HUSB反应器提高以印染废水为主的城镇废水可生化性的

合集下载

好氧、厌氧、兼氧污水处理技术

好氧、厌氧、兼氧污水处理技术

帮你区分理解:什么是好氧、厌氧、兼氧污水处理技术?好氧处理技术出水水质较好,主要应用于处理中低浓度废水或者作为厌氧处理的后续处理,但能耗高。

厌氧处理技术适用于处理高浓度有机废水,逐步成为环境保护、资源利用的核心方法,但是,反应速度较慢,反应器容积较大。

兼氧处理技术可发挥厌氧去除有机物绝对量高、好氧对有机物去除率高的各自优点,提高总体有机物处理效率。

兼氧处理技术的发展趋势大致有:兼氧微生物降解有机物的机理、兼氧微生物的分离与培养、提高兼氧微生物处理污染物效能研究、兼氧微生物与其他微生物的相互关系。

在利用兼氧方面,水解酸化工艺居于重要地位,是一个典型工艺,多年来得到广泛应用,为我国的污水处理事业做出了重要贡献。

近年来,兼氧处理技术因能克服好氧处理连续曝气能耗高、厌氧处理条件苛刻等缺点而越来越受到人们的重视。

例如,釆用兼氧+好氧生物技术处理屠宰废水效果良好,同时具有污泥量少、投资省、运转费用低、适用范围广的特点。

兼氧微生物可将废水中的大分子有机物分解为易生化的小分子有机物,改善废水的可生化性, 为后续好氧处理创造条件, 提高了生化处理的整体效果。

目前,对好氧微生物、专性厌氧微生物的研究已比较深入,但对兼氧微生物的研究较薄弱。

本文比较此三种技术的原理,梳理技术开发的思路,以期为未来的污水处理技术研发提供借鉴,进一步加强兼氧生物处理技术的研究,提高污水处理效能。

1 好氧处理技术污水的好氧处理过程见图1。

有机物被微生物摄食之后,通过代谢活动,有机物一方面被分解、稳定,并提供微生物生命活动所需的能量;另一方面被转化、合成为新的原生质(或称细胞质)的组成部分,即微生物自身繁殖生长,这就是污水生物处理中的活性污泥或生物膜的增长部分。

图1 污水好氧生物处理过程示意图好氧处理系统中的微生物主要是细菌(以好氧性异养菌为主)和原生动物,此外尚有酵母菌、丝状霉菌、单胞藻类、轮虫、线虫等。

细菌占微生物总数的90%,数量约为108~109个/mL,它们是去除水中有机污染物的主力军。

污水可生化性对污水处理效果的影响分析

污水可生化性对污水处理效果的影响分析

污水可生化性对污水处理效果的影响分析污水是指人类生产、生活、排泄等过程中所产生的废水,其中含有大量有机物、无机盐等物质,具有高度的污染性。

因此,在污水处理过程中,必须采取措施进行处理,以达到国家标准和环境要求。

其中,污水的可生化性是污水处理效果的一个重要指标。

可生化性是指污水中存在的有机物质能否被微生物降解,生化处理的重点是可生化有机物质的降解。

那么污水的可生化性对于污水处理效果的影响有哪些呢?1. 可生化性影响生物反应器的设计及运行生物方法是当前最常用的一种处理污水的方式,污水中的有机物质在微生物的作用下,经过生化反应器内的降解,达到净化目的。

但是,如果污水中的有机物质可生化性差,就会导致生物反应器内的微生物无法有效降解有机物质,降解效率低,最终影响生物反应器的运行效果。

2. 可生化性影响污泥的活性及浓度生物反应器内的微生物主要依靠活性污泥进行反应,而活性污泥中的微生物群落主要由可生化有机物质贡献。

如果污水中的有机物质可生化性差,就会导致活性污泥中的微生物数量减少,而且新生物的数量不足,从而降低了活性污泥的活性和浓度,影响了后续的污水处理效果。

3. 可生化性影响氮磷的去除效率氮磷是污水中的另外两个重要污染物,其中通过硝化反应和反硝化反应去除污水中的氨氮和总氮,通过生物吸附、生物沉积和化学沉积等方式去除污水中的总磷。

但是,如果污水中的有机物质可生化性差,将会导致生化反应器内的微生物无法有效降解污水中的氮磷物质,从而影响氮磷的去除效率。

4. 可生化性影响出水水质的稳定性出水水质的稳定性是污水处理过程中需要达到的一个目标,而污水中的有机物质可生化性对出水水质的稳定性影响较大。

如果污水中的有机物质可生化性差,将会导致处理出水中的有机物质浓度较高,而且处理出水的水质变化较大,从而影响出水水质的稳定性。

综上所述,污水中的有机物质可生化性对污水处理效果影响十分重要。

要保证好污水处理效果,需要认真考虑污水中的可生化性问题,采取相应措施进行处理。

关于水解酸化工艺的详解

关于水解酸化工艺的详解

关于水解酸化工艺的详解!1、水解酸化法的机理厌氧生物反应包括水解、酸化和甲烷化三个大的阶段,将反应控制在水解和酸化两个阶段的反应过程,可以将悬浮性有机物和大分子物质(碳水化合物、脂肪和脂类等)通过微生物胞外酶水解成小分子,小分子有机物在酸化菌作用下转化成挥发性脂肪酸的过程。

