2012_2018全国卷圆锥曲线(理科)
2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分. 1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1【考点定位】复数2、已知集合A={x|x 2-x —2〉0},则A =A 、{x|—1<x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x —2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上.C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半. 【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、—12B、—10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0;d=—3 ∴a5=2+(5—1)*(—3)=—10【考点定位】等差数列求和5、设函数f(x)=x3+(a—1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(—x)=2*(a—1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、-—B、-—C、—+D、—【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处.∴最短路径的长度为AB=【考点定位】立体几何:圆柱体的展开图形,最短路径8。
2018年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
2018年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)=()A.i B.C.D.2.(5分)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9B.8C.5D.43.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.27.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+48.(5分)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是()A.B.C.D.9.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=,则异面直线AD1与DB1所成角的余弦值为()A.B.CD.10.(5分)若f(x)=cosx﹣sinx在[﹣a,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.5012.(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A 且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考数学—圆锥曲线(解答+答案)
2018年高考数学——圆锥曲线解答1.(18北京理(19)(本小题14分))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.2.(18江苏18.(本小题满分16分))如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.3.(18全国二理19.(12分))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.4.(18全国三理20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.5.18全国一理19.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.6.(18天津理(19)(本小题满分14分))设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .A的坐标为(,0)b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.7.(18浙江21.(本题满分15分))如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.(18北京文(20)(本小题14分))已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .9.(18全国三文20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .10.(18全国一文20.(12分))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.参考答案:1.解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =. 直线PA 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.2.解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,).综上,直线l 的方程为532y x =-+.学*科网3.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.4.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-.5解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为y x =+y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.6.(Ⅰ)解:设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=,可得ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.7.(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.8.【解析】(Ⅰ)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 9..解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则 331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA ==-uu r .同理2||=22xFB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .10.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM=∠ABN.。
2018年高考中有关圆锥曲线离心率的题目
2018年高考中有关圆锥曲线离心率的题目(选择均改为填空)
1.(全国卷I 文4)已知椭圆C :22214
x y a +=的一个焦点为(20),
,则C 的离心率为
2.(北京理14)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22
221x y N m n
-=:.若双曲线N 的
两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M
的离心率为__________;双曲N 的离心率为__________
12;
3.(江苏8)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b
-=>>的右焦点(,0)
F c
,则其离心率的值是_________.2
4.(全国卷II 理12改)已知1F ,2F 是椭圆22
221(0)x y C a b a b
+=>>:的左,右焦点,A 是C 的
左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C
的离心率为__________.1
4
5.(全国卷II 文11改)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,
且2160PF F ∠=︒,则C 的离心率为__________1
6.(全国卷III 理11改)设12,F F 是双曲线22
22:1(0,0)x y C a b a b
-=>> 的左、右焦点,O
是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离
心率为__________
O 2F C P 1PF C。
【备战2018】(上海版)高考数学分项汇编 专题09 圆锥曲线(含解析)理
