2012-2018全国卷圆锥曲线(理科)
2012_2018全国卷圆锥曲线(理科)
2012-2018全国卷圆锥曲线解答题(理科)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(Ⅰ)若90BFD ∠=︒,ABD ∆的面积为,求p 的值及圆F 的方程.(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值围.6. (2017年全国高考Ⅰ卷理科第20题) (本小题满分12分)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
2018年高考全国一卷理科数学答案及解析
2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分. 1、设z=,则|z |=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z |=1【考点定位】复数2、已知集合A={x|x 2-x —2〉0},则A =A 、{x|—1<x 〈2}B 、{x|—1x 2}C 、{x|x 〈-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x —2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上.C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半. 【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、—12B、—10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0;d=—3 ∴a5=2+(5—1)*(—3)=—10【考点定位】等差数列求和5、设函数f(x)=x3+(a—1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(—x)=2*(a—1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、-—B、-—C、—+D、—【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处.∴最短路径的长度为AB=【考点定位】立体几何:圆柱体的展开图形,最短路径8。
2012年高考试题分项版解析数学理科专题10 圆锥曲线教师版
2012年高考试题解析数学(理科)分项版10 圆锥曲线:一、选择题22yx0)b??1(a?E:?FF的左、右焦4)设是椭圆1.(2012年高考新课标全国卷理科2122baa3PFF30?x EP的离心率为的等腰三角形,则为直线上一点,是底角为点,?122)(??12)(D((B)C(A))?23?x CC与抛物8)等轴双曲线轴上,的中心在原点,焦点在2.(2012年高考新课标全国卷理科2C x?16y3AB?4BA,)线的准线交于;则的实轴长为(两点,222?)BD)((C)(A)(?22yx21??xy12?双曲线(2012年高考福建卷理科8)3.的焦点重合,线的右焦点与抛物2 b4)则该双曲线的焦点到其渐近线的距离等于(542C.3 B A..D.522yx4.(2012年高考浙江卷理科8)如图,F,F分别是双曲线C:(a,b>0)的左右1 2122ab焦点,B是虚轴的端点,直线FB与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平1分线与x轴交于点M.若|MF|=|FF|,则C的离心率是212326.BA .3. D C .32的离心率为,双曲线:C(20125.年高考山东卷理科10)已知椭圆x2-y2=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为2x?4yBA,OF点的直线交抛物线于9)过抛物线的焦点两点,6.(2012年高考安徽卷理科3AF?AOB?),则是原点,若的面积为(2322))C((A)D(B() 22:Zxxk.]来源22yx7. (2012年高考湖南卷理科5)已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的22ba渐近线上,则C的方程为22222222yxyxyyxx A.-=1 B.-=1 C.-=1 D.-=120520802020805[w~#ww.zz&st^ep.【答案】A:Z#xx#k.]来源22yxc2c?10,c?5.=1的半焦距为,则-C 【解析】设双曲线:22ba bbx?1??y?2a?2b. 又C (,点P 2,1,即的渐近线为的渐近线上,C )在aa22yx22255,b??a?2ba?c??=1.,的方程为又,-C520【考点定位】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型.x O,并且经8)已知抛物线关于轴对称,它的顶点在坐标原点8. (2012年高考四川卷理科M(2,y)|OM|?3M(过点。
2018年高考数学—圆锥曲线(解答+答案)
2018年高考数学——圆锥曲线解答1.(18北京理(19)(本小题14分))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.2.(18江苏18.(本小题满分16分))如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.3.(18全国二理19.(12分))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.4.(18全国三理20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.5.18全国一理19.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.6.(18天津理(19)(本小题满分14分))设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .A的坐标为(,0)b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.7.(18浙江21.(本题满分15分))如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.(18北京文(20)(本小题14分))已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .9.(18全国三文20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .10.(18全国一文20.(12分))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.参考答案:1.解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =. 直线PA 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.2.解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,).综上,直线l 的方程为532y x =-+.学*科网3.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.4.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-.5解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为y x =+y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.6.(Ⅰ)解:设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=,可得ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.7.(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.8.【解析】(Ⅰ)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 9..解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则 331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA ==-uu r .同理2||=22xFB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .10.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM=∠ABN.。
圆锥曲线、导数2018年全国高考数学分类真题(含答案)
圆锥曲线、导数2018年全国高考数学分类真题(含答案)一.选择题(共7小题)1.双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)2.已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=13.设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2 C.D.4.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C 的离心率为()A.B.C.D.5.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C 的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.47.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x二.填空题(共6小题)8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F (c,0)到一条渐近线的距离为c,则其离心率的值为.9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为.10.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=时,点B横坐标的绝对值最大.11.已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C 交于A,B两点.若∠AMB=90°,则k=.12.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=.13.曲线y=2ln(x+1)在点(0,0)处的切线方程为.三.解答题(共13小题)14.设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.15.如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.16.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.17.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.18.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.19.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.20.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M 的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.21.记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.22.已知函数f(x)=﹣lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.23.已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g (x)的切线.24.已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.25.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.26.已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.圆锥曲线、导数2018年全国高考数学分类真题(含答案)参考答案与试题解析一.选择题(共7小题)1.双曲线﹣y2=1的焦点坐标是()A.(﹣,0),(,0)B.(﹣2,0),(2,0)C.(0,﹣),(0,)D.(0,﹣2),(0,2)【解答】解:∵双曲线方程可得双曲线的焦点在x轴上,且a2=3,b2=1,由此可得c==2,∴该双曲线的焦点坐标为(±2,0)故选:B.2.已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:C.3.设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2 C.D.【解答】解:双曲线C:﹣=1(a>0.b>0)的一条渐近线方程为y=x,∴点F2到渐近线的距离d==b,即|PF2|=b,∴|OP|===a,cos∠PF2O=,∵|PF1|=|OP|,∴|PF1|=a,在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|COS∠PF2O,∴6a2=b2+4c2﹣2×b×2c×=4c2﹣3b2=4c2﹣3(c2﹣a2),即3a2=c2,即a=c,∴e==,故选:C.4.已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C 的离心率为()A.B.C.D.【解答】解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y=(x+a),由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.故选:D.5.双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=±x=±x,故选:A.6.已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C 的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2 D.4【解答】解:双曲线C:﹣y2=1的渐近线方程为:y=,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y=,则:解得M(,),解得:N(),则|MN|==3.故选:B.7.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.二.填空题(共6小题)8.在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F (c,0)到一条渐近线的距离为c,则其离心率的值为2.【解答】解:双曲线=1(a>0,b>0)的右焦点F(c,0)到一条渐近线y=x的距离为c,可得:=b=,可得,即c=2a,所以双曲线的离心率为:e=.故答案为:2.9.已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为2.【解答】解:椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标(c,0),正六边形的一个顶点(,),可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e=.同时,双曲线的渐近线的斜率为,即,可得:,即,可得双曲线的离心率为e==2.故答案为:;2.10.已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=5时,点B横坐标的绝对值最大.【解答】解:设A(x1,y1),B(x2,y2),由P(0,1),=2,可得﹣x1=2x2,1﹣y1=2(y2﹣1),即有x1=﹣2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x22+4y22=4m,②①﹣②得(y1﹣2y2)(y1+2y2)=﹣3m,可得y1﹣2y2=﹣m,解得y1=,y2=,则m=x22+()2,即有x22=m﹣()2==,即有m=5时,x22有最大值16,即点B横坐标的绝对值最大.故答案为:5.11.已知点M(﹣1,1)和抛物线C:y2=4x,过C的焦点且斜率为k的直线与C 交于A,B两点.若∠AMB=90°,则k=2.【解答】解:∵抛物线C:y2=4x的焦点F(1,0),∴过A,B两点的直线方程为y=k(x﹣1),联立可得,k2x2﹣2(2+k2)x+k2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=1,∴y1+y2=k(x1+x2﹣2)=,y1y2=k2(x1﹣1)(x2﹣1)=k2[x1x2﹣(x1+x2)+1]=﹣4,∵M(﹣1,1),∴=(x1+1,y1﹣1),=(x2+1,y2﹣1),∵∠AMB=90°=0,∴•=0∴(x1+1)(x2+1)+(y1﹣1)(y2﹣1)=0,整理可得,x1x2+(x1+x2)+y1y2﹣(y1+y2)+2=0,∴1+2+﹣4﹣+2=0,即k2﹣4k+4=0,∴k=2.故答案为:212.曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=﹣3.【解答】解:曲线y=(ax+1)e x,可得y′=ae x+(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,可得:a+1=﹣2,解得a=﹣3.故答案为:﹣3.13.曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.【解答】解:∵y=2ln(x+1),∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.三.解答题(共13小题)14.设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]e x的导数为f′(x)=[ax2﹣(2a+1)x+2]e x.