95学基础题题库(二)(立体几何)
立体几何大题题库

立体几何解答题题库1.如图,在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,P A =AB =AC =3,平面//α平面P AB ,且α与棱PC ,AC ,BC 分别交于P 1,A 1,B 1三点.(1)过A 作直线l ,使得l BC ⊥,11l P A ⊥,请写出作法并加以证明;(2)若α将三棱锥P -ABC 分成体积之比为8:19的两部分(其中,四面体P 1A 1B 1C 的体积更小),D 为线段B 1C 的中点,求四棱锥A 1-PP 1DB 1的体积.2.如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).(1)求四棱锥P -ABCD 的体积;(2)证明:BD ∥平面PEC ;(3)线段BC 上是否存在点M ,使得AE ⊥PM ?若存在,请说明其位置,并加以证明;若不存在,请说明理由.3.如图1所示,平面多边形CDEF 中,四边形ABCD 为正方形,EF ∥AB ,AB =2EF =2,沿着AB 将图形折成图2,其中AED ∠90,,AE ED H =︒=为AD 的中点.(Ⅰ)求证:EH ⊥BD ;(Ⅱ)求四棱锥D -ABFE 的体积.4.如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形,且平面⊥PAD 底面ABCD ,121===AD BC AB ,090=∠=∠ABC BAD .(1)证明::AB PD ⊥;(2)点M 在棱PC 上,且CP CM λ=,若三棱锥ACM D -的体积为31,求实数λ的值. 5.已知ABCD 是矩形,PD ⊥平面ABCD ,PD =DC =a ,2AD a =,M 、N 分别是AD 、PB 的中点。
(Ⅰ)求证:平面MNC ⊥平面PBC ;(Ⅱ)求点A 到平面MNC 的距离。
6.在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点.(1)求证:平面AB 1E ⊥平面B 1BCC 1;(2)求证:A 1C ∥平面AB 1E .7.如图,ABCD 为矩形,点A 、E 、B 、F 共面,且ABE ∆和ABF ∆均为等腰直角三角形,且BAE AFB ∠=∠=90°.(Ⅰ)若平面ABCD ⊥平面AEBF ,证明平面BCF ⊥平面ADF ;(Ⅱ)问在线段EC 上是否存在一点G ,使得BG ∥平面CDF ,若存在,求出此时三棱锥G -ABE 与三棱锥G -ADF 的体积之比.8.如图,四边形ABCD 为菱形,ACEF 为平行四边形,且平面ACEF ⊥平面ABCD ,设BD 与AC 相交于点G ,H 为FG 的中点.(Ⅰ)证明:BD ⊥CH ;(Ⅱ)若AB =BD =2,AE =3,CH =32,求三棱锥F -BDC 的体积.9.如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF ∥AB ,AB =2,BC = EF =1,6AE =,DE =3,60BAD ∠=,G 为BC 的中点.(1)求证:FG ∥平面BED ;(2)求证:BD ⊥平面AED ;(3)求点F 到平面BED 的距离.10.如图,在底面为梯形的四棱锥S -ABCD 中,已知//AD BC ,60ASC ∠=,2AD DC ==,2SA SC SD ===.(1)求证:AC SD ⊥;(2)求三棱锥B -SAD 的体积.11.如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD ,112AB AD CD ===, ∠BAD =∠CDA =90°,2PC PD ==.(1)求证:平面P AD ⊥平面PBC ;(2)求直线PB 与平面P AD 所成的角;(3)在棱PC 上是否存在一点E 使得直线BE ∥平面P AD ,若存在求PE 的长,并证明你的结论. 12.如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 是菱形,其对角线的交点为O ,且AB =AC 1,1AB B C ⊥.(1)求证:AO ⊥平面BB 1C 1C ;(2)若12BB =,且1160B BC B AC ∠=∠=︒,求三棱锥C 1-ABC 的体积.13.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,60BAD ∠=︒.(1)求证:平面PBD ⊥平面P AC ;(2)若PA AB =,M 为线段PC 的中点,求三棱锥C -MBD 的体积。
高中数学立体几何大题题库答案

立体几何解答题题库答案1.(1)作法:取BC 的中点H ,连接AH ,则直线AH 即为要求作的直线l .证明如下:,PA AB PA AC ⊥⊥,且AB AC A =,PA ∴⊥平面ABC .平面//α平面PAB ,且α平面11PAC P A =,平面PAB平面PAC PA =. 11P A ∴⊥平面ABC ,11PA AH ∴⊥. 又AB AC =,H 为BC 的中点,则AH BC ⊥,从而直线AH 即为要求作的直线l .(2)α将三棱锥P ABC -分成体积之比为8:19的两部分,∴四面体111P A B C 的体积与三棱锥P ABC -分成体积之比为8:27,又平面//α平面PAB ,11123AC B C PC AC BC PC ∴===. 易证//PA 平面111P A B ,则P 到平面111P A B 的距离1d 即为A 到平面111P A B 的距离,111d AA ∴==又D 为1B C 的中点,D ∴到平面111P A B 的距离21112d AC ==, 故四棱锥111A PPDB -的体积()1211422323V d d =⨯+⨯⨯⨯=. 2.(1)由几何体的三视图可知,底面ABCD 是边长为4的正方形,PA ⊥平面ABCD ,PA ∥EB ,且PA =,BE =,AB =AD =CD =CB =4,∴V P -ABCD =13PA ×S ABCD =13××4×4┉┉┉┉┉┉┉┉┉┉┉┉4分 (2)证明:连结AC 交BD 于O 点,取PC 中点F ,连结OF ,∵EB ∥PA ,且EB =12PA ,又OF ∥PA ,且OF =12PA ,∴EB ∥OF ,且EB =OF ,∴四边形EBOF 为平行四边形,∴EF ∥BD .又EF ⊂平面PEC ,BD ⊄平面PEC ,所以BD ∥平面PEC .┉┉┉┉┉┉┉┉┉┉┉┉8分解法二:可取PA 的中点Q,证明平面PEC ∥平面BDQ.BD ⊂平面BDQ.所以BD ∥平面PEC .(3)存在,点M 为线段BC 上任意一点. 证明如下:连结BP ,∵EBAB =BA PA ∠EBA =∠BAP =90°, ∴△EBA ∽△BAP ,∴∠PBA =∠BEA ,∴∠PBA +∠BAE =∠BEA +∠BAE =90°,∴PB ⊥AE . 又∵BC ⊥平面APEB ,∴BC ⊥AE ,∴AE ⊥平面PBC ,∴点M 为线段BC 上任意一点,均可使得AE ⊥PM. ┉┉┉┉┉┉┉┉┉┉12分3.(Ⅰ)在梯形ABCD 中,∵CD AB //,CB AD =,∴=∠BAD 60ABC ∠=,∴=∠ADC 120=∠BCD ,∵1==DC AD .∴=∠CAD 30=∠ACD ,∴ 90=∠ACB ,∴AC BC ⊥.(4分)∵平面ACFE ⊥平面ABCD ,平面 ACFE 平面ABCD AC =,∴⊥BC 平面ACFE .