圆锥曲线近五年高考题(全国卷)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.已知双曲线)0(13

2

22>=-a y a x 的离心率为2,则=a A. 2

B. 2

6 C. 25 D. 1 10.已知抛物线C :x y =2的焦点为F ,()y x A

00,是C 上一点,x F A 045=,则=x 0( )

A. 1

B. 2

C. 4

D. 8 20.已知点)2,2(P ,圆C :082

2=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.

(1)求M 的轨迹方程;

(2)当OM OP =时,求l 的方程及POM ∆的面积

(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =

(A )3

(B )6 (C )12 (D )(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是

(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )⎡⎣ (D ) ⎡⎢⎣⎦

20.设F 1 ,F 2分别是椭圆C :122

22=+b

y a x (a>b>0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N 。

(I )若直线MN 的斜率为4

3,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN|=5|F 1N|,求a ,b 。

4.已知双曲线C:

22

22

=1

x y

a b

-(a>0,b>0)

的离心率为

2

,则C的渐近线方程为( ).

A.y=

1

4

x

±

B.y=

1

3

x

±

C.y=

1

2

x

±

D.y=±x

8.O为坐标原点,F为抛物线C:y2

=的焦点,P为C上一点,若|PF|

=,则△POF

的面积为( ).

A.2 B

..4

21.已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.

(1)求C的方程;

(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.

5、设椭圆22

22:1x y C a b

+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=o ,则C 的离心率为( )

(A )6 (B )13 (C )12 (D )3

10、设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。若

||3||AF BF =,则l 的方程为( )

(A )1y x =-或!y x =-+ (B )(1)3

y x =-或1)3y x =--

(C )1)y x =-或1)y x =- (D )(1)2y x =

-或(1)2y x =--

(20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线

段长为

(Ⅰ)求圆心P 的轨迹方程;

(Ⅱ)若P 点到直线y x =的距离为

2

,求圆P 的方程。

(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2

是底角为30°的等腰三角形,则E 的离心率为( )

(A )12 (B )23 (C )34 (D )45

(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为

(A ) 2 (B )2 2 (C )4 (D )8

(20)(本小题满分12分)

设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。

(I )若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;

(II )若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。

4.椭圆22

1168

x y +=的离心率为

A .13

B .12

C .3

D .2 9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为

A .18

B .24

C . 36

D . 48 20.在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.

(I )求圆C 的方程;

(II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.

(5)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为

(A (B (C )2 (D )2

(13)圆心在原点且与直线20x y +-=相切的圆的方程为 。

(20)设1F ,2F 分别是椭圆E :2

x +2

2y b =1(0b<1<)的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列。 (Ⅰ)求AB

(Ⅱ)若直线l 的斜率为1,求b 的值。

相关文档
最新文档