【教学设计】 角的平分线的性质(4)

合集下载

湘教版数学八年级下册1.4《角平分线的性质》教学设计

湘教版数学八年级下册1.4《角平分线的性质》教学设计

湘教版数学八年级下册1.4《角平分线的性质》教学设计一. 教材分析湘教版数学八年级下册1.4《角平分线的性质》是初中数学的重要内容,主要介绍了角平分线的性质。

本节课的内容是学生学习几何知识的基础,也是学生进一步学习圆的知识的前提。

通过本节课的学习,学生可以掌握角平分线的性质,并能够运用角平分线的性质解决一些实际问题。

二. 学情分析学生在学习本节课之前,已经学习了角的概念、线的概念等基础知识,对几何图形有一定的认识。

但是,学生对角平分线的性质还没有接触过,对于如何运用角平分线的性质解决实际问题还需要引导。

三. 教学目标1.知识与技能:学生能够理解角平分线的性质,并能够运用角平分线的性质解决一些实际问题。

2.过程与方法:通过学生自主探究、合作交流的方式,培养学生的几何思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.角平分线的性质的推导过程。

2.如何运用角平分线的性质解决实际问题。

五. 教学方法采用问题驱动法、学生自主探究法、合作交流法等教学方法。

通过引导学生提出问题、自主探究、合作交流的方式,激发学生的学习兴趣,培养学生的几何思维能力。

六. 教学准备教师准备PPT、黑板、粉笔等教学工具。

学生准备课本、笔记本等学习工具。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引导学生思考:“如何找到一个角的平分线?”学生可以自由发言,教师引导学生提出问题,引出本节课的主题——角平分线的性质。

2.呈现(10分钟)教师通过PPT展示角平分线的性质,让学生初步了解角平分线的性质。

然后,教师引导学生自主探究,让学生通过观察、思考、推理等过程,推导出角平分线的性质。

3.操练(10分钟)教师通过PPT展示一些练习题,让学生运用角平分线的性质解决问题。

学生在纸上完成练习题,教师选取部分学生的作业进行讲解和评价。

4.巩固(10分钟)教师通过PPT展示一些巩固题,让学生再次运用角平分线的性质解决问题。

湘教版八下数学1.4.1《角平分线的性质》教学设计

湘教版八下数学1.4.1《角平分线的性质》教学设计

湘教版八下数学1.4.1《角平分线的性质》教学设计一. 教材分析《角平分线的性质》是湘教版八年级下册数学第1.4.1节的内容。

本节主要让学生了解角平分线的性质,学会用角平分线判定角的相等和边的垂直平分关系。

教材通过生活实例引入角平分线的概念,接着引导学生探究角平分线的性质,最后通过角平分线的应用,使学生感受数学与生活的紧密联系。

二. 学情分析八年级的学生已具备一定的几何知识,对图形的性质有一定的了解。

但在探究角平分线的性质过程中,需要学生具备较强的观察能力、分析能力和推理能力。

此外,学生可能对角平分线与边的关系理解不够深入,因此在教学过程中需要引导学生反复探究、总结。

三. 教学目标1.理解角平分线的性质,并能运用角平分线判断角的相等和边的垂直平分关系。

2.培养学生的观察能力、分析能力和推理能力。

3.激发学生学习数学的兴趣,感受数学与生活的紧密联系。

四. 教学重难点1.角平分线的性质2.运用角平分线判断角的相等和边的垂直平分关系五. 教学方法1.采用问题驱动法,引导学生主动探究角平分线的性质。

2.运用几何画板软件,动态展示角平分线的性质,增强学生的直观感受。

3.采用合作交流法,让学生在小组内讨论、分享解题心得,提高学生的合作能力。

4.运用实例分析法,让学生感受数学与生活的紧密联系。

六. 教学准备1.准备相关课件,展示角平分线的性质。

2.准备几何画板软件,用于动态展示角平分线的性质。

3.准备生活实例,使学生感受数学与生活的联系。

4.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活实例引入角平分线的概念,引导学生思考:如何判断一个角是否为另一个角的平分线?2.呈现(10分钟)展示几何画板软件,动态展示角平分线的性质。

引导学生观察、分析,总结角平分线的性质。

3.操练(10分钟)学生分组讨论,尝试运用角平分线判断角的相等和边的垂直平分关系。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)出示练习题,让学生独立完成。