在这一过程中同时可以将悬浮性固体水解为溶解性有机物、将难生物降解的大分子物质转化为易生物降解的小分子物质。

首先,水解反应器中大量微生物将进水中颗粒状颗粒物质和胶体物质迅速截留和吸附,这是一个物理过程的快速反应。

一般只要几秒钟到几十秒即可完成。

因此,反应是迅速的。

截留下来的物质吸附在水解酸化污泥的表面,慢慢地被分解代谢,其在系统内的污泥停留时间要大于水力停留时间。

在大量水解酸化细菌的作用下,大分子、难于生物降解物质转化为易于生物降解的小分子物质后,重新释放到液体中。

在较高的水力负荷下随水流出系统。

由于水解和产酸菌世代期较短,往往以分钟和小时计,因此,这一降解过程也是迅速的。

在这一过程中溶解性 BOD、COD 的去除率虽然从表面上讲只有10%左右,但是由于颗粒状有机物发生水解增加了系统中溶解性有机物的浓度,因此,溶解性BOD、COD 去除率远大于10%。

但是由于酸化过程的控制不能严格划分,在污泥中可能仍有少量甲烷菌的存在,可能产生少量的甲烷,但甲烷在水中的溶解度也相当可观,故以气体形成释放的甲烷量很少。

可以看出,水解反应器集沉淀、吸附、网捕和生物絮凝等物理化学过程,与水解、酸化和甲烷化过程等生物降解功能于一体。

2、水解酸化法的反应器类型水解酸化反应器主要包括升流式水解反应器、复合式水解反应器及完全混合式水解反应器。

此外,水解反应器还可以包括采用其他厌氧反应器型式实现水解酸化的反应器,如厌氧折流板反应器、厌氧接触反应器等。

1、升流式水解反应器升流式水解反应器的示意图见图 1,水解酸化微生物与悬浮物形成污泥层,污水通过布水装置自反应器底部均匀上升至顶部出水堰排出过程中,污泥层可截留污水中悬浮物,并在水解酸化菌作用下降解有机物、提高污水可生化性等。

毕业设计——印染废水处理

毕业设计——印染废水处理

6000m3/d某厂印染废水处理工艺设计1绪论我国是纺织印染业的第一大国,而纺织印染业又是工业废水排放大户,印染厂每加工100m2织物,产生废水量3-5m3,故由此而造成的生态及经济损失是不可计量的,所以解决印染水污染问题势在必行。

在我国,印染废水是当前最主要的水体污染源之一。

由于这类废水成分相当复杂,往往含多种有机染料并且毒性强,色度深,PI1值波动大,难降解,组分变化大,且水量大,浓度高,所以一直是工业废水处理的难点,也是急需解决的问题之一。