由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,可得(a﹣2a﹣1+2)e=0,解得a=1;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]e x=(x﹣2)(ax﹣1)e x,若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.x=2处f(x)取得极大值,不符题意;若a>0,且a=,则f′(x)=(x﹣2)2e x≥0,f(x)递增,无极值;若a>,则<2,f(x)在(,2)递减;在(2,+∞),(﹣∞,)递增,可得f(x)在x=2处取得极小值;若0<a<,则>2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,可得f(x)在x=2处取得极大值,不符题意;若a<0,则<2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,可得f(x)在x=2处取得极大值,不符题意.综上可得,a的范围是(,+∞).15.如图,在平面直角坐标系xOy中,椭圆C过点(),焦点F1(﹣,0),F2(,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为,求直线l的方程.【解答】解:(1)由题意可设椭圆方程为,∵焦点F1(﹣,0),F2(,0),∴.∵∴,又a2+b2=c2=3,解得a=2,b=1.∴椭圆C的方程为:,圆O的方程为:x2+y2=3.(2)①可知直线l与圆O相切,也与椭圆C,且切点在第一象限,∴可设直线l的方程为y=kx+m,(k<0,m>0).由圆心(0,0)到直线l的距离等于圆半径,可得.由,可得(4k2+1)x2+8kmx+4m2﹣4=0,△=(8km)2﹣4(4k2+1)(4m2﹣4)=0,可得m2=4k2+1,∴3k2+3=4k2+1,结合k<0,m>0,解得k=﹣,m=3.将k=﹣,m=3代入可得,解得x=,y=1,故点P的坐标为(.②设A(x1,y1),B(x2,y2),由⇒k<﹣.联立直线与椭圆方程得(4k2+1)x2+8kmx+4m2﹣4=0,|x2﹣x1|==,O到直线l的距离d=,|AB|=|x2﹣x1|=,△OAB的面积为S===,解得k=﹣,(正值舍去),m=3.∴y=﹣为所求.16.如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.【解答】解:(Ⅰ)证明:可设P(m,n),A(,y1),B(,y2),AB中点为M的坐标为(,),抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上,可得()2=4•,()2=4•,化简可得y1,y2为关于y的方程y2﹣2ny+8m﹣n2=0的两根,可得y1+y2=2n,y1y2=8m﹣n2,可得n=,则PM垂直于y轴;(Ⅱ)若P是半椭圆x2+=1(x<0)上的动点,可得m2+=1,﹣1≤m<0,﹣2<n<2,由(Ⅰ)可得y1+y2=2n,y1y2=8m﹣n2,由PM垂直于y轴,可得△PAB面积为S=|PM|•|y1﹣y2|=(﹣m)•=[•(4n2﹣16m+2n2)﹣m]•=(n2﹣4m),可令t===,可得m=﹣时,t取得最大值;m=﹣1时,t取得最小值2,即2≤t≤,则S=t3在2≤t≤递增,可得S∈[6,],△PAB面积的取值范围为[6,].17.设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.【解答】解:(Ⅰ)设椭圆+=1(a>b>0)的焦距为2c,由椭圆的离心率为e=,∴=;又a2=b2+c2,∴2a=3b,由|FB|=a,|AB|=b,且|FB|•|AB|=6;可得ab=6,从而解得a=3,b=2,∴椭圆的方程为+=1;(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2),由已知y1>y2>0;∴|PQ|sin∠AOQ=y1﹣y2;又|AQ|=,且∠OAB=,∴|AQ|=y,由=sin∠AOQ,可得5y1=9y2;由方程组,消去x,可得y1=,∴直线AB的方程为x+y﹣2=0;由方程组,消去x,可得y2=;由5y1=9y2,可得5(k+1)=3,两边平方,整理得56k2﹣50k+11=0,解得k=或k=;∴k的值为或.18.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣;(2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差.【解答】解:(1)设A(x1,y1),B(x2,y2),∵线段AB的中点为M(1,m),∴x1+x2=2,y1+y2=2m将A,B代入椭圆C:+=1中,可得,两式相减可得,3(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,即6(x1﹣x2)+8m(y1﹣y2)=0,∴k==﹣=﹣点M(1,m)在椭圆内,即,解得0<m∴.(2)证明:设A(x1,y1),B(x2,y2),P(x3,y3),可得x1+x2=2,∵++=,F(1,0),∴x1﹣1+x2﹣1+x3﹣1=0,y1+y2+y3=0,∴x3=1,∵m>0,可得P在第一象限,故,m=,k=﹣1由椭圆的焦半径公式得则|FA|=a﹣ex1=2﹣x1,|FB|=2﹣x2,|FP|=2﹣x3=.则|FA|+|FB|=4﹣,∴|FA|+|FB|=2|FP|,联立,可得|x1﹣x2|=所以该数列的公差d满足2d=|x1﹣x2|=,∴该数列的公差为±.19.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.【解答】解:(1)方法一:抛物线C:y2=4x的焦点为F(1,0),当直线的斜率不存在时,|AB|=4,不满足;设直线AB的方程为:y=k(x﹣1),设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣2(k2+2)x+k2=0,则x1+x2=,x1x2=1,由|AB|=x1+x2+p=+2=8,解得:k2=1,则k=1,∴直线l的方程y=x﹣1;方法二:抛物线C:y2=4x的焦点为F(1,0),设直线AB的倾斜角为θ,由抛物线的弦长公式|AB|===8,解得:sin2θ=,∴θ=,则直线的斜率k=1,∴直线l的方程y=x﹣1;(2)过A,B分别向准线x=﹣1作垂线,垂足分别为A1,B1,设AB的中点为D,过D作DD1⊥准线l,垂足为D,则|DD1|=(|AA1|+|BB1|)由抛物线的定义可知:|AA1|=|AF|,|BB1|=|BF|,则r=|DD1|=4,以AB为直径的圆与x=﹣1相切,且该圆的圆心为AB的中点D,由(1)可知:x1+x2=6,y1+y2=x1+x2﹣2=4,则D(3,2),过点A,B且与C的准线相切的圆的方程(x﹣3)2+(y﹣2)2=16..20.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M 的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程;(2)设O为坐标原点,证明:∠OMA=∠OMB.【解答】解:(1)c==1,∴F(1,0),∵l与x轴垂直,∴x=1,由,解得或,∴A(1.),或(1,﹣),∴直线AM的方程为y=﹣x+,y=x﹣,证明:(2)当l与x轴重合时,∠OMA=∠OMB=0°,当l与x轴垂直时,OM为AB的垂直平分线,∴∠OMA=∠OMB,当l与x轴不重合也不垂直时,设l的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2),则x1<,x2<,直线MA,MB的斜率之和为k MA,k MB之和为k MA+k MB=+,由y1=kx1﹣k,y2=kx2﹣k得k MA+k MB=,将y=k(x﹣1)代入+y2=1可得(2k2+1)x2﹣4k2x+2k2﹣2=0,∴x1+x2=,x1x2=,∴2kx1x2﹣3k(x1+x2)+4k=(4k2﹣4k﹣12k2+8k2+4k)=0从而k MA+k MB=0,故MA,MB的倾斜角互补,∴∠OMA=∠OMB,综上∠OMA=∠OMB.21.记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S 点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,f()=﹣=g()=﹣lna2,得a=;(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.22.已知函数f(x)=﹣lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【解答】证明:(Ⅰ)∵函数f(x)=﹣lnx,∴x>0,f′(x)=﹣,∵f(x)在x=x1,x2(x1≠x2)处导数相等,∴=﹣,∵x1≠x2,∴+=,由基本不等式得:=≥,∵x1≠x2,∴x1x2>256,由题意得f(x 1)+f(x2)==﹣ln(x1x2),设g(x)=,则,∴列表讨论:∴g(x)在[256,+∞)上单调递增,∴g(x1x2)>g(256)=8﹣8ln2,∴f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,f(n)﹣kn﹣a<n(﹣﹣k)≤n(﹣k)<0,∴存在x0∈(m,n),使f(x0)=kx0+a,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,其中g(x)=﹣lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.23.已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g (x2))处的切线平行,证明x1+g(x2)=;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g (x)的切线.【解答】(Ⅰ)解:由已知,h(x)=a x﹣xlna,有h′(x)=a x lna﹣lna,令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:∴函数h(x)的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x)=a x lna,可得曲线y=f(x)在点(x1,f(x1))处的切线的斜率为lna.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a为底数的对数,得log a x2+x1+2log a lna=0,∴x1+g(x2)=;(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,曲线y=g(x)在点(x2,log a x2)处的切线l2:.要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,即只需证明当a≥时,方程组由①得,代入②得:,③因此,只需证明当a≥时,关于x1的方程③存在实数解.设函数u(x)=,既要证明当a≥时,函数y=u(x)存在零点.u′(x)=1﹣(lna)2xa x,可知x∈(﹣∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′=<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即.由此可得,u(x)在(﹣∞,x0)上单调递增,在(x0,+∞)上单调递减,u(x)在x=x0处取得极大值u(x0).∵,故lnlna≥﹣1.∴=.下面证明存在实数t,使得u(t)<0,由(Ⅰ)可得a x≥1+xlna,当时,有u(x)≤=.∴存在实数t,使得u(t)<0.因此,当a≥时,存在x1∈(﹣∞,+∞),使得u(x1)=0.∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.24.已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.【解答】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1).,,可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0∴f′(x)在(﹣1,0)递减,在(0,+∞)递增,∴f′(x)≥f′(0)=0,∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0.∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得f′(x)=(1+2ax)ln(1+x)+﹣2=,令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1),h′(x)=4ax+(4ax+2a+1)ln(x+1).当a≥0,x>0时,h′(x)>0,h(x)单调递增,∴h(x)>h(0)=0,即f′(x)>0,∴f(x)在(0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意.当a<0时,h″(x)=8a+4aln(x+1)+,显然h″(x)单调递减,①令h″(0)=0,解得a=﹣.∴当﹣1<x<0时,h″(x)>0,当x>0时,h″(x)<0,∴h′(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴h′(x)≤h′(0)=0,∴h(x)单调递减,又h(0)=0,∴当﹣1<x<0时,h(x)>0,即f′(x)>0,当x>0时,h(x)<0,即f′(x)<0,∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴x=0是f(x)的极大值点,符合题意;②若﹣<a<0,则h″(0)=1+6a>0,h″(e﹣1)=(2a﹣1)(1﹣e)<0,∴h″(x)=0在(0,+∞)上有唯一一个零点,设为x0,∴当0<x<x0时,h″(x)>0,h′(x)单调递增,∴h′(x)>h′(0)=0,即f′(x)>0,∴f(x)在(0,x0)上单调递增,不符合题意;③若a<﹣,则h″(0)=1+6a<0,h″(﹣1)=(1﹣2a)e2>0,∴h″(x)=0在(﹣1,0)上有唯一一个零点,设为x1,∴当x1<x<0时,h″(x)<0,h′(x)单调递减,∴h′(x)>h′(0)=0,∴h(x)单调递增,∴h(x)<h(0)=0,即f′(x)<0,∴f(x)在(x1,0)上单调递减,不符合题意.综上,a=﹣.25.已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当x∈(0,ln2)时,g′(x)<0,当x∈(ln2,+∞)时,g′(x)>0,∴g(x)≥g(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2),f(x)在(0,+∞)只有一个零点⇔方程e x﹣ax2=0在(0,+∞)只有一个根,⇔a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递减,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2)=.26.已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:,(综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.。
2012年高考真题汇编——理科数学(解析版)10:圆锥曲线
2012高考真题分类汇编:圆锥曲线一、选择题1.【2012高考真题浙江理8】如图,F 1,F 2分别是双曲线C :22221x y ab-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.3B2D.【答案】B【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(a c bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,b y a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222bca xbc b c y --=-,令0=y ,得)1(22ba c x +=,所以c ba c 3)1(22=+,所以2222222a c b a -==,即2223c a =,所以26=e 。
故选B2.【2012高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y162=的准线交于,A B两点,A B =C 的实轴长为( )()A ()B ()C 4 ()D 8【答案】C【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-yx,所以2,42==a a,所以实轴长42=a ,选C.3.【2012高考真题新课标理4】设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【答案】C【解析】因为12PF F ∆是底角为30的等腰三角形,则有PF F F 212=,,因为2130=∠F PF ,所以260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=ac ,所以椭圆的离心率为43=e ,选C.4.【2012高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2016-2018年高考理科圆锥曲线真题(全国卷)
