小学三年级奥数练习及答案解析-植树问题、应用题解题技巧

合集下载

三年级植树问题解题技巧和方法

三年级植树问题解题技巧和方法

植树问题解题是三年级数学课程中的重要内容。

作为基础数学题型,植树问题的解题技巧和方法对学生建立数学思维,培养逻辑推理能力具有重要意义。

下面,将介绍植树问题的解题技巧和方法,帮助三年级学生更好地掌握这一题型。

一、理解植树问题的定义和特点植树问题是指在一定条件下,根据已知条件求未知数目的树的问题。

这类问题一般会涉及到树的数量、排列方式等概念,需要根据题目条件进行逻辑推理,确定未知数目。

二、理清题意,找出已知和未知1. 通读题目,理清题意,明确要求解的问题是什么,需要求出的未知数目是什么。

2. 找出已知条件,包括已知数量、排列方式、特定规律等。

3. 确定未知数目,明确需要求解的未知数目。

三、分析问题,寻找解题思路1. 根据已知条件,寻找各种可能的排列方式,明确排列方式的规律与特点。

2. 寻找可能的数学关系,包括等差数列、等比数列等,利用数学知识进行问题分析和求解。

四、根据规律,建立方程或思维框架1. 根据问题要求,建立相应的数学关系式,列出方程或思维框架,明确未知数的关系。

2. 利用建立的方程或思维框架,推导出未知数目的具体值。

五、检查求解结果,确定答案的正确性1. 将已知条件带入建立的方程或思维框架中,检查计算过程和结果的准确性。

2. 对求解结果进行逻辑推理,确定答案的正确性。

通过以上的技巧和方法,相信三年级学生可以更好地掌握植树问题的解题技巧,提高数学解题能力,建立数学思维。

老师在教学中也应该注重引导学生理解题目、分析问题,并进行适当的例题训练,帮助学生熟练掌握植树问题的解题方法。

希望本文所介绍的技巧和方法能对三年级学生的数学学习有所帮助。

文章已经包含了解题技巧和方法的基本内容,接下来可以继续扩展该内容,以提供更多的具体例子和案例分析,帮助三年级学生更深入地理解植树问题的解题技巧和方法。

六、举例分析,深入理解解题技巧举例是帮助学生深入理解解题技巧的重要方法,下面通过具体例子对植树问题的解题技巧进行进一步解析:例1:小明家有一片土地,计划在这片土地上植树,要求植树的行数是等差数列,第一行植树5棵,最后一行植树15棵,问共植树了多少棵?解:根据题目要求,确定已知条件:已知:第一行植树5棵,最后一行植树15棵,且是等差数列根据植树的行数是等差数列,可以列出植树数量的规律,每一行的植树数量可以用等差数列公式表示为:a1=5, an=15根据等差数列的通项公式an=a1+(n-1)d,其中n为行数,d为公差 15=5+(n-1)dd=(15-5)/(n-1)d=10/(n-1)进而可得出公差d和行数n的关系。

小学奥数小升初常考题型植树问题例题讲解+练习,类型全

小学奥数小升初常考题型植树问题例题讲解+练习,类型全

植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长、②间距(棵距)长、③棵数、只要知道这三个要素中任意两个要素.就可以求出第三个。

1、不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、段长三者之间的关系是:棵数 = 段数 + 1 = 全长÷段长 + 1 全长 = 段长×(棵数 - 1)段长 = 全长÷(棵数 - 1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、段长之间的关系就为:全长 = 段长×棵数;棵数 = 全长÷段长;段长 = 全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

棵数 = 段数– 1 = 全长÷段长 - 1 段长 = 全长÷(棵数 + 1)。

2、封闭的植树路线棵数 = 段数 = 周长÷段长一、不封闭路线的植树问题例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆(两端要栽),问需栽多少根电线杆?分析:要以两颗电线杆之间的距离作为分段标准,公路全长可分为若干段,由于公路两端都要求栽杆,所以电线杆的根数比分成的段数多1解:以10米为一段,公路全长可以分成900÷10 = 90(段)共需电线杆根数:90 + 1 = 91(根)答:需栽电线杆91根。

例2、马路一边每相隔9米栽有一棵柳树.从第一棵树记起,张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?由题意,我们看的出最终要求的是车的速度,关于车的量我们已经知道了时间,利用速度 = 路程÷时间,我们不难发现,只要求出汽车5分钟行走的路程即可。

路程从哪来?从树来,张军5分钟看到501棵树就意味着5分钟车行驶路程即为第1棵树到第501棵树的距离,只要求出这段路的长度就容易求出汽车速度.解: 5分钟汽车共走:9×(501 - 1)= 4 500(米)汽车每分钟走: 4 500÷5 = 900(米)汽车每小时走: 900×60 = 54 000(米)= 54(千米)列综合算式为:9×(501 - 1)÷5×60÷1 000 = 54 (千米)答:汽车每小时走54千米。

小学三年级奥数专题十四:植树问题

小学三年级奥数专题十四:植树问题

小学三年级奥数专题十四:植树问题专题简析:在不封闭的线路上植树,棵数=间隔数+1;在封闭的线路上植树,棵数=间隔数。

例题1:小朋友们植树,先植一棵树,以后每隔3米植一棵,已经植了9棵,第一棵和第九棵相距多少米?思路:根据“棵数=间隔数+1”,所以间隔数=棵树-1= 9-1=8个,每个间隔是3米,所以第一棵和第九棵相距3×8=24米。

试一试1:在一条20米长的绳子上挂气球,从一端起,每隔5米挂一个气球,一共可以挂多少个气球?例题2:在一条长40米的大路两侧栽树,从起点到终点一共栽了22棵。

已知相邻两棵树之间的距离都相等,问相邻两棵树之间的距离是多少米?思路:根据“两侧共栽22棵树”,先求一侧栽22÷2=11棵树,那么从第1棵树到第11棵树之间的间隔是11-1=10个。

40米长的大路平均分成10段,每段是40÷10=4米。

试一试2:在公园一条长25米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子距离相等。

相邻两把椅子之间相距多少米?例题3:把一根钢管锯成小段,一共花了28分钟。

已知每锯开一段需要4分钟,这根钢管被锯成了多少段?思路:段数=锯的次数+1。

算式:锯的次数:28÷4=7(次)段数:7+1=8(段)试一试3:一根圆木锯成2米长的小段,一共花了15分钟。

已知每锯下一段要3分钟,这根圆木长多少米?例题4:在一个周长是48米的池塘周围种树,每隔6米种一棵树,一共种了多少棵?思路:封闭线路中:棵树=间隔数算式:48÷6=8(棵)试一试4:在一个边长为12米的正方形四周围篱笆,每隔4米打1根木桩,一共要准备多少根木桩?例题5:甲、乙两人比赛爬楼梯,甲跑到5楼时,乙恰好跑到3楼。

照这样计划,甲跑到17楼时,乙跑到多少层?思路:爬楼梯时第一层楼是不用爬的。

(楼层数-1)才是要走的楼梯段数。

“甲跑到5楼时,乙恰好跑到3楼”,说明甲的速度是乙的(5-1)÷(3-1)=2倍。

小学三年级奥数_植树问题_ 习题

小学三年级奥数_植树问题_ 习题

植树问题姓名
1,一条河堤长420米,从头到尾每隔3米栽一棵树,要栽多少棵树?
2.肖林家门口到公路边有一条小路,长40米。

肖林要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?
3,一个圆形水池的围台圈长60米。

如果在此台圈上每隔3米放一盆花,那么一共能放多少盆花?
4,在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。