为此,国内外对印染废水的处理技术进行了广泛的研究。

1.1印染废水来源及水质特性印染废水主要来源于印染加工的四个工序:预处理、染色、印花、整理。

预处理阶段排出退浆废水、煮炼废水、漂白废水和丝光废水,染色工序排出印染废水、印花废水和皂液废水,整理工序则排出整理废水。

印染废水是以上各类废水的混合废水,或除漂白废水以外的综合废水。

印染废水的水质随采用的纤维种类和加工工艺的不同而异,污染物组分差异很大。

一般印染废水,pH值为6-10,COD:为400-1000mg/L,色度为100-400倍,SS为100-200mg/L。

但当印染工艺及采用的纤维种类和加工工艺变化后,废水水质将有较大变化[1]。

总体来说,纺织印染废水的特点如下:(l)色度大,有机物含量高,除含染料和助剂等污染物外,还含有大量的浆料,废水粘性大。

(2)COD变化大,高时可达2000-3000mg/L,BOD也高达200-300mg/L。

5(3)碱性大,如硫化染料和还原染料废水PH值可达10以上。

(4)染料品种多,可生化性较差。

(5)由于加工品种及产量经常变化,导致水温水量较大变化。

1.2印染废水的治理技术目前,国内的印染废水处理手段以生化法为主,有的还将化学法与之串联。

国外也是基本如此。

由于近年来化纤织物的发展和印染后整理技术的进步,使PVA浆料、新型助剂等难生化降解有机物大量进入印染废水,给处理增加了难度。

电镀废水生化治理方案

电镀废水生化治理方案

电镀废水生化治理方案电镀废水生化治理方案电镀废水是指在电镀工艺中产生的废水,含有大量的重金属离子和有机化合物,具有很高的污染性。

为了有效地治理电镀废水,采用生化方法是一种可行的方案。

一、废水的预处理首先需要对电镀废水进行预处理,包括除油、除铁、除悬浮物等工艺。

预处理的目的是降低废水的浊度,减少对后续生化处理设备的影响。

二、生化处理1. 活性污泥法活性污泥法是一种常用的生化处理方法,通过在好氧条件下将含有有机废物的废水与活性污泥接触,利用微生物的作用将有机物降解为无机物。

在电镀废水生化处理中,可以采用A2/O (一氧化氮硝化)工艺,通过控制好氧和厌氧条件,使得废水中的氮和有机物同时得到去除,提高去除效果。

2. 曝气生物膜法曝气生物膜法是一种集曝气和生物膜两种处理方法于一体的生化处理技术。

在电镀废水处理中,可以采用MBBR(移动床生物膜反应器)工艺。

通过在反应器中填充流动性的生物膜载体,增加废水与生物膜的接触面积,提高废水处理效率。

三、二次沉淀和深度处理在生化处理后,废水中的有机物和悬浮物已经得到一定程度上的去除。

然而,废水中仍然存在有机物和重金属等有害物质。

因此,需要进行二次沉淀和深度处理。

通过加入沉淀剂和混凝剂,凝聚废水中的悬浮物和胶体物质,形成大颗粒物,然后通过沉淀池进行沉降,最后将清水排出。

四、尾水处理和回用对于经过深度处理后的清水,可以进一步进行过滤和消毒等处理,使其达到排放标准。

同时,还可以将一部分清水进行回用,降低水资源的消耗。

五、污泥处理在生化处理过程中产生的污泥需要进行处理。

可以采用浓缩、脱水、干化等技术将污泥体积减少,然后进行安全处置。

在实施电镀废水生化治理方案时,还需要注意以下几点:1. 严格控制进水排放的PH值、温度和COD(化学需氧量)浓度等指标,以确保生化处理的有效性。

2. 选用适当的生物菌种,加强菌池的养护管理,提高废水处理效果。

3. 做好监测和运行调整工作,根据废水的水质变化,及时调整处理工艺和药剂投加量等参数,确保处理效果稳定。

工业废水之聚酯化纤纺织废水处理工艺分析及设计

工业废水之聚酯化纤纺织废水处理工艺分析及设计

工业废水之聚酯化纤纺织废水处理工艺分析及设计聚酯化纤企业的废水主要来自聚酯化纤工艺生产过程中产生的各类废水,以及工艺清洗废水。

企业生产过程中产生的各类废水中常含有强碱、强酸、醇类、果胶、纤维素、半纤维素、酯类、二恶烷和 2-MD 等化合物,以及含有可挥发等的有机污染物。

常规的水解酸化+接触氧化、芬顿催化氧化、膜生物反应器( MBR)等废水处理工艺无法取得令人满意的效果。

鉴于该类企业产生的废水水质复杂、难降解有机物含量高,可生化性差,随着废水的产生,还产生出大量对微生物具有毒害作用的丙烯醛和丙烯醇等挥发性有机污染物,此 2 类有机污染物对人眼的刺激性极强,有催泪性,刺激眼睛及呼吸道,液态的丙烯醛还具有腐蚀性等特点。

臭氧催化氧化-MBR-固定化曝气生物滤池 ( G-BAF ) - 生物强化-碳滤组合工艺,将固定化生物滤池、生物强化、催化氧化与膜技术相集成,并成功应用到该实际工程中。

通过该项目,实现聚酯化纤废水—无害化—资源化的回用模式,不仅对企业的节水减排和持续发展有着重要的影响,也期望能为同类企业的废水处理技术研发和应用提供参考。

1、工程概况聚酯化纤企业生产的废水,其污水来源主要为工艺车间的生产废水、生活废水、车间及工艺罐冲洗废水,每天废水排放量约 48t。

考虑可能产生的不可预见废水量,设计处理量为 60t/d 的污水处理系统,其中工业废水为 24t/d。

设计进水 pH 为 6 ~ 9 ,COD 为 2.5 ~ 3.5g/L ,BOD5≤300mg/L ,SS、NH3-N、动植物油的质量浓度分别为 200 ~ 300、≤30、1.2mg/L。

处理后出水要求到达 GB/T18920-20**的城市绿化水标准。

废气来源于企业生产废水工艺以及废水处理系统产生。

废气中乙二醇、 H2O、乙醛、甲醇、空气的质量流量分别为0.01、 0.29、 0.76、 0.21、 12.70kg/h ,合计 13.97kg/h。

废水可生化性测定实验

废水可生化性测定实验

实验报告课程名称: 水处理工程实验 指导老师: 胡宏 成绩:__________________ 实验名称: 废水可生化性测定实验 类型:________________同组学生姓名: 陈巧丽、林蓓 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求根据微生物的降解性能,有机污染物可分为三种类型。

第一类是可生物降解的有机污染物,第二类是难生物降解的有机污染物,第三类是不可生物降解的有机污染物。

考虑到毒性,第一、第二类有机污染物又可分为四种类型:①能够为微生物所降解,而且对微生物的生理功能无抑制作用的有机污染物;②能够为微生物所降解,但对微生物有毒害作用的有机污染物;③难于为微生物所降解,但对微生物无毒害作用的有机污染物;④难于为微生物所降解,而且对微生物有毒害作用的有机污染物。

上述四种类型的有机污染物中,第一类适宜于采用生物处理技术进行处理。

第二类经过对微生物作一定时间的驯化,有可能采用生物处理技术进行处理。

第三类也有可能采用生物处理技术进行处理,但必须对微生物进行较长时间的诱导驯化。

第四类不宜采用生物处理技术进行处理。

本实验通过测定微生物的呼吸耗氧特性来确定某种废水是否具有进行生化处理的可能性。

二、实验内容和原理微生物降解有机污染物的物质代谢过程中所消耗的氧包括两部分:(1)氧化分解有机物,使其分解为CO 2、H 2O 、NH 3(存在含氮有机物时)等为合成新细胞提供能量;(2)供微生物进行内源呼吸,使细胞物质氧化分解。