(Ⅱ)在ADC ∆中,-+=222DC AD AC ADC DC AD ∠⋅cos 23=,∴3=AC .分别以CF CB CA ,,为x 轴,y 轴,z 轴建立平面直角坐标系, 设h CF =,则)0,0,0(C ,)0,0,3(A ,)0,1,0(B ,)0,0,21(D ,),0,0(h F ,则)0,1,21(-=BD ,),1,0(h BF -=,易知平面BCF 的一个法向量为)0,0,1(=m , ∵平面BDF 的法向量为),,(z y x =,∴⎪⎩⎪⎨⎧=⋅=⋅,0,0BF n BD n 即⎪⎩⎪⎨⎧=+-=-,0,021hz y y x 令1=z ,则h x 2=,h y =, ∴平面BDF 的法向量为)1,,2(h h =,∵二面角D BF C --的平面角的余弦值为66, ∴>=<n m ,cos 1522+h h66=,解得1=h ,即1=CF .(10分) 所以六面体ABCDEF 的体积为:=ABCDEF V ACFE B V -ACFE D V -+BC S ACFE ⨯=正方形31D ACFE y S ⨯+正方形3121211311131=⨯⨯+⨯⨯=.(12分)4.(1)证明:取AD 的中点O,连OC,OP∵∆PAD 为等边三角形,且O 是边AD 的中点∴AD PO ⊥∵平面PAD ⊥底面ABCD ,且它们的交线为AD∴ABCD PO 平面⊥∴PO BA ⊥∵O PO AD AD BA =⊥ 且,∴PAD AB 平面⊥∴AB PD ⊥(2)设点M 到平面ACD 的距离为h ∵31==--ACD M ACM D V V ∴3131=⋅∆h S ACD ∴11ACD h S ∆== ∵31==OP h CP CM∴λ== 5.(I )连PM 、MB ∵PD ⊥平面ABCD ∴PD ⊥MD222222222323a AM AB BM a MD PD PM =+==+=∴又 ∴PM=BM 又PN=NB ∴MN ⊥PB,22,BC a PC a BC a DC PD ==∴===得NC ⊥PB MN NC N = ∴PB ⊥平面MNC⊂PB 平面PBC∴平面MNC ⊥平面PBC(II )取BC 中点E,连AE,则AE//MC ∴AE//平面MNC,A 点与E 点到平面MNC 的距离相等取NC 中点F,连EF,则EF 平行且等于21BN ∵BN ⊥平面MNC ∴EF ⊥平面MNC,EF 长为E点到平面MNC 的距离 ∵PD ⊥平面ABCD,PD BC ∴⊥ 又BC ⊥DC BC ∴⊥面PCD ∴BC ⊥PC.24121,222a PB BN EF a PC BC PB ====+=∴ 即点A 到平面MNC 的距离为2a 6.(2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形,所以F 为A 1B 的中点.又因为E 是BC 的中点,所以EF ∥A 1C .因为EF 在平面AB 1E 内,A 1C 不在平面AB 1E 内,所以A 1C ∥平面AB 1E .7.证明:(1)∵ABCD 为矩形,∴BC ⊥AB,又∵平面ABCD ⊥平面AEBF,BC ⊂平面ABCD,平面ABCD∩平面AEBF=AB, ∴BC ⊥平面AEBF, ……………(2分)又∵AF ⊂平面AEBF,∴BC ⊥AF. ……………(3分)∵∠AFB=90°,即AF ⊥BF,且BC 、BF ⊂平面BCF,BC∩BF=B , ∴AF ⊥平面BCF. ……………(5分)又∵AF ⊂平面ADF,∴平面ADF ⊥平面BCF. ………………………………(6分)(2)∵BC ∥AD,AD ⊂平面ADF,∴BC ∥平面ADF.∵ABE ∆和ABF ∆均为等腰直角三角形,且BAE AFB ∠=∠=90°,∴∠FAB=∠ABE=45°,∴AF ∥BE,又AF ⊂平面ADF,∴BE ∥平面ADF,∵BC∩BE=B ,∴平面BCE ∥平面ADF.延长EB 到点H,使得BH =AF,又BC //AD,连CH 、HF,易证ABHF 是平行四边形, ∴HF //AB //CD,∴HFDC 是平行四边形,∴CH ∥DF.过点B 作CH 的平行线,交EC 于点G,即BG ∥CH ∥DF,(DF ⊂平面CDF )∴BG ∥平面CDF,即此点G 为所求的G 点. ………………………………(9分) 又22AF BH ==,∴EG=23EC ,又2ABE ABF S S ∆∆=, 2444433333G ABE C ABE C ABF D ABF B ADF G ADF V V V V V V ------=====, 故43G ABE G ADF V V --=..………………………………(12分) 8.(1)证明: 四边形ABCD 为菱形 AC BD ⊥∴,………………1分又Q 面ACFE ⋂面ABCD =ACABCD BD 平面⊂∴………………2分面ABCD ⊥面ACFE C………………3分ACFE BD 面⊥∴,………………4分Q ACFE CH 面⊂ ………………5分CH BD ⊥∴………………………………6分(2)在FCG ∆中,GF CH CH CF CG ⊥===,23,3 所以︒=∠120GCF ,………………6分3=GF ………………8分ACFE BD 面⊥ ,ACFE GF 面⊂GF BD ⊥∴,………………9分3322121=⨯⨯=⋅=∆GF BD S BDF …………………………………. 10分 又BD CH ⊥∴,GF CH ⊥,G GF BD =⋂∴,BDF GF BD 平面⊂∴,∴CH ⊥平面BDF . . . . . . . . . . . . . 12分232333131=⋅⋅=⋅⋅==∆--CH S V V BDF BDF C BDC F ……………………………14分 9.(1)证明:取BD 的中点O ,连接OE ,OG在BCD ∆中,因为G 是BC 的中点,所以OG ∥DC 且112OG DC ==,……………1分 因为EF ∥AB ,AB ∥DC ,1EF =,所以EF ∥OG 且EF OG =,……………………2分所以四边形OGFE 是平行四边形,所以FG ∥OE , ………………………3分 又FG ⊄平面BED ,OE ⊂平面BED ,所以FG ∥平面BED . ……………………………4分(2)证明:在ABD ∆中,1AD =,2AB =,60BAD ∠=,由余弦定理得BD ==…………………………5分 因为222314BD AD AB +=+==,所以BD AD ⊥. …………………………6分因为平面AED ⊥平面ABCD ,BD ⊂平面ABCD ,平面AED 平面ABCD AD =, 所以BD ⊥平面AED . ……………………………7分(3)解法1:由(1)FG ∥平面BED ,所以点F 到平面BED 的距离等于点G 到平面BED 的距离, ……………………8分设点G 到平面BED 的距离为h ,过E 作EM DA ⊥,交DA 的延长线于M ,则EM ⊥平面ABG ,所以EM 是三棱锥E ABG -的高. ……………………9分 由余弦定理可得2cos 3ADE ∠=,所以sin ADE ∠=,sin EM DE ADE =⋅∠=. …………………………10分12DBG S DB BG ∆=⋅=12BDE S BD DE ∆=⋅= 因为G BDE E DBG V V--=,………………………………11分即1133BDE DBG S h S EM ∆∆⋅=⋅,解得h = 所以点F 到平面BED 的距离为65. ………………………………12分解法2:因为EF ∥AB ,且12EF AB =, 所以点F 到平面BED 的距离等于点A 到平面BED 的距离的12, ……………8分 由(2)BD ⊥平面AED .