这段路长多少米?
5,小明要到高层建筑的11层,他走到5层用了100秒,照此速度计算,他还需走多少秒?
6.学校有一条长60米的走道,计划在道路一旁栽树。

每隔3米栽一棵。

(1)如果两端都各栽一棵树,那么共需多少棵树苗?
(2)如果两端都不栽树,那么共需多少棵树苗?
(3)如果只有一端栽树,那么共需多少棵树苗?
7.一个长100米,宽20米的长方形游泳池,在离池边3米的外围圈(仍为长方形)上每隔2米种一棵树。

共种了多少棵树?
8.一根90厘米长的钢条,要锯成9厘米长的小段,一共要锯几次?
9.测量人员测量一条路的长度。

先立了一个标杆,然后每隔40米立一根标杆。

当立杆10根时,第1根与第10根相距多少米?
10.学校举行运动会。

参加入场式的仪仗队共180人,每6人一行,前后两行间隔120厘米。

这个仪仗队共排了多长?
11.在一条长1200米的河堤边等距离植树(两端都要植树)。

已挖好每隔6米植一棵树的坑,后要改成每隔4米植一棵树。

还要挖多少个坑?需要填上多少个坑?。

三年级数学植树问题例题解析

三年级数学植树问题例题解析

三年级数学植树问题例题解析
摘要:
1.植树问题的基本概念
2.三年级数学植树问题的例题
3.例题的解析方法
4.植树问题的实际应用
正文:
【植树问题的基本概念】
植树问题是一种典型的数学问题,主要涉及到树的种植方式和数量。

一般来说,植树问题可以分为两类:一是在直线上种植树木,二是在平面上种植树木。

在三年级数学中,通常学习的是在直线上种植树木的问题。

【三年级数学植树问题的例题】
例题:小明家到学校有一条长为500 米的路,他想在这条路上种一些树,每隔5 米种一棵,问小明可以在这条路上种多少棵树?
【例题的解析方法】
解:首先,我们要知道,树的两端都是不能种植树木的,所以,小明在这条500 米长的路上,最后一棵树距离路的终点应该是5 米,而不是0 米。

因此,小明实际上只能在这条路上种(500-5)/5=99 棵树。

【植树问题的实际应用】
植树问题在生活中有很多实际应用,比如,我们要计算在一条街道上需要种多少棵树,或者计算在一块土地上需要种多少棵树,都可以用植树问题的方
法来解决。

(完整版)小学三年级奥数题练习及解析

(完整版)小学三年级奥数题练习及解析

小学三年级奥数题练习及解析1.工程问题绿化队4天种树200棵,还要种400棵,照如此旳工作效率,完成任务共需多少天?解答:200÷4=50〔棵〕〔200+400〕÷50=12〔天〕【小结】归一思想、先求出一天种多少棵树,再求共需几天完成任务、单一数:200÷4=50〔棵〕,总共旳天数是:〔200+400〕÷50=12〔天〕、2.还原问题3个笼子里共养了78只鹦鹉,假如从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子里取出6只放到第3个笼子里,那么3个笼子里旳鹦鹉一样多、求3个笼子里原来各养了多少只鹦鹉?解答:78÷3=26〔只〕第1个笼子:26+8=34〔只〕第2个笼子:26-8+6=24〔只〕第3个笼子:26-6=20〔只〕小学三年级奥数题及【答案】:楼梯问题1上楼梯问题某人要到一座高层楼旳第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样旳速度走到八层,还需要多少秒?解答:上一层楼梯需要:48÷〔4-1〕=16〔秒〕从4楼走到8楼共走:8-4=4〔层〕楼梯还需要旳时刻:16×4=64〔秒〕答:还需要64秒才能到达8层。

2.楼梯问题晶晶上楼,从1楼走到3楼需要走36级台阶,假如各层楼之间旳台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?解:每一层楼梯有:36÷〔3-1〕=18〔级台阶〕晶晶从1层走到6层需要走:18×〔6-1〕=90〔级〕台阶。

答:晶晶从第1层走到第6层需要走90级台阶。

小学三年级奥数题及【答案】:页码问题1.黑白棋子有黑白两种棋子共300枚,按每堆3枚分成100堆。

其中只有1枚白子旳共27堆,有2枚或3枚黑子旳共42堆,有3枚白子旳与有3枚黑子旳堆数相等。

那么在全部棋子中,白子共有多少枚?解答:只有1枚白子旳共27堆,说明了在分成3枚一份中一白二黑旳有27堆;有2枚或3枚黑子旳共42堆,确实是说有三枚黑子旳有42-27=15堆;因此三枚白子旳是15堆:还剩一黑二白旳是100-27-15-15=43堆:白子共有:43×2+15×3=158〔枚〕。

小学三年级奥数第6讲 植树问题(含答案分析)

小学三年级奥数第6讲 植树问题(含答案分析)

第6讲植树问题一、知识要点1、基本概念:总长:植树路线的全长。

棵距:两棵数之间的距离。

段数:总长中共有几个棵距棵数:植树的总棵树2、基本类型以及关系式:(1)路的两端都要植树棵树=线路总长÷棵距+1线路总长=棵距×(棵树-1)棵距=线路总长÷(棵数-1)(2)路的两端都没有植树棵树=线路总长÷棵距-1棵数=段数-1(3)路的一端植树,另一端不植树棵树=线路总长÷棵距棵数=段数另外,生活中还有一些问题,可以用植树问题的方法来解答。

比如锯木头、爬楼梯问题等等,这时解题的关键是要将题目中的条件和问题与植树问题中的“总距离”、“间隔长”、“棵数”对应起来。

二、精讲精练【例题1】小朋友们在路的一边植树,先植一棵树,以后每隔3米植一棵,已经植了9棵,问第一棵和第九棵树相距多少米?练习1:(1)在路的一侧插彩旗,每隔5米插一面,从起点到终点共插了20面,这条道路有多长?(2)在学校的走廊两边,每隔4米放一盆菊花,从起点到终点一共放了20盆,这条走廊长多少米?【例题2】在一条长42米的大路两侧栽树,从起点到终点一共栽了14棵,已知相邻两棵树之间的距离都相等,问相邻两棵树之间的距离是多少米?练习2:在公园一条长30米的路的两侧放椅子,从起点到终点共放了12把椅子,相邻两把椅子的距离相等,相邻两把椅子之间相距多少米?【例题3】把一根钢管锯成小段,一共花了28分钟,已知每锯开一段需要4分钟,这根钢管被锯成了多少段?练习3:一根圆木锯成2米长的小段,一共花了12分钟。