专题09 圆锥曲线一.基础题组1. 【2014上海,理3】若抛物线y 2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程15922=+y x 为___________.【答案】.2x =-【考点】椭圆与抛物线的几何性质.2. 【2013上海,理9】设AB 是椭圆Γ的长轴,在C 在Γ上,且∠CBA =.若AB =4,BC ,则Γ4π的两个焦点之间的距离为______.3. 【2011上海,理3】设m 是常数,若点F (0,5)是双曲线的一个焦点,则m =______.22=19y x m -【答案】164. 【2010上海,理3】若动点P 到点F (2,0)的距离与它到直线的距离相等,则点P 的轨迹方02=+x 程为_____________;【答案】xy 82=【解析】由抛物线定义知:P 的轨迹为抛物线,易知焦参数,所以点P 的轨迹方程为.4p =x y 82=【点评】本题考查抛物线定义和轨迹方程的求法之——直接法,属基础概念题.5. 【2010上海,理13】如图所示,直线与双曲线:的渐近线交于,两点,记2=x Γ1422=-y x 1E 2E ,.任取双曲线上的点,若(、),则、满足的一11OE e = 22OE e = ΓP 12OP ae be =+a b R ∈a b 个等式是 ;【答案】41ab =【点评】本题考查双曲线的几何性质,向量的坐标运算,平面向量基本定理等知识,把向量与解几结合命题,是全国各地高考题中的主流趋势.6.(2009上海,理9)已知F 1、F 2是椭圆C:(a >b >0)的两个焦点,P 为椭圆C 上一点,且12222=+by a x .若△PF 1F 2的面积为9,则b=______________.21PF PF ⊥【答案】37.(2009上海,理14)将函数(x∈[0,6])的图像绕坐标原点逆时针方向旋转角2642--+=x x y θ(0≤θ≤α),得到曲线C.若对于每一个旋转角θ,曲线C 都是一个函数的图像,则α的最大值为_____________.【答案】32arctan8. 【2007上海,理8】已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物22145x y -=线方程为_____9. 【2006上海,理7】已知椭圆中心在原点,一个焦点为F (-2,0),且长轴长是短轴长的2倍,则3该椭圆的标准方程是 .【答案】141622=+y x10. 【2005上海,理5】若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是x y 3±=()0,10__________.【答案】1922=-y x11. 【2005上海,理15】过抛物线的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标x y 42=之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在【答案】B二.能力题组1. 【2013上海,理22】如图,已知双曲线C 1:-y 2=1,曲线C 2:|y |=|x |+1.P 是平面内一点,若存22x 在过点P 的直线与C 1、C 2都有公共点,则称P 为“C 1C 2型点”.(1)在正确证明C 1的左焦点是“C 1C 2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y =kx 与C 2有公共点,求证|k |>1,进而证明原点不是“C 1C 2型点”;(3)求证:圆x 2+y 2=内的点都不是“C 1C 2型点”.12【答案】(1) x =或y =,其中|k . (2) 参考解析;(3)参考解析(k x2. 【2012上海,理22】在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P,Q两点.若l与圆x2+y2=1相切,求证:OP⊥OQ;(3)设椭圆C2:4x2+y2=1.若M,N分别是C1,C2上的动点,且OM⊥ON,求证:O到直线MN的距离是定值.【答案】(1) ;(2)参考解析; (3)参考解析3. 【2010上海,理23】(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知椭圆的方程为(),点的坐标为().Γ22221x y a b+=0a b >>P b a ,-(1)若直角坐标平面上的点、,满足,求点的坐标;M (0,)A b -(,0)B a 1()2PM PA PB =+M (2)设直线:交椭圆于、两点,交直线:于点.若,证明:1l 1y k x p =+ΓC D 2l 2y k x =E 2122b k k a⋅=-为的中点;E CD (3)对于椭圆上的点(),如果椭圆上存在不同的两个交点、满足Γ(cos ,sin )Q a b θθ0θπ<<Γ1P 2P ,写出求作点、的步骤,并求出使、存在的的取值范围.12PP PP PQ += 1P 2P 1P 2P θ【答案】(1);(2)参考解析;(3))2,2(b aM -(0,4π+【点评】今年以解析几何为压轴题,意图与全国大多数考区的试卷接轨.本题是具有一定深度的探究题,然而从研究问题的一般方法入手,可以从具体到一般地层层深入,即可获得各小题的部分分值是我们对不少考生的期望.4. 【2008上海,理18】(6’+9’)已知双曲线,为上的任意点。
2012年高考真题汇编——理科数学(解析版)10:圆锥曲线
2012高考真题分类汇编:圆锥曲线一、选择题1.【2012高考真题浙江理8】如图,F 1,F 2分别是双曲线C :22221x y ab-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.3B2D.【答案】B【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(a c bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,b y a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222bca xbc b c y --=-,令0=y ,得)1(22ba c x +=,所以c ba c 3)1(22=+,所以2222222a c b a -==,即2223c a =,所以26=e 。
故选B2.【2012高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y162=的准线交于,A B两点,A B =C 的实轴长为( )()A ()B ()C 4 ()D 8【答案】C【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-yx,所以2,42==a a,所以实轴长42=a ,选C.3.【2012高考真题新课标理4】设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【答案】C【解析】因为12PF F ∆是底角为30的等腰三角形,则有PF F F 212=,,因为2130=∠F PF ,所以260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=ac ,所以椭圆的离心率为43=e ,选C.4.【2012高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012年高考理科数学(全国卷)含答案及解析
2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。
在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。
(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。
在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。
在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。
(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。
在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。
2012-2018全国卷圆锥曲线(理科)
2012-2018全国卷圆锥曲线解答题(理科)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(Ⅰ)若90BFD ∠=︒,ABD ∆的面积为,求p 的值及圆F 的方程.(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值范围.6. (2017年全国高考Ⅰ卷理科第20题) (本小题满分12分)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
2018年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)
2018年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=x y -的焦点坐标是( )A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)1..答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2. (2018上海)设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2(B )2(C )2(D )43.(2018天津文、理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )(A )22139x y -= (B )22193x y -=(C )221412x y -= (D )221124x y -= 3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --=+,22222bc b bc b d c a b ++==+, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率:2229112c b e a a a==++,据此可得23a =,则双曲线的方程为22139x y -=.故选A .4.(2018全国新课标Ⅰ文)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( ) A .13B .12C .22D .2234、答案:C解答:知2c =,∴2228a b c =+=,22a =,∴离心率22e =.5.(2018全国新课标Ⅰ理)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .23D .45. 答案:B解答:渐近线方程为:2203x y -=,即33y x =±,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴3NM k =,直线MN 方程为3(2)y x =-.联立333(2)y x y x ⎧=-⎪⎨⎪=-⎩∴33(,)22N -,即3ON =,∴3MON π∠=,∴3MN =,故选B.6.(2018全国新课标Ⅰ理)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .86. 