因为BD ⊂平面BED ,所以平面BED ⊥平面AED .过点A 作AH DE ⊥于点H ,又因为平面BED 平面AED ED =,故⊥AH 平面BED . 所以AH 为点A 到平面BED 的距离.…………………9分在ADE ∆中,6,3,1===AE DE AD , 由余弦定理可得2cos 3ADE ∠=所以sin ADE ∠=, …………………10分 因此35sin =∠⋅=ADE AD AH , ……………………………………………………11分所以点F 到平面BED 的距离为65. ………………………………………………12分10.(1)设O 为AC 的中点,连接OS ,OD ,∵SA SC =,∴OS AC ⊥,∵DA DC =,∴DO AC ⊥,又,OS OD ⊂平面SOD ,且OS OD O =,AC ⊥平面SOD ,又SD ⊂平面SOD ,∴AC SD ⊥.(2)连接BD ,在ASC ∆中,∵SA SC =,60ASC ∠=,O 为AC 的中点,∴ASC ∆为正三角形,且2AC =,OS =∵在ASC ∆中,2224DA DC AC +==,O 为AC 的中点,∴90ADC ∠=,且1OD =,∵在SOD ∆中,222OS OD SD +=,∴SOD ∆为直角三角形,且90SOD ∠=,∴SO OD ⊥又OS AC ⊥,且ACDO O =,∴SO ⊥平面ABCD . ∴B SAD S BAD V V --=13BAD S SO ∆=⋅⋅1132AD CD SO =⨯⋅⋅⋅11323=⨯=. 11.证明(1)因为∠BAD =∠CDA =90°,所以//AB CD ,四边形ABCD 为直角梯形,2CD =又PC PD ==222CD PC PD +=PD PC ∴⊥又,,AD CD AD PAD ⊥⊂,CD,PCD ABCD PCD ABCD ⊥=平面平面平面平面 AD PCD ∴⊥平面 又PC PBC ⊂平面 ,AD PC ∴⊥,,,PD PC PD PA A PD PA PAD ⊥=⊂点平面PC PAD ∴⊥平面,PC PBC ⊂平面所以平面P AD ⊥平面PBC ……………………4分(2)30°…………………………………8分(3)存在E 为PC 中点,即PE =满足条件……………………………12分 12.(1)证明:∵四边形11BB C C 是菱形,∴11B C BC ⊥,∵11,AB B C AB BC B ⊥⋂=, ∴1B C ⊥平面1ABC ,又AO ⊂平面1ABC ,∴1B C AO ⊥.∵1AB AC =,O 是1BC 的中点,∴1AO B C ⊥,∵11B C BC O ⋂=,∴AO ⊥平面11BB C C …………… ……6分(2)菱形11BB C C 的边长为2,又1160,B BC BB C ∠=︒∴∆是等边三角形,则12B C =. 由(1)知,1AO B C ⊥,又O 是1B C 的中点,1AB AC ∴=,又1160,B AC AB C ∠=︒∴∆是等边三角形,则112AC AB B C ===.在Rt ACO ∆中,22AO ===分11111122sin1201332C ABC A BCC BCC V V S AO --∆∴==⋅=⨯⋅⋅⋅=……………12分 13.(Ⅰ)证明:∵四边形ABCD 是菱形,∴AC BD ⊥.又∵PA ⊥平面ABCD ,BD ⊂≠平面ABCD ,∴PA BD ⊥.又PA AC A =,PA ⊂≠平面PAC ,AC ⊂≠平面PAC ,∴BD ⊥平面PAC ,∵BD ⊂≠平面PBD ,∴平面PBD ⊥平面PAC .(Ⅱ)解:BCD 11=221=3223C BDM M V V --=⨯⨯⨯⨯ 14. (1)证明:因为底面ABCD 为矩形,所以AD ∥BC .AD BCAD ADF BC ADF BC ADF ⎫⎪⊂⇒⎬⎪⊄⎭∥平面∥平面平面,BC ADFBC BCPQ BC PQ BCPQ ADF PQ ⎫⎪⊂⇒⎬⎪=⎭∥平面平面∥平面平面,PQ BC PQ ABCD PQ ABCD BC ABCD ⎫⎪⊄⇒⎬⎪⊂⎭∥平面∥平面平面.(2)解:由CD ⊥BE ,CD ⊥CB ,易证CD ⊥CE ,由BC ⊥CD ,BC ⊥FD ,易证BC ⊥平面CDFE ,所以CB ⊥CE ,即CD ,CE ,CB 两两垂直.连接FB ,FC ,则CD =2,BC =3,1(23)123F ABCD V -=⨯⨯⨯=, 111(31)1322F BCE V -=⨯⨯⨯⨯=, 15222ABCDEF F ABCD F BCE V V V --=+=+=.15.(1)证明:因为AB =1BC =,090ABC ∠=,所以2AC =,060BCA ∠=,在△ACD 中,AD =2AC =,060ACD ∠=,由余弦定理可得:2222cos AD AC CD AC CD ACD =+-∠解得:CD =4所以222AC AD CD +=,所以△ACD 是直角三角形,又E 为CD 的中点,所以12AE CD CE == 又060ACD ∠=,所以△ACE 为等边三角形,所以060CAE BCA ∠==∠,所以//BC AE ,又AE ⊂平面SAE ,BC ⊄平面SAE ,所以BC ∥平面SAE .(2)解:因为SA ⊥平面ABCD ,所以SA 同为三棱锥S BCE -与四棱锥S ABED -的高.由(1)可得0120BCE ∠=,122CE CD ==,所以1sin 2BCE S BC CE BCE ∆=⨯⨯∠1122=⨯⨯=.BCE ABED ABCD S S S ∆=-四边形四边形ABC ACD BCD S S S ∆∆∆=+-111222=+⨯⨯=.所以::1:4BCE ABED S S ∆==四边形 故:三棱锥S BCE -与四棱锥S BEDA -的体积比为1:4.16.(Ⅰ)取PA 的中点G,连FG,由题可知:BF=FP ,则FG //AB FG = 12AB ,又CE= ED ,可得:DE//AB 且DE = 12AB , ∴ FG //DE 且FG = DE ,∴四边形DEFG 为平行四边形,则EF //DG且EF =DG ,DG ⊂平面PAD ;EF ⊄平面PAD,∴ EF//平面PAD ⋯⋯⋯4分(Ⅱ)由PD ⊥平面ABCD ,PD ⊂平面PAD ,∴ 平面PAD ⊥平面ABCD,且交线为AD,又底面ABCD 是矩形,∴ BA ⊥ AD,∴BA ⊥ 平面PAD ,∴平面PAB ⊥平面PAD,其交线为PA ,又PD=AD,G 为PA 的中点,∴DG ⊥ PA,∴ DG ⊥平面PAB ,由(Ⅰ)知:EF // DG , ∴ EF ⊥平面PAB ⋯⋯⋯8分(Ⅲ)由得,AD=PD=1,F 为PB 的中点,∴ AEF P V -= AEF B V - = ABE F V -= ABE P V -21=PD S ABE ⋅⋅⋅∆3121 = 112213121⋅⋅⋅⋅⋅= 122⋯⋯⋯⋯12分 17.(1)见解析;(2.解:(1)证明:∵OD ABCD ⊥平面,PA QD ∥,∴PA ABCD ⊥平面,又∵BC ABCD ⊂平面,∴PA BC ⊥,又BC AB ⊥,PA PAB ⊂平面,AB PAB ⊂平面,PAAB A =,∴BC PAB ⊥平面,又∵BC QBC ⊂平面,∴平面PAB QBC ⊥平面. --------------------------518.(1)证明:∵平面PAD 垂直矩形平面ABCD ,∴CD ⊥平面PAD取DC 中点H,连接EH,EH ⊥CD,连接FH,则FH ⊥CD则CD ⊥平面EHF,∴平面EHF//平面PAD,又EF ∈平面EHF∴EF 平行PAD ; …………4分(2)证明:∵平面PAD 垂直矩形平面ABCD ,角CDA=90度,CD ⊥平面PAD,又平面PAD∩平面PDC 于PD,又DC ∈平面PDC,∴平面PDC 垂直平面PAD ………8分分19.