . ∴k 1+k 2=y 1−b x 1+y 2−b x 2=2kx 1x 2+(a−b)(x 1+x 2)x 1x 2=k(a+b)a. 当b =﹣a 时,k 1+k 2=0,直线PM ,PN 的倾斜角互补, ∴∠OPM =∠OPN . ∴点P (0,﹣a )符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.10.(2015•新课标Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x ﹣2)2+(y ﹣3)2=1交于点M 、N 两点.(1)求k 的取值范围;(2)若OM →•ON →=12,其中O 为坐标原点,求|MN |.【分析】(1)由题意可得,直线l 的斜率存在,用点斜式求得直线l 的方程,根据圆心到直线的距离等于半径求得k 的值,可得满足条件的k 的范围.(2)由题意可得,经过点M 、N 、A 的直线方程为y =kx +1,根据直线和圆相交的弦长公式进行求解.【解答】(1)由题意可得,直线l 的斜率存在,设过点A (0,1)的直线方程:y =kx +1,即:kx ﹣y +1=0. 由已知可得圆C 的圆心C 的坐标(2,3),半径R =1. 故由√k 2<1,故当4−√73<k <4+√73,过点A (0,1)的直线与圆C :(x ﹣2)2+(y ﹣3)2=1相交于M ,N 两点.(2)设M (x 1,y 1);N (x 2,y 2),由题意可得,经过点M 、N 、A 的直线方程为y =kx +1,代入圆C 的方程(x ﹣2)2+(y ﹣3)2=1,可得 (1+k 2)x 2﹣4(k +1)x +7=0, ∴x 1+x 2=4(1+k)1+k 2,x 1•x 2=71+k2, ∴y 1•y 2=(kx 1+1)(kx 2+1)=k 2x 1x 2+k (x 1+x 2)+1=71+k 2•k 2+k •4(1+k)1+k 2+1=12k 2+4k+11+k2, 由OM →•ON →=x 1•x 2+y 1•y 2=12k 2+4k+81+k2=12,解得 k =1, 故直线l 的方程为 y =x +1,即 x ﹣y +1=0. 圆心C 在直线l 上,MN 长即为圆的直径. 所以|MN |=2.【点评】本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.11.(2014•新课标Ⅰ)已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程. 【分析】(Ⅰ)通过离心率得到a 、c 关系,通过A 求出a ,即可求E 的方程; (Ⅱ)设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2)将y =kx ﹣2代入x 24+y 2=1,利用△>0,求出k 的范围,利用弦长公式求出|PQ |,然后求出△OPQ 的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0,当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k2 从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k2又点O 到直线PQ 的距离d =√k +1,所以△OPQ 的面积S △OPQ=12d|PQ|=4√4K 2−31+4K 2, 设√4k 2−3=t ,则t >0,S △OPQ =4t t 2+4=4t+4t≤1, 当且仅当t =2,k =±√72等号成立,且满足△>0, 所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.12.(2014•新课标Ⅰ)已知点P (2,2),圆C :x 2+y 2﹣8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.【分析】(1)由圆C 的方程求出圆心坐标和半径,设出M 坐标,由CM →与MP →数量积等于0列式得M 的轨迹方程;(2)设M 的轨迹的圆心为N ,由|OP |=|OM |得到ON ⊥PM .求出ON 所在直线的斜率,由直线方程的点斜式得到PM 所在直线方程,由点到直线的距离公式求出O 到l 的距离,再由弦心距、圆的半径及弦长间的关系求出PM 的长度,代入三角形面积公式得答案. 【解答】解:(1)由圆C :x 2+y 2﹣8y =0,得x 2+(y ﹣4)2=16, ∴圆C 的圆心坐标为(0,4),半径为4.设M (x ,y ),则CM →=(x ,y −4),MP →=(2−x ,2−y).由题意可得:CM →⋅MP →=0. 即x (2﹣x )+(y ﹣4)(2﹣y )=0. 整理得:(x ﹣1)2+(y ﹣3)2=2.∴M 的轨迹方程是(x ﹣1)2+(y ﹣3)2=2.(2)由(1)知M 的轨迹是以点N (1,3)为圆心,√2为半径的圆, 由于|OP |=|OM |,故O 在线段PM 的垂直平分线上, 又P 在圆N 上, 从而ON ⊥PM . ∵k ON =3,∴直线l 的斜率为−13.∴直线PM 的方程为y −2=−13(x −2),即x +3y ﹣8=0. 则O 到直线l 的距离为√122=4√105.又N 到l 的距离为√10=√105, ∴|PM |=2√2−(√105)2=4√105. ∴S △POM =12×4√105×4√105=165. 【点评】本题考查圆的轨迹方程的求法,训练了利用向量数量积判断两个向量的垂直关系,训练了点到直线的距离公式的应用,是中档题.13.(2013•新课标Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x ﹣1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.