2016~2018高考圆锥曲线(全国卷)1.(2016全国一)已知方程132222=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则m 的取值范围是(A )(1-,3)(B )(1-,3)(C )(0,3)(D )(0,3)2.(两点.已知=AB (A )23.(l 交圆A 于C ,(Ⅱ)Q P ,两4.(2016轴垂直,2sin MF ∠(A 5.(2016全国二)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥. (Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.6.(2016全国三)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 A.13B.12C.23D.347.(2016全国三)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B(1)若F (2)若△8.(2017A 、B 两点,直线l A .169.(2017A ,圆A与双曲线10.(20171⎛ ⎝⎭中(1)求C (2)l 过定点.11.(所截得的弦长为2,则C 的离心率为()A.2 12.(2017全国二)已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若M 为FN 的中点,则FN =_____________.13.(2017全国二)设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ =,证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .14.(221123x y +=A 15.(2为直径的A 16.(AB 为直(1(217.(交于M ,N 两点,则FM FN ⋅=B .619.(2018全国一)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=A .32B .3C .D .420.(2018全国一)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.21.(C.22.(,是椭圆的左,右焦点,是的左顶点,点且斜率为的直线上,为等腰三角形,,则的离心率为 B. D.23.(的焦点为,过且斜率为的直线与交于,两点,.(1且与的准线相切的圆的方程.24.(2F 作C 25.(2018全国三)已知点M (-1,1)和抛物线C:24y x =,过C 的焦点且斜率为k 的直线与C 交于A,B 两点,若∠AMB=90。
2012-2018全国卷圆锥曲线(理科)
2012-2018全国卷圆锥曲线解答题(理科)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(Ⅰ)若90BFD ∠=︒,ABD ∆的面积为,求p 的值及圆F 的方程.(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值范围.6. (2017年全国高考Ⅰ卷理科第20题) (本小题满分12分)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
2018年全国各地高考数学试题及解答分类汇编大全(12 圆锥曲线与方程)
2018年全国各地高考数学试题及解答分类汇编大全 (12圆锥曲线与方程)一、选择题1.(2018浙江)双曲线221 3=x y -的焦点坐标是( )A .(−2,0),(2,0)B .(−2,0),(2,0)C .(0,−2),(0,2)D .(0,−2),(0,2)1..答案:B解答:∵2314c =+=,∴双曲线2213x y -=的焦点坐标是(2,0)-,(2,0).2. (2018上海)设P 是椭圆 ²5x +²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( )(A )2(B )2(C )2(D )43.(2018天津文、理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )(A )22139x y -= (B )22193x y -=(C )221412x y -= (D )221124x y -= 3.【答案】A【解析】设双曲线的右焦点坐标为(),0F c ,()0c >,则A B x x c ==, 由22221c y a b-=可得2b y a =±,不妨设2,b A c a ⎛⎫ ⎪⎝⎭,2,b B c a ⎛⎫- ⎪⎝⎭,双曲线的一条渐近线方程为0bx ay -=,据此可得22122bc b bc b d c a b --=+,22222bc b bc b d c a b ++==+, 则12226bcd d b c +===,则3b =,29b =,双曲线的离心率:2229112c b e a a a==++,据此可得23a =,则双曲线的方程为22139x y -=.故选A .4.(2018全国新课标Ⅰ文)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为( ) A .13B .12C .22D .2234、答案:C解答:知2c =,∴2228a b c =+=,22a =,∴离心率22e =.5.(2018全国新课标Ⅰ理)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=( )A .32B .3C .23D .45. 答案:B解答:渐近线方程为:2203x y -=,即33y x =±,∵OMN ∆为直角三角形,假设2ONM π∠=,如图,∴3NM k =,直线MN 方程为3(2)y x =-.联立333(2)y x y x ⎧=-⎪⎨⎪=-⎩∴33(,)22N -,即3ON =,∴3MON π∠=,∴3MN =,故选B.6.(2018全国新课标Ⅰ理)设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5 B .6 C .7 D .86. 答案:D解答:由题意知直线MN 的方程为2(2)3y x =+,设1122(,),(,)M x y N x y ,与抛物线方程联立有22(2)34y x y x⎧=+⎪⎨⎪=⎩,可得1112x y =⎧⎨=⎩或2244x y =⎧⎨=⎩,∴(0,2),(3,4)FM FN ==,∴03248FM FN ⋅=⨯+⨯=.7.(2018全国新课标Ⅱ文)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为( )A.1-B.2 CD1 7.【答案】D【解析】在12F PF △中,1290F PF ∠=︒,2160PF F ∠=︒,设2PF m =,则1222c F F m ==,1PF =,又由椭圆定义可知)1221a PF PF m =+=则离心率212c c e a a===,故选D .8.(2018全国新课标Ⅱ文、理)双曲线22221(0,0)x y a b a b-=>>则其渐近线方程为( )A.y = B.y = C.y =D.y = 8.【答案】A【解析】c e a ==,2222221312b c a e a a -∴==-=-=,b a ∴,因为渐近线方程为b y x a =±,所以渐近线方程为y =,故选A .9.(2018全国新课标Ⅱ理)已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( )A.23 B .12 C .13D .14 9.【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以2122PF F F c ==, 由AP得,2tan PAF ∠,2sin PAF ∴∠=,2cos PAF ∠=,由正弦定理得2222sin sin PF PAF AF APF ∠=∠,2225sin 3c a c PAF ∴===+-∠ ⎪⎝⎭, 4a c ∴=,14e =,故选D .10.(2018全国新课标Ⅲ文)已知双曲线22221(00)x y C a b a b-=>>:,,则点(4,0)到C 的渐近线的距离为( )AB .2C .2D .10.答案:D解答:由题意c e a ==1ba=,故渐近线方程为0x y ±=,则点(4,0)到渐近线的距离为d ==.故选D.11.(2018全国新课标Ⅲ理)设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为( ) A .5 B .2C .3D .211.答案:C解答:∵2||PF b =,2||OF c =,∴ ||PO a =; 又因为1||6||PF OP =,所以1||6PF a =; 在2Rt POF ∆中,22||cos ||PF bOF cθ==; ∵在12Rt PF F ∆中,2222121212||||||cos 2||||PF F F PF bPF F F cθ+-==⋅⋅,∴222222222224(6)464463322b c a bb c a b c a c a b c c+-=⇒+-=⇒-=-⋅ 223c a ⇒=3e ⇒=.二、填空1.(2018北京文)已知直线l 过点()1,0且垂直于x 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.1.【答案】()1,0【解析】1a =,24y x ∴=,由抛物线方程可得,24p =,2p =,12p=, ∴焦点坐标为()1,0.2.(2018北京文)若双曲线()222104x y a a -=>5,则a =_________. 2.【答案】4【解析】在双曲线中,2224c a b a =++,且5c e a ==245a +,22454a a +=,216a ∴=,04a a >∴=.3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.3.【答案】31-;2【解析】由正六边形性质得椭圆上一点到两焦点距离之和为3c c +,再根据椭圆定义得32c c a +=,所以椭圆M 的离心率为23113c a ==-+.双曲线N 的渐近线方程为n y x m =±,由题意得双曲线N 的一条渐近线的倾斜角为π3,222πtan 33n m ∴==,222222234m n m me m m ++∴===,2e ∴=.4. (2018上海)双曲线2214x y -=的渐近线方程为。
2012-2018年高考真题汇编:圆锥曲线理科(带答案)
条渐近线的距离为(A)
A. 3
B .3
C . 3m
D . 3m
7. (2014 新课标全国卷 I,理 10)已知抛物线 C : y2 8x 的焦点为 F ,准线为 l , P 是 l 上一点, Q 是直线
PF 与 C 的一个焦点,若 FP 4FQ ,则 | QF | =( C)
4.(2015
新课标全国卷
I,理
5)已知
M(
x0 ,
y0
)是双曲线
C:
x2 2
y2
1上的一点,
F1,
F2
是
C
上的两个
焦点,若 MF1 MF2 0 ,则 y0 的取值范围是( )
(A)(- 3 , 3 ) (B)(- 3 , 3 )(C)( 2 2 , 2 2 )(D)( 2 3 , 2 3 )
P
同理
AF
P 1 cos
,
BF
P 1 cos
∴
AB
2P 1 cos2
2P sin2
又 DE 与 AB 垂直,即 DE 的倾斜角为 π 2
DE
2P
sin 2
π 2
2P cos2
而 y2 4x ,即 P 2 .
∴
AB DE
y=±bx.又离心率为 a
e=c= a
a2+b2= a
b
1+ a 2= 5,所以b=1,所以双曲线的渐近线方程为 y=±1x,选择 C.
2
a2
2
9.(2013·新课标Ⅰ高考理)已知椭圆 E:ax22+by22=1(a>b>0)的右焦点为 F(3,0),过点 F 的直线交 E 于 A,B
左老师讲义(高中数学圆锥曲线)
第一章:规定动作1.规定动作之联消判韦(2013天津卷改编)已知,A B 是椭圆22132x y +=的左、右顶点,F 为该椭圆的左焦点,过点F 且斜率为k 的直线与椭圆交于,C D 两点。
若8AC DB AD CB ⋅+⋅=,求k 的值.2. 联消判韦之速算判别式(2018全国3卷改编)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 中点D 的横坐标为1,求证:1||2k >.(2015江苏卷改编)已知椭圆2212x y +=的右焦点为F ,直线l 的方程为2x =-,过点F 的直线与椭圆交于,A B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点,P C ,若2PC AB =,求直线AB 的方程。
4.联消判韦之直线的设法: x 型还是y 型(2012北京文改编)已知椭圆22142x y +=的右顶点为A ,直线()1y k x =-与椭圆交于不同的两点,M N .当三角形AMN 的面积为3时,求k 的值.(2013陕西文改编)已知椭圆22:143x y C +=,过点()0,3P 的直线l 与椭圆C 交于,A B 两点,若A 是PB 的中点,求直线l 的斜率.6.传说中的点乘双根式(2012重庆理改编)已知椭圆221204x y +=,12(2,0),(2,0)B B -,过1B 的直线l 交椭圆于,P Q 两点,且22PB QB ⊥,求直线l 的方程.7.不对称处理第0招:假的不对称,整体就对称已知椭圆22:33C x y +=.过点()1,0D 且不过()2,1E 的直线与椭圆C 交于,A B 两点,直线AE 与直线3.x M =交于点试判断直线BM 与直线DE 的位置关系,并说明理由.8.不对称处理第1招:硬凑韦达(2011四川理改编)椭圆有两顶点()()1,0,1,0,A B -过其焦点()0,1F 的直线l 与椭圆交于,C D 两点,并与x 轴交于点P 。
2012年高考真题汇编理科数学(解析版)10:圆锥曲线
2012高考真题分类汇编:圆锥曲线一、选择题1.【2012高考真题浙江理8】如图,F 1,F 2分别是双曲线C :22221x y a b-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.BD. 【答案】B【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(ac bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,by a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b c a x b c b c y --=-,令0=y ,得)1(22b ac x +=,所以c b a c 3)1(22=+,所以2222222a c b a -==,即2223c a =,所以26=e 。
故选B 2.【2012高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B()C 4 ()D 8【答案】C【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-y x ,所以2,42==a a ,所以实轴长42=a ,选C. 3.【2012高考真题新课标理4】设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【答案】C【解析】因为12PF F ∆是底角为30 的等腰三角形,则有P F F F 212=,,因为02130=∠F PF ,所以0260=∠D PF ,0230=∠DPF,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=a c ,所以椭圆的离心率为43=e ,选C. 4.【2012高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2018年全国3卷第16题(直线与圆锥曲线)-2018年高考数学经典题分析及针对训练Word版含解析
2018年全国3卷第16题(直线与圆锥曲线)-2018年高考数学经典题分析及针对训练Word 版含解析一、典例分析,融合贯通典例1.【2018年全国高考课标3第16题】已知点(1,1)M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________. 解法一:点评:由题先设出直线方程,与抛物线方程联立,再借助条件90AMB =︒∠,化为向量语言转换为关于k 方程,进行求解。
解题以方程思想为指针,设而不求为桥梁,最终建立k 方程,完成求解。
解法二:同上,由90AMB =︒∠,则1MA MB k k ?-可得;2121211144011MA MBy y k k k k x x --??-?+=++ 2k \=.点评:将条件90AMB =︒∠,解读为1MA MBk k ?-,进行求解。
解法三:如图所示,点评:数形结合,将90∠的条件化为圆,运用圆的切线性质而简化运算。
AMB=︒二.方法总结,胸有成竹直线与圆锥曲线一直以来是我们高考关注的一个热点话题,主要涉及到圆锥曲线的方程和几何性质,以及直线与圆锥曲线的位置关系的综合运用。
综合考查学生的数学思想、数学方法与数学能力。
1. 直线与圆锥曲线的位置关系的应用问题求解的基本思路:由于直线与圆锥曲线的位置关系一直为高考的热点。
这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想,运用圆锥曲线的定义与平面几何的知识,化难为易,化繁为简,收到意想不到的解题效果;另外采取“设而不求”法,“点差法”与弦长公式及韦达定理,减少变量,建立方程去解决; 2. 基本知识与基本方法(1).直线与圆锥曲线的位置关系的判定方法:直线l :(,)0f x y =和曲线:(,)0C g x y =的公共点坐标是方程组(,)0(,)0f x y g x y =⎧⎨=⎩的解,和C 的公共点的个数等于方程组不同解的个数.这样就将l 和C 的交点问题转化为方程组的解问题研究,对于消元后的一元二次方程,必须讨论二次项系数和判别式∆,若能数形结合,借助图形的几何性质则较为简便.(2).弦的中点或中点弦的问题,除利用韦达定理外,也可以运用“差分法”(也叫“点差法”).(3).弦长公式1212||||AB x x y y =-=-. (4).焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率)三.精选试题,能力升级1.【2018河南省焦作市高三联考】已知抛物线C : 22(0)y px p =>的焦点为F ,点M 在抛物线C 上,且32MO MF ==(O 为坐标原点),则MOF ∆的面积为( )A.2B. 12C. 14D.【答案】A2.【2018年全国高考课标1第11题】已知双曲线 22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为,M N 若OMN ∆为直角三角形,则MN =A.B. 3C.D. 4 【答案】B【解析】根据题意,可知其渐近线的斜率为3±(2,0)F ,从而得到030FON ∠=, 所以直线MN 的倾斜角为060或0120,根据双曲线的对称性,设其倾斜角为060,可以得出直线MN 的方程为2)y x -,分别与两条渐近线y x =和y x =联立,求得3(,22M N -B. 3.【2018湖南省长沙市高三联考】抛物线C : 22(0)x py p =>的焦点F 与双曲线22221y x -=的一个焦点重合,过点F 的直线交C 于点A 、B ,点A 处的切线与x 、y 轴分别交于点M 、N ,若OM N ∆的面积为12,则AF 的长为()A. 2B. 3C. 4D. 5 【答案】A4.【2018山东省潍坊市二模】直线()2(0)y k x k =+>与抛物线2:8C y x =交于A , B 两点, F 为C 的焦点,若sin 2sin ABF BAF ∠=∠,则k 的值是( )A.3 B. 3C. 1D. 【答案】B【解析】分别过A , B 项抛物线的准线作垂线,垂足分别为M , N ,则AF AM =,BF BN =. 设直线()2(0)y k x k =+>与x 轴交于点P ,则()2,0P -.5.【2018衡水金卷】已知抛物线22(0)x py p =>的焦点为F ,过焦点F 的直线l 分别交抛物线于点,A B , 过点,A B 分别作抛物线的切线12,l l ,两切线12,l l 交于点M ,若过点M 且与y 轴垂直的直线恰为圆221x y +=的一条切线,则p 的值为( ) A.14 B. 12C. 2D. 4 【答案】C【解析】由题可知抛物线22(0)x py p =>的焦点为F 0,,2p ⎛⎫⎪⎝⎭且过焦点F 的直线斜率存在, 所以可设直线:2p l y kx =+,联立方程组222{ ,20,22py kx x kpx p x py =+∴--==设()11,A x y ,()22,,B x y 则21212,2.x x p x x kp =-+=又由22x py =得2,,2x xy y p p =∴='所以过A 点的切线方程为()22111111111:,2x x x x x l y y x x y y x x p p p p p-=-∴=+-=-. 同理可知过点B 的切线方程为2222:,2x x l y x p p =-联立方程组211122122222{ ,{ ,222x x x x y x x p px x p x x y y x p p p +=-=∴==-=-因此点12,,22x x p M +⎛⎫-⎪⎝⎭过点M 与y 轴垂直的直线为(0)2p y p =->,而圆221x y +=与y 轴负半轴交于点(0,-1),所以1, 2.2pp -=-∴=故选C. 点评:本题的思路比较自然,只要循序渐进,一步一步转化就可以了. 主要是计算有点复杂,在求出过点A 的切线方程2111:2x x l y x p p =-后,不必再重新求过点B 的切线方程,只要利用对称性同理求出2222:2x x l y x p p=-可以提高解题效率.6.【2017高考新课标I 】已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则AB DE +的最小值为( )A .16B .14C .12D .10【答案】A 【解析】解法一:设11223344(,),(,),(,),(,)A x y B x y D x y E x y ,直线1l 方程为1(1)y k x =-。