(1)连结AB 1交A 1B 于点O,则O 为AB 1中点, D AC OD B CCD A BD B C A BD B C A BD∴⊂⊄∴111111是的中点又平面,平面平面20.(1)证明:连接BD ,交AC 于F ,连接EF .∵四边形ABCD 为正方形∴F 为BD 的中点∵E 为PB 的中点,∴EF ∥PD 又∵PD ⊄面ACE ,EF ⊂面ACE ,∴PD ∥平面ACE .(2).取AB 中点为G ,连接EG .∵E 为PB 的中点,∴EG ∥P A∵PA ⊥平面ABCD ,∴EG ⊥平面ABCD ,即EG 是三棱锥E ADC -的高,在Rt PAB ∆中,PB =4AB =,则4PA =, 2EG =,∴三棱锥E ADC -的体积为1116442323⨯⨯⨯⨯=. 21.(Ⅰ)证明:∵四边形ABCD 是矩形,∴CD ⊥BC .∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,CD ⊂平面ABCD ,∴CD ⊥平面PBC ,∴CD ⊥PB .∵PB ⊥PD ,CD ∩PD =D ,CD 、PD ⊂平面PCD ,∴PB ⊥平面PCD .∵PB ⊂平面P AB ,∴平面P AB ⊥平面PCD .(Ⅱ)取BC 的中点O ,连接OP 、OE .∵PB ⊥平面PCD ,∴PB PC ⊥,∴112OP BC ==, ∵PB PC =,∴PO BC ⊥.∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥平面ABCD ,∵AE ⊂平面ABCD ,∴PO ⊥AE .∵∠PEA =90O , ∴PE ⊥AE .∵PO ∩PE=P ,∴AE ⊥平面POE ,∴AE ⊥OE .∵∠C=∠D =90O , ∴∠OEC =∠EAD ,∴Rt OCE Rt EDA ∆∆,∴OC CE ED AD=. ∵1OC =,2AD =,CE ED =,∴CE ED ==111332A PED P AED AED V V S OP AD ED OP --==⋅=⨯⋅⋅112132=⨯⨯= 22.(1)证明:因为23λ=,所以23CE CS =,在线段CD 上取一点F 使23CF CD =,连接EF,BF,则EF ∥SD 且DF =1. 因为AB =1,AB ∥CD,∠ADC =90°,所以四边形ABFD 为矩形,所以CD ⊥BF .又SA ⊥平面ABCD,∠ADC =90°,所以SA ⊥CD,AD ⊥CD .因为AD∩SA =A,所以CD ⊥平面SAD, PCBAE DO所以CD ⊥SD,从而CD ⊥EF .因为BF∩EF =F,所以CD ⊥平面BEF .又BE ⊂平面BEF,所以CD ⊥BE .(2)解:由题设得,111()2332S BCD BCD V S SA CD AD SA -=⋅=⨯⨯⨯⨯=△,又因为SB ==BD ==SD =,所以12SBD S SD =⋅=△,设点C 到平面SBD 的距离为h,则由V S —BCD =V C —SBD 得h =,因为13CE CS =,所以点E 到平面SBD 的距离为23h =.23.证明:(1)∵几何体1111ABCD A B C D -为四棱柱,∴四边形11BCC B 为平行四边形,即BC ∥11B C ,且BC =11B C ,……………2分又∵底面ABCD 为等腰梯形,∴BC ∥AM ,即AM ∥11B C , ………………………3分又∵22AD AB BC ==,且M 为边AD 的中点,∴AM BC =,即AM =11B C ,……………4分则四边形11AMC B 为平行四边形,即1C M ∥1AB , ………………………………5分 又∵1C M ⊄平面11A ABB ,1A B ⊂平面11A ABB ,∴1C M ∥平面11A ABB , ……………………………………………………7分(2)∵BC ∥AM ,且AM BC =,∴四边形AMCB 为平行四边形, 又∵2AD AM AB ==,∴四边形AMCB 为茭形,则BM ⊥AC , ……………9分 又∵1CB ⊥底面ABCD ,且BM ⊂底面ABCD ,∴BM ⊥1CB , ……………11分 又∵1AC CB C =,且AC ⊂平面1ACB ,1CB ⊂平面1ACB ,∴BM ⊥平面1ACB , ……………………………………………………13分 又∵BM ⊂底面1B BM ,∴平面1B BM ⊥平面1ACB ……………………………14分 24.(Ⅰ)证明:取BC 中点M ,连接,DM PM可知1MD AB ==且MD BC ⊥又,2PB PC BC ⊥=,∴在Rt PBC ∆有1PM = 又2PD =,222PD PM MD ∴=+,即MD PM ⊥ ………………………3分又,,MD BC PM BC M PM ⊥=⊂平面PBC ,BC ⊂平面PBCMD ∴⊥平面PBC , ………………………5分 又MD ⊂平面ABCD∴平面PBC ⊥平面ABCD ………………………6分(Ⅱ)设点D 到平面PAB 的距离为h,PC PB PC PB =⊥,PM BC ∴⊥ 又平面PBC ⊥平面ABCD ,且平面PBC 平面ABCD BC =PM ∴⊥面ABCD ………………………8分1111||1113326P ABD ABD V PM S -∆∴==⨯⨯⨯⨯=………………………9分在PAB ∆中有1,PB AB PA ===,222,PB AB PA PB AB ∴+=∴⊥∴2PAB S ∆=…………………10分1113326D ABP ABP V S h h -∆=⋅=⨯=,2h ∴=所以点D 到平面PAB.………………………12分 25.(1)因为//BC 平面SDM, BC ⊂平面ABCD,平面SDM 平面ABCD=DM,所以DM BC //,因为DC AB //,所以四边形BCDM 为平行四边形,又CD AB 2=,所以M 为AB 的中点. 因为AM λ=,12λ∴=. (2)因为BC ⊥SD , BC ⊥CD ,所以BC ⊥平面SCD ,又因为BC ⊂平面ABCD ,所以平面SCD ⊥平面ABCD ,平面SCD 平面ABCD CD =,在平面SCD 内过点S 作SE ⊥直线CD 于点E ,则SE ⊥平面ABCD , 在Rt △SEA 和Rt △SED 中,因为SA SD =,所以AE DE ==, 又由题知45EDA ∠=,所以AE ED ⊥,由已知求得AD =,所以1AE ED SE ===,连接BD,则111133S ABD V -=⨯⨯=三棱锥,又求得△SAD所以由B ASD S ABD V V --=三棱锥三棱锥点B 到平面SAD .26.(1)由已知,平面ABCD, ∵平面, 又∵,∴平面. 因平面EBD,则平面平面BDE . (2)法1:记AC 交BD 于点O,连PO,由(1)得平面平面BDP,且交于直线PO, 过点E 作于H,则平面PBD, ∴为BE 与平面PBD 所成的角. ∵,∴. ∴.又,则.于是,直线BE与平面PBD所成角的正弦值是.法2:(等体积法)∵,∴E点到平面PBD的距离为.又,则.于是,直线BE与平面PBD所成角的正弦值是.27.(1)又又(2)设,则.过作,为垂足,为中点....四棱锥P-ABCD的侧面积为:,。
立体几何大题题库