【分析】(I )设动圆的半径为R ,由已知动圆P 与圆M 外切并与圆N 内切,可得|PM |+|PN |=R +1+(3﹣R )=4,而|NM |=2,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆,求出即可;(II )设曲线C 上任意一点P (x ,y ),由于|PM |﹣|PN |=2R ﹣2≤4﹣2=2,所以R ≤2,当且仅当⊙P 的圆心为(2,0)R =2时,其半径最大,其方程为(x ﹣2)2+y 2=4.分①l 的倾斜角为90°,此时l 与y 轴重合,可得|AB |.②若l 的倾斜角不为90°,由于⊙M 的半径1≠R ,可知l 与x 轴不平行,设l 与x 轴的交点为Q ,根据|QP||QM|=R r 1,可得Q (﹣4,0),所以可设l :y =k (x +4),与椭圆的方程联立,得到根与系数的关系利用弦长公式即可得出.【解答】解:(I )由圆M :(x +1)2+y 2=1,可知圆心M (﹣1,0);圆N :(x ﹣1)2+y 2=9,圆心N (1,0),半径3. 设动圆的半径为R ,∵动圆P 与圆M 外切并与圆N 内切,∴|PM |+|PN |=R +1+(3﹣R )=4,而|NM |=2,由椭圆的定义可知:动点P 的轨迹是以M ,N 为焦点,4为长轴长的椭圆, ∴a =2,c =1,b 2=a 2﹣c 2=3. ∴曲线C 的方程为x 24+y 23=1(x ≠﹣2).(II )设曲线C 上任意一点P (x ,y ),由于|PM |﹣|PN |=2R ﹣2≤3﹣1=2,所以R ≤2,当且仅当⊙P 的圆心为(2,0)R =2时,其半径最大,其方程为(x ﹣2)2+y 2=4.①l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=2√3.②若l 的倾斜角不为90°,由于⊙M 的半径1≠R ,可知l 与x 轴不平行, 设l 与x 轴的交点为Q ,则|QP||QM|=R r 1,可得Q (﹣4,0),所以可设l :y =k (x +4),由l 于M 相切可得:√1+k 2=1,解得k =±√24.当k =√24时,联立{y =√24x +√2x 24+y23=1,得到7x 2+8x ﹣8=0.∴x 1+x 2=−87,x 1x 2=−87.∴|AB |=√1+k 2|x 2−x 1|=√1+(24)2√(−87)2−4×(−87)=187由于对称性可知:当k =−√24时,也有|AB |=187. 综上可知:|AB |=2√3或187.【点评】本题综合考查了两圆的相切关系、直线与圆相切问题、椭圆的定义及其性质、直线与椭圆相交问题转化为方程联立得到根与系数的关系、弦长公式等基础知识,需要较强的推理能力和计算能力及其分类讨论的思想方法.14.(2012•新课标)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A ∈C ,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点;(1)若∠BFD =90°,△ABD 的面积为4√2,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【分析】(1)由对称性知:△BFD 是等腰直角△,斜边|BD |=2p 点A 到准线l 的距离d =|FA|=|FB|=√2p ,由△ABD 的面积S △ABD =4√2,知12×BD ×d =12×2p ×√2p =4√2,由此能求出圆F 的方程.(2)由对称性设A(x 0,x 022p )(x 0>0),则F(0,p2)点A ,B 关于点F 对称得:B(−x 0,p −x 022p )⇒p −x 022p =−p 2⇔x 02=3p 2,得:A(√3p ,3p 2),由此能求出坐标原点到m ,n 距离的比值.【解答】解:(1)由对称性知:△BFD 是等腰直角△,斜边|BD |=2p 点A 到准线l 的距离d =|FA|=|FB|=√2p , ∵△ABD 的面积S △ABD =4√2, ∴12×BD ×d =12×2p ×√2p =4√2,解得p =2,所以F 坐标为(0,1), ∴圆F 的方程为x 2+(y ﹣1)2=8.(2)由题设A(x 0,x 022p )(x 0>0),则F(0,p2),∵A ,B ,F 三点在同一直线m 上,又AB 为圆F 的直径,故A ,B 关于点F 对称.由点A ,B 关于点F 对称得:B(−x 0,p −x 022p )⇒p −x 022p =−p 2⇔x 02=3p 2得:A(√3p ,3p2),直线m :y =3p 2−p 2√3p+p 2⇔x −√3y +√3p 2=0,x 2=2py ⇔y =x 22p⇒y′=x p =√33⇒x =√33p ⇒切点P(√3p 3,p6) 直线n :y −p 6=√33(x −√3p 3)⇔x −√3y −√36p =0 坐标原点到m ,n 距离的比值为√3p 2:√3p6=3.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化. 15.(2011•新课标)在平面直角坐标系xOy 中,已知点A (0,﹣1),B 点在直线y =﹣3上,M 点满足MB →∥OA →,MA →⋅AB →=MB →•BA →,M 点的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.【分析】(Ⅰ)设M (x ,y ),由已知得B (x ,﹣3),A (0,﹣1)并代入MB →∥OA →,MA →⋅AB →=MB →•BA →,即可求得M 点的轨迹C 的方程;(Ⅱ)设P (x 0,y 0)为C 上的点,求导,写出C 在P 点处的切线方程,利用点到直线的距离公式即可求得O 点到l 距离,然后利用基本不等式求出其最小值. 【解答】解:(Ⅰ)设M (x ,y ),由已知得B (x ,﹣3),A (0,﹣1). 所MA →=(﹣x ,﹣1﹣y ),MB →=(0,﹣3﹣y ),AB →=(x ,﹣2). 