圆锥曲线高考题全国卷真题汇总
2 0 1 8 ( 新 课 标 全 国 卷 2 理 科 )5.双曲线 x 2 y 2= 1 (a > 0, b > 0) 的离心率为 3 ,则其渐近线方程为a 2b 22 3A . y = 士 2xB . y = 士 3xC . y = 士 xD . y = 士 x2 212.已知 F 1, F 2 是椭圆 C :a x 22 +b y 22=1 (a > b > 0) 的左,右焦点, A 是 C 的左顶点,点 P 在过 A 且斜率为 63的直线上, △PF 1F 2 为等腰三角形, 三 1F F 2 P = 120O ,则 C 的离心率为2A .3 1 B .21 C .31 D .419.(12 分)设抛物线 C : y 2 = 4x 的焦点为 F ,过 F 且斜率为 k(k > 0) 的直线 l 与 C 交于 A , B 两点, | AB| = 8. (1)求 l 的方程;(2)求过点 A , B 且与 C 的准线相切的圆的方程.2018 (新课标全国卷 2 文科)6.双曲线x 2 y 2= 1 (a > 0, b > 0) 的离心率为 3 ,则其渐近线方程为 a 2 b 2A . y = 士 2xB . y = 士 3x2C . y = 士 x23D . y = 士 x211.已知 F , F 是椭圆 C 的两个焦点, P 是 C 上的一点,若 PF 」PF , 且 三PF F = 60O , 则 C 的离心率为3A . 12B . 2 3C . 3 12D . 3 120. ( 12 分) 设抛物线 C : y 2 = 4x 的焦点为 F , 过 F 且斜率为 k(k > 0) 的直线 l 与 C 交于 A , B 两点,| AB | = 8.(1)求 l 的方程;(2)求过点 A , B 且与 C 的准线相切的圆的方程.2018 (新课标全国卷 1 理科)28.设抛物线 C : y 2=4x 的焦点为 F ,过点( –2, 0)且斜率为 的直线与 C 交于 M , N 两点,则FM . FN =3A . 5B . 6C . 7D . 823为 M 、N.若△OMN 为直角三角形,则|MN|=3A .B . 3C . 2 3D . 4219. (12 分) 设椭圆 C : x 2+ y 2 = 1 的右焦点为 F ,过 F 的直线 l 与 C 交于 A, B 两点,点 M 的坐标为 (2,0) .2x 11.已知双曲线 C : y 2 = 1, O 为坐标原点, F 为 C 的右焦点,过 F 的直线与 C 的两条渐近线的交点分别 1 2 1 2 2 1(1)当 l 与 x 轴垂直时,求直线 AM 的方程;(2)设 O 为坐标原点,证明: 三OMA = 三OMB .2018 (新课标全国卷 1 文科)4.已知椭圆 C : x 2 + y 2= 1的一个焦点为(2,0) ,则 C 的离心率为a 2 41 A .31 B .2C .2 22 2 D .315.直线 y = x +1 与圆 x 2 + y 2 + 2y - 3 = 0 交于 A , B 两点,则 AB = ________. 20.(12 分)设抛物线 C : y 2 = 2x ,点 A (2, 0), B (-2, 0) ,过点 A 的直线 l 与 C 交于 M , N 两点. (1)当 l 与x 轴垂直时,求直线 BM 的方程;(2)证明: ∠ABM = ∠ABN .2018 (新课标全国卷 3 理科)6.直线 x + y + 2 = 0 分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆 (x - 2)2 + y 2 = 2 上,则 △ABP 面积的取值范围是A . [2, 6]B . [4, 8]C . 2,3 2D . 2 2,3 2 11. 设 1F , F 2 是双曲线 C : a x 22 - b y 22= 1 ( a > 0,b > 0 ) 的左 、右焦点, O 是坐标原点. 过 F 2 作 C 的一条渐近线的垂线,垂足为 P .若 PF = 6 OP ,则 C 的离心率为1A . 5B . 2C . 3D . 2 20.(12 分)已知斜率为 k 的直线 l 与椭圆C :x 2+ y 2= 1交于 A , B 两点,线段 AB 的中点为 M (1, m)(m > 0). 4 3(1)证明: k < - 1;2(2) 设 F 为 C 的右焦点, P 为 C 上一点,且 FP+ FA+ FB = 0 .证明: FA , FP , FB 成等差数列,并 求该数列的公差.2018 (新课标全国卷 3 文科)8. 直线 x + y +2 = 0 分别与 x 轴, y 轴交于 A , B 两点, 点 P 在圆 (x - 2)2 + y 2 = 2 上, 则 △ABP 面积的取值范围是A . [2,6]B . [4,8]C . [ 2, 3 2]D . [2 2 ,3 2 ]10.已知双曲线 C : x 2 一 y 2= 1(a > 0,b > 0) 的离心率为 2 ,则点 (4,0) 到C 的渐近线的距离为a 2b 23 2A . 2B . 2C .D . 2 2220.(12 分)已知斜率为 k 的直线 l 与椭圆C : x 2 + y 2= 1 交于 A , B 两点.线段 AB 的中点 为 M (1, m)(m > 0).4 3 1(1)证明: k 想 一 ;2(2)设 F 为C 的右焦点, P 为C 上一点,且 FP + FA + FB = 0.证明: 2 | FP |=| FA |+ | FB |.2017 (新课标全国卷 2 理科)9.若双曲线 C : x 22一 1(a > 0,b > 0) 的一条渐近线被圆 (x 一 2)2 + y 2 = 4所截得的弦长为 2, 则 C 的离心率为( ) .2 3A . 2B . 3C . 2D .316.已知 F 是抛物线 C : y 2 = 8x 的焦点, M 是C 上一点, FM 的延长线交 y 轴于点 N .若 M 为 FN 的中点,则 FN = .20. 设 O 为 坐 标 原 点, 动 点 M 在 椭 圆 C : x 2 + y 2= 1 上, 过 M 做 x 轴 的 垂 线, 垂 足 为 N , 点 P 满 足2NP = 2NM .(1)求点 P 的轨迹方程;(2)设点 Q 在直线 x = 一3 上,且OP . PQ = 1 .证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .2017 (新课标全国卷 2 文科)x 2 2A. ( 2,+w)B. ( 2,2)C. (1, 2)D. (1,2)12.过抛物线 C : y 2 = 4x 的焦点 F ,且斜率为 3 的直线交 C 于点 M ( M 在 x 轴上方), l 为 C 的准线,点N 在 l 上且 MN 」l ,则 M 到直线 NF 的距离为( ) .A. 5B. 2 2C. 2 3D. 3 320.设 O 为坐标原点,动点 M 在椭圆 C :x 2+ y 2 = 1 上,过 M 作 x 轴的垂线,垂足为 N , 25.若 a >1 ,则双曲线 a2 一 y = 1 的离心率的取值范围是( ) .a b点 P 满足 NP = 2NM . (1)求点 P 的轨迹方程;(2)设点 Q 在直线 x = 一3 上,且 OP . PQ = 1 .证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .2017 (新课标全国卷 1 理科)10.已知 F 为抛物线C : y 2 = 4x 的焦点, 过 F 作两条互相垂直的直线l 1, l 2, 直线l 1 与 C 交于 A , B 两点, 直线 l 2 与 C 交于 D , E 两点,则 AB + DE 的最小值为( ) .A . 16B . 14C . 12D . 10 15.已知双曲线 C :x 2 一 y 2= 1(a > 0,b > 0) 的右顶点为 A , 以 A 为圆心, b 为半径做圆 A , 圆 A 与双曲线 C a 2 b 2的一条渐近线交于 M , N 两点.若 三MAN = 60 ,则 C 的离心率为________.20.已知椭圆 C : a x 22 + b y 22=1(a > b > 0), 四点 1P (1,1), 2P (0,1), 3P (||( – 1, 23 ))||, 4P (||(1, 23 ))|| 中恰有三点在椭圆 C 上. (1)求 C 的方程;(2) 设直线 l 不经过 P 2 点且与 C 相交于 A , B 两点.若直线 P 2 A 与直线 P 2 B 的斜率的和为 – 1, 证明: l 过定.2017 (新课标全国卷 1 文科)5.已知 F 是双曲线 C : x 2一 y 2= 1 的右焦点, P 是 C 上一点, 且 PE 与 x 轴垂直, 点 A 的坐标是(1, 3), 则3△APF 的面积为( ) .1 12 3A .B .C .D .3 2 3 2x 2 y 2围是( ) .A 20.设 A ,B 为曲线C : y = x 2上两点, A 与 B 的横坐标之和为 4.4(1)求直线 AB 的斜率;(2)设 M 为曲线 C 上一点, C 在 M 处的切线与直线 AB 平行,且 AM 」BM ,求直线 AB 的方程. . (0,1] [9, +w ) B. (0, 3 [9, +w ) C. (0,1] [4, +w) D. (0, 3 [4, +w )点 12.设 A , B 是椭圆C : + = 1 长轴的两个端点, 若C 上存在点 M 满足三AMB = 120 , 则 m 的取值范3 m2017 (新课标全国卷 3 理科)5.已知双曲线 C : C :x 2 y 2 = 1(a > 0, b > 0) 的一条渐近线方程为 y = 5x ,且与椭圆 a 2 b 2 2x 2 y 2+ = 1 有公共焦点,则 C 的方程为( 12 3) .x 2 y 2A . = 18 10x 2 y 2B . = 14 5x 2 y 2C . = 15 4x 2 y 2D . = 14 310. 已知椭圆 C : a x 22 + b y 22= 1(a > b > 0) 的左 、 右顶点分别为 A 1, A 2, 且以线段 A 1A 2 为直径的圆与直线bx ay + 2ab = 0 相切,则 C 的离心率为( ) .A .6 3 B .3 3 C .2 31 D .320.已知抛物线 C : y 2 = 2x ,过点(2,0) 的直线 l 交 C 与A , B 两点,圆 M 是以线段 AB 为直径的圆. (1)证明:坐标原点 O 在圆 M 上; (2)设圆 M 过点 P(4,2) ,求直线 l 与圆 M 的方程.2017 (新课标全国卷 3 文科)11.已知椭圆 C : a x 22 + b y 22= 1(a > b > 0) 的左 、 右顶点分别为 A 1, A 2, 且以线段 A 1A 2 为直径的圆与直线bx ay + 2ab = 0 相切,则 C 的离心率为( ) .2 313x 2 y 2 3a 2 9 520. 在直角坐标系 xOy 中, 曲线 y = x 2 + mx – 2 与 x 轴交于 A , B 两点, 点 C 的坐标为(0,1) . 当 m 变化 时,解答下列问题:(1)能否出现 AC 」BC 的情况?说明理由;(2)证明过 A , B , C 三点的圆在 y 轴上截得的弦长为定值 .2016 (新课标全国卷 2 理科)(4)圆 x 2 + y 2 2x 8y +13 = 0 的圆心到直线 ax + y 1 = 0 的距离为 1,则 a= ( )3 36 314.双曲线 = 1(a > 0) 的一条渐近线方程为 y = x ,则 a = .D . C .B . A .|DE|= 2 5 ,则 C 的焦点到准线的距离为(C ) 3 (D ) 24x 2 y 2a bsin 三MF 2 F 1 = 3, 则 E 的离心率为( )3220. (本小题满分 12 分)已知椭圆 E: x 2 + y 2= 1 的焦点在 x 轴上, A 是 E 的左顶点, 斜率为 k (k > 0) 的直线交 E 于 A , M 两点, 点t 3N 在 E 上, MA 」NA .(Ⅰ)当 t = 4,| AM |=| AN | 时,求 编AMN 的面积; (Ⅱ)当 2 AM = AN 时,求 k 的取值范围.2016 (新课标全国卷 2 文科)(5) 设 F 为抛物线 C : y 2=4x 的焦点,曲线 y= (k> 0)与 C 交于点 P , PF ⊥x 轴,则 k= ( )x1 3(A) (B) 1 (C) (D) 22 2(6) 圆 x 2+y 2?2x?8y+13=0 的圆心到直线 ax+y?1=0 的距离为 1,则 a= ( )4(A) ?3 3(B) ?4(C)3(D) 2(21)(本小题满分 12 分)已知 A 是椭圆 E : + = 1 的左顶点,斜率为 k (k >0) 的直线交 E 与 A , M 两点,点 N 在 E 上,4 3MA 」NA .(Ⅰ)当 AM = AN 时,求 编AMN 的面积; (Ⅱ)当 AM = AN 时,证明: 3 < k < 2 .2016 (新课标全国卷 1 理科)(5)已知方程–3m yn =1 表示双曲线,且该双曲线两焦点间的距离为 4,则 n 的取值范围是(A) ( – 1,3) (B) ( – 1, 3) (C) (0,3) (D) (0, 3)(10)以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点, 交 C 的标准线于 D 、E 两点 . 已知|AB|= 4 2 , (11) 已知 F 1 , F 2 是双曲线 E : 2 _ 2= 1 的左, 右焦点, 点 M 在 E 上, MF 1 与 x 轴垂直,(A ) 2 (B ) (C ) 3 (D ) 2 (A ) _(B ) _x 2 y 2 k 4331(A)2 (B)4 (C)6 (D)820. (本小题满分 12 分)理科设圆x2 + y2 + 2x 15 = 0 的圆心为 A,直线 l 过点 B (1,0) 且与 x 轴不重合, l 交圆 A 于 C, D 两点,过 B 作AC 的平行线交 AD 于点 E.(I)证明EA + EB 为定值,并写出点 E 的轨迹方程;(II)设点 E 的轨迹为曲线 C1 ,直线 l 交 C1 于 M,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q 两点,求四边形 MPNQ 面积的取值范围 .2016 (新课标全国卷 1 文科)1(5)直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到 l 的距离为其短轴长的4,则该椭圆的离心率为1 12 3(A) (B) (C) (D)(15)设直线 y=x+2a 与圆 C: x2+y2-2ay-2=0 相交于 A, B 两点,若,则圆 C 的面积为 . (20)(本小题满分 12 分)在直角坐标系xOy 中,直线l:y=t(t≠0)交 y 轴于点 M,交抛物线 C:y2 = 2px(p > 0) 于点 P, M 关于点 P 的对称点为 N,连结 ON 并延长交 C 于点 H.OH(I)求;ON(II)除 H 以外,直线 MH 与 C 是否有其它公共点?说明理由 .2016 (新课标全国卷 3 理科)(11)已知 O 为坐标原点, F 是椭圆 C:x2a2+y2b2= 1(a > b > 0) 的左焦点, A, B 分别为 C 的左,右顶点 .P 为 C上一点,且PF 」x 轴.过点 A 的直线 l 与线段PF 交于点 M,与 y 轴交于点 E.若直线 BM 经过 OE 的中点,则 C 的离心率为1 (A)31(B)22(C)33(D)4(16)已知直线l:mx + y + 3m 3 = 0 与圆x2 + y2 = 12 交于A, B 两点,过A, B 分别做l 的垂线与x 轴交于C, D 两点,若AB = 2 3 ,则| CD |= __________________.(20)(本小题满分 12 分)已知抛物线C:y2 = 2x 的焦点为F,平行于x 轴的两条直线l1 , l2 分别交C 于A, B 两点,交C 的准线于P, Q 两点.(I)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ;(II)若PQF 的面积是ABF 的面积的两倍,求AB 中点的轨迹方程 .2016 (新课标全国卷 3 文科)3 2 3 4(12)已知 O 为坐标原点, F 是椭圆 C : x 2 + y 2= 1(a > b > 0) 的左焦点, A , B 分别为 C 的左,右顶点 .P 为a 2b 2C 上一点,且 PF 」x 轴.过点 A 的直线 l 与线段 PF 交于点 M , 与 y 轴交于点 E.若直线 BM 经过 OE 的中 点,则 C 的离心率为1 (A)31 (B)22 (C)33 (D)4( 15) 已知直线 l : x 3y + 6 = 0 与圆x 2 + y 2 = 12 交于 A, B 两点, 过 A, B 分别作l 的垂线与x 轴交于C, D 两点,则 | CD |= _____________ .(20)(本小题满分 12 分)已知抛物线 C : y 2 = 2x 的焦点为 F , 平行于 x 轴的两条直线 l 1 , l 2 分别交 C 于 A , B 两点, 交 C 的准线 于 P , Q 两点.(I)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR FQ ; (II)若PQF 的面积是 ABF 的面积的两倍,求 AB 中点的轨迹方程 .2015 (新课标全国卷 2)(11) 已知 A , B 为双曲线 E 的左,右顶点,点 M 在 E 上, ?ABM 为等腰三角形,且顶角为 120°,则 E 的离心 率为(A ) √ 5 (B) 2 (C ) √3 (D ) √2(15)已知双曲线过点(4, ,3),且渐近线方程为 y = 士 x ,则该双曲线的标准方程为 2。