答案:D解答:由题意知直线MN 的方程为2(2)3y x =+,设1122(,),(,)M x y N x y ,与抛物线方程联立有22(2)34y x y x⎧=+⎪⎨⎪=⎩,可得1112x y =⎧⎨=⎩或2244x y =⎧⎨=⎩,∴(0,2),(3,4)FM FN ==,∴03248FM FN ⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c c e a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==, 由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5 B .2C .3D .211.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1||6||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,∴222222222224(6)464463322b c a bb c a b c a c a b c c+-=⇒+-=⇒-=-⋅ 223c a ⇒=3e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>5,则a =_________. 2.【答案】4【解析】在双曲线中,2224c a b a =++,且5c e a ==245a +,22454a a +=,216a ∴=,04a a >∴=.3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.3.【答案】31-;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为23113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m me m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。
2012-2018年高考真题汇编:圆锥曲线理科(带答案)
条渐近线的距离为(A)
A. 3
B .3
C . 3m
D . 3m
7. (2014 新课标全国卷 I,理 10)已知抛物线 C : y2 8x 的焦点为 F ,准线为 l , P 是 l 上一点, Q 是直线
PF 与 C 的一个焦点,若 FP 4FQ ,则 | QF | =( C)
4.(2015
新课标全国卷
I,理
5)已知
M(
x0 ,
y0
)是双曲线
C:
x2 2
y2
1上的一点,
F1,
F2
是
C
上的两个
焦点,若 MF1 MF2 0 ,则 y0 的取值范围是( )
(A)(- 3 , 3 ) (B)(- 3 , 3 )(C)( 2 2 , 2 2 )(D)( 2 3 , 2 3 )
P
同理
AF
P 1 cos
,
BF
P 1 cos
∴
AB
2P 1 cos2
2P sin2
又 DE 与 AB 垂直,即 DE 的倾斜角为 π 2
DE
2P
sin 2
π 2
2P cos2
而 y2 4x ,即 P 2 .
∴
AB DE
y=±bx.又离心率为 a
e=c= a
a2+b2= a
b
1+ a 2= 5,所以b=1,所以双曲线的渐近线方程为 y=±1x,选择 C.
2
a2
2
9.(2013·新课标Ⅰ高考理)已知椭圆 E:ax22+by22=1(a>b>0)的右焦点为 F(3,0),过点 F 的直线交 E 于 A,B
左老师讲义(高中数学圆锥曲线)
第一章:规定动作1.规定动作之联消判韦(2013天津卷改编)已知,A B 是椭圆22132x y +=的左、右顶点,F 为该椭圆的左焦点,过点F 且斜率为k 的直线与椭圆交于,C D 两点。
若8AC DB AD CB ⋅+⋅=,求k 的值.2. 联消判韦之速算判别式(2018全国3卷改编)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 中点D 的横坐标为1,求证:1||2k >.(2015江苏卷改编)已知椭圆2212x y +=的右焦点为F ,直线l 的方程为2x =-,过点F 的直线与椭圆交于,A B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点,P C ,若2PC AB =,求直线AB 的方程。
4.联消判韦之直线的设法: x 型还是y 型(2012北京文改编)已知椭圆22142x y +=的右顶点为A ,直线()1y k x =-与椭圆交于不同的两点,M N .当三角形AMN 的面积为3时,求k 的值.(2013陕西文改编)已知椭圆22:143x y C +=,过点()0,3P 的直线l 与椭圆C 交于,A B 两点,若A 是PB 的中点,求直线l 的斜率.6.传说中的点乘双根式(2012重庆理改编)已知椭圆221204x y +=,12(2,0),(2,0)B B -,过1B 的直线l 交椭圆于,P Q 两点,且22PB QB ⊥,求直线l 的方程.7.不对称处理第0招:假的不对称,整体就对称已知椭圆22:33C x y +=.过点()1,0D 且不过()2,1E 的直线与椭圆C 交于,A B 两点,直线AE 与直线3.x M =交于点试判断直线BM 与直线DE 的位置关系,并说明理由.8.不对称处理第1招:硬凑韦达(2011四川理改编)椭圆有两顶点()()1,0,1,0,A B -过其焦点()0,1F 的直线l 与椭圆交于,C D 两点,并与x 轴交于点P 。
2018年全国3卷第16题(直线与圆锥曲线)-2018年高考数学经典题分析及针对训练Word版含解析
2018年全国3卷第16题(直线与圆锥曲线)-2018年高考数学经典题分析及针对训练Word 版含解析一、典例分析,融合贯通典例1.【2018年全国高考课标3第16题】已知点(1,1)M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________. 解法一:点评:由题先设出直线方程,与抛物线方程联立,再借助条件90AMB =︒∠,化为向量语言转换为关于k 方程,进行求解。
解题以方程思想为指针,设而不求为桥梁,最终建立k 方程,完成求解。
解法二:同上,由90AMB =︒∠,则1MA MB k k ?-可得;2121211144011MA MBy y k k k k x x --??-?+=++ 2k \=.点评:将条件90AMB =︒∠,解读为1MA MBk k ?-,进行求解。
解法三:如图所示,点评:数形结合,将90∠的条件化为圆,运用圆的切线性质而简化运算。
AMB=︒二.方法总结,胸有成竹直线与圆锥曲线一直以来是我们高考关注的一个热点话题,主要涉及到圆锥曲线的方程和几何性质,以及直线与圆锥曲线的位置关系的综合运用。
综合考查学生的数学思想、数学方法与数学能力。
1. 直线与圆锥曲线的位置关系的应用问题求解的基本思路:由于直线与圆锥曲线的位置关系一直为高考的热点。
这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想,运用圆锥曲线的定义与平面几何的知识,化难为易,化繁为简,收到意想不到的解题效果;另外采取“设而不求”法,“点差法”与弦长公式及韦达定理,减少变量,建立方程去解决; 2. 基本知识与基本方法(1).直线与圆锥曲线的位置关系的判定方法:直线l :(,)0f x y =和曲线:(,)0C g x y =的公共点坐标是方程组(,)0(,)0f x y g x y =⎧⎨=⎩的解,和C 的公共点的个数等于方程组不同解的个数.这样就将l 和C 的交点问题转化为方程组的解问题研究,对于消元后的一元二次方程,必须讨论二次项系数和判别式∆,若能数形结合,借助图形的几何性质则较为简便.(2).弦的中点或中点弦的问题,除利用韦达定理外,也可以运用“差分法”(也叫“点差法”).(3).弦长公式1212||||AB x x y y =-=-. (4).焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率)三.精选试题,能力升级1.【2018河南省焦作市高三联考】已知抛物线C : 22(0)y px p =>的焦点为F ,点M 在抛物线C 上,且32MO MF ==(O 为坐标原点),则MOF ∆的面积为( )A.2B. 12C. 14D.【答案】A2.【2018年全国高考课标1第11题】已知双曲线 22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,M N 若OMN ∆为直角三角形,则MN =A.B. 3C.D. 4 【答案】B【解析】根据题意,可知其渐近线的斜率为3±(2,0)F ,从而得到030FON ∠=, 所以直线MN 的倾斜角为060或0120,根据双曲线的对称性,设其倾斜角为060,可以得出直线MN 的方程为2)y x -,分别与两条渐近线y x =和y x =联立,求得3(,22M N -B. 3.【2018湖南省长沙市高三联考】抛物线C : 22(0)x py p =>的焦点F 与双曲线22221y x -=的一个焦点重合,过点F 的直线交C 于点A 、B ,点A 处的切线与x 、y 轴分别交于点M 、N ,若OM N ∆的面积为12,则AF 的长为()A. 2B. 3C. 4D. 5 【答案】A4.【2018山东省潍坊市二模】直线()2(0)y k x k =+>与抛物线2:8C y x =交于A , B 两点, F 为C 的焦点,若sin 2sin ABF BAF ∠=∠,则k 的值是( )A.3 B. 3C. 1D. 【答案】B【解析】分别过A , B 项抛物线的准线作垂线,垂足分别为M , N ,则AF AM =,BF BN =. 设直线()2(0)y k x k =+>与x 轴交于点P ,则()2,0P -.5.【2018衡水金卷】已知抛物线22(0)x py p =>的焦点为F ,过焦点F 的直线l 分别交抛物线于点,A B , 过点,A B 分别作抛物线的切线12,l l ,两切线12,l l 交于点M ,若过点M 且与y 轴垂直的直线恰为圆221x y +=的一条切线,则p 的值为( ) A.14 B. 12C. 2D. 4 【答案】C【解析】由题可知抛物线22(0)x py p =>的焦点为F 0,,2p ⎛⎫⎪⎝⎭且过焦点F 的直线斜率存在, 所以可设直线:2p l y kx =+,联立方程组222{ ,20,22py kx x kpx p x py =+∴--==设()11,A x y ,()22,,B x y 则21212,2.x x p x x kp =-+=又由22x py =得2,,2x xy y p p =∴='所以过A 点的切线方程为()22111111111:,2x x x x x l y y x x y y x x p p p p p-=-∴=+-=-. 同理可知过点B 的切线方程为2222:,2x x l y x p p =-联立方程组211122122222{ ,{ ,222x x x x y x x p px x p x x y y x p p p +=-=∴==-=-因此点12,,22x x p M +⎛⎫-⎪⎝⎭过点M 与y 轴垂直的直线为(0)2p y p =->,而圆221x y +=与y 轴负半轴交于点(0,-1),所以1, 2.2pp -=-∴=故选C. 点评:本题的思路比较自然,只要循序渐进,一步一步转化就可以了. 主要是计算有点复杂,在求出过点A 的切线方程2111:2x x l y x p p =-后,不必再重新求过点B 的切线方程,只要利用对称性同理求出2222:2x x l y x p p=-可以提高解题效率.6.【2017高考新课标I 】已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则AB DE +的最小值为( )A .16B .14C .12D .10【答案】A 【解析】解法一:设11223344(,),(,),(,),(,)A x y B x y D x y E x y ,直线1l 方程为1(1)y k x =-。