已知每锯下一段要3分钟,这根圆木长多少米?【例题4】甲、乙两人比赛爬楼梯,甲跑到4楼时,乙恰好跑到3楼,照这样计算,甲跑到16楼时,乙跑到了多少楼?练习4:小明和小红两人爬楼梯比赛,小明跑到第4层时,小红跑到第5层,照这样计算,当小明跑到第16层时,小红跑到了第几层?【例题5】一个圆形跑道长300米,沿跑道周围每隔6米插一面红旗,每两面红旗中间插一面黄旗,跑道周围各插了多少面红旗和黄旗?练习5:(1)有一个正方形水池,周长是200米。

小学三年级奥数植树问题及答案

小学三年级奥数植树问题及答案

小学三年级奥数植树问题及答案基础题1.有一条2000米的公路,在路一边每相隔50米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根?答:41根.2000 50+1=41(根)2.某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?答:248棵.(1000 8-1)2=124 2=248(棵)3.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株?答:150 3=50(棵).4.一根木料截成5段要16分钟,如果每截一次的时间相等,那么截7段要几分钟?答:每截一次需要:16 (5-1)=4(分钟),截成7段要4 (7-1)=24(分钟).5.从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?答:每一层楼梯的台阶数为:48 (4-1)=16(级),从1楼到6楼共走:6-1=5(段)楼梯,16 5=80(级)台阶.6.马路的每边相隔7米有一棵国槐,小军乘无轨电车3分看到马路的一边有国槐151棵,无轨电车每小时行多少千米?答:21千米.先求出无轨电车3分行驶的路程,再求每分行驶的路程,最后求每小时行的路程.7 (151-1)3 60 1000或7 (151-1)(60 3)1000=7 150 3 60 1000=7 150 20 1000=21(千米)=21(千米)提高题1.有一条2000米的公路,在路一边每相隔50米埋设一根路灯杆,从头到尾需要埋设路灯杆多少根?答:41根.2000 50+1=41(根)2.某大学从校门口的门柱到教学楼墙根,有一条1000米的甬路,每边相隔8米栽一棵白杨,可以栽白杨多少棵?答:248棵.(1000 8-1)2=124 2=248(棵)3.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株?答:150 3=50(棵).4.一列火车共20节,每节长5米,每两节之间相距1米,这列火车以每分钟20米的速度通过81米长的隧道,需要几分钟?答:火车的总长度为:5 20+1 (20-1)=119(米),火车所行的总路程:119+81=200(米),所需要的时间:200 20=10(分钟)答:需要10分钟.5.一根木料截成5段要16分钟,如果每截一次的时间相等,那么截7段要几分钟?答:每截一次需要:16 (5-1)=4(分钟),截成7段要4 (7-1)=24(分钟).6.从1楼走到4楼共要走48级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?答:每一层楼梯的台阶数为:48 (4-1)=16(级),从1楼到6楼共走:6-1=5(段)楼梯,16 5=80(级)台阶.7.马路的每边相隔7米有一棵国槐,小军乘无轨电车3分看到马路的一边有国槐151棵,无轨电车每小时行多少千米?答:21千米.先求出无轨电车3分行驶的路程,再求每分行驶的路程,最后求每小时行的路程.7 (151-1)3 60 1000=7 150 3 60 1000=21(千米)或7 (151-1)(60 3)1000=7 150 20 1000=21(千米)。

小学奥数题及答案详解

小学奥数题及答案详解

小学奥数题及答案详解
(一)植树问题
题目1:在一条长20米的公园小道一边种杨柳树,每隔4米种一棵,两端都要种,一种要种多少棵?
答案:20米的路每隔4米种一棵,可以分成5段,两端都种的话,就在加1棵。

算式为:20÷4=5(棵),5+1=6(棵);20÷4+1=6(棵)。

题目2:一条路上每隔2米有一根电线杆,连两端一共有10根电线杆,这条路有多长?
答案:加上两端一共10根电线杆,说明有9段,每段2米,则一共有18米。

算式为:2×(10-1)=18(米)
题目3:在一条20米的公园小道两边种树,每隔4米种1棵,两头都要种,一共要种多少棵?
答案:20米的小路每边每隔4米的话一共有5段,两头都种则每边有6棵,两边都种则有12棵。

算式为:20÷4=5(棵),5+1=6(棵),2×6=12(棵);(20÷4+1)×2=12(棵)。

题目4:一个圆形水池周围每隔2米栽一棵杨树,共栽了40棵,水池的周长是多少米?
答案:因为水池是圆形的,树的棵树与树的间隔数是相同的,所以40棵树把水池周围分成了40段,因此水池的长度为80米,算式为:2×40=80(米)。

三年级奥数植树问题完整版

三年级奥数植树问题完整版

三年级奥数植树问题完整版三年级奥数植树问题植树问题可以分为以下三种情况:1.如果植树线路的两端都要植树,那么植树的棵数应比要分得段数多1,即:棵数=段数+1.2.如果植树的线路的一端植树,另一端不植树,那么植树的棵数应与要分得线段数相等,即:棵数=段数。

3.如果植树线路的两端都不植树,那么植树的棵数应比要分的线段数少1,即:棵数=段数-1.在封闭线路上植树,植树的棵数与要分的线段相等,即:棵数=段数。

1.小朋友们在植树时,先植一棵树,然后每隔三米植一棵树。

现已经植了九棵树,第一棵和第九棵树相距多少米?2.在一条路的一侧插彩旗,每隔五米插一面彩旗,从这条路的起点到终点共插了十面彩旗。

这条路有多长?3.在学校的走廊两边,每隔四米放一盆菊花,从这条走廊的起点到终点一共放了十八盆菊花。

这条走廊长多少米?4.在一条二十米长的绳子上挂气球,从一端起每隔五米挂一个气球。

四个气球能挂满这条绳子吗?5.在一条三十六米长的走廊的一侧摆花,两端都摆,平均每隔两米摆一盆花。

一共需要摆多少盆花?6.在马路的一侧竖电线杆,平均每隔五米竖一根电线杆。

如果两端都竖,一百米长的马路一共要竖多少根电线杆?7.在长五十米的跑道的一侧插彩旗,平均每两米插一面彩旗。

如果两端都插彩旗,一共需要多少面彩旗?8.在跑道的一侧每隔三米植一棵树。

如果两端都植,那么七十五米长的跑道一共要植多少棵树?9.在一条长四十米的大路两侧栽树,从起点到终点一共栽了二十二棵树,已知相邻两棵树之间的距离都相等。

相邻两棵树之间的距离是多少米?10.在一条三十二米长的公路一侧插彩旗,从起点到终点共插了五面彩旗,相邻两面彩旗之间的距离都相等。

相邻两面彩旗之间相距多少米?11.在公园里一条二十五米的路的两侧放椅子,从起点到终点共放了十二把椅子,相邻两把椅子之间的距离相等。

相邻两把椅子之间相距多少米?12.要把一根木料锯成八段,已知每锯开一段需要两分钟,把这根木料全部锯完需要多少分钟?13.在一条五十米长的马路的一侧植树,每隔五米植一棵树,如果两端都不植树,一共需要植多少棵树?14.在六十米长的围墙上安装宣传栏,每隔两米安装一个宣传栏,如果两端都不安装宣传栏,一共需要安装多少个宣传栏?15.在一条长度为70米的绳子上,每隔2米打一个结,不包括两端。