历年高考圆锥曲线大题精选
1.(2018全国I理19)
设椭圆C: +y²=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
(1)当l与x轴垂直时,求直线AM的方程;
(2)设O为坐标原点,证明:∠OMA=∠OMB.
2.(2018全国II理)
3.(2018全国III理)
4.(2018全国I文)
5.(2018浙江)
6.(2017全国I理20)
7.
8.
9.(2017全国III理)
10.(2017全国I文20)
11.(2016全国I理20)
12.(2016全国III理20)
13.(2016山东理)平面直角坐标系中,椭圆C:的离心率是
,抛物线E:的焦点F是C的一个顶点.
(1)求椭圆C的方程;
(2)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
①求证:点M在定直线上;
②直线与y轴交于点G,记△PFG的面积为,△PDM的面积为,求的最大值及取得最大值时点P的坐标.
14.(2015全国I理)
15.(2015全国II理)
16.
17.
18.。
2012~2018年高考极坐标圆锥曲线真题 学生版
2012~2018极坐标圆锥曲线文科真题目录极坐标文科部分: (1)2018高考真题 (1)一.解答题 (1)2017高考真题 (3)一.解答题(共4小题) (3)2016高考真题 (5)一.解答题 (5)2015高考真题 (7)一.填空题 (7)二.解答题 (7)2014高考真题 (10)一.填空题 (10)二.解答题 (10)2013高考真题 (12)一.填空题 (12)二.解答题 (12)2012高考真题 (15)一.填空题 (15)二.解答题 (15)圆锥曲线部分: (17)2018高考真题 (17)一.选择题 (17)二.填空题 (18)三.解答题 (19)2017高考真题 (25)一.选择题 (25)二.填空题 (26)三.解答题 (27)2016高考真题 (33)一.选择题 (33)二.填空题 (34)三.解答题 (35)2015高考真题 (43)一.选择题 (43)二.填空题 (45)三.解答题 (47)2014高考真题 (59)一.选择题 (59)二.填空题 (61)三.解答题 (62)2013高考真题 (75)一.选择题 (75)二.填空题 (78)三.解答题 (80)2012高考真题 (93)一.选择题 (93)二.填空题 (95)三.解答题 (97)极坐标文科部分:2018高考真题一.解答题(共6小题)1.(2018•新课标Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y=k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcosθ﹣3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.2.(2018•新课标Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为{x =2cosθy =4sinθ,(θ为参数),直线l 的参数方程为{x =1+tcosαy =2+tsinα,(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.3.(2018•新课标Ⅰ)在平面直角坐标系xOy 中,⊙O 的参数方程为{x =cosθy =sinθ,(θ为参数),过点(0,﹣√2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.4.(2018•江苏)在极坐标系中,直线l 的方程为ρsin (π6﹣θ)=2,曲线C 的方程为ρ=4cosθ,求直线l 被曲线C 截得的弦长.2017高考真题一.解答题(共4小题)1.(2017•新课标Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为{x =3cosθy =sinθ,(θ为参数),直线l 的参数方程为 {x =a +4t y =1−t ,(t 为参数).(1)若a=﹣1,求C 与l 的交点坐标;(2)若C 上的点到l 距离的最大值为√17,求a .2.(2017•新课标Ⅰ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcosθ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |•|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为(2,π3),点B 在曲线C 2上,求△OAB 面积的最大值.3.(2017•新课标Ⅰ)在直角坐标系xOy 中,直线l 1的参数方程为{x =2+t y =kt ,(t为参数),直线l 2的参数方程为{x =−2+m y =m k,(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cosθ+sinθ)﹣√2=0,M 为l 3与C 的交点,求M 的极径.4.(2017•江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为{x =−8+t y =t 2(t 为参数),曲线C 的参数方程为{x =2s 2y =2√2s(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.2016高考真题一.解答题(共4小题)1.(2016•新课标Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为{x =acost y =1+asint (t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cosθ.(Ⅰ)说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(Ⅰ)直线C 3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C 1与C 2的公共点都在C 3上,求a .2.(2016•新课标Ⅰ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅰ)直线l 的参数方程是{x =tcosαy =tsinα(t 为参数),l 与C 交与A ,B 两点,|AB |=√10,求l 的斜率.3.(2016•江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为{x =1+12ty =√32t (t 为参数),椭圆C 的参数方程为{x =cosθy =2sinθ(θ为参数),设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.4.(2016•新课标Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为{x =√3cosαy =sinα(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2√2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.2015高考真题一.填空题(共2小题)1.(2015•广东)在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.曲线C1的极坐标方程为ρ(cosθ+sinθ)=﹣2,曲线C2的参数方程为{x=t2y=2√2t(t为参数),则C1与C2交点的直角坐标为.2.(2015•湖南)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,若曲线C的极坐标方程为ρ=2sinθ,则曲线C的直角坐标方程为.二.解答题(共4小题)3.(2015•新课标Ⅰ)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅰ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.4.(2015•新课标Ⅰ)在直角坐标系xOy 中,曲线C 1:{x =tcosαy =tsinα(t 为参数,t ≠0),其中0≤α≤π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sinθ,C 3:ρ=2√3cosθ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.5.(2015•江苏)已知圆C 的极坐标方程为ρ2+2√2ρsin (θ﹣π4)﹣4=0,求圆C的半径.6.(2015•陕西)在直角坐标系xOy 中,直线l 的参数方程为{x =3+12ty =√32t(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=2√3sinθ.(Ⅰ)写出⊙C 的直角坐标方程;(Ⅰ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.2014高考真题一.填空题(共4小题)1.(2014•江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程{x =1−√22ty =2+√22t(t 为参数),直线l 与抛物线y 2=4x 相交于AB 两点,则线段AB 的长为 . 2.(2014•广东)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sinθ与ρcosθ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为 .3.(2014•湖南)在平面直角坐标系中,曲线C :{x =2+√22ty =1+√22t(t 为参数)的普通方程为 .4.(2014•陕西)在极坐标系中,点(2,π6)到直线ρsin(θ−π6)=1的距离是 .二.解答题(共3小题)5.(2014•新课标Ⅰ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈[0,π2](Ⅰ)求C 的参数方程;(Ⅰ)设点D 在半圆C 上,半圆C 在D 处的切线与直线l :y=√3x +2垂直,根据(1)中你得到的参数方程,求直线CD 的倾斜角及D 的坐标.6.(2014•新课标Ⅰ)已知曲线C:x24+y29=1,直线l:{x=2+ty=2−2t(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅰ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.7.(2014•辽宁)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.(Ⅰ)写出C的参数方程;(Ⅰ)设直线l:2x+y﹣2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.2013高考真题一.填空题(共3小题)1.(2013•广东)(坐标系与参数方程选做题)已知曲线C 的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为 .2.(2013•湖南)在平面直角坐标系xOy 中,若直线l 1:{x =2s +1y =s (s 为参数)和直线l 2:{x =aty =2t −1(t 为参数)平行,则常数a 的值为 . 3.(2013•陕西)(坐标系与参数方程选做题)圆锥曲线{x =t 2y =2t(t 为参数)的焦点坐标是 .二.解答题(共4小题)4.(2013•新课标Ⅰ)已知曲线C 1的参数方程为{x =4+5costy =5+5sint (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sinθ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).5.(2013•新课标Ⅰ)已知动点P 、Q 都在曲线C :{x =2cosβy =2sinβ(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.6.(2013•江苏)在平面直角坐标系xOy 中,直线l 的参数方程为{x =t +1y =2t ( 为参数),曲线C 的参数方程为{x =2t 2y =2t(t 为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.7.(2013•辽宁)在直角坐标系xOy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sinθ,ρcos(θ−π4)=2√2.(Ⅰ)求C1与C2交点的极坐标;(Ⅰ)设P为C1的圆心,Q为C1与C2交点连线的中点,已知直线PQ的参数方程为{x=t3+ay=b2t3+1(t∈R为参数),求a,b的值.2012高考真题一.填空题(共4小题)1.(2012•山东)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为 .2.(2012•广东)在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为{x =√5cosθy =√5sinθ(θ为参数,0≤θ≤π2)和{x =1−√22t y =−√22t(t 为参数),则曲线C 1和C 2的交点坐标为 .3.(2012•湖南)在极坐标系中,曲线C 1:ρ(√2cosθ+sinθ)=1与曲线C 2:ρ=a (a >0)的一个交点在极轴上,则a= .4.(2012•陕西)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为 .二.解答题(共3小题)5.(2012•新课标)选修4﹣4;坐标系与参数方程已知曲线C 1的参数方程是{x =2cosφy =3sinφ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 2的坐标系方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π3).(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围.6.(2012•辽宁)选修4﹣4:坐标系与参数方程在直角坐标xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x ﹣2)2+y 2=4.(Ⅰ)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示); (Ⅰ)求圆C 1与C 2的公共弦的参数方程.7.(2012•江苏)在极坐标中,已知圆C 经过点P (√2,π4),圆心为直线ρsin (θ﹣π3)=﹣√32与极轴的交点,求圆C 的极坐标方程.圆锥曲线部分:2018高考真题一.选择题(共10小题)1.(2018•新课标Ⅰ)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( ) A .13B .12C .√22D .2√232.(2018•新课标Ⅰ)双曲线x 2a 2−y 2b 2=1(a >0,b >0)的离心率为√3,则其渐近线方程为( )A .y=±√2xB .y=±√3xC .y=±√22xD .y=±√32x3.(2018•新课标Ⅰ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1﹣√32B .2﹣√3C .√3−12D .√3﹣14.(2018•浙江)双曲线x 23﹣y 2=1的焦点坐标是( )A .(﹣√2,0),(√2,0)B .(﹣2,0),(2,0)C .(0,﹣√2),(0,√2) D .(0,﹣2),(0,2)5.(2018•新课标Ⅰ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x ﹣2)2+y 2=2上,则△ABP 面积的取值范围是( ) A .[2,6]B .[4,8]C .[√2,3√2]D .[2√2,3√2]6.(2018•新课标Ⅰ)已知双曲线C :x 2a 2﹣y 2b 2=1(a >0,b >0)的离心率为√2,则点(4,0)到C 的渐近线的距离为( ) A .√2B .2C .3√22D .2√27.(2018•上海)设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A .2√2B .2√3C .2√5D .4√28.(2018•天津)已知双曲线x 2a −y 2b =1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 23﹣y 29=1B .x 29﹣y 23=1 C .x 24﹣y 212=1 D .x 212﹣y 24=19.(2018•全国)已知椭圆x 2a 2+y 2b 2=1过点(﹣4,35)和(3,﹣45),则椭圆离心率e=( )A .2√65B .√65C .15D .2510.(2018•全国)过抛物线y 2=2x 的焦点且与x 轴垂直的直线与抛物线交于M 、N 两点,O 为坐标原点,则OM →•ON →=( )A .34B .14C .﹣14D .﹣34二.填空题(共8小题)11.(2018•新课标Ⅰ)直线y=x +1与圆x 2+y 2+2y ﹣3=0交于A ,B 两点,则|AB |= .12.(2018•浙江)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m= 时,点B 横坐标的绝对值最大.13.