角的平分线的性质 教学设计

角的平分线的性质  教学设计

BD 21CADBMN11.3 “角的平分线的性质”教学设计一、教学目标 (一)知识与技能1.会作已知角的平分线;2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;3.会利用角的平分线的性质进行证明与计算. (二)过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.(三)情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.二、教学重点、难点重点:角的平分线的性质的证明及应用; 难点:角的平分线的性质的探究. 三、教法学法三步导学的教学模式;自主探索,合作交流的学习方式. 四、教学过程 (一)情景导课如图是小明制作的风筝,他根据AB=AD ,BC=DC.不用度量,就知道AC 是∠DAB 的角平分线,你知道其中的道理吗? (二)知识复习 角的平分线的定义 (三)活动探究探究一:角的平分线的作法问题1如图是一个平分角的仪器,其中AB=A D ,BC=DC.将点A 放在角的顶点,AB 和AD 沿着角的两边放下,画一条射线AE ,AE 就是∠DAB 的平分线. 你能说明它的道理吗?问题2从利用平分角的仪器画角的平分线中,你受到了哪些启发?如何用尺规作图作已知角的平分线呢?请你试着做一做,并与同伴交流.已知:∠M AN求作:∠MAN的角平分线.作法:(1)以A 为圆心,适当长为半径画弧,交AM 于B ,交AN 于D.ADBCEAB OCA BO(2)分别以B 、D 为圆心,大于的长为半径画弧,两弧在∠MAN 的内部交于点C.(3)画射线AC. ∴射线AC 即为所求. Ⅱ、练一练平分平角∠AOB.通过上面的步骤得到射线OC 以后,把它反向延长得到直线CD.直线CD 与直线AB 是什么关系?思考:通过上面的步骤,得到射线OC 以后,把它反向延长得到直线CD ,直线CD 与直线AB 是什么关系?2、探究二:角的平分线的性质 Ⅰ、做一做实验一:如图,将∠AOB 对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.实验二:任意作一个角∠AOB ,做出角平分线OC,在OC 上再取几个点试一试.测量PD 、 PE 并作比较。

《角的平分线的性质》教学设计2篇

《角的平分线的性质》教学设计2篇

《角的平分线的性质》教学设计《角的平分线的性质》教学设计精选2篇(一)教学设计:《角的平分线的性质》一、教学目标:1. 理解角的平分线的概念;2. 掌握角的平分线的性质;3. 能够应用角的平分线的性质解决相关问题。

二、教学内容:1. 角的平分线的定义;2. 角的平分线的性质;3. 角的平分线的应用。

三、教学过程:Step 1 引入新知识:1. 通过展示一张含有角及其平分线的图片,引发学生对角的平分线的兴趣和思考;2. 学生根据图片,描述角的平分线的特点。

Step 2 角的平分线的定义与性质:1. 引导学生观察,讨论两个相邻的、边相等的角之间的关系;2. 引导学生总结出“两个相邻的、边相等的角之间存在一个角的平分线”的性质;3. 学生互相交流,理解并记忆角的平分线的定义与性质。

Step 3 角的平分线的应用:1. 通过给出一些已知条件,让学生找出角的平分线;2. 学生自主解决问题,教师引导学生应用角的平分线的性质解决问题;3. 学生举例子,解决多种情况的问题。

Step 4 练习巩固:1. 教师布置角的平分线的练习题,提供多种类型的问题;2. 学生独立完成练习,教师适时给予指导和帮助;3. 学生互相交流,共同解决问题。

四、教学评价:1. 教师观察学生的学习情况和参与程度,做好记录;2. 根据学生的表现和回答问题的情况,了解学生对角的平分线的掌握程度;3. 通过学生的解决问题的方式和结果,评价学生的学习成果。

五、教学延伸:1. 可以介绍更多与角的平分线相关的性质;2. 可以引导学生进行角的平分线相关的探究性实验;3. 可以让学生设计角的平分线相关的问题,互相出题和解答。

《角的平分线的性质》教学设计精选2篇(二)教学目标:1. 了解角的概念和基本术语2. 学会如何测量角的大小3. 掌握角的度量单位和换算教学步骤:步骤一:引入通过展示一些角的图形和实际生活中的角的例子,引起学生对角的兴趣,并让学生尝试描述角的特征和表达自己对角的理解。

角平分线的性质(教学设计)