下例可以说明物质代谢过程中的这一关系。

8CH 2O+3O 2+NH 3→C 5H 7NO 2+3CO 2+6H 2O3CH 2O+3O 2→3CO 2+3H 2O+能量 5CH 2O+NH 3→C 5H 7NO 2+3H 2O从上反应式可以看到:约1/3 的CH 2O (酪蛋白)被微生物氧化分解为CO 2、H 2O ,同时产生能量供微生物合成新的细胞,这一过程要消耗氧。

污水处理电化学处理技术

污水处理电化学处理技术

污水处理电化学处理技术高级氧化技术一般针对难降解有机废水,如医药、化工、染料工业废水以及含有难处理的有毒物质物质等.第一节电化学处理技术一、基本原理与特点1. 原理电化学氧化法主要用于有毒难生物降解有机废水的处理,电化学水处理技术的基本原理是使污染物在电极上发生直接电化学反应或间接电化学而得到转化,从而达到削减和去除污染物的目的。

根据不同的氧化作用机理,可分为直接电解和间接电解。

1 ) 直接电解直接电解是指污染物在电极上直接被氧化或还原而从废水中去除今直接电解可分为阳极过程和阴极过程。

阳极过程就是污染物在阳极表面氧化而转化成毒性较小的物质或易生物降解的物质,甚至发生有机物无机化,从而达到削减、去除污染物的目的。

阴极过程就是污染物在阴极表面还原而得以去除,阴极过程主要用于卤代经的还原脱卤和重金属的回收,如卤代有机物的卤素通过阴极还原发生脱卤反应,从而可以提高有机物的可生化性.直接电解过程伴随着氧气析出,氧的生成使氧化降解有机物的电流效率降低,能秏升高,因此,阳极材料对电解的影响很大.2 ) 间接电解间接电解是指利用电化学产生的氧化还原物质作为反应剂或催化剂,使污染物转化成毒性小的物质。

间接电解分为可逆过程和不可逆过程。

可逆过程(媒介电化学氧化)是指氧化还原物在电解过程中可电化学再生和循环使用。

不可逆过程是指利用不可逆电化学反应产生的物质,如具有强氧化性的氯酸盐、次氯酸盐、H202和O2等氧化有机物的过程,还可以利用电化学反应产生强氧化性的中间体,包括溶剂化电子、•HO、•H02/02 等自由基。

2. 电化学水处理技术的特点1)电化学方法既可以单独使用,又可以与其他处理方法结合使用,如作为前处理方法,可以提高废水的生物降解性;2)一般电化学处理工艺只能针对特定的废水,处理规模小,且处理效率不高;3)有的电化学水处理工艺需消耗电能,运行成本大。

二、电化学反应器与电极电化学反应器按反应器的工作方式分类可分为:间歇式、置换流式和连续搅拌箱式电化学反应器。

SBR技术在污水处理中的应用

SBR技术在污水处理中的应用

反应器内残存的活性污泥为泥种,确保反应器内的污泥浓度适宜。

(5)闲置期。

在排水排泥结束之后,反应器处于停滞状态,等待下一个污水净化过程开始。

1.2 SBR 技术的优点与常规技术相比,SBR 技术在污水处理中的优点显著,主要表现为:(1)该方法省去了二次沉淀池以及其他设备,因此与常规方法相比可以减少20%左右的投资,并且污水净化系统的总占地面积可以减少40%左右。

(2)可进一步增强生化反应推动力。

在SBR 技术中,反应器能够为微生物的培养提供必要的环境,在进水期微生物会大量吸收污水中的有机物作为繁殖的营养基础,而在进水曝气期间,在缺乏能量供给的情况下微生物开始消耗细胞内储存的有机物质,所以该技术的整个技术流程为:“厌氧→缺氧→好氧”,可以强化微生物自身细胞能量储存。

(3)该技术的操作过程更加灵活,按照污水处理目标,相关人员可以通过调整控制条件(如:污泥泥龄、曝气量等)实现灵活操作,这是提高污水处理效果的重要保障。

2 SBR 技术在污水处理中的应用路径2.1 基本设计思路在污水处理中,本文设计的SBR 处理流程大体可以分为污泥处置、好氧等过程,所产生的废水经过格栅过滤之后与废水混合,期间为进一步强化污水处理效果。

本文在原有结构上增加了HUSB 反应器,该反应器的优势表现为:(1)在污水处理中可以自由调整水量,有助于实现水质平衡;(2)可在低温条件下做厌氧生物预处理,提高污水中大分子分解,有助于提高SBR 技术的处理效果。

0 引言现阶段城市的用水总量以及污水排放量不断增加,导致污水处理的压力不断增加,部分地区存在有机物浓度超标的问题,不仅严重污染了水资源,也对生态环境产生不良影响。

SBR 是一种常见的污水处理方法,现代大量实验研究证明,该技术可以有效去除污水中氨、氮等元素,对于提高水体质量的意义重大,值得关注。

1 SBR 技术分析1.1 SBR 技术的工艺流程SBR 法在实际上属于活性污泥法的一种,其作用机理与传统活性污泥法基本相同,但是两者的运行模式存在明显差异。

实验九 废水可生化性实验

实验九 废水可生化性实验

实验九 工业污水可生化性实验一、实验目的某些工业污水在进行生物处理时,由于含有生物难将解的有机物、抑制或毒害微生物生长的物质、或者缺少微生物所需要的营养物质和环境条件,使得生物处理不能正常进行。