(2018•江苏)在平面直角坐标系xOy 中,若双曲线x 2a ﹣y 2b =1(a >0,b >0)的右焦点F (c ,0)到一条渐近线的距离为√32c ,则其离心率的值为 .14.(2018•上海)双曲线x24﹣y 2=1的渐近线方程为 .15.(2018•北京)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax截得的线段长为4,则抛物线的焦点坐标为 .16.(2018•北京)若双曲线x 2a 2﹣y 24=1(a >0)的离心率为√52,则a= .17.(2018•天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 .18.(2018•全国)坐标原点关于直线x ﹣y ﹣6=0的对称点的坐标为 .三.解答题(共9小题)19.(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A 的直线l与C交于M,N两点.(1)当l与x轴垂直时,求直线BM的方程;(2)证明:∠ABM=∠ABN.20.(2018•新课标Ⅰ)设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.(1)求l的方程;(2)求过点A,B且与C的准线相切的圆的方程.21.(2018•浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x 上存在不同的两点A,B满足PA,PB的中点均在C上.(Ⅰ)设AB中点为M,证明:PM垂直于y轴;(Ⅰ)若P是半椭圆x2+y24=1(x<0)上的动点,求△PAB面积的取值范围.22.(2018•江苏)如图,在平面直角坐标系xOy中,椭圆C过点(√3,12),焦点F1(﹣√3,0),F2(√3,0),圆O的直径为F1F2.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若△OAB的面积为2√67,求直线l的方程.23.(2018•新课标Ⅰ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <﹣12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0→,证明:2|FP →|=|FA →|+|FB →|.24.(2018•上海)设常数t >2.在平面直角坐标系xOy 中,已知点F (2,0),直线l :x=t ,曲线Γ:y 2=8x (0≤x ≤t ,y ≥0).l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB 上的动点. (1)用t 表示点B 到点F 的距离;(2)设t=3,|FQ |=2,线段OQ 的中点在直线FP 上,求△AQP 的面积; (3)设t=8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.25.(2018•北京)已知椭圆M :x 2a +y 2b =1(a >b >0)的离心率为√63,焦距为2√2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(Ⅰ)求椭圆M 的方程; (Ⅰ)若k=1,求|AB |的最大值;(Ⅰ)设P (﹣2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M的另一个交点为D .若C ,D 和点Q (﹣74,14)共线,求k .26.(2018•天津)设椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为√53,|AB |=√13.(Ⅰ)求椭圆的方程;(Ⅰ)设直线l :y=kx (k <0)与椭圆交于P ,Q 两点,1与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值.27.(2018•全国)双曲线x 212﹣y 24=1,F 1、F 2为其左右焦点,C 是以F 2为圆心且过原点的圆.(1)求C 的轨迹方程;(2)动点P 在C 上运动,M 满足F 1M →=2MP →,求M 的轨迹方程.2017高考真题一.选择题(共10小题)1.(2017•新课标Ⅰ)已知F 是双曲线C :x 2﹣y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A .13B .12C .23D .322.(2017•新课标Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,√3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,√3]∪[4,+∞)3.(2017•新课标Ⅰ)若a >1,则双曲线x 2a 2﹣y2=1的离心率的取值范围是( )A .(√2,+∞)B .(√2,2)C .(1,√2)D .(1,2)4.(2017•新课标Ⅰ)过抛物线C :y 2=4x 的焦点F ,且斜率为√3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上,且MN ⊥l ,则M 到直线NF 的距离为( ) A .√5B .2√2C .2√3D .3√35.(2017•新课标Ⅰ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx ﹣ay +2ab=0相切,则C 的离心率为( )A .√63B .√33 C .√23 D .13 6.(2017•浙江)椭圆x 29+y 24=1的离心率是( )A .√133 B .√53 C .23 D .597.(2017•天津)已知双曲线x 2a 2﹣y2b2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .x 24−y 212=1B .x 212−y 24=1 C .x 23−y 2=1D .x 2−y 23=18.(2017•上海)在平面直角坐标系xOy 中,已知椭圆C 1:x 236+y 24=1和C 2:x 2+y 29=1.P 为C 1上的动点,Q 为C 2上的动点,w 是OP →⋅OQ →的最大值.记Ω={(P ,Q )|P 在C 1上,Q 在C 2上,且OP →⋅OQ →=w },则Ω中元素个数为( ) A .2个B .4个C .8个D .无穷个9.(2017•全国)椭圆C 的焦点为F 1(﹣1,0),F 2(1,0),点P 在C 上,F 2P=2,∠F 1F 2P =2π3,则C 的长轴长为( )A .2B .2√3C .2+√3D .2+2√310.(2017•全国)已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的右焦点为F (c ,0),直线y=k (x ﹣c )与C 的右支有两个交点,则( )A .|k|<baB .|k|>baC .|k|<caD .|k|>ca二.填空题(共7小题)11.(2017•新课标Ⅰ)双曲线x 2a 2−y 29=1(a >0)的一条渐近线方程为y=35x ,则a= .12.(2017•江苏)在平面直角坐标系xOy 中,双曲线x 23﹣y 2=1的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是 .13.(2017•天津)设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC=120°,则圆的方程为 . 14.(2017•北京)若双曲线x 2﹣y 2m =1的离心率为√3,则实数m= .15.(2017•上海)设双曲线x 29﹣y 2b2=1(b >0)的焦点为F 1、F 2,P 为该双曲线上的一点,若|PF 1|=5,则|PF 2|= .16.(2017•山东)在平面直角坐标系xOy 中,双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .17.(2017•全国)直线x −√3y −2=0被圆x 2+y 2﹣2x=0截得的线段长为 .三.解答题(共10小题)18.(2017•新课标Ⅰ)设A ,B 为曲线C :y=x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.19.(2017•新课标Ⅰ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=√2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x=﹣3上,且OP →•PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .20.(2017•新课标Ⅰ)在直角坐标系xOy 中,曲线y=x 2+mx ﹣2与x 轴交于A 、B两点,点C 的坐标为(0,1),当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A 、B 、C 三点的圆在y 轴上截得的弦长为定值.21.(2017•江苏)如图,在平面直角坐标系xOy 中,椭圆E :x 2a +y 2b =1(a >b>0)的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.22.(2017•浙江)如图,已知抛物线x2=y,点A(﹣12,14),B(32,94),抛物线上的点P(x,y)(﹣12<x<32),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅰ)求|PA|•|PQ|的最大值.23.(2017•天津)已知椭圆x2a2+y2b2=1(a>b>0)的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为b2 2.(I)求椭圆的离心率;(II)设点Q在线段AE上,|FQ|=32c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.24.(2017•北京)已知椭圆C 的两个顶点分别为A (﹣2,0),B (2,0),焦点在x 轴上,离心率为√32.(Ⅰ)求椭圆C 的方程;(Ⅰ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.25.(2017•上海)在平面直角坐标系xOy 中,已知椭圆Γ:x 24+y 2=1,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点.(1)若P 在第一象限,且|OP |=√2,求P 的坐标;(2)设P (85,35),若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若|MA |=|MP |,直线AQ 与Γ交于另一点C ,且AQ →=2AC →,PQ →=4PM →,求直线AQ 的方程.26.(2017•山东)在平面直角坐标系xOy 中,已知椭圆C :x 2a+y 2b =1(a >b >0)的离心率为√22,椭圆C 截直线y=1所得线段的长度为2√2.(Ⅰ)求椭圆C 的方程;(Ⅰ)动直线l :y=kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.27.(2017•全国)设椭圆C:x2a2+y2b2=1(a>b>0)的中心为O,左焦点为F,左顶点为A,短轴的一个端点为B,短轴长为4,△ABF的面积为√5−1(1)求a,b;(2)设直线l与C交于P,Q两点,M(2,2),四边形OPMQ为平行四边形,求l的方程.2016高考真题一.选择题(共10小题)1.(2016•新课标Ⅰ)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A .13B .12C .23D .342.(2016•新课标Ⅰ)设F 为抛物线C :y 2=4x 的焦点,曲线y=k x(k >0)与C 交于点P ,PF ⊥x 轴,则k=( )A .12B .1C .32D .23.(2016•新课标Ⅰ)圆x 2+y 2﹣2x ﹣8y +13=0的圆心到直线ax +y ﹣1=0的距离为1,则a=( )A .﹣43B .﹣34C .√3D .24.(2016•新课标Ⅰ)已知O 为坐标原点,F 是椭圆C :x 2a +y 2b=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A .13B .12C .23D .345.(2016•天津)已知双曲线x 2a 2﹣y 2b2=1(a >0,b >0)的焦距为2√5,且双曲线的一条渐近线与直线2x +y=0垂直,则双曲线的方程为( )A .x 24﹣y 2=1B .x 2﹣y24=1C .3x 220﹣3y 25=1D .3x 25﹣3y 220=16.(2016•山东)已知圆M :x 2+y 2﹣2ay=0(a >0)截直线x +y=0所得线段的长度是2√2,则圆M 与圆N :(x ﹣1)2+(y ﹣1)2=1的位置关系是( ) A .内切B .相交C .外切D .相离7.(2016•北京)圆(x +1)2+y 2=2的圆心到直线y=x +3的距离为( ) A .1B .2C .√2D .2√28.(2016•四川)抛物线y2=4x的焦点坐标是()A.(0,2)B.(0,1)C.(2,0)D.(1,0)9.(2016•全国)设直线y=2x﹣4与双曲线C:x2﹣y2b=1的一条渐近线平行,则C的离心率为()A.√3B.√5C.3D.510.(2016•全国)抛物线y2=14(x﹣1)的准线方程是()A.x=0B.x=1516C.x=1D.x=1716二.填空题(共11小题)11.(2016•新课标Ⅰ)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2√3,则圆C的面积为.12.(2016•江苏)在平面直角坐标系xOy中,双曲线x27﹣y23=1的焦距是.13.(2016•江苏)如图,在平面直角坐标系xOy中,F是椭圆x2a2+y2b2=1(a>b>0)的右焦点,直线y=b2与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.14.(2016•新课标Ⅰ)已知直线l:x﹣√3y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.则|CD|=.15.(2016•天津)已知圆C的圆心在x轴正半轴上,点M(0,√5)在圆C上,且圆心到直线2x﹣y=0的距离为4√55,则圆C的方程为.16.(2016•天津)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.17.(2016•浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a=0表示圆,则圆心坐标是 ,半径是 .18.(2016•浙江)设双曲线x 2﹣y 23=1的左、右焦点分别为F 1、F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是 .19.(2016•山东)已知双曲线E :x 2a 2﹣y 2b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是 .20.(2016•北京)已知双曲线x 2a 2﹣y 2b 2=1(a >0,b >0)的一条渐近线为2x +y=0,一个焦点为(√5,0),则a= ,b= .21.(2016•上海)已知平行直线l 1:2x +y ﹣1=0,l 2:2x +y +1=0,则l 1,l 2的距离 .三.解答题(共12小题)22.(2016•新课标Ⅰ)在直角坐标系xOy 中,直线l :y=t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(Ⅰ)求|OH||ON|;(Ⅰ)除H 以外,直线MH 与C 是否有其它公共点?说明理由.23.(2016•新课标Ⅰ)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当|AM|=|AN|时,求△AMN的面积(II)当2|AM|=|AN|时,证明:√3<k<2.24.(2016•江苏)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x 2+y 2﹣12x ﹣14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x=6上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC=OA ,求直线l 的方程;(3)设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.25.(2016•江苏)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.26.(2016•新课标Ⅰ)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(Ⅰ)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(Ⅰ)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.27.(2016•天津)设椭圆x2a+y23=1(a>√3)的右焦点为F,右顶点为A,已知1 |OF|+1|OA|=3e|FA|,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.28.(2016•浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A 到y轴的距离等于|AF|﹣1,(Ⅰ)求p的值;(Ⅰ)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,求M的横坐标的取值范围.29.(2016•山东)已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,焦距为2√2.(Ⅰ)求椭圆C的方程;(Ⅰ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(Ⅰ)设直线PM,QM的斜率分别为k1,k2,证明k2k1为定值;(Ⅰ)求直线AB的斜率的最小值.30.(2016•北京)已知椭圆C:x2a2+y2b2=1过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB 与x轴交于点N,求证:四边形ABNM的面积为定值.31.(2016•上海)双曲线x 2﹣y 2b =1(b >0)的左、右焦点分别为F 1、F 2,直线l过F 2且与双曲线交于A 、B 两点.(1)若l 的倾斜角为π2,△F 1AB 是等边三角形,求双曲线的渐近线方程;(2)设b=√3,若l 的斜率存在,且|AB |=4,求l 的斜率.32.