角平分线的性质(教学设计)
①会用尺规作角平分线。
②熟知角平分线的两条性质,并且会证明。
【教学难点】
①会证明角平分的两条性质
②能够应用角平分线的性质,来推理解决一些实际问题。
六、教学媒体的选用
实物教具:角平分器,尺子,圆规,三角形纸片。
多媒体:简单的课件。
七、课堂教学过程结构的设计
教学流程图
八、形成性练习题的设计
1、在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F求证EB=FC.
学生对几何的知识还比较欠缺,可以采取直观的教具(本节课中的直观教具是“角平分器”),引起学生的兴趣,可以在刚上课就集中学生的注意。
学生具有一定的自学、探究能力和求知欲望,可以采用学生自己分组讨论的教学方法来激起学生的学习热情。
13-14岁的孩子比较好动,活跃,有一定的自控能力,但是不是特别强,老师还是需要维持一定的课堂秩序。
2、在△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB,交BC于点E,PF∥AC,交BC于点F,求证:点D到PF和PE的距离相等。
《角平分线的性质》教学设计
授课学科
数学
授课年级
八年级
授课人姓名及学号
王雨婷
20160511045
课时
一课时
课题
角平分线的性质
一、教材内容分析
《角平分线的性质》是人教版八年级数学上册第十二章第三节。
本节课主要学习角平分的两条性质。
在此之前的一节课,我们学会了角平分线的概念、全等三角形及其它的判定,为这节课角平分线的性质的证明奠定了基础。
这节课既是对前面知识的应用,又是对后续学习的铺垫,为下面《圆》这一章节中,学习“内心”做好知识的准备。
因此,本节课所学知识在教材中具有举足轻重的作用,在教材中有非常重要的地位。

角的平分线的性质教案多篇

角的平分线的性质教案多篇

角的平分线的性质教案多篇角的平分线的性质教案1一、教学目标【知识与技能】了解角的平分线的性质,能利用三角形全等证明角的平分线的性质,会利用角的平分线的性质进行证明与计算。

【过程与方法】在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力。

【情感态度与价值观】在主动参与数学活动的过程中,增强探究问题的兴趣、有合作交流的意识、动手操作的能力与探索精神,获得解决问题的成功体验。

二、教学重难点角的平分线的性质的证明及应用。

角的平分线的性质的探究。

三、教学过程(一)导入新课1.复习角平分线的画法2.利用PPT创设情景:如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?(二)生成新知探究做一做(学生独立完成,同组同学交流,找学生到黑板上板演.教师纠正答案)如图,将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.0011.jpg∴△PDO≌△PEO(AAS)∴PD=PE.(三)深化新知思考:角的平分线的性质在应用时应该注意什么问题?(由学生讨论汇报)(四)应用新知1.例题:解决导入中PPT的问题2.练一练:(1) 下面四个图中,点P都在∠AOB的平分线上,则图形_____ 中PD=PE.0012.jpg(五)小结作业小结:通过这节课的学习,你有什么收获?你对今天的学习还有什么疑问吗?作业:必做题,选做题,思考题:角平分线性质的逆命题并证明。

角的平分线的性质教案2一、教学目标【知识与技能】进一步了解角平分线的性质和判定,能够证明角平分线的性质和判定定理并且会运用角平分线性质去解决问题。

【过程与方法】通过对“角平分线性质”的探究,提高分析问题、解决问题的能力。

【情感态度与价值观】通过一系列的证明过程,体验数学活动充满着探索性和创造性,增强学习数学的兴趣和勇于创新的精神。

《角的平分线的性质》教学设计

《角的平分线的性质》教学设计

《角的平分线的性质》教学设计《角的平分线的性质》教学设计1教材分析1、本节课是11、3角分线的性质第一课时内容包括角平分线的作法、角平分线的性质有及初步应用;2、本节课是在学完11、2三角形全等的判定的基础上进行教学的,作角的平分线是基本作图,角的平分线性质为证明线段和角的相等开辟了新的途径,同时为后面角的平分线的判定定理的学习奠定了基础。