因此需要通过实验来考察这些污水生物处理的可能性,研究某些组分可能产生的影响,确定进入生物处理设施的允许浓度。

通过本实验希望达到下述目的: (1)理解废水可生化性的含义;(2)掌握测定废水可生化性实验的方法; (3)理解内源呼吸线及生化呼吸线的基本含义;二、实验原理微生物降解有机污染物的物质代谢过程中所消耗的氧包括两部分:①氧化分解有机污染物,使其分解为CO 2、H 2O 、NH 3(存在含氮有机物)等,为合成新细胞提供能量;②供微生物进行内源呼吸,使细胞物质氧化分解。

下列式子可说明物质代谢过程中的这一关系。

合成:223572228336CH O O NH C H NO CO H O++→++2222235722333333CH O O CO H O CH O NH C H NO H O +→++⎛⎫⎪+→+⎝⎭能量从上反应式可以看到约1/3的CH 2O(酪蛋白)被微生物氧化分解为CO 2、H 2O ,同时产生能量供微生物合成新细胞,这一过程要耗氧。

内源呼吸:5722223552C H NO O CO H O NH +→++微生物进行物质代谢过程的需氧速率可以用下式表示总的需氧速率=合成细胞的需氧速率+内源呼吸的需氧速率,即T F dO dO dO dt dt dt σ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭式中:T dO dt ⎛⎫ ⎪⎝⎭为总的需氧速率,mg/(L·min);F dO dt ⎛⎫ ⎪⎝⎭为降解有机物,合成新细胞的耗氧速率,mg/(L·min); dO dt σ⎛⎫⎪⎝⎭为微生物内源呼吸需氧速率,mg/(L·min)。

活性污泥的耗氧速率(OUR )是评价污泥代谢活性的一个重要指标,它是指单位质量的活性污泥在单位时间内的耗氧量,其单位为 mg(O 2)/g(MLVSS)·h 。

印染废水中水回用及RO浓水深度处理工

印染废水中水回用及RO浓水深度处理工

工程实例工业水处理 2023-01,43(1)物〔8〕,但存在投资大、运行成本高等不足;原位强化膜生物反应器工艺〔9〕(Enhance membrane bio -reactor ,EMBR )是膜生物反应器与生物技术有机结合的新型废水处理技术,通过向膜生物反应器的膜池中加入生物填料,使微生物附着在填料上,进一步提高对 COD 等有机物的去除效果,大大强化了生物反应器的功能。

与传统的生物处理方法相比,具有生化效率高、抗负荷冲击能力强等优势,同时还具有出水水质稳定、占地面积小、排泥周期长、易实现自动控制等优点。

电催化氧化工艺(Electro -catalytic oxidation with pulse ,ECOP )主要是利用具有催化性能的金属氧化物电极,产生具有强氧化能力的羟基自由基或其他自由基氧化水中污染物,使其完全氧化分解为CO 2和H 2O ,以达到去除废水中有机物、氨氮和苯胺的目的〔10-11〕。

嘉兴某印染厂废水处理系统处理量为1 000 m³/d ,采用水解酸化—好氧—二沉池—终沉池—MBR —RO 工艺处理印染废水,前期因对回用水水量的要求较低,RO 系统回收率仅有40%~50%,RO 浓水COD 低于《纺织染整工业水污染物排放标准》(GB 4287—2012)中表2限值,可直接外排。

随着该印染厂对高品质回用水需求量的增大,需将RO 系统回收率提高至70%以上,此时RO 浓水COD 为330 mg/L 左右,远高于排放标准。

业主拟采用活性炭粉吸附工艺去除RO 浓水中的COD 〔12〕,但活性炭为消耗品,投加成本较高,自动化程度低,操作繁琐,需额外增加人工成本,吸附饱和的活性炭需返回压滤机工段进行压滤处理,进而又产生固废,增加固废处理费用。

针对该印染厂现场运行情况和水质情况,结合“源头减排—过程控制—末端治理”的全流程废水治理理念〔13〕,确定采用EMBR-RO-ECOP 工艺深度处理印染废水,EMBR 系统进一步降低RO 进水中的COD ,经过ECOP 工艺对RO 浓水进行深度处理后外排。

污水处理中的流化床技术

污水处理中的流化床技术
感谢观看
维护管理难度大
对水质变化的适应性差
流化床技术对水质变化的适应性较差 ,可能需要针对不同水质进行优化调 整。
流化床内部结构复杂,维护管理难度 较大,需要专业人员进行操作。
03
流化床技术在污水处理中的研究进展
新型流化床技术的研发
悬浮载体流化床技术
利用悬浮载体作为生物膜载体,提高生物膜的挂膜速度和稳定性,降低投资和 运行成本。
在污水处理领域,流化床技术常用于 生物反应器中,利用微生物与固体颗 粒的结合,实现高效、低能耗的污水 处理。
流化床技术的原理
流化床技术的原理是利用流体的动力作用,使固体颗粒在床内不断翻滚、悬浮, 形成一种类似沸腾的状态。
在这种状态下,固体颗粒与流体之间形成高效的传质和传热过程,同时微生物在 固体颗粒表面生长繁殖,形成生物膜,实现对污水中有机物的降解。
移动床生物膜反应器技术
通过在反应器内设置移动床生物膜载体,提高传质效率和生物膜活性,减少污 泥产量。
流化床技术与其他污水处理技术的结合
流化床技术与活性污泥法 的结合
通过将流化床技术与活性污泥法相结合,实 现生物脱氮除磷,提高污水处理效果。
流化床技术与厌氧消化技 术的结合
利用流化床技术处理高浓度有机废水,提高 厌氧消化效率,实现有机废水的资源化利用
污水处理中流化床技术的优势
处理效率高
流化床技术具有较高的处理效率 ,能够快速去除污水中的污染物