立体几何解答题题库1.如图,在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,P A =AB =AC =3,平面//α平面P AB ,且α与棱PC ,AC ,BC 分别交于P 1,A 1,B 1三点.(1)过A 作直线l ,使得l BC ⊥,11l P A ⊥,请写出作法并加以证明;(2)若α将三棱锥P -ABC 分成体积之比为8:19的两部分(其中,四面体P 1A 1B 1C 的体积更小),D 为线段B 1C 的中点,求四棱锥A 1-PP 1DB 1的体积.2.如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).(1)求四棱锥P -ABCD 的体积;(2)证明:BD ∥平面PEC ;(3)线段BC 上是否存在点M ,使得AE ⊥PM ?若存在,请说明其位置,并加以证明;若不存在,请说明理由.3.如图1所示,平面多边形CDEF 中,四边形ABCD 为正方形,EF ∥AB ,AB =2EF =2,沿着AB 将图形折成图2,其中AED ∠90,,AE ED H =︒=为AD 的中点.(Ⅰ)求证:EH ⊥BD ;(Ⅱ)求四棱锥D -ABFE 的体积.4.如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形,且平面⊥PAD 底面ABCD ,121===AD BC AB ,090=∠=∠ABC BAD .(1)证明::AB PD ⊥;(2)点M 在棱PC 上,且CP CM λ=,若三棱锥ACM D -的体积为31,求实数λ的值. 5.已知ABCD 是矩形,PD ⊥平面ABCD ,PD =DC =a ,2AD a =,M 、N 分别是AD 、PB 的中点。
(Ⅰ)求证:平面MNC ⊥平面PBC ;(Ⅱ)求点A 到平面MNC 的距离。
6.在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点.(1)求证:平面AB 1E ⊥平面B 1BCC 1;(2)求证:A 1C ∥平面AB 1E .如图,ABCD 为矩形,点A 、E 、B 、F 共面,且ABE ∆和ABF ∆均为等腰直角三角形,且BAE AFB ∠=∠=90°.(Ⅰ)若平面ABCD ⊥平面AEBF ,证明平面BCF ⊥平面ADF ;(Ⅱ)问在线段EC 上是否存在一点G ,使得BG ∥平面CDF ,若存在,求出此时三棱锥G -ABE 与三棱锥G -ADF 的体积之比.8.如图,四边形ABCD 为菱形,ACEF 为平行四边形,且平面ACEF ⊥平面ABCD ,设BD 与AC 相交于点G ,H 为FG 的中点.(Ⅰ)证明:BD ⊥CH ;(Ⅱ)若AB =BD =2,AE =3,CH =32,求三棱锥F -BDC 的体积.9.如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF ∥AB ,AB =2,BC = EF =1,6AE =,DE =3,60BAD ∠=,G 为BC 的中点.(1)求证:FG ∥平面BED ;(2)求证:BD ⊥平面AED ;(3)求点F 到平面BED 的距离.如图,在底面为梯形的四棱锥S -ABCD 中,已知//AD BC ,60ASC ∠=,2AD DC ==,2SA SC SD ===.(1)求证:AC SD ⊥;(2)求三棱锥B -SAD 的体积.11.如图,在四棱锥P -ABCD 中,平面PCD ⊥平面ABCD ,112AB AD CD ===, ∠BAD =∠CDA =90°,2PC PD ==.(1)求证:平面P AD ⊥平面PBC ;(2)求直线PB 与平面P AD 所成的角;(3)在棱PC 上是否存在一点E 使得直线BE ∥平面P AD ,若存在求PE 的长,并证明你的结论. 12.如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 是菱形,其对角线的交点为O ,且AB =AC 1,1AB B C ⊥.(1)求证:AO ⊥平面BB 1C 1C ;(2)若12BB =,且1160B BC B AC ∠=∠=︒,求三棱锥C 1-ABC 的体积.13.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,60BAD ∠=︒.(1)求证:平面PBD ⊥平面P AC ;(2)若PA AB =,M 为线段PC 的中点,求三棱锥C -MBD 的体积。
高中数学立体几何测试题(10套)

∴ BD ∥平面 PMN ,
位置关系为
平行
。
∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中
点
A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线
立体几何经典试题(含答案)

1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,1CC AC C ⋂=,∴BC ⊥面11ACC A , 又∵1DC ⊂面11ACC A ,∴1DC BC ⊥,由题设知01145A DC ADC ∠=∠=,∴1CDC ∠=090,即1DC DC ⊥, 又∵DC BC C ⋂=, ∴1DC ⊥面BDC , ∵1DC ⊂面1BDC , ∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+⨯⨯⨯=12,由三棱柱111ABC A B C -的体积V =1,∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点且12DF AB =,PH 为△PAD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)若1PH =,AD =,1FC =,求三棱锥E BCF -的体积;(3)证明:EF ⊥平面PAB .B 1C BADC 1A 1【解析】(1)证明:因为AB ⊥平面PAD ,所以PH AB ⊥。
因为PH 为△PAD 中AD 边上的高, 所以PH AD ⊥。
因为AB AD A = ,所以PH ⊥平面ABCD 。
(2)连结BH ,取BH 中点G ,连结EG 。
因为E 是PB 的中点, 所以//EG PH 。
因为PH ⊥平面ABCD ,所以EG ⊥平面ABCD 。
则1122EG PH ==, 111332E B C F B C FV S E G F C A D G -∆=⋅=⋅⋅⋅⋅=12。