所以本节内容在初中数学知识体系中起到承上启下的作用。

学情分析1、学生在学习了11、2三角形全等的判定定理后已掌握了证明线段相等的方法,但学生的动手操作能力、猜想能力、总结归纳能力、对定理的灵活运用能力比较欠缺。

2、根据学生认知特点和接受水平,把本节课的教学任务定为:掌握角平分线的画法及角平分线的性质定理的证明和运用性质定理证明线段相等。

3、学生对角平分线的尺规作图作法及运用性质定理证明线段相等教学目标1、知识与技能:角平分线定理及定理的证明及应用。

2、过程与方法:培养学生探索知识和分析问题、解决问题的能力。

3、情感、态度与价值观:通过自主学习的发展体验获取数学知识的感受。

教学重点和难点教学重点:角平分线的性质定理的探究、证明、运用。

教学难点:角平分线的作图方法、角平分线的性质的运用。

《角的平分线的性质》教学设计2【教学目标】1.使学生掌握角平分线的性质定理和判定定理,并会用两个定理解决有关简单问题.2.通过引导学生参与实验、观察、比较、猜想、论证的过程,使学生体验定理的发现及证明的过程,提高思维能力.3.通过师生互动以及交互性多媒体教学课件的使用,培养学生学习的自觉性,丰富想象力,激发学生探究新知的热情.【教学重点】角平分线的性质定理和判定定理的探索与应用.【教学难点】理解运用在角平分线上任意选取一点的方法证明角平分线性质定理以及两个定理的区别与联系.【教学方法】启发探究式.【教学手段】多媒体(投影仪,计算机).【教学过程】一、复习引入:1.角平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫这个角的平分线.表达方式:如图1,∵ OC是∠AOB的平分线,∴∠1=∠2(或∠AOB=2∠1=2∠2或∠1=∠2= ∠AOB).2.角平分线的.画法:你能用什么方法作出∠AOB的平分线OC?(可由学生任选方法画出OC).可以用尺规作图,可以用折纸的方法,可以用TI图形计算器.3.创设探究角平分线性质的情境:用两个全等的30的直角三角板拼出一个图形,使这个图形中出现角平分线,并且平分出的两个角都是30.学生可能拼出的图形是:(拼法1)(拼法2)(拼法3)选择第三种拼法(如图2)提出问题:(1)P是∠DOE平分线上一点,PD、PE与∠DOE的边有怎样的位置关系?(2)点P到∠DOE两边的距离可以用哪些线段来表示?(3)PD、PE有怎样的数量关系?(投影)二、探究新知:(一)探索并证明角平分线的性质定理:1.实验与猜想:引导学生任意画出一个角的平分线,并在角平分线上任取一点,作出到角两边的距离.通过度量、观察并比较,猜想它们有怎样的数量关系?用TI图形计算器实验的结果:(教师用计算机演示:点P在角平分线上运动及改变∠AOB大小,引导学生观察PD与PE的数量关系).引导学生用语言阐述自己的观点,得出猜想:命题1在角平分线上的点,到这个角的两边的距离相等.2.证明与应用:(学生写在笔记本上)已知:如图3,OC是∠AOB的平分线,P为OC上任意一点,PD⊥OA于D,PE ⊥OB于E.求证:PD=PE.(投影)证明:∵ OC是∠AOB的平分线,∴∠1=∠2.∵ PD⊥OA于D,PE⊥OB于E,∴∠ODP=∠OEP=90.又∵ OP=OP,∴△ODP≌△OEP(AAS).∴ PD=PE三、作业设计反思:一、重视情境创设,让学生经历求知过程。

角平分线的性质教学设计

角平分线的性质教学设计

角平分线的性质教学设计一、教学目标(一)知识与技能1.掌握作已知角的平分线的尺规作图方法。

2.利用逻辑推理的方法证明角平分线的性质,并能够利用其解决相应的问题。

(二)过程与方法1.在探究作已知角的平分线的方法和角平分线的性质的过程中,发展几何直觉。

2.提高综合运用三角形全等的有关知识解决问题的能力。

3.初步了解角的平分线的性质在生活、生产中的应用。

(三)情感态度与价值观1.使学生在自主探索角平分线的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验。

2.在探讨作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。

二、重点1、利用尺规作图作已知角的平分线。

2、角平分线的性质定理及其应用。

三、难点1、根据角的平分仪器提炼出角的尺规画法。

;2、角的平分线的性质的探究四、教法复习旧知——情境引入——建立模型——解释、应用与拓展——体验成功f五、教具一张矩形纸片,自制作的角平分仪器,多媒体课件,学生准备尺规作图工具。