再由题意可知(MA →+MB →)•AB →=0,即(﹣x ,﹣4﹣2y )•(x ,﹣2)=0. 所以曲线C 的方程式为y =14x 2−2.(Ⅱ)设P (x 0,y 0)为曲线C :y =14x 2−2上一点,因为y ′=12x ,所以l 的斜率为12x 0,因此直线l 的方程为y ﹣y 0=12x 0(x ﹣x 0),即x 0x ﹣2y +2y 0﹣x 02=0. 则o 点到l 的距离d =002√4+x 0.又y 0=14x 02−2,所以d =12x 2+4√4+x 0=12(√x 02+4√4+x 0)≥2,所以x 02=0时取等号,所以O 点到l 距离的最小值为2.【点评】此题是个中档题.考查向量与解析几何的交汇点命题及代入法求轨迹方程,以及导数的几何意义和点到直线的距离公式,综合性强,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.16.(2011•新课标)在平面直角坐标系xOy 中,曲线y =x 2﹣6x +1与坐标轴的交点都在圆C 上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB 建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2√2,0),(3﹣2√2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2√2)2+t2,解得t=1,故圆C的半径为√32+(t−1)2=3,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组{x−y+a=0(x−3)2+(y−1)2=9,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=a 2−2a+12①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.17.(2010•全国新课标)设F1,F2分别是椭圆E:x2+y 2b2=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.。
高考数学一轮复习《圆锥曲线》练习题(含答案)
高考数学一轮复习《圆锥曲线》练习题(含答案)一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .2y x =±D .22y x =±2.已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为( ) A .5B .2C .21+D .21-3.如图,在体积为3的三棱锥P-ABC 中,P A ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ⊥,则点M 的轨迹长度的最大值为( )A .3B .6C .23D .324.抛物线22y x =的焦点坐标为( ).A .1,02⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .10,8⎛⎫- ⎪⎝⎭5.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A .32B .2C .3D .46.已知抛物线M :24y x =的焦点为F ,O 是坐标原点,斜率为()0k k >的直线l 交抛物线M 于A ,B 两点,且点A ,B 分别位于第一、四象限,交抛物线的准线l '于点C .若2ACFABFSS=,2BF =,则AOBS=( )A .33-B .33+C .2D .231+7.若双曲线的中心为坐标原点,焦点在y 轴上,其离心率为2,则该双曲线的渐近线方程为( ) A .3y x =±B .33y x =±C .4y x =±D .14y x =±8.已知双曲线E 的左、右焦点分别为12,F F ,O 为坐标原点.若点P 在E 上,2OP OQ =-,22PF OF =,1132QF OF =,则E 的离心率为A .2B .2C .5D .31+9.设1F ,2F 是离心率为5的双曲线222124x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于A .42B .83C .24D .4810.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,直线20l :x y '-+=,动点M 在C 上运动,记点M 到直线l 与l ′的距离分别为d 1,d 2,O 为坐标原点,则当d 1+d 2最小时,cos ∠MFO =( ) A .22B .23C .24D .2611.如图,已知正方体1111ABCD A B C D -的棱长为1,,M N 分别是棱1,AA BC 上的动点,若2MN =,则线段MN 的中点P 的轨迹是( )A .一条线段B .一段圆弧C .一部分球面D .两条平行线段12.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C与2C 的公共弦经过F ,则椭圆的离心率为( )A 1B C D二、填空题13.已知点(3,2)在椭圆221(0,0)x y m n m n+=>>上,则点(-3,3)与椭圆的位置关系是__________.14.过点且渐近线与双曲线22:12x C y -=的渐近线相同的双曲线方程为______.15.焦点在y 轴上的双曲线221y mx -=,则m 的值为___________.16.已知过抛物线C :y 2=8x 焦点的直线交抛物线于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,AB BM =,则A 点的横坐标为___.三、解答题17.求经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的标准方程.18.