立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(1)线段的中点为,线段的中点为,求证:;(2)求直线与平面所成角的正切值.解:(1)取的中点为,连,,则,面/面, .............. 分5(2)先证出面,.............. 分8为直线与平面所成角,................ 分11................ 分142、己知多面体ABCDE中,DE平面ACD,, AC=AD=CD=DE=2 AB =1, O 为CD 的中点.(1)求证:AO平面CDE(2)求直线BD与平面CBE所成角的正弦值3、如图,在△中,,,点在上,交于,交于•沿将△翻折成△,使平面平面;沿将△翻折成△ ,使平面平面.( 1 )求证:平面;(2 )若,求二面角的平面角的正切值.解:(1)因为,平面,所以平面.因为平面平面,且,所以平面. …2分同理,平面,所以,从而平面. …4分所以平面平面,从而平面.2)因为,,所以,,,.过E作,垂足为M,连结.由( 1)知,可得,所以,所以.所以即为所求二面角的平面角,可记为.在Rt△中,求得,所以. …4、如图,平面ABC,平面BCD, DE=DA=AB=AC,. M(1) 求直线EM与平面BCD所成角的正弦值;(2) P为线段DM上一点,且DM,求证:AP//DE. (12)分15 分为BC中点.解:(1) 平面,为在平面上的射影,为与平面所成角. …分2平面,, 设,又,. 在△中,,,又为中点,, ,.…5分在△中,,.……………………分 (7)2),为中点, .又平面, ,平面.又平面,,分11 …分9又,平面. .............. 分13又平面,. .............. 分145、如图,已知ABCD是边长为1的正方形,AF丄平面ABCD, CE// AF,(1)证明:BD丄EF;(2)若AF= 1,且直线BE与平面ACE所成角的正弦值为,求的值.解:(1)连结BD、AC,交点为O. •/ ABCD是正方形/• BD丄AC ……2分•/ AF丄平面ABCD A AF丄BD ……4分••• BD丄平面ACEF (6)A BD丄EF ……7分(2)连结0E,由(1)知,BD丄平面ACEF所以/ BEO即为直线BE与平面ACE所成的角. ……10分•/ AF丄平面ABCD, CE// AF , • CE丄平面ABCD, CE1 BC,•/ BC =1 , AF= 1 ,贝U CE= , BE= , B0=,• RtA BEO 中,,…1盼因为解得. …… 15分6、如图在几何体中平面ABC分别是的中点.(1) 求证:平面CDE;(2) 求二面角的平面角的正切值.解:(1)连接ACR1R交EC于点F ,由题意知四边形ACCR1RE是矩形,贝U F是ACR1R的中连接DF, •/ D是AB的中点,•ABCR1R勺中位线,a BCR1R//DF, 4 分•/ BCR1RF面EDC DF平面EDC,• BCR1R//平面CDE. 7 分(2)作AH丄直线CD,垂足为H ,连接HE,•/ AAR1R丄平面ABC, • AAR1RL DC,CD丄平面AHE,CD丄EH ,••• AHE是二面角E -CD -A的平面角. 11分•/ D是AB的中点,• AH等于点B到CD的距离,在厶BCD中,求得:AH=, 在厶AEH中,即所求二面角的正切值为.7、如图,已知平面与直线均垂直于所在平面,且,( 1 )求证:平面;(2)若,求与平面所成角的正弦值.解:(1)证明:过点作于点,•••平面丄平面,•平面……2分又•••丄平面•- 〃 , ......... 分又•••平面• 〃平面 ......... 分(2) •••平面•,又•/••………………分8•点是的中点,连结,则•平面•//,•四边形是矩形………………分10设得:,又•••,•,从而,过作于点,则:•是与平面所成角…………………………………………分…… •,• 与平面所成角的正弦值为…………………………分14&如图,在直三棱柱中,是等腰直角三角形,,侧棱AA仁2, D, E分别为点,点E在平面ABD上的射影是的重心.(1) 求证:DE// 平面ACB;(2) 求A1B与平面ABD所成角的正弦值.12CC1 与A1B 的中9、如图,在侧棱垂直于底面的三棱柱ABC-A1B1中,底面△ ABC为等腰直角三角形,/ B=90°D为棱BB1的中点。
立体几何经典习题集(含答案)

立体几何基础A 组题一、选择题:1.下列命题中正确命题的个数是 ( ) ⑴ 三点确定一个平面⑵ 若点P 不在平面α内,A 、B 、C 三点都在平面α内,则P 、A 、B 、C 四点不在同一平面内 ⑶ 两两相交的三条直线在同一平面内⑷ 两组对边分别相等的四边形是平行四边形A.0B.1C.2D.3答案:A2.已知异面直线a 和b 所成的角为︒50,P 为空间一定点,则过点P 且与a 、b 所成的角都是︒30的直线条数有且仅有 ( ) A.1条 B.2条 C.3条 D.4条答案:B 3.已知直线⊥l 平面α,直线⊂m 平面β,下列四个命题中正确的是 ( ) (1) 若βα//,则m l ⊥ (2) 若βα⊥,则m l // (3) 若m l //,则βα⊥ (4) 若 m l ⊥,则βα//A.(3)与(4)B.(1)与(3)C.(2)与(4)D.(1)与(2)答案:B4.已知m 、n 为异面直线,⊂m 平面α,⊂n 平面β,l =βα ,则l ( ) A.与m 、n 都相交 B.与m 、n 中至少一条相交 C.与m 、n 都不相交 D.至多与m 、n 中的一条相交答案:B5.设集合A={直线},B={平面},B A C =,若A a ∈,B b ∈,C c ∈,则下列命题中的真命题是 ( )A. c a b a b c ⊥⇒⎭⎬⎫⊥// B.c a c b b a //⇒⎭⎬⎫⊥⊥ C.c a b c b a //////⇒⎭⎬⎫ D. c a b c b a ⊥⇒⎭⎬⎫⊥//答案:A6.已知a 、b 为异面直线,点A 、B 在直线a 上,点C 、D 在直线b 上,且AC=AD ,BC=BD ,则直线a 、b 所成的角为 ( ) A. ︒90 B. ︒60 C. ︒45 D. ︒30答案:A7.下列四个命题中正确命题的个数是 ( ) 有四个相邻侧面互相垂直的棱柱是直棱柱 各侧面都是正方形的四棱柱是正方体底面是正三角形,各侧面都是等腰三角形的三棱锥是正三棱锥A.1个B.2个C.3个D.0个答案:D8.设M={正四棱柱},N={长方体},P={直四棱柱},Q={正方体},则这些集合之间关系是 ( ) A.Q M N P B.Q M N P C.Q N M P D.Q N M P答案:B9.正四棱锥P —ABCD 中,高PO 的长是底面长的21,且它的体积等于334cm ,则棱AB 与侧面PCD 之间的距离是 ( ) A.cm 2 B. cm 2 C. cm 1 D.cm 22答案:A10.纬度为α的纬圈上有A 、B 两点,弧在纬圈上,弧AB 的长为απcos R (R 为球半径),则A 、B 两点间的球面距离为 ( )A. R πB. R )(απ-C. R )2(απ-D. R )2(απ-答案:D11.长方体三边的和为14,对角线长为8,那么 ( ) A.它的全面积是66 B.它的全面积是132C.它的全面积不能确定D.这样的长方体不存在答案:D12.正四棱锥P —ABCD 的所有棱长都相等,E 为PC 的中点,那么异面直线BE 与PA 所成角的余弦值等于( )A.21B. 22C. 32D. 33答案:D13.用一个过正四棱柱底面一边的平面去截正四棱柱,截面是 ( )A.正方形B.矩形C.菱形D.一般平行四边形答案:B二、填空题:14.正方体1111D C B A ABCD -中,E 、F 、G 分别为AB 、BC 、CC 1的重点,则EF 与BG 所成角的余弦值为________________________答案:510 15.二面角βα--a 内一点P 到两个半平面所在平面的距离分别为22和4,到棱a 的距离为24,则这个二面角的大小为__________________答案:︒︒16575或16.四边形ABCD 是边长为a 的菱形,︒=∠60BAD ,沿对角线BD 折成︒120的二面角A —BD —C 后,AC 与BD 的距离为_________________________答案:a 43 17.P 为︒120的二面角βα--a 内一点,P 到α、β的距离为10,则P 到棱a 的距离是_________________答案:3320 18.如图:正方形ABCD 所在平面与正方形ABEF 所在平面成︒60的二面角,则异面直线AD 与BF 所成角的余弦值是______________________答案:4219.已知三棱锥P —ABC 中,三侧棱PA 、PB 、PC 两两互相垂直,三侧面与底面所成二面角的大小分别为γβα,,,则=++γβα222cos cos cos _______________答案:1 20.若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积的值是_____________(只需写出一个可能的值)。