(2016•四川)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (√3,12)在椭圆E 上.(Ⅰ)求椭圆E 的方程;(Ⅰ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |•|MB |=|MC |•|MD |33.(2016•全国)过椭圆C :x 225+y 29=1右焦点F 的直线l 交C 于两点A (x 1,y 1),B (x 2,y 2),且A 不在x 轴上.(Ⅰ)求|y 1y 2|的最大值;(Ⅰ)若|AF||FB|=14,求直线l 的方程.2015高考真题一.选择题(共17小题)1.(2015•新课标Ⅰ)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( ) A .3B .6C .9D .122.(2015•天津)已知双曲线x 2a 2﹣y 2b2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x ﹣2)2+y 2=3相切,则双曲线的方程为( )A .x 29﹣y 213=1B .x 213﹣y 29=1C .x 23﹣y 2=1D .x 2﹣y23=13.(2015•天津)如图,在圆O 中,M 、N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N ,若CM=2,MD=4,CN=3,则线段NE 的长为( )A .83B .3C .103D .524.(2015•浙江)如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠PAB=30°,则点P 的轨迹是( )A .直线B .抛物线C .椭圆D .双曲线的一支5.(2015•上海)设 P n (x n ,y n )是直线2x ﹣y=n n+1(n ∈N *)与圆x 2+y 2=2在第一象限的交点,则极限lim n→∞y n −1x n−1=( )A .﹣1B .﹣12C .1D .26.(2015•北京)圆心为(1,1)且过原点的圆的标准方程是( )A .(x ﹣1)2+(y ﹣1)2=1B .(x +1)2+(y +1)2=1C .(x +1)2+(y +1)2=2D .(x ﹣1)2+(y ﹣1)2=27.(2015•广东)已知椭圆x 225+y 2m=1(m >0 )的左焦点为F 1(﹣4,0),则m=( )A .2B .3C .4D .98.(2015•四川)过双曲线x 2﹣y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A 、B 两点,则|AB |=( )A .4√33B .2√3C .6D .4√39.(2015•四川)设直线l 与抛物线y 2=4x 相交于A 、B 两点,与圆(x ﹣5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( ) A .(1,3)B .(1,4)C .(2,3)D .(2,4)10.(2015•陕西)已知抛物线y 2=2px (p >0)的准线经过点(﹣1,1),则该抛物线焦点坐标为( ) A .(﹣1,0)B .(1,0)C .(0,﹣1)D .(0,1)11.(2015•重庆)设双曲线x 2a 2−y 2b 2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 做A 1A 2的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A .±12 B .±√22C .±1D .±√212.(2015•湖南)若双曲线x 2a 2﹣y 2b2=1的一条渐近线经过点(3,﹣4),则此双曲线的离心率为( )A .√73 B .54 C .45 D .5313.(2015•湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( ) A .对任意的a ,b ,e 1>e 2B .当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C .对任意的a ,b ,e 1<e 2D .当a >b 时,e 1<e 2;当a <b 时,e 1>e 214.(2015•安徽)下列双曲线中,渐近线方程为y=±2x 的是( ) A .x 2﹣y 24=1 B .x 24﹣y 2=1 C .x 2﹣y 22=1 D .x 22﹣y 2=115.(2015•安徽)直线3x +4y=b 与圆x 2+y 2﹣2x ﹣2y +1=0相切,则b=( )A .﹣2或12B .2或﹣12C .﹣2或﹣12D .2或1216.(2015•福建)已知椭圆E :x 2a +y 2b=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x ﹣4y=0交椭圆E 于A ,B 两点,若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A .(0,√32]B .(0,34]C .[√32,1) D .[34,1)17.(2015•全国)直线l 与椭圆x 236+y218=1相交于A ,B 两点,线段AB 的中点为(2,1),则l 的斜率为( )A .√2B .﹣√2C .1D .﹣1二.填空题(共13小题)18.(2015•新课标Ⅰ)已知F 是双曲线C :x 2﹣y 28=1的右焦点,P 是C 的左支上一点,A (0,6√6).当△APF 周长最小时,该三角形的面积为 .19.(2015•新课标Ⅰ)已知双曲线过点(4,√3)且渐近线方程为y=±12x ,则该双曲线的标准方程是 .20.(2015•江苏)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx ﹣y ﹣2m ﹣1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为 . 21.(2015•江苏)在平面直角坐标系xOy 中,P 为双曲线x 2﹣y 2=1右支上的一个动点,若点P 到直线x ﹣y +1=0的距离大于c 恒成立,则实数c 的最大值为 .22.(2015•浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y=b cx的对称点Q 在椭圆上,则椭圆的离心率是 .23.(2015•上海)抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p= .24.(2015•上海)已知双曲线C1、C2的顶点重合,C1的方程为x24﹣y2=1,若C2的一条渐近线的斜率是C1的一条渐近线的斜率的2倍,则C2的方程为.25.(2015•北京)已知(2,0)是双曲线x2﹣y2b2=1(b>0)的一个焦点,则b=.26.(2015•山东)过双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点作一条与其渐近线平行的直线,交C于点P.若点P的横坐标为2a,则C的离心率为.27.(2015•重庆)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为.28.(2015•湖南)若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°,(O为坐标原点),则r=.29.(2015•湖北)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.30.(2015•全国)点(3,﹣1)关于直线x+y=0的对称点为.。
2012年高考理科数学全国卷1试卷及答案
绝密★启用前2012年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)适用地区:海南、宁夏、黑龙江、吉林、山西、河南、新疆、云南、河北、内蒙古 注息事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,2,3,4,5}A =,{(,)|,,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A . 3B . 6C . 8D . 102. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A . 12种B . 10种C . 9种D . 8种3. 下面是关于复数21iz =-+的四个命题:1:||2p z =;22:2i p z =; 3:p z 的共轭复数为1i +;4:p z 的虚部为1-.其中的真命题为( )A . 23,p pB . 12,p pC . 24,p pD . 34,p p4. 设1F ,2F 是椭圆E :22221(0)x ya b a b +=>>的左、右焦点,P 为直线32a x =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为 ( )A . 12B . 23C . 34D . 455. 已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A . 7 B . 5 C . 5-D . 7-6. 如果执行右边的程序框图,输入正整数(2)N N ≥和实数1a ,2a ,,N a ,输出A ,B ,则( )A . AB +为1a ,2a ,,N a 的和B .2A B+为1a ,2a ,,N a 的算术平均数C . A 和B 分别是1a ,2a ,,N a 中最大的数和最小的数D . A 和B 分别是1a ,2a ,,N a 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A . 6B . 9C . 12D . 188. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =则C 的实轴长为( )A .B .C . 4D . 89. 已知0ω>,函数π()sin()4f x x ω=+在π(,π)2上单调递减,则ω的取值范围是( )A . 15[,]24B . 13[,]24C . 1(0,]2D . (0,2] 10. 已知函数1()ln(1)f x x x=+-,则()y f x =的图象大致为( )ABCD11. 已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .B .C . 3D . 212. 设点P 在曲线1e 2x y =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为()A . 1ln2-B . ln 2)- C . 1ln2+D .ln 2)+第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量a ,b 夹角为45,且||1=a ,2|-=|a b ,则|=|b _________.14. 设x ,y 满足约束条件1300x y x y x y --⎧⎪+⎪⎨⎪⎪⎩≥,≤,≥,≥,则2z x y =-的取值范围为_________.15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1 000,50)N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------小时的概率为_________.16. 数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,cos sin 0a C C b c +--=. (Ⅰ)求A ;(Ⅱ)若2a =,ABC △求b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;以100天记录的各需求量的频率作为各需求量的概率.(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.20.(本小题满分12分)设抛物线C :22(0)x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若90BFD ∠=,ABD △的面积为求p 的值及圆F 的方程;(Ⅱ)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)设函数121()(1)e (0)2x f x f f x x -'=-+. (Ⅰ)求()f x 的解析式及单调区间;(Ⅱ)若21()2f x x ax b ++≥,求(1)a b +的最大值.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的外接圆于F ,G 两点.若CF AB ∥,证明: (Ⅰ)CD BC =;(Ⅱ)BCD GBD △∽△.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos ,3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为π(2,)3. (Ⅰ)求点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PA PBPC PD +++的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|||2|f x x a x =++-.(Ⅰ)当3a =-时,求不等式()3f x ≥的解集; (Ⅱ)若()4|f x x -≤|的解集包含[1,2],求a 的取值范围.G2012年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析可知:该程序的作用是:求出12n a a a ,,,中最大的数和最小的数 其中A 为12n a a a ,,,中最大的数,B 为12n a a a ,,,中最小的数【提示】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出12n a a a ,,中最大的数和最小的数. 【考点】循环结构.7.【答案】B【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为3; ,102ω>∴,验证三角函数的角的范围,排除选项,得到结22222(2)44|a b|a b a a b b-=-=-+224||4||||cos45||a ab b=-︒+24|||10b b=-+=,解得||32b=【提示】由已知可得,2||||cos45||2ba ab b=︒=,代入2222(2)44a b|ab a a b b-=-=-+2422||||10b b=-+=可求【考点】平面向量数量积的运算,平面向量数量积的坐标表示、模、夹角.[]3,3-60(a++-117++=3159((a a a a=++++奇1770230+⨯=sin0C>,0πA<<222a b caab+-,22a b+-0πA<<(2)ABCS=△,2a A=,22b c=+-.解得b c=,直三棱柱,又1DC BD ⊥1DC D =,2AB a =,1DC ∴(Ⅱ)由(Ⅰ)知,12DC a =90AB ∴30. 30.轴,CB 为1(,0,2,0)(,0,A a a D a ,(,DB a =-(,0,DC a =-(,n x y =11n D B a n D Ca ⎧=-⎪⎨=-⎪⎩,故可取(1,2,1)n =同理,可求得平面的一个法向量2(1,1,0)n =设n 与n 的夹角为1223||||6n n n n =30.由图可知,二面角的大小为锐角,故二面角1A -()e h x '=x →-∞时,(2)当a 10a +>(1)a b ∴+()2u x x '=∥=CF AD,∴=CD AFCF AB∥(Ⅱ)由(Ⅰ)知,BCD∴△∽△。
20182010圆锥曲线高考题全国卷
2018(新课标全国卷2 理科)5A .y =B .y =C .D .12.已知1F ,2F 是椭圆的左,右焦点,A 是C 的左顶点,点P 在过A 的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .1419.(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 及C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且及C 的准线相切的圆的方程.2018(新课标全国卷2 文科)6A .y =B .y =C .D .11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .B .2C .D 120.(12分)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 及C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且及C 的准线相切的圆的方程.2018(新课标全国卷1 理科)8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线及C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .811.已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线及C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=A .32B .3C .D .419.(12分)设椭圆的右焦点为F ,过F 的直线l 及C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 及x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.2018(新课标全国卷1 文科)4.已知椭圆C :的一个焦点为(20),,则C 的离心率为A .13B .12C D 15.直线1y x =+及圆22230x y y ++-=交于A B ,两点,则AB =________. 20.(12分)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 及C 交于M ,N 两点. (1)当l 及x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.2018(新课标全国卷3 理科)6.直线20x y ++=分别及x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣ 11.设12F F ,是双曲线(00a b >>,)的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为A B .2 C D20.