已知椭圆C :22143x y +=,过椭圆右焦点的直线l 与椭圆交于M ,N 两点,求MN 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且椭圆C 经过点31,2P ⎛⎫-- ⎪⎝⎭.(1)求椭圆C 的方程.(2)不过点P 的直线:2l y kx =+与椭圆C 交于A ,B 两点,记直线P A ,PB 的斜率分别为1k ,2k ,试判断12k k +是否为定值.若是,求出该定值;若不是,请说明理由.20.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y b C b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程;(2)若ABO 10,求直线AB 的方程; (3)若2AF BF =,求证:四边形AOCD 是平行四边形.21.已知(0,2),(3,1)A B 是椭圆2222:1(0)x y G a b a b+=>>上的两点.(1)求椭圆G 的离心率;(2)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.22.已知椭圆C 的离心率2e =()10,1B -,()20,1B . (1)求椭圆C 的方程;(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N 点坐标;若不存在,说明理由.23.已知点P 在圆22:4O x y +=上运动,PQ x ⊥轴,垂足为Q ,点A 满足12AQ PQ =. (1)求点A 的轨迹E 的方程;(2)过点30,2⎛⎫⎪⎝⎭的直线l 与曲线E 交于,M N 两点,记OMN ∆的面积为S ,求S 的最大值.24.已知抛物线1C :()220x py p =>的焦点为F ,圆2C :()()22284x y +++=,过y 轴上点G 且与y 轴不垂直的直线l 与抛物线1C 交于A 、B 两点,B 关于y 轴的对称点为D ,O 为坐标原点,连接2GC 交x 轴于点E ,且点E 、F 分别是2GC 、OG 的中点. (1)求抛物线1C 的方程; (2)证明:直线AD 与圆2C 相交参考答案1.C2.C3.A4.C5.B6.B7.B8.D9.C10.A11.B12.A 13.点在椭圆外 14.22163x y -=15.4 16.417.设所求的等轴双曲线的方程为:()220x y λλ-=≠,将(3,1)A -代入得:()2231λ--=,即=8λ, 所以等轴双曲线的标准方程:22188x y -=18.解:由椭圆C :22143x y +=知,2a =,b =1c =,所以椭圆C 的右焦点为()1,0F .当直线l 的斜率不存在时,223b MN a==. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,将其代入椭圆C 的方程得()22223484120kxk x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+, 所以=MN ()222121333434+==+++k k k因为20k ≥,所以(]3,4MN ∈. 综上,MN 的取值范围是[]3,4. 19.(1)因为12c e a ==,所以2a c =,所以222234b a c a =-=.因为椭圆C 过31,2P ⎛⎫-- ⎪⎝⎭,所以221914a b +=,所以24a =,23b =,故椭圆C 的标准方程为22143x y +=. (2)因为直线l 不过31,2P ⎛⎫-- ⎪⎝⎭,且直线P A ,PB 的斜率存在,所以72k ≠且12k ≠.设()11,A x y ,()22,B x y ,联立方程组222143y kx x y =+⎧⎪⎨+=⎪⎩,得()22341640k x kx +++=, 则1221634k x x k +=-+,122434x x k =+. 由()()221616340k k ∆=-+>,得214k >且72k ≠.因为()()12121212121212121273377272222211111kx x k x x y y kx kx k k x x x x x x x x ⎛⎫++++++++ ⎪⎝⎭+=+=+=+++++++, 所以2221222271682712482134343416416713434k k k k k k k k k k k k k k ⎛⎫+ ⎪⎝⎭-+-++++===-+-+++, 即12k k +为定值,且123k k +=.20.(1)由题意知,椭圆1C 的长轴长126a =,短轴长12b =124c ==, 椭圆2C 的长轴长2212a =,短轴长2b ,焦距22c =.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即23= 因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=.(2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线, 设直线AB 的方程为2x my =+,联立22195x y +=,消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>,所以1,2y ==, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABOAOFBOFSS SOF y OFy O y y y F y =+=+=-=-==, 化简得4259m=,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上, 所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =从而得,113,4x y ==即321,,48A B ⎛⎛ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =.由题知0x >,所以21,4x y ==21,4C ⎛ ⎝⎭.又(6,0)D,所以OA CD k k ==又因为,OA CD 不共线,所以//OA CD ,又AD OC k k ==,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形. 21.解:(1)由已知2b =, 由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==所以2228,c a b c =-== 所以椭圆G的离心率是c e a ==; (2)当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件; 设直线BC 的方程为1(3)y k x -=-),点(),C C C x y ,由22131124y kx kx y =+-⎧⎪⎨+=⎪⎩可得()222316(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B 和点C 的横坐标, 所以223(13)12331C k x k --=+,即22(13)431C k x k --=+,所以2236131C k k y k --+=+,因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=,2222963961(3,1),3131k k k k AB AC k k ⎛⎫-----⋅=-⋅ ⎪++⎝⎭2236128031k k k --==+, 即(32)(31)0k k -+=, 123k ,213k =-, 当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以123BC k k ==, 所以直线BC 的方程为213y x =-. 22.(1)由题意可设椭圆为22221x y a b+=由题意可得c e a ==1b =,可得a =所以椭圆的方程为:2212x y +=.(2)联立2222y kx m x y =+⎧⎨+=⎩,整理可得:()222124220k x kmx m +++-=, 由题意可得()()222216412220k m k m ∆=-+-=,可得2212m k =+;可得()242212P km k x m k -==-+,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭. 联立2y kx mx =+⎧⎨=⎩,可得2Q x =,2Q y k m =+,即()2,2Q k m +,设在x 轴上存在()0,0N x .由0PN QN ⋅=,可得()0021,2,20k x x k m m m ⎛⎫+-⋅---= ⎪⎝⎭,可得200242210k k k x x m m m ⎛⎫+--++= ⎪⎝⎭, 即()200022110kx x x m-++-=, 可得20002101x x x ⎧-+=⎨=⎩,可得01x =,即定点()1,0N .23.(1)设(,)A x y ,11(,)P x y , ∵12AQ PQ =,∴A 为PQ 的中点, ∴11,2,x x y y =⎧⎨=⎩∴22(2)4x y +=,即2214x y +=.∴点A 的轨迹E 的方程2214x y +=.(2)显然直线l 的斜率存在,设直线l 的方程为32y kx =+,将直线方程代入椭圆方程中得22(14)1250k x kx +++=, ∴222251444(14)56420016k k k k ∆=-⨯+=->⇒>. 设1122(,),(,)M x y N x y ,∴12133||224OMN POM PON S S S x x ∆∆∆=-=⨯⨯-=令2914()4t k t =+>,则214k t -=,∴3344OMN S S ∆====∵914049t t >⇒<<,∴129t =时,34143OMN S ∆≤⨯=,∴S 的最大值1.24.(1)设点()0,0E x ,()00,G y ,因为圆2C :()()22284x y +++=,所以圆心()22,8C --,因为点E 是2GC 的中点,所以00202820x y -+=⎧⎨-+=⨯⎩,解得0018x y =-⎧⎨=⎩,则点()0,8G ,因为点F 是OG 的中点, 所以()0,4F ,则42p=,解得8p =, 故抛物线的方程为216x y =.(2)因为B 关于y 轴的对称点为D , 所以设()11,B x y ,()22,A x y ,()11,D x y -,设直线AB 的方程为8y kx -=,即80kx y -+=,联立28016kx y x y-+=⎧⎨=⎩,消去x 得()22161640y k y -++=,则1264y y =, 设直线AD 的方程为y mx n =+,联立216y mx n x y=+⎧⎨=⎩,消去x 得()2221620y m n y n -++=,则212y y n =, 故264n =,易知0n <,则8n =-,直线AD 的方程为8y mx =-,必过定点()0,8-, 而圆2C :()()22284x y +++=正好与y 轴交于定点()0,8-, 且过点()0,8-的所有直线中,只有与y 轴重合的直线才能与圆2C :()()22284x y +++=相切,直线AD 显然不可能是y 轴,因此,直线AD 与圆2C 相交.。
2012.数学必备之圆锥曲线1(题)