三年级植树问题奥数题与解析

三年级植树问题奥数题与解析

三年级植树问题奥数题与解析三年级植树问题奥数题与解析三年级是小朋友数学思维形成的阶段,所以大家要多做题勤加练习,成绩才能有所提升,下面是数学网为大家分享的三年级植树问题奥数题与解析,希望店铺做的这些整理能对三年级的同学们学习带来方便!1、一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。

这列车队共排列了多长?如果车队每秒行驶2米,那么这列车队要通过535米长的检阅场地,需要多少时间?2、父子俩一起攀登一个有300个台阶的山坡,父亲每步上3个台阶,儿子每步上2个台阶。

从起点处开始,父子俩走完这段路共踏了多少个台阶?(重复踏的台阶只算一个)。

1、解:车队间隔共有30-1=29(个),每个间隔5米,所以,间隔的总长为(30-1)×5=145(米),而车身的总长为30×4=120(米),故这列车队的总长为(30-1)×5+30×4=265(米)。

小学三年级植树问题奥数题与解析:由于车队要行265+535=800(米),且每秒行2米,所以,车队通过检阅场地需要(265+535)÷2=400(秒)=6分40秒。

答:这列车队共长265米,通过检阅场地需要6分40秒。

2、解:因为两端的.台阶只有顶的台阶被踏过,根据已知条件,儿子踏过的台阶数为300÷2=150(个),父亲踏过的台阶数为300÷3=100(个)。

由于2×3=6,所以父子俩每6个台阶要共同踏一个台阶,共重复踏了300÷6=50(个)。

所以父子俩共踏了台阶150+100-50=200(个)。

答:父子俩共踏了200个台阶。

以上是店铺为大家分享的,大家还满意吗?大家一定要多多练习哦!。

小学奥数6-1-14 植树问题(二).专项练习及答案解析

小学奥数6-1-14 植树问题(二).专项练习及答案解析

1.封闭与非封闭植树路线的讲解及生活运用。

2.掌握空心方阵和实心方阵的变化规律.3.几何图形的设计与构造一、植树问题分两种情况:(一)不封闭的植树路线. ① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。

知识点拨教学目标5-1-3.植树问题(二)例题精讲模块一、封闭图形的植树问题【例1】小强家附近的公园里有一个圆形池塘,它的周长1500是米,每隔3米栽种一棵树.问:共需树苗多少株?【考点】封闭图形的植树问题【难度】1星【题型】解答【解析】因为圆形池塘是一个封闭的模型,所以我们直接运用公式棵数=段数=周长÷株距,从而有树苗:1500÷3=500(株).【答案】500株【巩固】周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳树?【考点】封闭图形的植树问题【难度】1星【题型】解答【解析】40302140()÷=(棵).+⨯=(米),140528【答案】28棵【例2】在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中点都正好栽一棵松树,则最少要买松树苗棵。

【小学奥数植树问题知识点讲解【三篇】】三年级植树问题应用题

【小学奥数植树问题知识点讲解【三篇】】三年级植树问题应用题

【小学奥数植树问题知识点讲解【三篇】】三年级植树问题
应用题
【导语】天高鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩用好分秒时间,积累点滴知识,解决疑难问题,学会举一反三。

以下是大为大家的《》供您查阅。

1.圆湖的周长1350米,在湖边每隔9米种柳树一棵,在两棵柳树之间种桃树2棵,两棵桃树之间的距离是().桃树和柳树各植()、()棵.分析:在两棵柳树之间种桃树2棵,两棵桃树之间的距离是:9÷(2+1)=3(米);柳树的间隔数是:1350÷9=150(个),那么桃树有:2×150=300(棵),柳树有150棵,据此解答.
解答:解:9÷(2+1)=3(米),
柳树的间隔数是:1350÷9=150(个),
柳树:150棵;
桃树:2×150=300(棵);
答:两棵桃树之间的距离是3米.桃树和柳树分别植300棵、150棵.
故答案为:3米,300,150.
点评:本题考查了植树问题,知识点是:栽树的棵数=间隔数-1(两端都不栽),植树的棵数=间隔数+1(两端都栽),植树的棵数=间隔数(只栽一端).
内容仅供参考。

(完整版)小学三年级奥数题练习及解析.doc

(完整版)小学三年级奥数题练习及解析.doc

小学三年级奥数题练习及解析1.工程问题绿化队 4天种树 200棵,还要种 400棵,照如此旳工作效率,完成任务共需多少天?解答: 200÷ 4=50〔棵〕〔200+400〕÷ 50=12〔天〕【小结】归一思想、先求出一天种多少棵树,再求共需几天完成任务、单一数:200÷ 4=50〔棵〕,总共旳天数是:〔 200+400〕÷ 50=12〔天〕、2.还原问题3个笼子里共养了 78只鹦鹉,假如从第 1个笼子里取出 8只放到第 2个笼子里,再从第 2个笼子里取出 6只放到第 3个笼子里,那么 3个笼子里旳鹦鹉一样多、求 3个笼子里原来各养了多少只鹦鹉 ?解答: 78÷ 3=26〔只〕第1个笼子: 26+8=34〔只〕第2个笼子: 26-8+6=24 〔只〕第3个笼子: 26-6=20 〔只〕小学三年级奥数题及【答案】:楼梯问题1上楼梯问题某人要到一座高层楼旳第8层办事,不巧停电,电梯停开,如从1层走到 4层需要 48秒,请问以同样旳速度走到八层,还需要多少秒?解答:上一层楼梯需要:48÷〔 4-1 〕 =16〔秒〕从4楼走到 8楼共走: 8-4=4 〔层〕楼梯还需要旳时刻:16×4=64〔秒〕答:需要 64秒才能到达 8。

2.楼梯晶晶上楼,从 1楼走到 3楼需要走 36台,假如各楼之台数相同,那么晶晶从第 1走到第 6需要走多少台?解:每一楼梯有: 36÷〔 3-1 〕= 18〔台〕晶晶从 1走到 6需要走: 18×〔 6-1 〕=90〔〕台。

答:晶晶从第1走到第 6需要走 90台。

小学三年奥数及【答案】:1.黑白棋子有黑白两种棋子共 300枚,按每堆 3枚分成 100堆。

其中只有 1枚白子共 27堆,有 2枚或 3枚黑子共 42堆,有 3枚白子与有 3枚黑子堆数相等。

那么在全部棋子中,白子共有多少枚?解答:只有 1枚白子共 27堆,明了在分成 3枚一份中一白二黑有 27堆;有 2枚或 3枚黑子共 42堆,确是有三枚黑子有 42-27=15 堆;因此三枚白子是 15堆:剩一黑二白是100-27-15-15=43 堆:白子共有: 43× 2+15× 3=158〔枚〕。

三年级奥数植树问题_小学三年级奥数植树问题

三年级奥数植树问题_小学三年级奥数植树问题

三年级奥数植树问题_小学三年级奥数植树问题马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?答案:张军5分钟看到501棵树意味着在马路的两端都植树了;只要求出这段路的长度就容易求出汽车速度.5分钟汽车共走了:9某(501-1)=4500(米),汽车每分钟走:4500÷5=900(米),汽车每小时走:900某60=54000(米)=54(千米)列综合式:9某(501-1)÷5某60÷1000=54(千米),所以汽车每小时行54千米。