圆锥曲线高考题全国卷真题汇总
2 0 1 8 ( 新 课 标 全 国 卷 2 理 科 )5.双曲线 x 2 y 2= 1 (a > 0, b > 0) 的离心率为 3 ,则其渐近线方程为a 2b 22 3A . y = 士 2xB . y = 士 3xC . y = 士 xD . y = 士 x2 212.已知 F 1, F 2 是椭圆 C :a x 22 +b y 22=1 (a > b > 0) 的左,右焦点, A 是 C 的左顶点,点 P 在过 A 且斜率为 63的直线上, △PF 1F 2 为等腰三角形, 三 1F F 2 P = 120O ,则 C 的离心率为2A .3 1 B .21 C .31 D .419.(12 分)设抛物线 C : y 2 = 4x 的焦点为 F ,过 F 且斜率为 k(k > 0) 的直线 l 与 C 交于 A , B 两点, | AB| = 8. (1)求 l 的方程;(2)求过点 A , B 且与 C 的准线相切的圆的方程.2018 (新课标全国卷 2 文科)6.双曲线x 2 y 2= 1 (a > 0, b > 0) 的离心率为 3 ,则其渐近线方程为 a 2 b 2A . y = 士 2xB . y = 士 3x2C . y = 士 x23D . y = 士 x211.已知 F , F 是椭圆 C 的两个焦点, P 是 C 上的一点,若 PF 」PF , 且 三PF F = 60O , 则 C 的离心率为3A . 12B . 2 3C . 3 12D . 3 120. ( 12 分) 设抛物线 C : y 2 = 4x 的焦点为 F , 过 F 且斜率为 k(k > 0) 的直线 l 与 C 交于 A , B 两点,| AB | = 8.(1)求 l 的方程;(2)求过点 A , B 且与 C 的准线相切的圆的方程.2018 (新课标全国卷 1 理科)28.设抛物线 C : y 2=4x 的焦点为 F ,过点( –2, 0)且斜率为 的直线与 C 交于 M , N 两点,则FM . FN =3A . 5B . 6C . 7D . 823为 M 、N.若△OMN 为直角三角形,则|MN|=3A .B . 3C . 2 3D . 4219. (12 分) 设椭圆 C : x 2+ y 2 = 1 的右焦点为 F ,过 F 的直线 l 与 C 交于 A, B 两点,点 M 的坐标为 (2,0) .2x 11.已知双曲线 C : y 2 = 1, O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交点分别 1 2 1 2 2 1(1)当 l 与 x 轴垂直时,求直线 AM 的方程;(2)设 O 为坐标原点,证明: 三OMA = 三OMB .2018 (新课标全国卷 1 文科)4.已知椭圆 C : x 2 + y 2= 1的一个焦点为(2,0) ,则 C 的离心率为a 2 41 A .31 B .2C .2 22 2 D .315.直线 y = x +1 与圆 x 2 + y 2 + 2y - 3 = 0 交于 A , B 两点,则 AB = ________. 20.(12 分)设抛物线 C : y 2 = 2x ,点 A (2, 0), B (-2, 0) ,过点 A 的直线 l 与 C 交于 M , N 两点. (1)当 l 与x 轴垂直时,求直线 BM 的方程;(2)证明: ∠ABM = ∠ABN .2018 (新课标全国卷 3 理科)6.直线 x + y + 2 = 0 分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆 (x - 2)2 + y 2 = 2 上,则 △ABP 面积的取值范围是A . [2, 6]B . [4, 8]C . 2,3 2D . 2 2,3 2 11. 设 1F , F 2 是双曲线 C : a x 22 - b y 22= 1 ( a > 0,b > 0 ) 的左 、右焦点, O 是坐标原点. 过 F 2 作 C 的一条渐近线的垂线,垂足为 P .若 PF = 6 OP ,则 C 的离心率为1A . 5B . 2C . 3D . 2 20.(12 分)已知斜率为 k 的直线 l 与椭圆C :x 2+ y 2= 1交于 A , B 两点,线段 AB 的中点为 M (1, m)(m > 0). 4 3(1)证明: k < - 1;2(2) 设 F 为 C 的右焦点, P 为 C 上一点,且 FP+ FA+ FB = 0 .证明: FA , FP , FB 成等差数列,并 求该数列的公差.2018 (新课标全国卷 3 文科)8. 直线 x + y +2 = 0 分别与 x 轴, y 轴交于 A , B 两点, 点 P 在圆 (x - 2)2 + y 2 = 2 上, 则 △ABP 面积的取值范围是A . [2,6]B . [4,8]C . [ 2, 3 2]D . [2 2 ,3 2 ]10.已知双曲线 C : x 2 一 y 2= 1(a > 0,b > 0) 的离心率为 2 ,则点 (4,0) 到C 的渐近线的距离为a 2b 23 2A . 2B . 2C .D . 2 2220.(12 分)已知斜率为 k 的直线 l 与椭圆C : x 2 + y 2= 1 交于 A , B 两点.线段 AB 的中点 为 M (1, m)(m > 0).4 3 1(1)证明: k 想 一 ;2(2)设 F 为C 的右焦点, P 为C 上一点,且 FP + FA + FB = 0.证明: 2 | FP |=| FA |+ | FB |.2017 (新课标全国卷 2 理科)9.若双曲线 C : x 22一 1(a > 0,b > 0) 的一条渐近线被圆 (x 一 2)2 + y 2 = 4所截得的弦长为 2, 则 C 的离心率为( ) .2 3A . 2B . 3C . 2D .316.已知 F 是抛物线 C : y 2 = 8x 的焦点, M 是C 上一点, FM 的延长线交 y 轴于点 N .若 M 为 FN 的中点,则 FN = .20. 设 O 为 坐 标 原 点, 动 点 M 在 椭 圆 C : x 2 + y 2= 1 上, 过 M 做 x 轴 的 垂 线, 垂 足 为 N , 点 P 满 足2NP = 2NM .(1)求点 P 的轨迹方程;(2)设点 Q 在直线 x = 一3 上,且OP . PQ = 1 .证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .2017 (新课标全国卷 2 文科)x 2 2A. ( 2,+w)B. ( 2,2)C. (1, 2)D. (1,2)12.过抛物线 C : y 2 = 4x 的焦点 F ,且斜率为 3 的直线交 C 于点 M ( M 在 x 轴上方), l 为 C 的准线,点N 在 l 上且 MN 」l ,则 M 到直线 NF 的距离为( ) .A. 5B. 2 2C. 2 3D. 3 320.设 O 为坐标原点,动点 M 在椭圆 C :x 2+ y 2 = 1 上,过 M 作 x 轴的垂线,垂足为 N , 25.若 a >1 ,则双曲线 a2 一 y = 1 的离心率的取值范围是( ) .a b点 P 满足 NP = 2NM . (1)求点 P 的轨迹方程;(2)设点 Q 在直线 x = 一3 上,且 OP . PQ = 1 .证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .2017 (新课标全国卷 1 理科)10.已知 F 为抛物线C : y 2 = 4x 的焦点, 过 F 作两条互相垂直的直线l 1, l 2, 直线l 1 与 C 交于 A , B 两点, 直线 l 2 与 C 交于 D , E 两点,则 AB + DE 的最小值为( ) .A . 16B . 14C . 12D . 10 15.已知双曲线 C :x 2 一 y 2= 1(a > 0,b > 0) 的右顶点为 A , 以 A 为圆心, b 为半径做圆 A , 圆 A 与双曲线 C a 2 b 2的一条渐近线交于 M , N 两点.若 三MAN = 60 ,则 C 的离心率为________.20.已知椭圆 C : a x 22 + b y 22=1(a > b > 0), 四点 1P (1,1), 2P (0,1), 3P (||( – 1, 23 ))||, 4P (||(1, 23 ))|| 中恰有三点在椭圆 C 上. (1)求 C 的方程;(2) 设直线 l 不经过 P 2 点且与 C 相交于 A , B 两点.若直线 P 2 A 与直线 P 2 B 的斜率的和为 – 1, 证明: l 过定.2017 (新课标全国卷 1 文科)5.已知 F 是双曲线 C : x 2一 y 2= 1 的右焦点, P 是 C 上一点, 且 PE 与 x 轴垂直, 点 A 的坐标是(1, 3), 则3△APF 的面积为( ) .1 12 3A .B .C .D .3 2 3 2x 2 y 2围是( ) .A 20.