六、教学过程(一)复习旧知1、角平分线的概念2、点到直线的距离教师提问,学生思考回答。

(二)探究新知【活动一】尺规作图:作∠AOB的平分线教师与学生一起动手并总结作法。

作法:1、以O点为圆心,适当长为半径作圆弧,与角的两边分别交于C、D 两点;2、分别以C、D为圆心,大于1/2CD的长为半径作弧,两条圆弧交于∠AOB 内一点E;3、作射线OE;OE就是所求作的射线。

学生独立说明,学生相互讨论,交流,归纳后教师归纳展示作法。

想一想:OE为什么是角平分线?学生思考并回答。

(设计意图:培养学生运用直尺和圆规作已知角的平分线的能力.让学生体验成功。

)【活动二】探究角平分线的性质将∠AOB对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,你能得出什么结论?可以看一看,第一条折痕是∠AOB的平分线OE,第二次折叠形成的两条折痕PD,PE是角的平分线上一点到∠AOB两边的距离,这两个距离相等。

教学设计:《角的平分线的性质》

教学设计:《角的平分线的性质》

教学设计:《角的平分线的性质》作者:韩美艳来源:《文理导航·教育研究与实践》 2015年第5期黑龙江省庆丰农场学校韩美艳一、教学前端分析八年级的学生已经具备基础的几何语言,有一定的推理能力,好奇心强,有探究的欲望,能在教师的引导下发现生活中的数学知识,并运用所学推出新知。

但他们思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强和引导。

二、学习内容分析本节课教学内容是在七年级学习了角平分线的概念和刚学完三角形全等的基础上进行教学的.主要来研究角平分线的性质及判定,为证明线段或角相等开辟了新的途径,简化了证明过程,同时也是全等三角形知识的延续,是作图、计算、证明的重要工具,为今后的几何学习作好了铺垫,具有承前启后的作用,因此本节课在教材中占有非常重要的地位。

三、教学目标分析(1)知识与技能目标:掌握画已知角的平分线的方法,掌握角平分线的性质、判定及初步应用。

(2)过程与方法目标:提高综合运用三角形全等的有关知识解决问题的能力,了解角的平分线的性质及判定在生活中的应用,在探索角的平分线的性质中培养几何直觉与抽象概括能力。

(3)情感态度价值观目标:在探讨角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,逐步培养学生的理性精神。

四、教材的重点与难点分析重点:理解角的平分线的性质以及判定并能初步运用,难点:角平分线的性质以及判定的综合运用。

五、教学策略分析:1.教法选择:根据本节课的内容特点和学生特点,我选择问题教学法、探究教学法和引导发现法相结合。

2.学法指导:巴甫洛夫曾指出:“方法是最主要和最基本的东西”,因此学之有法,才能学之有效,学之有趣。

根据本节课的特点,我在学法上指导学生:以探究、合作学习为主线,感受知识的产生、发展和应用。

六、教学流程设计:(一)预习检测1.由作法可得△MOC≌△NOC的根据()A.SASB.ASAC.AASD.SSS2.为什么要以大于■MN的长为半径?(二)创设情境、导入课题问:有一条蜿蜒的小路穿过两条相交在一起的公路和铁路,在小路上有一个村庄M,它到公路和铁路的距离恰好相等,你能找到这个村庄的具体位置吗?(三)引导探究、提出猜想探究1:已知,点P在∠AOB的平分线OC上,PD⊥OA,PE⊥OB,垂足分别是D、E(1)由已知可得线段PD、PE的长分别是点_______到_____________的距离。

青岛版数学八年级上册2.5《角平分线的性质》教学设计

青岛版数学八年级上册2.5《角平分线的性质》教学设计

青岛版数学八年级上册2.5《角平分线的性质》教学设计一. 教材分析《角平分线的性质》是青岛版数学八年级上册第2.5节的内容。

本节课主要学习了角平分线的性质,包括:一个角的平分线与这个角的对边相交,交点对着的角是相等的;一个角的平分线上的点到这个角的两边的距离是相等的。

这些性质对于学生理解角的平分线具有重要意义,也为后续学习三角形和其他多边形的性质打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了角的概念、垂线的性质等知识。