占地面积小
流化床反应器结构紧凑,占地面积 小,适合在城市等空间有限的地方 使用。
节能环保
流化床技术采用低能耗的搅拌方式 ,运行成本较低,且对环境友好。
污水处理中流化床技术的挑战
悬浮物堵塞
随着悬浮物的积累,流化床可能会出 现堵塞现象,影响正常运行。

污水处理用生化处理系统

污水处理用生化处理系统

污水处理用生化处理系统污水处理用生化处理系统是一种常见的污水处理技术,它利用生物微生物来降解水中有机废物,从而达到处理污水的目的。

这种处理系统具有处理效率高、成本低、操作简单等优点,因此在许多地方得到了广泛应用。

污水处理用生化处理系统的原理是将污水通入处理系统,加入一些生物剂和氧气,然后通过一系列生物反应器,使微生物降解污水中有机物质,转化为无害物质,最终得到可供再利用的水。

污水处理用生化处理系统通常分为三个阶段进行处理:第一阶段是预处理。

在这个阶段,污水通常先通入格栅池中,过滤掉污水中的大块杂物和沉淀物,然后将污水通入沉淀池,在此过程中,污水中的固体颗粒经过沉淀作用沉淀到池底,最终生成污泥。

第二阶段是生物处理。

在这个阶段,污水通过生化反应器,微生物生长和代谢作用降解污水中的有机物质。

这些反应器通常采用曝气法或水力压缩法,通过加入氧气使微生物能够在适宜的条件下进行降解有机物的过程。

第三阶段是后处理。

在这个阶段,通过对废水进行物理化学处理,去除废水中剩余的无机盐和颗粒物等,使污水达到环保要求后,例如通过出水泵将其排放到自然界中去。

此阶段类似于水的过滤和加氯处理等,以保证废水的质量符合国家标准和其他相关要求。

污水处理用生化处理系统的优点是明显的。

首先,它可以高效、快速地进行处理,降低了空气和水质环境的污染风险,大大提高了环境质量,保障了人类生活的健康和安全。

其次,相较其他处理系统,污水处理用生化处理系统具有成本低廉、操作简单易于控制的优点。

同时,由于该系统能够对污泥进行再利用,所以可以最大限度地减少资源的浪费。

污水处理用生化处理系统也存在一些局限性,例如其适用于处理有机物质含量较高的污水,而处理其他类型的废水则效果较差。

此外,由于生物反应器中微生物种类、数量等因素的影响,系统的处理效果不稳定,需要进行周期性的监控和调整。

总的来说,污水处理用生化处理系统是一种具有广泛应用前景的处理污水技术。

它可以有效地处理废水、提高环境质量,具有成本低廉、操作简单等优点,可以帮助人们更好地保护环境和促进可持续发展。

水性漆废水处理方案

水性漆废水处理方案
3.深度处理
-采用活性炭吸附,进一步去除废水中的微量有机物和色度;
-通过精密过滤,确保废水中的悬浮物达到排放标准。
4.污泥处理
-产生的污泥进行浓缩、调理、脱水等处理,降低污泥含水率;
-脱水后的污泥可用于建材、肥料等领域,实现资源化利用。
四、主要设施及参数
1.调节池:有效容积为100m³,用于调节水质水量。
3.建立完善的环保应急预案,提高应对突发环境事件的能力。
本方案旨在为水性漆废水处理提供一套合法合规、高效稳定的处理工艺,为我国环保事业贡献力量。
第2篇
水性漆废水处理方案
一、概述
水性漆废水处理是工业废水处理领域中的一个重要环节。鉴于水性漆废水的特性,本方案旨在提供一套科学、高效、环保的处理流程,确保废水排放符合国家相关标准,减轻对环境的影响。
五、运行维护
1.定期检查设施设备,确保其正常运行;
2.根据水质监测结果调整混凝剂、生物碳源等投加量;
3.定期对污泥进行处理,确保污泥处理设施运行正常;
4.建立完善的运行记录和监测数据管理制度,为优化运行提供依据。
六、环保与安全
1.严格按照国家相关法律法规进行废水处理,确保废水达标排放;
2.对处理过程中产生的污泥进行安全处理,防止二次污染;
3.污泥处理:合理安排污泥处理,避免污泥积累和二次废水处理不受影响。
六、环保与合规
1.排放标准:严格遵循国家《污水综合排放标准》(GB8978-1996)一级A标准。
2.环保法规:遵守国家环保法律法规,确保处理过程合规。
3.环境监测:建立环境监测体系,实时掌握处理效果和环境影响。
1.厌氧处理:采用厌氧生物处理技术,如升流式厌氧污泥床(UASB),以提高废水可生化性,降解有机物。