专题限时集训(十六)[第16讲 圆锥曲线的定义、方程与性质](时间:10分钟+35分钟)2012二轮精品提分必练1.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A .y 2=-8x B .y 2=8x C .y 2=-4x D .y 2=4x2.椭圆x 2a 2+y 2b2=1(a >b >0)的两顶点为A (a,0),B (0,b ),且左焦点为F ,△F AB 是以角B为直角的直角三角形,则椭圆的离心率e 为( )A.3-12B.5-12C.1+54D.3+143.已知双曲线x 2a 2-y 2b 2=1的离心率为e ,则它的渐近线方程为( )A .y =±e -1 xB .y =±e 2-1 xC .y =±1-e 2 xD .y =±1-e x 4.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若=,·=12,则p 的值为________.2012二轮精品提分必练2012二轮精品提分必练图16-11.如图16-1,抛物线C 1:y 2=2px 和圆C 2:⎝⎛⎭⎫x -p 22+y 2=p 24,其中p >0,直线l 经过抛物线C 1的焦点,依次交抛物线C 1,圆C 2于A ,B ,C ,D 四点,则·的值为( )A.p 24B.p 23C.p22 D .p 22.设F 1、F 2分别是双曲线x 2-y 29=1的左、右焦点.若点P 在双曲线上,且·=0,则|+|=( )A .2 2 B.10 C .4 2 D .2103.已知M 是椭圆x 2a 2+y 2b2=1(a >b >0)上一点,两焦点为F 1,F 2,点P 是△MF 1F 2的内心,连接MP 并延长交F 1F 2于N ,则|MP ||PN |的值为( )A.a a 2-b 2B.b a 2-b 2C.a 2-b 2bD.a 2-b 2a4.已知抛物线y 2=2px (p >0),F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于A 、B 两点,A ′、B ′分别为A 、B 在l 上的射影,M 为A ′B ′的中点,给出下列命题:①A ′F ⊥B ′F ;②AM ⊥BM ;③A ′F ∥BM ;④A ′F 与AM 的交点在y 轴上;⑤AB ′与A′B交于原点.其中真命题的个数为()A.2个B.3个C.4个D.5个5.已知双曲线的右焦点为(5,0),一条渐近线方程为2x-y=0,则此双曲线的标准方程是________.6.已知抛物线y2=2px(p>0)的焦点F与椭圆x2a2+y2b2=1(a>b>0)的一个焦点重合,它们在第一象限内的交点为T,且TF与x轴垂直,则椭圆的离心率为________.7.点P是椭圆x225+y216=1上一点,F1,F2是椭圆的两个焦点,且△PF1F2的内切圆半径为1,当P在第一象限时,P点的纵坐标为________.2012二轮精品提分必练8.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为63,并与直线y =x +2相切. (1)求椭圆C 的方程;(2)如图16-2,过圆D :x 2+y 2=4上任意一点P 作椭圆C 的两条切线m ,n .求证:m ⊥n .2012二轮精品提分必练图16-29.如图16-3,已知点D (0,-2),过点D 作抛物线C 1:x 2=2py (p >0)的切线l ,切点A 在第二象限,如图16-3.(1)求切点A 的纵坐标;(2)若离心率为32的椭圆x 2a 2+y 2b2=1(a >b >0)恰好经过切点A ,设切线l 交椭圆的另一点为B ,记切线l ,OA ,OB 的斜率分别为k ,k 1,k 2,若k 1+2k 2=4k ,求椭圆方程.2012二轮精品提分必练图16-3专题限时集训(十六)【基础演练】1.B 【解析】 由题意设抛物线方程为y 2=2px (p >0),又∵其准线方程为x =-p2=-2,∴p =4,所求抛物线方程为y 2=8x .2.B 【解析】 根据已知a 2+b 2+a 2=(a +c )2,即c 2+ac -a 2=0,即e 2+e -1=0,解得e =-1±52(负值舍去),故所求的椭圆的离心率为5-12.3.B 【解析】 ba=c 2-a 2a 2=e 2-1,故双曲线的渐近线方程是y =±e 2-1 x . 4.1 【解析】 设A ⎝⎛⎭⎫t 22p ,t ,B ⎝⎛⎭⎫-p 2,y B ,F ⎝⎛⎭⎫p 2,0,由=得,⎝⎛⎭⎫p 2-t22p ,-t =(-p ,y B ),由此得t 2=3p 2,y B =-t .设C ⎝⎛⎭⎫-p 2,t ,则=⎝⎛⎭⎫t 22p +p2,2t ,=(0,2t ),所以·=12得4t 2=12,故p =1.【提升训练】1.A 【解析】 当l 斜率存在时,设l :y =k ⎝⎛⎭⎫x -p 2,与y 2=2px 联立消去y 得k 2x 2-(pk 2+2p )x +p 2k 24=0,设A (x 1,y 1),D (x 2,y 2),抛物线的焦点为F ,则|AB |=|AF |-|BF |=x 1+p2-p 2=x 1,同理|CD |=x 2,∴·=|AB ||CD |=x 1x 2=p 24;当l ⊥x 轴时,易得|AB |=|CD |=p 2,∴·=p 24,故选A.2.D 【解析】 根据已知△PF 1F 2是直角三角形,向量+=2,根据直角三角形斜边上的中线等于斜边的一半即可求出.·=0,则|+|=2||=||=210.3.A 【解析】 由于三角形的内心是三个内角的平分线的交点,利用三角形内角平分线性质定理把所求的比值转化为三角形边长之间的比值关系.如图,连接PF 1,PF 2.在△MF 1N 中,F 1P 是∠MF 1N 的角平分线,根据三角形内角平分线性质定理,|MP ||PN |=|MF 1||F 1N |,同理可得|MP ||PN |=|MF 2||F 2N |,故有|MP ||PN |=|MF 1||F 1N |=|MF 2||F 2N |,根据等比定理|MP ||PN |=|MF 1|+|MF 2||F 1N |+|F 2N |=2a 2a 2-b 2=aa 2-b 2. 2012二轮精品提分必练4.D 【解析】 如图,设A (x 1,y 1),B (x 2,y 2),则A ′⎝⎛⎭⎫-p 2,y 1,B ′⎝⎛⎭⎫-p 2,y 2,F ⎝⎛⎭⎫p 2,0,M ⎝⎛⎭⎫-p 2,y 1+y 22,根据抛物线焦点弦的性质y 1y 2=-p 2.