他们具备一定的观察、思考、推理能力,但对于角的平分线的性质的理解还需加强。

因此,在教学过程中,教师需要注重引导学生通过观察、操作、推理等方式发现和证明角平分线的性质,提高他们的数学思维能力。

三. 教学目标1.知识与技能目标:让学生掌握角平分线的性质,能够运用角平分线的性质解决一些简单的问题。

2.过程与方法目标:培养学生通过观察、操作、推理等方法发现和证明数学结论的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索、严谨求实的数学精神。

四. 教学重难点1.教学重点:角平分线的性质。

2.教学难点:如何引导学生发现和证明角平分线的性质。

五. 教学方法1.引导发现法:教师通过提出问题、引导学生观察、操作、推理等方式,让学生自主发现和证明角平分线的性质。

2.讲解法:教师对角平分线的性质进行详细的讲解,帮助学生理解和掌握。

3.实践操作法:学生通过画图、测量等实践操作,加深对角平分线性质的认识。

六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备等。

2.学具:学生每人准备一份学习资料,包括三角板、直尺、圆规等。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学的角的概念、垂线的性质等知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师利用多媒体展示角平分线的定义和性质,引导学生观察、思考,发现角平分线的性质。

3.操练(10分钟)教师提出问题,引导学生运用角平分线的性质进行解答。

八年级数学上人教版《 角的平分线的性质》教案

八年级数学上人教版《 角的平分线的性质》教案

《角的平分线的性质》教案
一、教学目标
1.掌握角的平分线的性质及其简单的应用。

2.培养学生观察、实验、归纳和推理的能力,以及动手操作能力。

3.初步了解“经过证明,得到确定的结论”的方法。

4.体验数学活动充满着探索性和创造性。

二、教学重点
掌握角的平分线的性质及其简单的应用。

三、教学难点
正确画出角的平分线,理解角的平分线的性质。

四、教学方法
1.通过观察、实验、归纳和推理,探究角的平分线的性质。

2.通过实例,介绍经过证明得到确定的结论的方法。

3.通过角平分器的使用,以及用圆规和直尺等工具画角的平分线,使学生能够正
确地画出角的平分线。

4.通过实例,让学生掌握角的平分线的性质的简单应用。

5.通过实例,让学生了解“经过证明,得到确定的结论”的方法。

6.通过实例,让学生体验数学活动充满着探索性和创造性。

7.通过实例,让学生了解数学与现实生活的密切联系。

8.通过实例,让学生理解数学来源于生活并服务于生活。

角平分线的性质的教学设计

角平分线的性质的教学设计

12.3 角的平分线的性质《角的平分线的性质》教学设计一、内容和内容解析(一)内容角的平分线的性质.(二)内容解析本节课是在学习了角平分线的概念和全等三角形的基础上进行的,是全等三角形知识的运用和延续.用尺规作一个角的平分线,其作法原理是三角形全等的“边边边”判定方法和全等三角形的性质;角的平分线的性质证明,运用了三角形全等的“角角边”判定方法和全等三角形的性质.角的平分线的性质证明提供了使用角的平分线的一种重要模式──利用角平分线构造两个全等的直角三角形,进而证明相关元素相应相等.角的平分线的性质反映了角的平分线的基本特征,也是证明两条线段相等的常用方法.数学问题中涉及角的平分线时,就相当于已知一对线段(角的平分线上的点到角的两边的垂线段)相等.角的平分线的性质的研究过程为以后学习线段垂直平分线的性质提供了思路和方法.因此它既是对前面所学知识的应用,又是为后续学习作铺垫,具有举足轻重的作用.因此本节课在教材中占有非常重要的地位.基于以上分析,确定本节课的教学重点:探索并证明角的平分线的性质.二、目标和目标解析(一)目标1.会用尺规作一个角的平分线,知道作法的合理性.2.探索并证明角的平分线的性质.3.能用角的平分线的性质解决简单问题.(二)目标解析达成目标1的标志是:学生明确尺规作图的基本要求,知道用尺规作角的平分线的方法与原理,能在教师的引导下用尺规作出一个已知角的平分线.达成目标2的标志是:学生能在教师的引导下通过观察、测量等方法,发现角的平分线的性质,能准确表述性质的内容,能正确地写出已知、求证,能运用三角形全等的“AAS”判定方法和全等三角形的性质证明角的平分线的性质.达成目标3的标志是:学生能利用角的平分线的性质构造全等三角形,证明与线段相等有关的简单问题.三、教学问题诊断分析本节课的学习中,学生在分清角的平分线的性质的条件和结论,并进行严格的逻辑证明的过程中常常感到困难.例如,在用符号语言表述性质的条件和结论时,不知“距离”应为“条件”还是“结论”.