立体几何知识点和例题(含有答案)

【考点梳理】一、考试内容1.平面。
平面的基本性质。
平面图形直观图的画法。
2.两条直线的位置关系。
平行于同一条直线的两条直线互相平行。
对应边分别平行的角。
异面直线所成的角。
两条异面直线互相垂直的概念。
异面直线的公垂线及距离。
3.直线和平面的位置关系。
直线和平面平行的判定与性质。
直线和平面垂直的判定与性质。
点到平面的距离。
斜线在平面上的射影。
直线和平面所成的角。
三垂线定理及其逆定理。
4.两个平面的位置关系。
平面平行的判定与性质。
平行平面间的距离。
二面角及其平面角。
两个平面垂直的判定与性质。
二、考试要求1.掌握平面的基本性质,空间两条直线、直线与平面、平面与平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念。
对于异面直线的距离,只要求会计算已给出公垂线时的距离。
2.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题。
对于异面直线上两点的距离公式不要求记忆。
3.会用斜二测画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、正六边形)的直观图。
能够画出空间两条直线、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系。
4.理解用反证法证明命题的思路,会用反证法证明一些简单的问题。
三、考点简析1.空间元素的位置关系2.平行、垂直位置关系的转化3.空间元素间的数量关系(1)角①相交直线所成的角;②异面直线所成的角——转化为相交直线所成的角;③直线与平面所成的角——斜线与斜线在平面内射影所成的角;④二面角——用二面角的平面角来度量。
(2)距离①两点之间的距离——连接两点的线段长;②点线距离——点到垂足的距离;③点面距离——点到垂足的距离;④平行线间的距离——平行线上一点到另一直线的距离;⑤异面直线间的距离——公垂线在两条异面直线间的线段长;⑥线面距离——平行线上一点到平面的距离;⑦面面距离——平面上一点到另一平面的距离;⑧球面上两点距离——球面上经过两点的大圆中的劣弧的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础题题库二立体几何101. C B A '''∆是△ABC 在平面α上的射影,那么C B A '''∠和∠ABC 的大小关系是 ( ) (A) C B A '''∠<∠ABC (B) C B A '''∠>∠ABC(C) C B A '''∠≥∠ABC(D) 不能确定解析:D一个直角,当有一条直角边平行于平面时,则射影角可以等于原角大小,但一般情况不等.102. 已知: 如图, △ABC 中, ∠ACB = 90︒, CD ⊥平面α, AD , BD 和平面α所成的角分别为30︒和45︒, CD = h , 求: D 点到直线AB 的距离。
解析:1、先找出点D 到直线AB 的距离, 即过D 点作 DE ⊥AB , 从图形以及条件可知, 若把DE 放在△ABD 中不易求解。
2、由于CD ⊥平面α, 把DE 转化到直角三角形中求解, 从而转化为先求DE 在平面α内的射影长。
解: 连AC , BC , 过D 作DE ⊥AB , 连CE , 则DE 为D 到直线AB 的距离。
∵CD ⊥α∴AC , BC 分别是AD , BD 在α内的射影。
∴∠DAC , ∠DBC 分别是AD 和BD 与平面α所成的角 ∴∠DAC = 30︒, ∠DBC = 45︒ 在Rt △ACD 中, ∵CD = h , ∠DAC = 30︒ ∴AC =3h在Rt △BCD 中∵CD = h , ∠DBC = 45︒∴BC = h ∵CD ⊥α, DE ⊥AB ∴CE ⊥AB 在Rt △ACB 中 AB AC BC h =+=222S AC BC AB CE =⨯=1212· ∴CE AC BCABh h h h =⨯==3232·∴在Rt △DCE 中,DE DC CE h h h =+=+=22223272() ∴点D 到直线AB 的距离为72h 。
103. 已知a 、b 、c 是平面α内相交于一点O 的三条直线,而直线l 和α相交,并且和a 、b 、c 三条直线成等角. 求证:l ⊥α证法一:分别在a 、b 、c 上取点A 、B 、C 并使AO = BO = CO .设l 经过O ,在l 上取一点P ,在△POA 、△POB 、△POC 中,∵ PO 公用,AO = BO = CO ,∠POA =∠POB =∠POC , ∴ △POA ≌△POB ≌△POC∴ PA = PB = PC .取AB 中点D .连结OD 、PD ,则OD ⊥AB ,PD ⊥AB , ∵ D OD PD = ∴ AB ⊥平面POD ∵ PO ⊂平面POD . ∴ PO ⊥AB . 同理可证 PO ⊥BC∵ α⊂AB ,α⊂BC ,B BC AB = ∴ PO ⊥α,即l ⊥α若l 不经过O 时,可经过O 作l '∥l .用上述方法证明l '⊥α, ∴ l ⊥α.证法二:采用反证法假设l 不和α垂直,则l 和α斜交于O . 同证法一,得到PA = PB = PC .过P 作α⊥'O P 于O ',则O C O B O A '='=',O 是△ABC 的外心.因为O 也是△ABC 的外心,这样,△ABC 有两个外心,这是不可能的. ∴ 假设l 不和α垂直是不成立的. ∴ l ⊥α若l 不经过O 点时,过O 作l '∥l ,用上述同样的方法可证l '⊥α, ∴ l ⊥α评述:(1)证明线面垂直时,一般都采用直接证法(如证法一),有时也采用反证法(如证法二)或同一法.104. P 是△ABC 所在平面外一点,O 是点P 在平面α上的射影. (1)若PA = PB = PC ,则O 是△ABC 的____________心.(2)若点P 到△ABC 的三边的距离相等,则O 是△ABC _________心.(3)若PA 、PB 、PC 两两垂直,则O 是△ABC _________心.(4)若△ABC 是直角三角形,且PA = PB = PC 则O 是△ABC 的____________心. (5)若△ABC 是等腰三角形,且PA = PB = PC ,则O 是△ABC 的____________心. (6)若P A 、PB 、PC 与平面ABC 所成的角相等,则O 是△ABC 的________心; 解析:(1)外心.∵ P A =PB =PC ,∴ OA =OB =OC ,∴ O 是△ABC 的外心.(2)内心(或旁心).作OD ⊥AB 于D ,OE ⊥BC 于E ,OF ⊥AC 于F ,连结PD 、PE 、PF .∵ PO⊥平面ABC ,∴ OD 、OE 、OF 分别为PD 、PE 、PF 在平面ABC 内的射影,由三垂线定理可知,PD ⊥AB ,PE ⊥BC ,PF ⊥AC .由已知PD =PE =PF ,得OD =OE =OF ,∴ O 是△ABC 的内心.(如图答9-23) (3)垂心.(4)外心.