“习题:一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。

这列车队共排列了多长?如果车队每秒行驶2米,那么这列车队要通过535米长的检阅场地,需要多少时间?解:车队间隔共有30-1=29(个),每个间隔5米,所以,间隔的总长为:(30-1)某5=145(米),而车身的总长为30某4=120(米),故这列车队的总长为(30-1)某5+30某4=265(米)。

小学三年级植树问题奥数题与解析:由于车队要行265+535=800(米),且每秒行2米,所以,车队通过检阅场地需要(265+535)÷2=400(秒)=6分40秒。

答:这列车队共长265米,通过检阅场地需要6分40秒。

习题:父子俩一起攀登一个有300个台阶的山坡,父亲每步上3个台阶,儿子每步上2个台阶。

从起点处开始,父子俩走完这段路共踏了多少个台阶?(重复踏的台阶只算一个)。

解:因为两端的台阶只有顶的台阶被踏过,根据已知条件,儿子踏过的台阶数为300÷2=150(个),父亲踏过的台阶数为300÷3=100(个)。

由于2某3=6,所以父子俩每6个台阶要共同踏一个台阶,共重复踏了300÷6=50(个)。

所以父子俩共踏了台阶150+100-50=200(个)。

答:父子俩共踏了200个台阶。

三年级奥数-问题解决 -植树问题

三年级奥数-问题解决 -植树问题

单击此处添加标题
植树问题: 两端都植树,棵数=间隔数+1 一端不植树,棵数=间隔数 两端都不植树,棵数=间隔数-1
单击此处添加标题
(1) 有一条长100米 的跑道 一侧从头到尾每隔5米插一面红 旗,一共需要多少面红旗?
单击此处添加标题
(2) 在一条公路的一侧从头 到尾每隔25米栽一棵树,共栽 了41棵。这条公路长多少 米?
单击此处添加标题
(6) 有一条马路一侧从头到 尾共植树140棵,每相邻两棵 树之间的间隔是5米,这条马路 长多少米?
单击此处添加标题
(7) 有一个房间长8米,宽6 米,在房间顶部的四周每隔2米 装一盏彩灯(四角都装),共 装了几盏灯?
•(8)一只蜗牛在12米深的 井底向上爬,每小时爬上3 米后要滑下2米,这只蜗牛 要几小时才能爬出井口?
单击此处添加标题
(3)两栋楼房之间有条长20 米的小路,现在要在小路的一 旁每隔2米栽一颗数,需要多少 棵树苗?
单击此处添加标题
(4) 一根木头,锯成5段要20 分钟。把这根木头锯成11段需 要多少分钟?
单击此处添加标题
(5) 有一座楼房高16层,相 邻两层间都有18级台阶。从3 层走到9层一共要走多少级台阶?

三年级奥数解析(二十)植树问题

三年级奥数解析(二十)植树问题

三年级奥数解析(二十)植树问题《奥赛天天练》第25讲《植树问题》、第26讲《上楼梯与植树》,知识原理是一样的,都是应用一一间隔的规律解决问题。

一一间隔的规律是指:两个不同的物体一一间隔地排成一行,如果两端的物体相同,则排在两端的物体比中间另一种物体多一个;如果两端的物体不同,则两种物体的个数相同;如果两个不同的物体一一间隔地排成一个封闭图形,两种物体的个数也是相同的(把封闭图形从任意一个点剪开展开,就可以得到与第二种情况相同的排列)。

在植树问题中我们可以把树苗和间距看作两种物体,先求出间距的个数,再利用一一间隔规律,算出树苗的棵数。

在爬楼问题中我们可以把楼层看着两端物体,把楼梯看做中间物体,再利用一一间隔规律,根据楼层求楼梯的层数。

《奥赛天天练》第25讲,巩固训练,习题1【题目】:有16个同学排成一排,要求每2名学生中间放2盆花,需要放几盆花?【解析】:16个同学排成一排,每两个同学之间有一个间隔,共有间隔:16-1=15(个)每个间隔放2盆花,需要摆花:15×2=30(盆)。

《奥赛天天练》第25讲,巩固训练,习题2【题目】:某城市举行长跑比赛,从市体育馆出发,最后再回到市体育馆。

全长42千米,沿途等距离设茶水站7个,求每相邻两个茶水站之间的距离。

【解析】:从题目给出条件:“从市体育馆出发,最后再回到市体育馆。

”可知这次长跑路线是个封闭图形,所以茶水站个数与茶水站之间的间距的个数是相同的。

所以每相邻两个茶水站之间的距离是:42÷7=6(千米)《奥赛天天练》第25讲,拓展提高,习题2【题目】:小敏用同样的速度在校园的林荫道上散步,他从第1棵树走到第6棵树用了5分钟,当他走了15分钟时应到达地几棵树?【解析】:首先要让孩子弄清:在散步过程中,与时间有直接数量关系的是路程,也就是树的间距,而不是树的棵数。