设 A ,B 为曲线C : y = x 2上两点, A 与 B 的横坐标之和为 4.4(1)求直线 AB 的斜率;(2)设 M 为曲线 C 上一点, C 在 M 处的切线与直线 AB 平行,且 AM 」BM ,求直线 AB 的方程. . (0,1] [9, +w ) B. (0, 3 [9, +w ) C. (0,1] [4, +w) D. (0, 3 [4, +w )点 12.设 A , B 是椭圆C : + = 1 长轴的两个端点, 若C 上存在点 M 满足三AMB = 120 , 则 m 的取值范3 m2017 (新课标全国卷 3 理科)5.已知双曲线 C : C :x 2 y 2 = 1(a > 0, b > 0) 的一条渐近线方程为 y = 5x ,且与椭圆 a 2 b 2 2x 2 y 2+ = 1 有公共焦点,则 C 的方程为( 12 3) .x 2 y 2A . = 18 10x 2 y 2B . = 14 5x 2 y 2C . = 15 4x 2 y 2D . = 14 310. 已知椭圆 C : a x 22 + b y 22= 1(a > b > 0) 的左 、 右顶点分别为 A 1, A 2, 且以线段 A 1A 2 为直径的圆与直线bx ay + 2ab = 0 相切,则 C 的离心率为( ) .A .6 3 B .3 3 C .2 31 D .320.已知抛物线 C : y 2 = 2x ,过点(2,0) 的直线 l 交 C 与A , B 两点,圆 M 是以线段 AB 为直径的圆. (1)证明:坐标原点 O 在圆 M 上; (2)设圆 M 过点 P(4,2) ,求直线 l 与圆 M 的方程.2017 (新课标全国卷 3 文科)11.已知椭圆 C : a x 22 + b y 22= 1(a > b > 0) 的左 、 右顶点分别为 A 1, A 2, 且以线段 A 1A 2 为直径的圆与直线bx ay + 2ab = 0 相切,则 C 的离心率为( ) .2 313x 2 y 2 3a 2 9 520. 在直角坐标系 xOy 中, 曲线 y = x 2 + mx – 2 与 x 轴交于 A , B 两点, 点 C 的坐标为(0,1) . 当 m 变化 时,解答下列问题:(1)能否出现 AC 」BC 的情况?说明理由;(2)证明过 A , B , C 三点的圆在 y 轴上截得的弦长为定值 .2016 (新课标全国卷 2 理科)(4)圆 x 2 + y 2 2x 8y +13 = 0 的圆心到直线 ax + y 1 = 0 的距离为 1,则 a= ( )3 36 314.双曲线 = 1(a > 0) 的一条渐近线方程为 y = x ,则 a = .D . C .B . A .|DE|= 2 5 ,则 C 的焦点到准线的距离为(C ) 3 (D ) 24x 2 y 2a bsin 三MF 2 F 1 = 3, 则 E 的离心率为( )3220. (本小题满分 12 分)已知椭圆 E: x 2 + y 2= 1 的焦点在 x 轴上, A 是 E 的左顶点, 斜率为 k (k > 0) 的直线交 E 于 A , M 两点, 点t 3N 在 E 上, MA 」NA .(Ⅰ)当 t = 4,| AM |=| AN | 时,求 编AMN 的面积; (Ⅱ)当 2 AM = AN 时,求 k 的取值范围.2016 (新课标全国卷 2 文科)(5) 设 F 为抛物线 C : y 2=4x 的焦点,曲线 y= (k> 0)与 C 交于点 P , PF ⊥x 轴,则 k= ( )x1 3(A) (B) 1 (C) (D) 22 2(6) 圆 x 2+y 2?2x?8y+13=0 的圆心到直线 ax+y?1=0 的距离为 1,则 a= ( )4(A) ?3 3(B) ?4(C)3(D) 2(21)(本小题满分 12 分)已知 A 是椭圆 E : + = 1 的左顶点,斜率为 k (k >0) 的直线交 E 与 A , M 两点,点 N 在 E 上,4 3MA 」NA .(Ⅰ)当 AM = AN 时,求 编AMN 的面积; (Ⅱ)当 AM = AN 时,证明: 3 < k < 2 .2016 (新课标全国卷 1 理科)(5)已知方程–3m yn =1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是(A) ( – 1,3) (B) ( – 1, 3) (C) (0,3) (D) (0, 3)(10)以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点, 交 C 的标准线于 D 、E 两点 . 已知|AB|= 4 2 , (11) 已知 F 1 , F 2 是双曲线 E : 2 _ 2= 1 的左, 右焦点, 点 M 在 E 上, MF 1 与 x 轴垂直,(A ) 2 (B ) (C ) 3 (D ) 2 (A ) _(B ) _x 2 y 2 k 4331(A)2 (B)4 (C)6 (D)820. (本小题满分 12 分)理科设圆x2 + y2 + 2x 15 = 0 的圆心为 A,直线 l 过点 B (1,0) 且与 x 轴不重合, l 交圆 A 于 C, D 两点,过 B 作AC 的平行线交 AD 于点 E.(I)证明EA + EB 为定值,并写出点 E 的轨迹方程;(II)设点 E 的轨迹为曲线 C1 ,直线 l 交 C1 于 M,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ 面积的取值范围 .2016 (新课标全国卷 1 文科)1(5)直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到 l 的距离为其短轴长的4,则该椭圆的离心率为1 12 3(A) (B) (C) (D)(15)设直线 y=x+2a 与圆 C: x2+y2-2ay-2=0 相交于 A, B 两点,若,则圆 C 的面积为 . (20)(本小题满分 12 分)在直角坐标系xOy 中,直线l:y=t(t≠0)交 y 轴于点 M,交抛物线 C:y2 = 2px(p > 0) 于点 P, M 关于点 P 的对称点为 N,连结 ON 并延长交 C 于点 H.OH(I)求;ON(II)除 H 以外,直线 MH 与 C 是否有其它公共点?说明理由 .2016 (新课标全国卷 3 理科)(11)已知 O 为坐标原点, F 是椭圆 C:x2a2+y2b2= 1(a > b > 0) 的左焦点, A, B 分别为 C 的左,右顶点 .P 为 C上一点,且PF 」x 轴.过点 A 的直线 l 与线段PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C 的离心率为1 (A)31(B)22(C)33(D)4(16)已知直线l:mx + y + 3m 3 = 0 与圆x2 + y2 = 12 交于A, B 两点,过A, B 分别做l 的垂线与x 轴交于C, D 两点,若AB = 2 3 ,则| CD |= __________________.(20)(本小题满分 12 分)已知抛物线C:y2 = 2x 的焦点为F,平行于x 轴的两条直线l1 , l2 分别交C 于A, B 两点,交C 的准线于P, Q 两点.(I)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ;(II)若PQF 的面积是ABF 的面积的两倍,求AB 中点的轨迹方程 .2016 (新课标全国卷 3 文科)3 2 3 4(12)已知 O 为坐标原点, F 是椭圆 C : x 2 + y 2= 1(a > b > 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为a 2b 2C 上一点,且 PF 」x 轴.过点 A 的直线 l 与线段 PF 交于点 M , 与 y 轴交于点 E.若直线 BM 经过 OE 的中 点,则 C 的离心率为1 (A)31 (B)22 (C)33 (D)4( 15) 已知直线 l : x 3y + 6 = 0 与圆x 2 + y 2 = 12 交于 A, B 两点, 过 A, B 分别作l 的垂线与x 轴交于C, D 两点,则 | CD |= _____________ .(20)(本小题满分 12 分)已知抛物线 C : y 2 = 2x 的焦点为 F , 平行于 x 轴的两条直线 l 1 , l 2 分别交 C 于 A , B 两点, 交 C 的准线 于 P , Q 两点.(I)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR FQ ; (II)若PQF 的面积是 ABF 的面积的两倍,求 AB 中点的轨迹方程 .2015 (新课标全国卷 2)(11) 已知 A , B 为双曲线 E 的左,右顶点,点 M 在 E 上, ?ABM 为等腰三角形,且顶角为 120°,则 E 的离心 率为(A ) √ 5 (B) 2 (C ) √3 (D ) √2(15)已知双曲线过点(4, ,3),且渐近线方程为 y = 士 x ,则该双曲线的标准方程为 2。
2012年高考理科数学全国卷1-答案
2012年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序, 可知:该程序的作用是:求出12n a a a ,,,中最大的数和最小的数 其中A 为12n a a a ,,,中最大的数,B 为12n a a a ,,,中最小的数【提示】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出12n a a a ,,中最大的数和最小的数. 【考点】循环结构.7.【答案】B【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为3; 底面三角形斜边长为6,高为3的等腰直角三角形,,12ω>∴,验证三角函数的角的范围,排除选项,得到结果.的范围即可.【解析】由已知得22222(2)44|a b|a b a a b b -=-=-+224||4||||cos45||a a b b =-︒+24|||10b b =-+=,解得||32b =【提示】由已知可得,2||||cos45||2b a a b b =︒=,代入 2222(2)44a b|a b a a b b -=-=-+242||||10b b =-+=可求14.【答案】[]3,3-60(a ++-117++=59(a +++,sin 0C >,0πA <<π5π66A -<法二:由正弦定理可得sin a 222a b c a ab+-,0πA <<)ABC S =△,2a A =,,直又1DC BD ⊥1DC D =2AB a =,1DC ∴(Ⅱ)由(Ⅰ)知,12DC a =90AB ∴30. 30.x 轴,(,DB a =-,1(,0,DC a =-的法向量为11(,n x y =111n DB ax n DC ax ⎧=-⎪⎨=-⎪⎩,故可取1(1,2,1)n =的一个法向量2(1,1,0)n =设1n 与2n 的夹角为1212||||6n n n n =⨯30.由图可知,二面角的大小为锐角,故二面角1A -'=h x()eh x→-∞()(2)当aa+>,10,所以当x ∥CF AB∥CF AB(Ⅱ)由(Ⅰ)知,∴△∽△BCD。