(5)外心(6)外心.P A 与平面ABC 所成的角为∠P AO ,在△P AO 、△PBO 、△PCO 中,PO 是公共边,∠POA =∠POB =∠POC =90°,∠P AO =∠PBO =∠PCO ,∴ △P AO ≌△PBO ≌△PCO ,∴ OA =OB =OC ,∴ O 为△ABC 的外心.(此外心又在等腰三角形的底边高线上).105. 将矩形ABCD 沿对角线BD 折起来,使点C 的新位置C '在面ABC 上的射影E 恰在AB 上. 求证:C B C A '⊥'分析:欲证C B C A '⊥',只须证C B '与C A '所在平面D C A '垂直;而要证C B '⊥平面D C A ',只须证C B '⊥D C '且C B '⊥AD .因此,如何利用三垂线定理证明线线垂直就成为关键步骤了.证明:由题意,C B '⊥D C ',又斜线C B '在平面ABCD 上的射影是BA , ∵ BA ⊥AD ,由三垂线定理,得AD B C ⊥',D DA D C =' . ∴ C B '⊥平面AD C ',而A C '⊂平面AD C ' ∴ C B '⊥C A '106. 已知异面直线l 1和l 2,l 1⊥l 2,MN 是l 1和l 2的公垂线,MN = 4,A ∈l 1,B ∈l 2,AM = BN = 2,O 是MN 中点.① 求l 1与OB 的成角.②求A 点到OB 距离.分析:本题若将条件放入立方体的“原型”中,抓住“一个平面四条线”的图形特征及“直线平面垂直”的关键性条件,问题就显得简单明了. 解析:(1)如图,画两个相连的正方体,将题目条件一一标在图中. OB 在底面上射影NB ⊥CD ,由三垂线定理,OB ⊥CD ,又CD ∥MA ,∴ OB ⊥MA 即OB 与l 1成90° (2)连结BO 并延长交上底面于E 点. ME = BN , ∴ ME = 2,又 ON = 2 ∴ 22==OE OB . 作AQ ⊥BE ,连结MQ .对于平面EMO 而言,AM 、AQ 、MQ 分别为垂线、斜线、斜线在平面内的射影,由三垂线逆定理得MQ ⊥EO .在Rt △MEO 中,22222=⨯=⋅=EO MO ME MQ . 评述:又在Rt △AMQ 中,62422=+=+=MQ AM AQ ,本题通过补形法使较困难的问题变得明显易解;求点到直线的距离,仍然是利用直线与平面垂直的关键条件,抓住“一个面四条线”的图形特征来解决的. 107. 已知各棱长均为a 的正四面体ABCD ,E 是AD 边的中点,连结CE .求CE 与底面BCD 所成角的正弦值. 解析:作AH ⊥底面BCD ,垂足H 是正△BCD 中心,∥连DH 延长交BC 于F ,则平面AHD ⊥平面BCD , 作EO ⊥HD 于O ,连结EC , 则∠ECO 是EC 与底面BCD 所成的角 则EO ⊥底面BCD .a a DF HD 33233232=⨯==a a a HD AD AH 3632222=-=-=a a AH EO 66362121=⨯==,a CE 23= ∴ 322366sin ===∠a a EC EO ECO 108. 已知四面体S -ABC 中,SA ⊥底面ABC ,△ABC 是锐角三角形,H 是点A 在面SBC 上的射影.求证:H 不可能是△SBC 的垂心.分析:本题因不易直接证明,故采用反证法.证明:假设H 是△SBC 的垂心,连结BH ,并延长交SC 于D 点,则BH ⊥SC ∵ AH ⊥平面SBC ,∴ BH 是AB 在平面SBC 内的射影 ∴ SC ⊥AB (三垂线定理)又∵ SA ⊥底面ABC ,AC 是SC 在面内的射影 ∴ AB ⊥AC (三垂线定理的逆定理)∴ △ABC 是Rt △与已知△ABC 是锐角三角形相矛盾,于是假设不成立. 故H 不可能是△SBC 的垂心.109. 已知ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GC 垂直于ABCD 所在的平面,且GCABCHDS=2.求点B 到平面EFG 的距离.解析:如图,连结EG 、FG 、EF 、BD 、AC 、EF 、BD 分别交AC 于H 、O . 因为ABCD 是正方形,E 、F 分别为AB 和AD 的中点,故EF ∥BD ,H 为AO 的中点.BD 不在平面EFG 上.否则,平面EFG 和平面ABCD 重合,从而点G 在平面的ABCD 上,与题设矛盾. 由直线和平面平行的判定定理知BD ∥平面EFG ,所以BD 和平面EFG 的距离就是点B 到平面EFG 的距离. ——4分 ∵ BD ⊥AC , ∴ EF ⊥HC . ∵ GC ⊥平面ABCD , ∴ EF ⊥GC , ∴ EF ⊥平面HCG .∴ 平面EFG ⊥平面HCG ,HG 是这两个垂直平面的交线. ——6分作OK ⊥HG 交HG 于点K ,由两平面垂直的性质定理知OK ⊥平面EFG ,所以线段OK 的长就是点B 到平面EFG 的距离. ——8分 ∵ 正方形ABCD 的边长为4,GC =2, ∴ AC=42,HO =2,HC =32. ∴ 在Rt △HCG 中,HG =()2222322=+.由于Rt △HKO 和Rt △HCG 有一个锐角是公共的,故Rt △HKO ∽△HCG .1122HG即点B 到平面EFG 的距离为11112. ——10分 注:未证明“BD 不在平面EFG 上”不扣分.110. 已知:AB 与CD 为异面直线,AC =BC ,AD =BD . 求证:AB ⊥CD .说明:(1)应用判定定理,掌握线线垂直的一般思路.(2)思路:欲证线线垂直,只需证线面垂直,再证线线垂直,而由已知构造线线垂直是关键. (3)教学方法,引导学生分析等腰三角形三线合一的性质构造图形,找到证明方法. 证明:如图,取AB 中点E ,连结CE 、DE ∵AC =BC ,E 为AB 中点.∴CE ⊥AB同理DE ⊥AB ,又CE ∩DE =E ,且CE ⊂平面CDE ,DE ⊂平面CDE . ∴AB ⊥平面CDE 又CD ⊂平面CDE ∴AB ⊥CD .111. 两个相交平面α、β 都垂直于第三个平面γ ,那么它们的交线a 一定和第三个平面垂直. 证明:在γ 内取一点P ,过P 作PA 垂直α 与γ 的交线;过P 作PB 垂直β 与γ 的交线.∵ α⊥γ 且β⊥γ ∴ PA ⊥α且PB ⊥β∴ PA ⊥a 且PB ⊥a ∴ a ⊥112. 在立体图形P -ABCD 中,底面ABCD 是正方形,PA ⊥底面ABCD ,PA =AB ,Q 是PC 中点. AC ,BD 交于O 点.(Ⅰ)求二面角Q -BD -C 的大小: (Ⅱ)求二面角B -QD -C 的大小. 解析:(Ⅰ)解:连QO ,则QO ∥PA 且QO =21PA =21AB ∵ PA ⊥面ABCD ∴ QO ⊥面ABCD 面QBD 过QO , ∴ 面QBD ⊥面ABCD故二面角Q -BD -C 等于90°.(Ⅱ)解:过O 作OH ⊥QD ,垂足为H ,连CH .∵ 面QBD ⊥面BCD ,又∵ CO ⊥BD CO ⊥面QBDCH 在面QBD 内的射影是OH ∵ OH ⊥QD ∴ CH ⊥QD于是∠OHC 是二面角的平面角. 设正方形ABCD 边长2,DCBHQO∵ OH ·QD =OQ ·OD∴ OH =32.又OC =2在Rt △COH 中:tan ∠OHC =OH OC=2·32=3 ∴ ∠OHC =60°故二面角B -QD -C 等于60°.113. 如图在ΔABC 中, AD ⊥BC , ED=2AE , 过E 作FG ∥BC , 且将ΔAFG 沿FG 折起,使∠A 'ED=60°,求证:A 'E ⊥平面A 'BC解析:弄清折叠前后,图形中各元素之间的数量关系和位置关系。