走到第6棵树,走来5个间距,用了5分钟,每分钟的路程为1个间距:5÷(6-1)=1(个)。

小学三年级奥数植树问题例题练习及答案

小学三年级奥数植树问题例题练习及答案

第6讲植树问题例题练习及答案(1)在一段距离中,两端都植树,棵数=段数+1;(2)在一段距离中,两端都不植树,棵数=段数-1;(3)在一段距离中,一端不植树,棵数=段数.3.在封闭曲线上植树,棵数=段数.例题精讲:例 1 有一条长1000米的公路,在公路的一侧从头到尾每隔25米栽一棵树苗,一共需要准备多少棵树苗?分析:先将全长1000米的公路每25米分成一段,一共分成多少段?种树的总棵树和分成的段数的关系是棵数=段数+1.解 1000÷25+1=41(棵).答:一共需要准备41棵树苗.例 2 公路的一旁每隔40米有木电杆一根(两端都有).共121根.现改为水泥电杆51根(包括两端),求两根相邻水泥电杆之间的距离.分析:公路全长为40×(121-1)解 40×(121-1)÷(51-1)=40×120÷50=96(米).答:两根相邻水泥杆之间的距离是96米.例 3 两幢大楼相隔115米,在其间以等距离的要求埋设22根电杆,从第1根到第15根电杆之间相隔多少米?分析:在相距115米的两幢大楼之间埋设电杆,是两端都不埋电杆的情况,115米应该分成22+1=23段,那么每段长是115÷23=5米,而第1根到第15根电杆间有15-1=14段,所以第1根到第15根电杆之间相隔(5×14)米.解 115÷(22+1)×(15-1)=115÷23×14=70(米)答:从第1根到第15根之间相隔70米.例 4 工程队打算在长96米,宽36米的长方形工地的四周打水泥桩,要求四角各打一根,并且每相邻两根的距离是4米,共要打水泥桩多少根?分析:先求出长方形的周长是(96+36)×2=264米,每4米打一根桩,因为是沿着长方形四周打桩,所以段数和根数相等,可用264÷4来计算.解 (96+36)×2÷4=132×2÷4=66(根).答:共要打水泥桩66根.例 5 一个圆形水库,周长是2430米,每隔9米种柳树一棵.又在相邻两棵柳树之间每3米种杨树1棵,要种杨树多少棵?分析:沿着封闭的圆形水库四周植树,段数与棵数相等,沿着2430米的四周,每隔9米种柳树一棵,共可种2430÷9=270棵,也就是把水库四周平分成270段.又在相邻两棵柳树之间,每隔3米种杨树一棵,每段可种9÷3-1=2棵,总共可种杨树2×270=540棵.解 (9÷3-1)×(2430÷9)=2×270=540(棵)答:水库四周要种杨树540棵.例 6 红星小学有125人参加运动会的入场式,他们每5人为一行,前后两行的距离为2米,主席台长32米.他们以每分钟40米的速度通过主席台,需要多少分钟? 分析:这是一道与植树问题有关的应用题.利用"有125人,每5人为一行"可求出一共有125÷5=25行,行数相当于植树问题中的棵数,"前后两行距离是2米"相当于每两棵树之间的距离,这样可求出队伍的长度是2×(25-1)米.再加上主席台的长度,就是队伍所要走的距离.用队伍所要走的距离,除以队伍行走的速度,可求出所需行走的时间了.解 [2×(125÷5-1)+32]÷40=[2×24+32]÷40=80÷40=2(分钟).答:队伍通过主席台要2分钟.水平测试 4一、填空题1.学校有一条长80米的走道,计划在走道的一旁栽树,每隔4米栽一棵.(1)如果两端都栽树,那么共需要______棵树.(2)如果两端栽柳树,中间栽杨树,那么共需要______杨树.(3)如果只有一端栽树,那么共需要______棵树.2.一个圆形水池的周长是60米,如果在水池的四周每隔3米放一盆花,那么一共能放______盆花.3.16米的校园大道两边都种上树苗,从路的两头起每隔2米种一棵,共种______棵4.蚂蚁爬树枝,每上一节需要10秒.它从第一节爬到第13节需要_______秒5.一根木料长24分米,现在要将这跟木料锯成长度相等的6段,每锯一次要10秒,共要______秒.二、解答题6.同学们布置教室,要将一根200厘米长的彩带剪成20厘米长的小段.如果彩带不能折叠,需要剪多少次?7.公园的一个湖的周长是1800米,在这个湖的周围每隔20米种一棵柳树.然后在每两棵柳树之间每隔4米种一棵迎春花,需要柳树多少棵、迎春花多少棵?8.在一幢高25层的大楼里,甲、乙两个比赛爬楼梯.甲到9楼时,乙刚上到5楼.照这样的速度,当甲到了顶层时乙到了几楼?9.一个人以均匀的速度在路上散步,从第1根电线杆走到第7根电线杆用了12分钟,这个人走了30分钟,他走到了第几根电线杆?他走到第30根电线杆处,用了几分钟?10.甲村到乙村,原计划栽树175棵,相邻两棵树距离8米,后决定改为栽树117棵,问相邻两树应相距多少米?11.一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后两车相隔5米,问这列车队共长多少米?B 卷一、填空题1.有一条长1000米的公路,在公路两边从头到尾每隔10米栽一棵树,共可栽______棵树.2.两幢楼房相距90米,现在要在两楼之间每隔10米种一棵树,需要种_____树.3.一根木料锯成4段需要18分钟,改成锯8段要_____分钟.4.园林工人放盆花,每7盆花距离12米.照这样计算,36盆花的距离是______米.5.某街心公园新辟一条小道长50米,从头到尾在小道的一旁等距离放6个长5米的花坛,花坛间隔是_____米.6.师专附小举行运动会入场仪式,四年级有246名同学排成6路纵队,前后每行间隔2米,主席台长40米.他们以每分钟40米的速度通过主席台.需要______分钟.二、解答题7.圆形滑冰场,周长400米,每隔40米装一盏灯.再在相邻两盏灯之间放3盆花,问共需装几盏灯?放几盆花?8.有一个正方形池塘,在它四周种树,四个顶点都有一棵,这样每边都有5棵,问池塘四周共种树多少棵?9.人民公园有一个湖泊,周长168米.现在沿边长等距离做8个长9米的花坛,问花坛间隔是多少米?10.一根木料长4米,锯成每段40厘米,需要36分钟.如果把它锯成每段长50厘米,需要多少时间?11.在铁路一旁,每隔50米有电杆一根.一旅客在行进的火车里,从经过第1根电杆起到第89根电杆为止,恰好经过了4分钟,问火车行进的速度是每小时多少千米?12.有一根长180米厘米的绳子,从它的一端开始,每3厘米作一个记号,每4厘米也作一个记号.然后将有记号的地方剪开,问绳子共可剪成多少段?C 卷一、填空题1.在相距100米的两楼之间栽树,每隔10米栽一棵,共栽了______棵树.2.一个长方形的池塘长120米、宽28米,在池塘边每隔2米种一棵树,一共需要种_____棵树.3.一个人以均匀的速度在路上散步,从第一根电线杆走到第七根电线杆用了12分钟,这个人走了30分钟,他走到了第______根电线杆.4.国庆节接受检阅的一列车队共52辆,每辆车长4米,前后每辆车相隔6米,车队每分钟行驶105米,这列车队要通过536米长的检阅场地,要______分钟.5.锯一条4米长的圆柱形的钢条,锯5段耗时1小时20分钟.如果把这样的钢条锯成半米长的小段,需要______分钟.6.小王要到大厦的36层去上班,一日因停电他步行上楼,他从一层到六层用了100秒.如果用同样的速度走到36层,还需要_____秒.二、解答题7.马路的一边每隔10米种一棵树,小明乘汽车2分钟共看到201棵树,汽车每小时行多少千米?8.公园里有个湖,湖边周长是3600米,按等距离共种了120棵柳树.现在要在每3棵柳树间等距离地安放一条长椅供游人休息,沿湖边安放一周需要多少条长椅?两条长椅间相距多少?9.公路两旁距离均匀地栽有一批杨树.清晨琳琳以同一速度在公路一侧跑步,从第1棵树跑到第9棵树用了4分钟.她准备往返跑步30分钟,琳琳应该跑到第几棵树时返回?10.一条道路的一边,每隔30米有一根电线杆,共有51根.现在要进行线路改造,每隔50米设一根电线杆,改造过程中有多少根电线杆不需要移动?11.图2是五个大小相同的铁环连在一起的图形,它的长度是多少毫米?十个这样的铁环连在一起有多少毫米长?12.盒子里有许多黑色和白色的围棋子,明明从盒子里取出19枚,排成一排.他先放1枚白色棋子,放几枚黑色棋子;再放1枚白色棋子,放几枚黑色棋子;......每次放的黑色棋子的枚数都相同.巧的是最后一枚也是白色棋子.请你在图中画出棋子的摆法:植树问题答案:水平测试 4A卷1.(1)21. 80÷4+1=21(棵)(2)19. 80÷4-1=19(棵)(3)20. 80÷4=20(棵)2.20. 这是一个封闭图形.60÷3=20(盆).3.18. 注意这是两边种树.先求一边:16÷2+1=9(棵),9×2=18(棵)4.120. (13-1)×10=120(秒)5.50. (6-1)×10=50(秒)6.9次. 200÷2-1=97.柳树90棵,迎春花360棵.柳树:1800÷20=90(棵),迎春花:(20÷4-1)×90=360(棵).8.13楼. 甲上到9楼就是上了8层楼梯,乙上到5楼就是上了4层楼梯,这样甲的速度就是乙的2倍.(9-1)÷(5-1)=2,(25-1)÷2+1=13(楼).9.16根,58分钟. 第一根电线杆到第七根电线杆之间有6个间距,走6个间距要12分钟,可知走一个间距所需时间.12÷(7-1)=2(分钟),30÷2+1=16(根),(30-1)×2=58(分钟).10.12米. 先求出两村距离:(175-1)×8=1392(米).再求间距:1392÷(117-1)=12(米).11.265米. 30辆车之间有29个间隔,这个车队的长度包括车长和间隔.30×4+(30-1)×5=265(米).B 卷1.202. (1000÷10+1)×2=202(棵).2.8. 90÷10-1=8(棵).3.42. 锯一段所需时间,18÷(4-1)=6(分钟),6×(8-1)=42(分钟).4.70. 两盆花之间的距离:12÷(7-1)=2(米),(36-1)×2=70(米).5.4. (50-6×5)÷(6-1)=4(米)6.3. 同学们通过主席台所走的路程包括:主席台的长度和队伍本身的长度.队伍长:(246÷6-1)×2=80(米),(80+40)÷40=3(分钟).7.在封闭曲线上,分成段数就是需装灯的盏数.同时,因为每段上放3盆花,所以花的盆数是段数的3倍.400÷40=10(盏)......灯,3×10=30(盆)......花. 8.从图可看到,四边共种了16棵,若每边种了(5-1)棵,则4边种了4×4=16棵;若每边种5棵树,四边共5×4=20棵树,去掉四个角上重复的棵数,那么也成了20-1×4=16棵;解法一(5-1)×4=16(棵); 解法二5×4-1×4=16(棵).9.花坛的总长是9×8=72(米),还剩下的米数是168-72=96(米).在封闭曲线上,8个花坛间有8个间隔,每个间隔的距离是96÷8=12(米).(168-9×8)÷8=96÷8=12(米).10.4m=400cm,36÷(400÷40-1)×(400÷50-1)=36÷9×7=28(分钟).11.从第1根到第89根,火车共走了50×(89-1)=50×88=4400米.走这些路程用了4分钟,所以火车每分钟走4400÷4=1100米,那么1小时可走1100×60÷1000=66千米.50×(89-1)÷4×60÷1000=50×88÷4×60÷1000=66(千米/小时).12.180米长的绳子,每隔3厘米做一个记号,记号数比段数少1,有180÷3-1=59个记号.同样每隔4厘米做一个记号,则有180÷4-1=44个记号.由于3×4=12厘米,可以想象,每隔12厘米,3厘米处的记号与4厘米处的记号重复一次,那么在180厘米长的绳子上共重复了180÷12-1=14次,所以绳子上的记号总数为59+44-14=89个,而记号处都要剪开,共剪了89次,剪成了90段(段数比次数多1).(180÷3-1)+(180÷4-1)-[180÷(3×4)-1]+1=59+44-14+1=90(段).C 卷1.9. 100÷10-1=9(棵).2.148. (120+28)×2÷2=148(棵)3.16. 12÷(7-1)=2(分钟),30÷2+1=16(根).4.10. 车队行进的长度包括检阅场地和车队本身长度.(52-1)×6+52×4=514(米),(514+536)÷105=10(分钟).5.140. 1小时20分=80分,80÷(5-1)=20(分钟),(4×2-1)×20=140(分钟).6.640. 100÷(6-1)=20(秒),(36-1)×20=740(秒),740-100=640(秒).7.60千米/时. 小明2分钟经过了201棵树,这之间就有201-1=200(个)间隔,每个间隔10米,就能求出汽车开过的路程.(201-1)×10=2000(米)=2(千米),2÷2×60=60(千米/时).8.60条,60米. 三棵树之间的间距:3600÷120×2=60(米),也就是每60米要放一张长椅,所以3600÷60=60(条).9.31棵. 4分钟=240秒.240÷(9-1)=30(秒),琳琳30秒跑一个间距.30分钟=1800秒,1800÷30=60(个),琳琳1800秒要跑60个间距,往返各30个间距,所以30+1=31(棵).琳琳跑到第31棵树时返回.10.11根. 道路总长度:30×(51-1)=1500(米).当30米与50米的公倍数150米处时,这根电线杆不需要移动,还有开头的这根也不需要移动.1500÷150+1=11根.11.152米,292米.4cm=40mm,40-4×6=16(mm),40×3+16×2=152(mm).40×5+16×4+(40-12)=292(米).12.略.。