历年高考圆锥曲线大题精选
1.(2018全国I理19)
设椭圆C: +y²=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
2.(2018全国II理)
3.(2018全国III理)
4.(2018全国I文)
5.(2018浙江)
6.(2017全国I理20)
7.
8.
9.(2017全国III理)
10.(2017全国I文20)
11.(2016全国I理20)
12.(2016全国III理20)
13.(2016山东理)平面直角坐标系中,椭圆C:的离心率是
,抛物线E:的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
①求证:点M在定直线上;
②直线与y轴交于点G,记△PFG的面积为,△PDM的面积为,求的最大值及取得最大值时点P的坐标.
14.(2015全国I理)
15.(2015全国II理)
16.
17.
18.。
2012年高考理科数学全国卷1试卷及答案
绝密★启用前2012年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)适用地区:海南、宁夏、黑龙江、吉林、山西、河南、新疆、云南、河北、内蒙古 注息事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,2,3,4,5}A =,{(,)|,,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A . 3B . 6C . 8D . 102. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A . 12种B . 10种C . 9种D . 8种3. 下面是关于复数21iz =-+的四个命题:1:||2p z =;22:2i p z =; 3:p z 的共轭复数为1i +;4:p z 的虚部为1-.其中的真命题为( )A . 23,p pB . 12,p pC . 24,p pD . 34,p p4. 设1F ,2F 是椭圆E :22221(0)x ya b a b +=>>的左、右焦点,P 为直线32a x =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为 ( )A . 12B . 23C . 34D . 455. 已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A . 7 B . 5 C . 5-D . 7-6. 如果执行右边的程序框图,输入正整数(2)N N ≥和实数1a ,2a ,,N a ,输出A ,B ,则( )A . AB +为1a ,2a ,,N a 的和B .2A B+为1a ,2a ,,N a 的算术平均数C . A 和B 分别是1a ,2a ,,N a 中最大的数和最小的数D . A 和B 分别是1a ,2a ,,N a 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A . 6B . 9C . 12D . 188. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =则C 的实轴长为( )A .B .C . 4D . 89. 已知0ω>,函数π()sin()4f x x ω=+在π(,π)2上单调递减,则ω的取值范围是( )A . 15[,]24B . 13[,]24C . 1(0,]2D . (0,2] 10. 已知函数1()ln(1)f x x x=+-,则()y f x =的图象大致为( )ABCD11. 已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .B .C . 3D . 212. 设点P 在曲线1e 2x y =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为()A . 1ln2-B . ln 2)- C . 1ln2+D .ln 2)+第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量a ,b 夹角为45,且||1=a ,2|-=|a b ,则|=|b _________.14. 设x ,y 满足约束条件1300x y x y x y --⎧⎪+⎪⎨⎪⎪⎩≥,≤,≥,≥,则2z x y =-的取值范围为_________.15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1 000,50)N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------小时的概率为_________.16. 数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,cos sin 0a C C b c +--=. (Ⅰ)求A ;(Ⅱ)若2a =,ABC △求b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;以100天记录的各需求量的频率作为各需求量的概率.(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.20.(本小题满分12分)设抛物线C :22(0)x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若90BFD ∠=,ABD △的面积为求p 的值及圆F 的方程;(Ⅱ)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)设函数121()(1)e (0)2x f x f f x x -'=-+. (Ⅰ)求()f x 的解析式及单调区间;(Ⅱ)若21()2f x x ax b ++≥,求(1)a b +的最大值.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的外接圆于F ,G 两点.若CF AB ∥,证明: (Ⅰ)CD BC =;(Ⅱ)BCD GBD △∽△.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos ,3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为π(2,)3. (Ⅰ)求点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PA PBPC PD +++的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|||2|f x x a x =++-.(Ⅰ)当3a =-时,求不等式()3f x ≥的解集; (Ⅱ)若()4|f x x -≤|的解集包含[1,2],求a 的取值范围.G2012年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析可知:该程序的作用是:求出12n a a a ,,,中最大的数和最小的数 其中A 为12n a a a ,,,中最大的数,B 为12n a a a ,,,中最小的数【提示】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出12n a a a ,,中最大的数和最小的数. 【考点】循环结构.7.【答案】B【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为3; ,102ω>∴,验证三角函数的角的范围,排除选项,得到结22222(2)44|a b|a b a a b b-=-=-+224||4||||cos45||a ab b=-︒+24|||10b b=-+=,解得||32b=【提示】由已知可得,2||||cos45||2ba ab b=︒=,代入2222(2)44a b|ab a a b b-=-=-+2422||||10b b=-+=可求【考点】平面向量数量积的运算,平面向量数量积的坐标表示、模、夹角.[]3,3-60(a++-117++=3159((a a a a=++++奇1770230+⨯=sin0C>,0πA<<222a b caab+-,22a b+-0πA<<(2)ABCS=△,2a A=,22b c=+-.解得b c=,直三棱柱,又1DC BD ⊥1DC D =,2AB a =,1DC ∴(Ⅱ)由(Ⅰ)知,12DC a =90AB ∴30. 30.轴,CB 为1(,0,2,0)(,0,A a a D a ,(,DB a =-(,0,DC a =-(,n x y =11n D B a n D Ca ⎧=-⎪⎨=-⎪⎩,故可取(1,2,1)n =同理,可求得平面的一个法向量2(1,1,0)n =设n 与n 的夹角为1223||||6n n n n =30.由图可知,二面角的大小为锐角,故二面角1A -()e h x '=x →-∞时,(2)当a 10a +>(1)a b ∴+()2u x x '=∥=CF AD,∴=CD AFCF AB∥(Ⅱ)由(Ⅰ)知,BCD∴△∽△。
20182010圆锥曲线高考题全国卷