①k A ′F ·k B ′F =y 1-p ·y 2-p =y 1y 2p2=-1;②k AM ·k BM =y 1-y 1+y 22x 1+p 2·y 2-y 1+y 22x 2+p 2=-(y 1-y 2)2(2x 1+p )(2x 2+p ),其中(2x 1+p )(2x 2+p )=4x 1x 2+2px 1+2px 2+p 2=4y 21y 224p2+y 21+y 22+p 2=y 21+y 22+2p 2=y 21+y 22-2y 1y 2=(y 1-y 2)2, 所以k AM ·k BM =-1;③k A ′F =y 1-p =py 2,k BM =y 2-y 1+y 22x 2+p 2=y 2-y 12x 2+p =y 2+p 2y 2y 22p+p=p y 2;④设A ′F 与y 轴的交点是(0,t ),则t -p 2=y 1-p ,即t =12y 1;设AM 与y 轴的交点坐标是(0,r ),则r -y 1-x 1=y 1+y 22-y 1-p 2-x 1,由于y 1+y 22-y 1-p 2-x 1=y 1-y 22x 1+p =y 1+p 2y 1y 21p+p =p y 1,所以r -y 1-x 1=p y 1,即r =py 1(-x 1)+y 1=p y 1·⎝⎛⎭⎫-y 212p +y 1=12y 1,故A ′F 与AM 的交点在y 轴上; ⑤k OA =y 1x 1=2p y 1=-2y 2p ,k OB ′=2y 2-p ,故A ,O ,B ′三点共线,同理可证A ′,O ,B 三点共线.2012二轮精品提分必练5.x 25-y 220=1 【解析】 设所求的双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则c =5,ba =2,解得a 2=5,b 2=20.6.2-1 【解析】 依题意c =p 2,由c 2a 2+y 2b 2=1求得y =b 2a ,得T 的坐标⎝⎛⎫c ,b 2a ,即b 2a =p ,∴b 2=2ac ,∴c 2+2ac -a 2=0,∴e 2+2e -1=0,解得e =2-1(负值舍去).7.83 【解析】 |PF 1|+|PF 2|=10,|F 1F 2|=6,S △PF 1F 2=12(|PF 1|+|PF 2|+|F 1F 2|)·1=8=12|F 1F 2|·y P =3y P .所以y P =83.8.【解答】 (1)由e =63知a 2=3b 2, 椭圆方程可设为x 23b 2+y 2b2=1.又直线y =x +2与椭圆相切,代入得方程4x 2+12x +12-3b 2=0满足Δ=0.由此得b 2=1. 故椭圆C 的方程为x 23+y 2=1.(2)证明:设P (x 0,y 0).当x 0=±3时,有一条切线斜率不存在,此时,刚好y 0=±1,可见,另一条切线平行于x 轴,m ⊥n ;当x 0≠±3时,则两条切线斜率存在.设直线m 的斜率为k ,则其方程为y -y 0=k (x -x 0),即y =kx +y 0-kx 0.代入x 23+y 2=1并整理得(1+3k 2)x 2+6k (y 0-kx 0)x +3(y 0-kx 0)2-3=0.由Δ=0可得(3-x 20)k 2+2x 0y 0k +1-y 20=0,注意到直线n 的斜率也适合这个关系,所以m ,n 的斜率k 1,k 2就是上述方程的两根,由韦达定理,k 1k 2=1-y 203-x 20.由于点P 在圆D :x 2+y 2=4上,3-x 20=-(1-y 20), 所以k 1k 2=-1,所以m ⊥n .综上所述,过圆D 上任意一点P 作椭圆C 的两条切线m ,n ,总有m ⊥n .9.【解答】 (1)设切点A (x 0,y 0),且y 0=x 202p ,由切线l 的斜率为k =x 0p ,得l 的方程为y=x 0p x -x 202p,又点D (0,-2)在l 上, ∴x 22p=2,即切点A 的纵坐标为2. (2)由(1)得A (-2p ,2),切线斜率k =-2p, 设B (x 1,y 1),切线方程为y =kx -2,由e =32,得a 2=4b 2, 所以设椭圆方程为x 24b 2+y 2b 2=1,且过A (-2p ,2),∴b 2=p +4.由⎩⎪⎨⎪⎧y =kx -2,x 2+4y 2=4b 2⇒(1+4k 2)x 2-16kx +16-4b 2=0, ∴⎩⎪⎨⎪⎧x 0+x 1=16k 1+4k 2,x 0x 1=16-4b21+4k2,k 1+2k 2=y 0x 0+2y 1x 1=x 1y 0+2x 0y 1x 0x 1=x 1(kx 0-2)+2x 0(kx 1-2)x 0x 1=3k -2x 1+4x 0x 0x 1=3k -2(x 1+x 0)+2x 0x 0x 1=3k -32k1+4k 2-4p 16-4b 21+4k 2=3k -32k -4p (1+4k 2)16-4b 2=4k ,将k =-2p,b 2=p +4代入得p =32,所以b 2=36,a 2=144, 所以椭圆方程为x 2144+y 236=1.。
高中数学备课资料 圆锥曲线基础练习题(1)