三年级数学植树问题例题解析

三年级数学植树问题例题解析

三年级数学植树问题例题解析问题描述在某个学校操场上,老师要求同学们参与植树活动。

每个同学需要植树5棵。

已知操场上有120个同学参与了活动,请问操场上一共会有多少棵树?解题思路为了解决这个问题,我们可以使用乘法进行计算。

由于每个同学需要植树5棵,所以我们可以将120个同学乘以5得到总数。

120 \times 5使用乘法的性质,我们可以将乘法运算转化为加法运算。

即将120个5相加,得到总数。

计算过程首先,我们将120个5相加:5 + 5 + 5 + ... + 5 (120个5相加)接下来,我们可以将一些5进行分组,看一下有多少组。

(5 + 5 + 5 + 5 + 5) + (5 + 5 + 5 + 5 + 5) + ... + (5 + 5 + 5 + 5 + 5) (共有120组)接下来,我们可以将每组里面的5进行合并,用乘法进行计算。

(1 \times 5) + (1 \times 5) + ... + (1 \times 5) (共有120项)最后,我们可以将每项进行加法运算。

1 + 1 + 1 + ... + 1 (120个1相加)解答这个加法问题,我们可以得到最终结果。

结果计算根据上述计算过程,我们得到结果:120 \times 5 = 600操场上一共会有600棵树。

结论根据解题思路和计算过程,当有120个同学每人植树5棵时,操场上一共会有600棵树。

这个问题的解决方法可以帮助我们理解乘法和加法之间的关系。

通过将乘法转化为加法运算,我们可以更加直观地计算出结果。

数学问题的解决需要我们运用多种方法进行思考和计算。

通过不同的思路和计算过程,我们可以更好地理解数学知识,并培养解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学三年级奥数练习及答案解析-植树问题、应用题解题技巧小学三年级奥数题(应用类)1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。

铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?分析:和差基本问题,和11270米,差2270米,大数=(和+差)/2,小数=(和-差)/2。

解:铁路桥长=(11270+2270)/2=6770米,公路桥长=(11270-2270)/2=4500米。

2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

分析:先将一、二两个小组作为一个整体,这样就可以利用基本和差问题公式得出第一、二两个小组的人数和,然后对第一、二两个组再作一次和差基本问题计算,就可以得出第一小组的人数。

解:一、二两个小组人数之和=(180+20)/2=100人,第一小组的人数=(100-2)/2=49人。

3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?分析:从甲筐取出放入乙筐,总数不变。

甲筐原来比乙筐多19千克,后来比乙筐少3千克,也即对19千克进行重分配,甲筐得到的比乙筐少3千克。

于是,问题就变成最基本的和差问题:和19千克,差3千克。

解:(19+3)/2=11千克,从甲筐取出11千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克。

三年级奥数题:和差倍数问题(二)1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?分析:被减数=减数+差,所以,被减数和减数与差的和就各自等于被减数、减数与差的和的一半,即:被减数=减数+差=(被减数+减数+差)/2。