2018(新课标全国卷2 理科)5A .y =B .y =C .D .12.已知1F ,2F 是椭圆的左,右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .1419.(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 及C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且及C 的准线相切的圆的方程.2018(新课标全国卷2 文科)6A .y =B .y =C .D .11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .B .2C .D 120.(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 及C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且及C 的准线相切的圆的方程.2018(新课标全国卷1 理科)8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线及C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .811.已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线及C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=A .32B .3C .D .419.(12分)设椭圆的右焦点为F ,过F 的直线l 及C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 及x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.2018(新课标全国卷1 文科)4.已知椭圆C :的一个焦点为(20),,则C 的离心率为A .13B .12C D 15.直线1y x =+及圆22230x y y ++-=交于A B ,两点,则AB =________. 20.(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 及C 交于M ,N 两点. (1)当l 及x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.2018(新课标全国卷3 理科)6.直线20x y ++=分别及x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣ 11.设12F F ,是双曲线(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为A B .2 C D20.(12分)已知斜率为k 的直线l 及椭圆交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.2018(新课标全国卷3 文科)8.直线20x y ++=分别及x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是 A .[2,6]B .[4,8]C .[2,32]D .[22,32]10.已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,则点(4,0)到C 的渐近线的距离为 A .2B .2C .32D .2220.(12分)已知斜率为k 的直线l 及椭圆交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.2017(新课标全国卷2 理科)9.若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C .A .2B 3C 2D 2316.已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN = .20. 设O 为坐标原点,动点M 在椭圆上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .2017(新课标全国卷2 文科)5.若1a >,则双曲线的离心率的取值范围是( ).A.)+∞ B.)2 C. ( D. ()12,12.过抛物线2:4C y x =的焦点F C 于点M (M 在x 轴上方),l为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ).B. C. D.20.设O 为坐标原点,动点M 在椭圆上,过M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .2017(新课标全国卷1 理科)10.已知F 为抛物线24C y x =:的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 及C 交于A ,B 两点,直线2l 及C 交于D ,E 两点,则AB DE +的最小值为( ). A .16 B .14 C .12 D .1015.已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 及双曲线C 的一条渐近线交于M ,N 两点.若60MAN ∠=,则C 的离心率为________. 20.已知椭圆()2222:=10x y C a b a b+>>,四点()111P ,,()201P ,,,中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且及C 相交于A ,B 两点.若直线2P A 及直线2P B 的斜率的和为–1,证明:l 过定点.2017(新课标全国卷1 文科)5.已知F 是双曲线的右焦点,P 是C 上一点,且PE 及x 轴垂直,点A 的坐标是()1,3,则APF △的面积为( ).A .13 B .12 C .23 D .3212.设A ,B 是椭圆长轴的两个端点,若C 上存在点M 满足120AMB ∠=,则m 的取值范围是( ).A 20.设A ,B 为曲线上两点,A 及B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线及直线AB 平行,且AM BM ⊥,求直线AB 的方程..(][)0,19,+∞ B.([)9,+∞ C.(][)0,14,+∞ D.([)4,+∞2017(新课标全国卷3 理科)5.已知双曲线C :()2222:10,0x y C a b a b-=>>的一条渐近线方程为,且及椭圆有公共焦点,则C 的方程为( ). A .B .C .D .10.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆及直线20bx ay ab -+=相切,则C 的离心率为( ).AB C .3D .1320.已知抛物线22C y x =:,过点()20,的直线l 交C 及A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 及圆M 的方程.2017(新课标全国卷3 文科)11.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆及直线20bx ay ab -+=相切,则C 的离心率为( ).A B C .3D .1314.双曲线的一条渐近线方程为,则a = .20.在直角坐标系xOy 中,曲线2–2y x mx =+及x 轴交于A ,B 两点,点C 的坐标为()01,.当m 变化时,解答下列问题:(1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.2016(新课标全国卷2 理科)(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )(A )43-(B )34- (C )3 (D )2 (11)已知12,F F 是双曲线的左,右焦点,点M 在E 上,1MF 及x 轴垂直,,则E 的离心率为( )(A )2 (B )32(C )3 (D )220.(本小题满分12分)已知椭圆:E 的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.2016(新课标全国卷2 文科)(5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)及C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32 (D )2(6) 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =( )(A )−43 (B )−34(C 3 (D )2(21)(本小题满分12分)已知A 是椭圆E :的左顶点,斜率为()0k k >的直线交E 及A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =时,证明:32k <<.2016(新课标全国卷1 理科)(5)已知方程x 2m 2+n –y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 20. (本小题满分12分)理科设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且及x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且及l 垂直的直线及圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.2016(新课标全国卷1 文科)(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(15)设直线y=x +2a 及圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为 .(20)(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OHON; (II )除H 以外,直线MH 及C 是否有其它公共点?