圆锥曲线基础题训练一、选择题:1. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( )A .双曲线B .双曲线的一支C .两条射线D .一条射线4.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线 D .两条射线5.方程11122=-++k yk x 表示双曲线,则k 的取值范围是 ( )A .11<<-kB .0>kC .0≥k D .1>k 或1-<k6. 双曲线14122222=--+m ym x 的焦距是( )A .4B .22C .8D .与m 有关7.过双曲线191622=-y x 左焦点F 1的弦AB 长为6,则2ABF ∆(F 2为右焦点)的周长是( )A .28B .22C .14D .128.双曲线的渐近线方程是y=±2x ,那么双曲线方程是 ( )A .x 2-4y 2=1 B .x 2-4y 2=1 C .4x 2-y 2=-1 D .4x 2-y 2=19.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF ( ) A .1或5 B . 6 C . 7 D . 910.抛物线x y 102=的焦点到准线的距离是 ( )A .25B .5C .215D .1011.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( ) A .(7, B .(14, C .(7,± D .(7,-±12.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1617 B .1615 C .87 D .013.抛物线28x y =-的准线方程是 ( )A . 321=x B . 2=y C . 321=y D . 2-=y二、填空题14.若椭圆221x my +=长为_______________.15.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。
(完整版)圆锥曲线经典题目(含答案)
圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。
圆锥曲线综合测试题(选修1-1&2-1)
盘县第一中学高二数学圆锥曲线综合测试题(选修1-1&2-1)(考试时间:120分钟,共150分)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知抛物线的焦点是F (0,4),则此抛物线的标准方程是( )A. x 2=16y B . x 2=8y C . y 2=16x D. y 2=8x2.双曲线4x 2-9y 2=1的渐近线方程是( )。
A. y =±32x B. y =±61x C. y =±23x D. y =±6x 3.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是A. 52x +32y =1B. 252x +92y =1C.32x +52y =1D.92x +252y =1 4.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是A.|a |4B.|a |2 C .|a | D .-a 25.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则|AB |=A .6 B.2 C .2 D .不确定6.已知双曲线x 24-y 212=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则p 的值为A .2B .1 C.14 D.1167.若双曲线x 2a 2-y 2=1的一个焦点为(2,0),则它的离心率为 A.255 B.32 C.233 D .28.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是A.x 29-y 216=1B.x 216-y 29=1C.x 29-y 216=1(x >3)D.x 216-y 29=1(x >4) 9.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =5e 5x (e 为双曲线离心率),则有( )A .b =2aB .b =5aC .a =2bD .a =5b10.抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是A.1716B.1516 C .-1516 D .-171611.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r = A. 3 B .2 C .3 D .612.设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,|BF |=2,则△BCF 与△ACF 的面积之比S △BCF S △ACF= A.45 B.23 C.47 D.12第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.椭圆4x 2+16y 2=1的长轴长为 ,短轴长为 ,离心率为 ,焦点坐标是 。
(完整版)圆锥曲线大题20道(含标准答案)
1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.填空题
9.已知△ABC的顶点B、C在椭圆 +y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是_______.
10.F1,F2是椭圆C: 的焦点,在C上满足PF1⊥PF2的点P的个数为____.
A.28 B.30 C.24 D.20
4.抛物线 上一点 的纵坐标为4,则点 与抛物线焦点的距离为
A.2B.3C.4D.5
5. 方程所表示的曲线是
A.圆B.椭圆C.半个圆D.半个椭圆
6.已知两定点 , ,动点P满足 当 和 时,点P的轨迹分别为()
A.两个双曲线B.两条射线
C.双曲线的一支和一条射线D.双曲线的两支
圆锥曲线练习题(1)
一.选择题
1.椭圆 的焦点为 为椭圆上一点,若 ,则
A.2 B.4 C.6 D.8
2.抛物线 ,F为焦点,则 表示
A.F到准线的距离B. F到准线的距离的
C. F到准线的距离的 D. F到y轴的距离
3.已知双曲线的实轴长为8,直线 过焦点F1交双曲线的同一分支与M,N两点且 ,则 的周长(F2为另一个焦点)为
11.过双曲线 左焦点F的直线交双曲线的左支于M、N两点,F2为其右焦点,则|MF2|+|NF2|-|MN|的值为。
.