污水处理方面参考文献

污水处理方面参考文献

污水处理方面参考文献一、引言污水处理是指对废水中的有害物质进行去除,使其达到环境排放标准或者可再利用的水质要求。

随着工业化和城市化的快速发展,污水处理成为了保护环境和促进可持续发展的重要措施。

本文将介绍污水处理方面的参考文献,包括国内外相关研究成果和技术应用。

二、参考文献1. Chen, Q., Zhang, Y., & Snyder, S. A. (2022). Occurrence and removal of organic micropollutants in wastewater treatment plants in China: a review. Water research, 151, 311-326.本文综述了中国污水处理厂中有机微污染物的存在和去除情况。

通过对国内多个污水处理厂的调查研究,作者发现有机微污染物在污水处理过程中的去除效果不尽相同,且存在一定的环境风险。

研究结果为污水处理厂的优化和管理提供了重要参考。

2. Wang, X., & Chen, M. (2022). Recent advances in the treatment of pharmaceutical wastewater by advanced oxidation processes (AOPs). Journal of hazardous materials, 367, 397-407.该文综述了近年来在药物废水处理方面的先进氧化工艺(AOPs)的研究发展。

作者介绍了不同AOPs技术的原理和应用情况,并对其在药物废水处理中的效果进行了评估。

研究结果表明,AOPs技术在药物废水处理中具有较高的去除效率和降解效果。

3. Wang, Z., & Ma, W. (2022). Application of membrane bioreactor (MBR) for wastewater treatment in China: a review. Frontiers of Environmental Science & Engineering, 12(1), 3.本文回顾了膜生物反应器(MBR)在中国污水处理中的应用情况。

阿力山核桃废水处理方案

阿力山核桃废水处理方案

杭州临安阿力炒货食品有限公司等五家食品厂山核桃加工废水联合处理工程设计方案(200m3/d)临安恒绿环境科技有限公司浙江林学院环境工程研究所2009年8月目录第一章概述 (1)1.1项目概况 (1)1.2设计依据 (1)1.3设计原则 (1)1.4设计范围及内容 (1)第二章设计基准 (3)2.1设计进水水量水质 (3)2.2设计出水水质 (3)2.3污水处理站位置的选择 (3)2.4排放出路 (3)2.5污泥出路 (3)第三章方案设计 (4)3.1工艺设计 (4)3.1.1山核桃加工废水特点 (4)3.1.2处理工艺流程及说明 (4)3.1.3工艺流程特点 (5)3.1.4主要处理单元介绍 (6)3.1.5推荐处理工艺的合理性分析 (6)3.2主要建、构筑物和设备设计与选型 (6)3.3土建设计 (7)3.3.1工程内容 (7)3.3.2主要材料 (7)3.3.3水池防水 (8)3.3.4施工要求 (8)3.4电气设计 (8)3.5仪表及自控设计 (9)3.6总图及高程设计 (9)第四章预计处理效果 (10)4.1处理效果预测 (10)第五章投资估算 (11)5.1投资估算说明 (11)5.2投资估算 (11)5.2.1土建投资估算 (11)5.2.2机电设备、器材投资估算 (12)5.2.3总投资概算 (12)第六章日常运行成本分析 (13)6.1电费 (13)6.2药剂费 (13)6.3人工费 (13)第七章售后服务及保障措施 (14)7.1工程调试的技术服务 (14)7.2售后服务 (14)第一章概述1.1项目概况山核桃是临安市昌化和昌北地区经济发展的农业支柱产业。

临安阿力炒货食品有限公司等五家食品厂均位于临安市清凉峰镇开发区,废水主要以美国山核桃加工废水为主,少量废水为本地山核桃加工产生。

在山核桃加工过程中,产生的废水含有双氧水、脂肪酸、纤维素、木素、果胶、果糖等污染物质,这些物质难以生化降解。

(环境管理)淀粉废水的组成

(环境管理)淀粉废水的组成

淀粉废水的组成在淀粉加工过程中产生大量的高浓度酸性有机废水,主要是溶解性的淀粉和少量蛋白质,一般没有毒性,但COD很高,通常为1000~30000mg/L,SS为1500mg/L。

如将废水直接排放到环境水体中,不仅对环境造成严重危害,也造成水资源的浪费。

2.1 玉米淀粉玉米淀粉生产不受季节影响,可全年生产。

但工艺用水量较大,一般为5~13m/吨玉米。

玉米淀粉废水的主要成分为淀粉、糖类、蛋白质、纤维素有机物质,COD值为8000~30000mg/L,BOD值为5000~20000mgΠL,SS值为3000~5000mg/L。

一般来说,淀粉厂所排放的污水有三个主要来源,一是水洗工艺中排放出来的污水,此污水pH值为6。

5~7。

0,COD值在6500~10000mg/L左右;二是在淀粉脱水时产生的工艺水,其有机物浓度较低,COD值大约在2000mg/L左右,呈弱酸性;三是在转换生产产品时,生产设备的清洗水,其有机物浓度也较低,COD值为1000~1600mg/L,呈中性。