(12分)已知斜率为k 的直线l 及椭圆交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:FA ,FP ,FB 成等差数列,并求该数列的公差.2018(新课标全国卷3 文科)8.直线20x y ++=分别及x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP △面积的取值范围是 A .[2,6]B .[4,8]C .[2,32]D .[22,32]10.已知双曲线22221(00)x y C a b a b-=>>:,的离心率为2,则点(4,0)到C 的渐近线的距离为 A .2B .2C .32D .2220.(12分)已知斜率为k 的直线l 及椭圆交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >. (1)证明:;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0.证明:2||||||FP FA FB =+.2017(新课标全国卷2 理科)9.若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C .A .2B 3C 2D 2316.已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN = .20. 设O 为坐标原点,动点M 在椭圆上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .2017(新课标全国卷2 文科)5.若1a >,则双曲线的离心率的取值范围是( ).A.)+∞ B.)2 C. ( D. ()12,12.过抛物线2:4C y x =的焦点F C 于点M (M 在x 轴上方),l为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ).B. C. D.20.设O 为坐标原点,动点M 在椭圆上,过M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .2017(新课标全国卷1 理科)10.已知F 为抛物线24C y x =:的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 及C 交于A ,B 两点,直线2l 及C 交于D ,E 两点,则AB DE +的最小值为( ). A .16 B .14 C .12 D .1015.已知双曲线()2222:10,0x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 及双曲线C 的一条渐近线交于M ,N 两点.若60MAN ∠=,则C 的离心率为________. 20.已知椭圆()2222:=10x y C a b a b+>>,四点()111P ,,()201P ,,,中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且及C 相交于A ,B 两点.若直线2P A 及直线2P B 的斜率的和为–1,证明:l 过定点.2017(新课标全国卷1 文科)5.已知F 是双曲线的右焦点,P 是C 上一点,且PE 及x 轴垂直,点A 的坐标是()1,3,则APF △的面积为( ).A .13 B .12 C .23 D .3212.设A ,B 是椭圆长轴的两个端点,若C 上存在点M 满足120AMB ∠=,则m 的取值范围是( ).A 20.设A ,B 为曲线上两点,A 及B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线及直线AB 平行,且AM BM ⊥,求直线AB 的方程..(][)0,19,+∞ B.([)9,+∞ C.(][)0,14,+∞ D.([)4,+∞2017(新课标全国卷3 理科)5.已知双曲线C :()2222:10,0x y C a b a b-=>>的一条渐近线方程为,且及椭圆有公共焦点,则C 的方程为( ). A .B .C .D .10.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆及直线20bx ay ab -+=相切,则C 的离心率为( ).AB C .3D .1320.已知抛物线22C y x =:,过点()20,的直线l 交C 及A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()42P -,,求直线l 及圆M 的方程.2017(新课标全国卷3 文科)11.已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆及直线20bx ay ab -+=相切,则C 的离心率为( ).A B C .3D .1314.双曲线的一条渐近线方程为,则a = .20.在直角坐标系xOy 中,曲线2–2y x mx =+及x 轴交于A ,B 两点,点C 的坐标为()01,.当m 变化时,解答下列问题:(1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.2016(新课标全国卷2 理科)(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )(A )43-(B )34- (C )3 (D )2 (11)已知12,F F 是双曲线的左,右焦点,点M 在E 上,1MF 及x 轴垂直,,则E 的离心率为( )(A )2 (B )32(C )3 (D )220.(本小题满分12分)已知椭圆:E 的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.2016(新课标全国卷2 文科)(5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)及C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32 (D )2(6) 圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =( )(A )−43 (B )−34(C 3 (D )2(21)(本小题满分12分)已知A 是椭圆E :的左顶点,斜率为()0k k >的直线交E 及A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =时,证明:32k <<.2016(新课标全国卷1 理科)(5)已知方程x 2m 2+n –y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 20. (本小题满分12分)理科设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且及x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且及l 垂直的直线及圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.2016(新课标全国卷1 文科)(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A )13(B )12(C )23(D )34(15)设直线y=x +2a 及圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为 .(20)(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OHON; (II )除H 以外,直线MH 及C 是否有其它公共点?说明理由.2016(新课标全国卷3 理科)(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 及线段PF 交于点M ,及y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )13(B )12(C )23(D )34(16)已知直线l :30mx y m ++-=及圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线及x 轴交于,C D 两点,若AB =||CD =__________________. (20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.2016(新课标全国卷3 文科)(12)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 及线段PF 交于点M ,及y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 (A )13(B )12(C )23(D )34(15)已知直线l :60x -+=及圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线及x 轴交于,C D 两点,则||CD =_____________. (20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.2015(新课标全国卷2)(11)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为(A )√5 (B )2 (C )√3 (D )√2(15)已知双曲线过点),(3,4,且渐近线方程为,则该双曲线的标准方程为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2018全国卷圆锥曲线解答题(理科)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(Ⅰ)若90BFD ∠=︒,ABD ∆的面积为,求p 的值及圆F 的方程.(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值范围.6. (2017年全国高考Ⅰ卷理科第20题) (本小题满分12分)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.7.(2018年全国高考Ⅰ卷理科第19题) (本小题满分12分)设椭圆的右焦点为,过的直线与交于,两点,点的坐标为.⑴当与轴垂直时,求直线的方程;⑵设为坐标原点,证明:.2222=1x y a b+2012-2018全国卷圆锥曲线解答题(参考答案)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(Ⅰ)若90BFD ∠=︒,ABD ∆的面积为,求p 的值及圆F 的方程.(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.【解析】(Ⅰ)由对称性知BFD ∆是等腰直角三角形,斜边||2BD p =, 点A 到准线l的距离||||d FA FB ===,由1||2ABD S BD d ∆=⨯⨯=2p =.∴圆F 的方程为22(1)8x y +-=.(Ⅱ)由对称性设2000(,)(0)2x A x x p>,则(0,)2p F .由点,A B 关于点F 对称得200(,)2x B x p p --,从而2022x p p p -=-,所以2203x p =.因此3,)2p A,直线3:2p p pm y x -=+,即0x +=. 又22122x py y x p =⇔=,求导得'x y p ==,即x =)6pP .又直线:6p n y x -=,即0x -=. 故坐标原点到直线,m n距离的比值为23p =.【考点分析】本小题主要考查直线、圆、抛物线等基础知识,涉及到简单的面积和点到直线的距离等基本计算问题,考查推理论证能力、运算求解能力.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .【解析】由已知得圆M 的圆心为(1,0)M -,半径11r =,圆N 的圆心为(1,0)N ,半径23r =. 设动圆P 的圆心为(,)P x y ,半径为R .(Ⅰ)因为圆P 与圆M 外切且与圆N 内切,所以1212||||()()4PM PN R r r R r r +=++-=+=,且4||MN >. 由椭圆的定义可知,曲线C 是以,M N 为左,右焦点,长半轴长为2的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点(,)P x y ,由于||||222PM PN R -=-≤,所以2R ≤. 当且仅当圆P 的圆心为(2,0)时,2R =.∴当圆P 的半径最长时,其方程为22(2)4x y -+=. 当l 的倾斜角为90︒时,l 与y轴重合,可得||AB =当l 的倾斜角不为90︒时,由1r R ≠知l 不平行x 轴.设l 与x 轴的交点为Q , 则1||||QP RQM r =,可求得(4,0)Q -, ∴设:(4)l y k x =+,由l 与圆M1=,解得4k =±.当4k =时,将4y x =代入221(2)43x y x +=≠- 整理得27880x x +-=. (*)设1122(,),(,)A x y B x y ,则12,x x 是(*)方程的两根.所以1287x x +=-,1287x x =-.1218|||7AB x x ∴=-==.当4k =-时,由对称性知18||7AB =.综上,||AB =18||7AB =. 【考点分析】本小题主要考查直线、圆、椭圆等基础知识,考查推理论证能力、运算求解能力和方程思想.3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b+=>>的离心率为F 是椭圆的焦点,直线AF,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【解析】(Ⅰ)设(),0F c,由条件知2c =c =又c a =,所以2a =,2221b a c =-=,故E 的方程2214x y +=.(Ⅱ)由题意知直线l 的斜率存在,设直线l 的斜率为k ,方程为2y kx =-,联立直线与椭圆方程:22142x y y kx ⎧+=⎪⎨⎪=-⎩,化简得:22(14k )16120x kx +-+=.∵216(43)0k ∆=->,∴234k >. 设1122(,),(,)P x y Q x y ,则1212221612,1414k x x x x k k+=⋅=++,∴12PQ x -且坐标原点O 到直线l的距离为d =.因此221+41+4OPQS k k ∆==,令0)t t =>,则244,044OPQ t S t t t t∆==>++. ∵44t t+≥,当且仅当4t t =,即2t =时,等号成立,∴1OPQ S ∆≤.故当2t =,2=,k =OPQ ∆的面积最大. 此时,直线l的方程为2y x =±-. 【考点分析】本小题主要考查直线、椭圆、函数和不等式等基础知识,考查推理论证能力、运算求解能力、创新意识和方程思想.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 【解析】(Ⅰ)由题设可得),()M a N a -或(),)M a N a -.又=2x y ',故24x y =在x =在点)a处的切线方程为y a x -=-0y a --=.24x y x ==-在处的导数值为在点()a -处的切线方程为y a x -=+0y a ++=.故所求切线方程为0y a --=0y a ++=. (Ⅱ)存在符合题意的点P .证明如下:设(0,)P b 为符合题意的点,1122(,),(,)M x y N x y ,直线,PM PN 的斜率分别为12,k k . 将y kx a =+代入C 的方程,消去y 整理得2440x kx a --=, 则12,x x 是该方程的两根. 故12124,4.x x k x x a +==- 从而1212121212122()()()y b y b kx x a b x x k a b k k x x x x a--+-+++=+==. 当b a =-时,有120k k +=,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故OPM OPN ∠=∠. 所以点(0,)P a -符合题意.【考点分析】本小题主要考查直线、抛物线和导数的几何意义等基础知识,考查推理论证能力、运算求解能力和方程思想.5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(0,1)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E . (I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值范围.【解析】(I)因为AD AC =,EB AC ∥, 故EBD ACD ADC ∠=∠=∠.所以EB ED =, 故EA EB EA ED AD +=+=又圆A 标准方程为()22116x y ++=,从而4AD =,所以4EA EB +=. 由题设得()()1,0,1,0,2A B AB -=,由椭圆的定义可得点E 的轨迹方程为22143x y +=,(0y ≠); (II)(法一)当l 与x 轴不垂直时,设()():10l y k x k =-≠,()()1122,,,M x y N x y由()221143y k x x y ⎧=-⎪⎨+=⎪⎩得()22224384120k x k x k +-+-=. 则2122843k x x k +=+,212241243k x x k -=+ 所以()212212143k MN x k +=-=+.过点()1,0B 且与l 垂直的直线()1:1m y x k=--,A 到m ,所以PQ ==. 故四边形MPNQ 的面积为12S MN PQ ==当l 与x 轴不垂直时,四边形MPNQ 的面积的取值范围为( 当l 与x 轴垂直时,其方程为1x =,3MN =,8PQ =四边形MPNQ 的面积12.综上,四边形MPNQ的面积的取值范围为⎡⎣.(法二)221:143x y C +=;设:1l x my =+, 因为PQ l ⊥,设():1PQ y m x =--,联立1l C 与椭圆221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=;则()22121|||34M N m MN y y m +=-==+;圆心A 到PQ距离|11|m d ---==所以||PQ ===()2212111||||2234MPNQ m S MN PQ m +∴=⋅=⋅+⎡==⎣.【考点分析】主要考查直线与圆的位置关系、椭圆的定义、韦达定理、弦长公式等解析几何常用知识,考查推理论证能力、运算求解能力和方程思想.已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。