因此,减数与差的和=120/2=60。

这样就是基本的和倍问题了。

小数=和/(倍数+1)解:减数与差的和=120/2=60,差=60/(3+1)=15。

2、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?分析:两个数的商是4,即大数是小数的4倍,因此,这是一个基本的差倍问题。

小数=差/(倍数-1)。

解:两个数中较小的一个=39/(4-1)=13。

3、姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟?分析:姐姐做自然练习的时间是一定的,比妹妹做算术和英语的时间分别差了48分和42分,说明妹妹做英语比做算术多用了48-42=6分钟,仍然是一个和差问题。

解:妹妹做英语练习用时=(44+6)/2=25分钟。

三年级奥数题:和差倍数问题(三)1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?分析:由一、二可知,□是△的2倍,将它代换到三中,就是三个△加2个○等于60,而△+△+△=○+○,所以,△+△+△=○+○=60/2=30,△=10,○=15,□=20。

解:△+○+□=10+15+20=45。

2、用中国象棋的车、马、炮分别表示不同的自然数。

如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?分析:车÷马=2,车是马的2倍;炮÷车=4,炮是车的4倍,是马的8倍;炮-马=56,炮比马大56。

差倍问题。

解:马=56/(8-1)=8,炮=56+8=64,车=8*2=16,车+马+炮=8+64+16=88。

3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?分析:剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,说明圆珠笔比练习本贵1角4分+8角=9角4分,那么,3支圆珠笔就要比三本练习本贵94*3=282分=2元8角2分,这样,就相当于在10元中扣除2元8角2分加8角,正好可以买11本练习本,所以,每本练习本的价钱是(1000-282-80)/11=58分=5角8分。

解:圆珠笔-练习本=14+80=94分,每本练习本的价钱是(1000-94*3-80)/11=58分=5角8分,圆珠笔的售价=58+94=152分=1元5角2分。

小学三年级奥数练习及答案解析十三讲,植树问题、应用题解题技巧三年级奥数题:和差倍数问题(四)1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。

问:甲、乙原订每天自学的时间是多少分钟?分析:甲每天增加自学时间半小时,乙每天减少自学时间半小时,甲比乙多自学一个小时,乙自学6天的时间仅相等于甲自学一天的时间,甲是乙的6倍,差倍问题。

解:乙每天减少半小时后的自学时间=1/(6-1)=1/5小时=12分钟,乙原计划每天自学时间=30+12=42分钟,甲原计划每天自学时间=12*6-30=42分钟。

2、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。

小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。

小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。

那么他们开始吃第1小块的时间是几时几分?分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。

那么,20*20=400分钟=6小时40分钟,14时40分-6小时40分=8时。

解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。

三年级奥数题:速算与巧算【试题】巧算与速算:41×49=()【详解】相乘的两个数都是两位数,且十位上的数字相同,个位上的数字之和正好是10,这就可以运用“头同尾合十”的巧算法进行简便计算。

“头同尾合十”的巧算方法是:用十位上的数字乘十位上的数字加1的积,再乘100,最后加上个位上2个数字的乘积。

41×49,先用(4+1)×4=20,将20作为积的前两位数字,再用1×9=9,可以发现末位数字相乘的积是一位数,那就在9的前面补一个0,作为积的后两位数字。

这样答案很简单的就求出了,即41×49=(4+1)×4×100+1×9=2009。

三年级奥数题:植树问题【试题】一块三角形地,三边分别长156米,234米,186米,要在三边上植树,株距6米,三个角的顶点上各植上1棵数,共植树()棵。

【详解】此题植树线路是封闭的,这类题的特点是:因为头尾两端重合在一起,所以棵数等于分成的段数。

题中要求三角形三个顶点上要各栽一棵树,因此我们要按照三条边来考虑。

因为156÷6=26(段),186÷6=31(段),234÷6=39(段),所以每边恰好分成了整数段,这样,从周长来讲,应栽树的棵数与段数相等。

即共植树:26+31+39=96(棵)。

小学三年级奥数练习及答案解析十三讲,植树问题、应用题解题技巧三年级奥数应用题解题技巧(一)【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?【详解】要求耕72公顷地需要几小时,我们就要先求出这台拖拉机每小时耕地多少公顷?(1)每小时耕地多少公顷?40÷5=8(公顷)(2)需要多少小时?72÷8=9(小时)答:耕72公顷地需要9小时。

三年级奥数应用题解题技巧(二)【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。

如果每天烧1000千克,可以多烧几天?【详解】要想求可以多烧几天,就要先知道这堆煤每天烧1000千克可以烧多少天;而要求每天烧1000千克,可以烧多少天,还要知道这堆煤一共有多少千克。

(1)这堆煤一共有多少千克?1500×6=9000(千克)(2)可以烧多少天?9000÷1000=9(天)(3)可以多烧多少天?9-6=3(天)。

三年级奥数应用题解题技巧(三)【试题】把7本相同的书摞起来,高42毫米。

如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)【详解】方法1:方法2:(1)每本书多少毫米?(1)28本书是7本书的多少倍?42÷7=6(毫米)28÷7=4(2)28本书高多少毫米?(2)28本书高多少毫米?6×28=168(毫米)42×4=168(毫米)三年级奥数应用题解题技巧(四)【试题】两个车间装配电视机。

第一车间每天装配35台,第二车间每天装配37台。

照这样计算,这两个车间15天一共可以装配电视机多少台?【详解】方法1:方法2:(1)两个车间一天共装配多少台?(1)第一车间15天装配多少台?35+37=72(台)35×15=525(台)(2)15天共可以装配多少台?(2)第二车间15天装配多少台?72×15=1080(台)37×15=555(台)(3)两个车间一共可以装配多少台?555+525=1080(台)答:15天两个车间一共可以装配1080台。

小学三年级奥数练习及答案解析十三讲,植树问题、应用题解题技巧三年级奥数应用题解题技巧(五)【试题】同学们到车站义务劳动,3个同学擦12块玻璃。

(补充不同的条件求问题,编成两道不同的两步计算应用题)。

补充1:“照这样计算,9个同学可以擦多少块玻璃?”【详解】(1)每个同学可以擦几块玻璃?12÷3=4(块)(2)9个同学可以擦多少块?4×9=36(块)答:9个同学可以擦36块。

补充2:“照这样计算,要擦40块玻璃,需要几个同学?”【详解】(1)每个同学可以擦几块玻璃?12÷3=4(块)(2)擦40块需要几个同学?40÷4=10(个)答:擦40块玻璃需要10个同学。

三年级奥数应用题解题技巧(六)【试题】小华每分拍球25次,小英每分比小华少拍5次。

照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?【解析】(1)小英每分拍多少次?25-5=20(次)(2)小英5分拍多少次?20×5=100(次)(3)小华要几分拍100次?100÷25=4(分)答:小英5分拍100次,小华要拍同样多次要用4分。

相关文档
最新文档