此外,还有车间地面冲洗水。

对于中小型淀粉厂,在正常生产情况下,污水的排放量为600~630m/d,主要水质指标:COD值为6000~7000mg。

/L,pH值为6~615,SS为1500~2000mg/L。

2.2 薯类淀粉薯类(主要是马铃薯和地瓜)为原料的淀粉生产,其废水的水质特征为:(1)输送和洗净废水。

通常含有泥土、马铃薯碎皮及由原料溶出的有机物,这种废水悬浮物含量高,但COD和BOD值都不高;(2)生产废水即分离废水。

含有大量的水溶性物质,如糖、蛋白质、树脂等,同时也含有少量的微细纤维和淀粉,COD和BOD值都很高,且水量大。

因此,本工段废水是马铃薯原料淀粉厂污染废水的主要来源; (3)生产设备洗刷废水;(4)淀粉渣贮槽废水。

淀粉生产过程中,作为副产品产生大量的渣滓,长期积存在贮槽内,会含有一定量的废水,这种废水虽然不产生怪味,但因发酵其酸度很高,马铃薯淀粉生产废水的水质特征和主要污染因子如表1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 1. State Key Joint Laboratory of Environmental Simulation & Pollution,Department of Environmental Science & Engineering,Tsinghua University,Beijing 100084 ,China; 2. Suzhou Luzhi Wastewater Treatment Plant,Suzhou 215127 , China)
Abstract Municipal wastewater that consists mainly of dyeing and printing wastewater contains a large quantity of refractory organics,and is hard for biological treatment. To improve the biodegradability of this mixed industry wastewater,the HUSB reactor was studied as a pretreatment technology for mixed practical industrial wastewater in the Tai Lake basin. Ultravioletvisible spectrophotometry,GCMS,etc. ,were utilized to identify the change of the biodegradation of organic pollutants and evaluate the biodegradability of the wastewater after treatment. The results show that the biodegradability of these wastewater is enhanced greatly by HUSB reactor: the value of B / C is raised from 0. 251 to 0. 423 ; part of the large molecule organics in the wastewater are broken to small molecule organics; the contents of the unsaturated aromatic compounds and hydrocarbons decrease after the pretreatment by HUSB reactor. Key words HUSB ; industrial wastewater; hydrolytic acidification; biodegradability; GCMS 如何提高废水的可生化性一直是工业密集型城 镇污水处理中遇到的重要问题。我国太湖流域城镇 工业发达, 聚集了大量的纺织印染、 化工、 金属等行 业的生产基地, 城镇污水厂接纳的工业废水比例高 85% , 达 相比普通的城市污水, 这类废水物质组成 复杂, 毒性大, 可生化性差, 传统的生物处理工艺很 难满足日趋严格的排放标准的要求。 近年来, 随着 纺织印染技术的发展, 更多高分子难降解的染料助 进一步降低了废水的可生化性, 给 剂进入到废水中, 生物处理工艺带来不小的难度。识别这类废水的物 质组成, 提高其可生化性一直是废水处理研究领域 的重要内容之一。 20 世纪 80 年代初, 北京市环境保护科学研究 院开发了水解酸化好氧生物处理, 在城市污水处理 [14 ] 。其中, 水解酸化工艺由 中得到了较广泛的应用 于可以改善废水的可生化性, 近年来在纺织印染等
1
( 1. 清华大学环境科学与工程系环境模拟与污染控制国家联合重点实验室 , 北京 100084 ; 2. 苏州甪直污水处理厂, 215127 ) 苏州 摘 要 以印染废水为主的城镇废水中含有大量难降解有机物 , 可生化性较差。 为提高该类废水的可生化性 , 采用 HUSB 反应器对环太湖城镇的实际混合工业废水进行预处理 , GCMS 等手段对废水中的有机组分在 通过紫外可见光光谱、 评价了废水可生化性的差异 。结果显示, 废水 B / C 值从 0. 251 提升至 0. 423 , 废水中部分大分子 处理前后的变化进行表征 , 有机物分解为小分子有机物 , 含有不饱和键的芳香类及环烃化合物含量有所下降 , 说明该类废水经过 HUSB 反应器处理后 可生化性得到了显著提高 。 MS 关键词 HUSB 工业废水 水解酸化 可生化性 GC中图分类号 X703 文献标识码 A 9108 ( 2011 ) 08170706 文章编号 1673-
基金 项 目: 国 家 水 体 污 染 控 制 与 治 理 科 技 重 大 专 项 课 题 ( 2008ZX07313006 ) 收稿日期:2010 - 04 - 22 ; 修订日期:2010 - 06 - 13 作者简介:刘通( 1986 ), 男, 硕士研究生, 主要从事水处理技术研 mail: newton0101@ gmail. com 究。E* 通讯联系人, Email: zhangxu@ mail. tsinghua. edu. cn
第5 卷 第8 期 2 0 1 1 年 8 月
环境工程学报
Chinese Journal of Environmental Engineering
Vol . 5 , No . 8 Aug. 2 0 1 1
HUSB 反应器提高以印染废水为主的 城镇废水可生化性的研究
刘 通
1


1*
李广贺
1
孙志刚
2


Enhancement of biodegradability of municipal wastewater consisting mainly of dyeing and printing wastewater by hydrolysis upflow sludge bed
Liu TongLan Mei1
相关文档
最新文档