说明理由.2016(新课标全国卷3 理科)(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 及线段PF 交于点M ,及y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34(16)已知直线l :30mx y m ++-=及圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线及x 轴交于,C D 两点,若AB =||CD =__________________. (20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.2016(新课标全国卷3 文科)(12)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 及线段PF 交于点M ,及y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(15)已知直线l :60x -+=及圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线及x 轴交于,C D 两点,则||CD =_____________. (20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.2015(新课标全国卷2)(11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为(A )√5 (B )2 (C )√3 (D )√2(15)已知双曲线过点),(3,4,且渐近线方程为,则该双曲线的标准方程为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2018全国卷圆锥曲线解答题(理科)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(Ⅰ)若90BFD ∠=︒,ABD ∆的面积为,求p 的值及圆F 的方程.(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值围.6. (2017年全国高考Ⅰ卷理科第20题) (本小题满分12分)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.7.(2018年全国高考Ⅰ卷理科第19题) (本小题满分12分)设椭圆的右焦点为,过的直线与交于,两点,点的坐标为.⑴当与轴垂直时,求直线的方程;⑵设为坐标原点,证明:.2222=1x y a b+2012-2018全国卷圆锥曲线解答题(参考答案)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(Ⅰ)若90BFD ∠=︒,ABD ∆的面积为,求p 的值及圆F 的方程.(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.【解析】(Ⅰ)由对称性知BFD ∆是等腰直角三角形,斜边||2BD p =, 点A 到准线l的距离||||d FA FB ===,由1||2ABD S BD d ∆=⨯⨯=2p =.∴圆F 的方程为22(1)8x y +-=.(Ⅱ)由对称性设2000(,)(0)2x A x x p>,则(0,)2p F .由点,A B 关于点F 对称得200(,)2x B x p p --,从而2022x p p p -=-,所以2203x p =.因此3,)2p A,直线3:2p p pm y x -=+,即0x +=. 又22122x py y x p =⇔=,求导得'x y p ==,即x =)6pP .又直线:6p n y x -=-,即0x -=. 故坐标原点到直线,m n距离的比值为23p =.【考点分析】本小题主要考查直线、圆、抛物线等基础知识,涉及到简单的面积和点到直线的距离等基本计算问题,考查推理论证能力、运算求解能力.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .【解析】由已知得圆M 的圆心为(1,0)M -,半径11r =,圆N 的圆心为(1,0)N ,半径23r =. 设动圆P 的圆心为(,)P x y ,半径为R .(Ⅰ)因为圆P 与圆M 外切且与圆N 切,所以1212||||()()4PM PN R r r R r r +=++-=+=,且4||MN >. 由椭圆的定义可知,曲线C 是以,M N 为左,右焦点,长半轴长为2(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点(,)P x y ,由于||||222PM PN R -=-≤,所以2R ≤. 当且仅当圆P 的圆心为(2,0)时,2R =.∴当圆P 的半径最长时,其方程为22(2)4x y -+=. 当l 的倾斜角为90︒时,l 与y轴重合,可得||AB =当l 的倾斜角不为90︒时,由1r R ≠知l 不平行x 轴.设l 与x 轴的交点为Q , 则1||||QP RQM r =,可求得(4,0)Q -, ∴设:(4)l y k x =+,由l 与圆M1=,解得k =当4k =时,将4y x =+221(2)43x y x +=≠- 整理得27880x x +-=. (*)设1122(,),(,)A x y B x y ,则12,x x 是(*)方程的两根.所以1287x x +=-,1287x x =-.1218|||7AB x x ∴=-==.当4k =-时,由对称性知18||7AB =.综上,||AB =18||7AB =. 【考点分析】本小题主要考查直线、圆、椭圆等基础知识,考查推理论证能力、运算求解能力和方程思想.3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b+=>>的离心率为F 是椭圆的焦点,直线AF,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【解析】(Ⅰ)设(),0F c,由条件知2c =,得c =又2c a =,所以2a =,2221b a c =-=,故E 的方程2214x y +=.(Ⅱ)由题意知直线l 的斜率存在,设直线l 的斜率为k ,方程为2y kx =-,联立直线与椭圆方程:22142x y y kx ⎧+=⎪⎨⎪=-⎩,化简得:22(14k )16120x kx +-+=.∵216(43)0k ∆=->,∴234k >. 设1122(,),(,)P x y Q x y ,则1212221612,1414k x x x x k k +=⋅=++,∴1221+4PQ x k -,且坐标原点O 到直线l的距离为d =.因此221+41+4OPQS k k ∆==,令(0)t t =>,则244,044OPQ t S t t t t∆==>++. ∵44t t+≥,当且仅当4t t =,即2t =时,等号成立,∴1OPQ S ∆≤.故当2t =,2=,2k =±时OPQ ∆的面积最大. 此时,直线l的方程为2y x =-. 【考点分析】本小题主要考查直线、椭圆、函数和不等式等基础知识,考查推理论证能力、运算求解能力、创新意识和方程思想.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 【解析】(Ⅰ)由题设可得),()M a N a -或(),)M a N a -.又=2x y ',故24x y =在x =在点)a处的切线方程为y a x -=-0y a --=.24x y x ==-在处的导数值为.在点()a -处的切线方程为y a x -=+0y a ++=.故所求切线方程为0y a --=0y a ++=. (Ⅱ)存在符合题意的点P .证明如下:设(0,)P b 为符合题意的点,1122(,),(,)M x y N x y ,直线,PM PN 的斜率分别为12,k k . 将y kx a =+代入C 的方程,消去y 整理得2440x kx a --=, 则12,x x 是该方程的两根. 故12124,4.x x k x x a +==- 从而1212121212122()()()y b y b kx x a b x x k a b k k x x x x a--+-+++=+==. 当b a =-时,有120k k +=,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故OPM OPN ∠=∠. 所以点(0,)P a -符合题意.【考点分析】本小题主要考查直线、抛物线和导数的几何意义等基础知识,考查推理论证能力、运算求解能力和方程思想.5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(0,1)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E . (I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值围.【解析】(I)因为AD AC =,EB AC ∥, 故EBD ACD ADC ∠=∠=∠.所以EB ED =, 故EA EB EA ED AD +=+=又圆A 标准方程为()22116x y ++=,从而4AD =,所以4EA EB +=. 由题设得()()1,0,1,0,2A B AB -=,由椭圆的定义可得点E 的轨迹方程为22143x y +=,(0y ≠); (II)(法一)当l 与x 轴不垂直时,设()():10l y k x k =-≠,()()1122,,,M x y N x y由()221143y k x xy ⎧=-⎪⎨+=⎪⎩得()22224384120k x k x k +-+-=. 则2122843k x x k +=+,212241243k x x k -=+g所以()212212143k MN x k +=-=+.过点()1,0B 且与l 垂直的直线()1:1m y x k =--,A 到m,所以PQ ==. 故四边形MPNQ的面积为12S MN PQ == 当l 与x 轴不垂直时,四边形MPNQ的面积的取值围为( 当l 与x 轴垂直时,其方程为1x =,3MN =,8PQ =四边形MPNQ 的面积12.综上,四边形MPNQ的面积的取值围为⎡⎣.(法二)221:143x y C +=;设:1l x my =+, 因为PQ l ⊥,设():1PQ y m x =--,联立1l C 与椭圆221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=;则()22121|||34M N m MN y y m +=-==+;圆心A 到PQ 距离|11|m d ---==所以||PQ ===()2212111||||2234MPNQ m S MN PQ m +∴=⋅=⋅+⎡==⎣.【考点分析】主要考查直线与圆的位置关系、椭圆的定义、韦达定理、弦长公式等解析几何常用知识,考查推理论证能力、运算求解能力和方程思想.已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。