其主要原因是角的平分线的性质是以文字命题的形式给出的,其条件和结论具有一定的隐蔽性.教学时,教师要引导学生分析性质中的条件和结论(必要时可让学生将性质改写成“如果……那么……”的形式),找出结论中的隐含条件(垂直),正确写出已知和求证,并归纳出证明几何命题的一般步骤.基于以上分析,本节课的教学难点是:证明以文字命题形式给出的角的平分线的性质.四、教学过程设计(一)创设情景,提出问题如图是小明制作的风筝,AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?师生活动:学生根据三角形全等的知识口述其中的道理,从而引入新课.(二)合作探究,形成知识问题1:在练习本上画一个角,怎样得到这个角的平分线?师生活动:学生可能用量角器,也可能用折纸的方法动手操作,然后回答问题.追问1:你能评价这些方法吗?在生产生活中,这些方法是否可行呢?师生活动:学生分析并回答──利用量角器比较方便,但是有误差;利用折叠的方法比较简捷,但是只限于可以折叠的材质,若在木板、钢板等材料上操作,此方法就不可行了.追问2:下图是一个平分角的仪器,其中AB=AD,BC=DC,将点A 放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,射线AE就是∠DAB 的平分线.你能说明它的道理吗?师生活动:教师启发学生将实际问题抽象为数学模型,并运用全等三角形的知识解释平分角的仪器的工作原理.追问3:从利用平分角的仪器画角的平分线中,你受到哪些启发?如何利用直尺和圆规作一个角的平分线?师生活动:师生分别在黑板和练习本上利用直尺和圆规作∠AOB的平分线.教师与学生共同归纳,得出利用尺规作角的平分线的具本方法.如果学生没有思路,教师可作如下提示:1.在用平分角的仪器画角的平分线时,把仪器放在角的两边,仪器的顶点与角的顶点重合,且仪器的两边相等(AB=CD),怎样在作图中体现这个过程呢?2.在平分角的仪器中,BC=DC,怎样在作图中体现这个过程呢?追问4:你能说明为什么射线OC是∠AOB的平分线吗?。

《角平分线的性质》教学设计

《角平分线的性质》教学设计

角的平分线的性质教学设计一、教学分析1.教学内容分析本节课是新人教版教材《数学》八年级上册第12.3节第一课时内容,是在七年级学习了角平分线的概念和前面刚学完证明直角三角形全等的基础上进行教学的.内容包括角平分线的作法、角平分线的性质及初步应用.作角的平分线是基本作图,角平分线的性质为证明线段或角相等开辟了新的途径,体现了数学的简洁美,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.因此,本节内容在数学知识体系中起到了承上启下的作用.同时教材的安排由浅入深、由易到难、知识结构合理,符合学生的心理特点和认知规律.2.教学对象分析刚进入八年级的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:掌握角平分线的画法及会用角平分线的性质定理解题,同时为下节判定定理的学习打好基础.3.教学环境分析利用多媒体技术可以方便地创设、改变和探索某种数学情境,在这种情境下,通过思考和操作活动,研究数学现象的本质和发现数学规律.根据如今各学校实际教学环境及本节课的实际教学需要,我选择多媒体教学系统辅助教学,将有关教学内容用动态的方式展示出来,让学生能够进行直观地观察,并留下清晰的印象,从而发现变化之中的不变.这样,吸引了学生的注意力,激发了学生学习数学的兴趣,有利于学生对知识点的理解和掌握.二、教学目标1、知识与技能:(1)掌握用尺规作已知角的平分线的方法.(2)理解角的平分线的性质并能初步运用.2、过程与方法:通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力.3、情感态度价值观:充分利用多媒体教学及学生手工操作,培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.三、教学重点、难点重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.难点:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)教学难点突破方法:(1)利用引导学生动手折纸及多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过多媒体创设具有启发性的问题情境,使学生在积极的思维状态中进行学习.四、教学过程(一)教学环节设计1.温故导入:创设情景,动手操作【温故】:①请把发给大家的纸片拿出来,请同学们想一想,不利用工具,将这个用纸片做的角分成两个相等的角,你有什么办法?②学生回答:对折。

八年级数学上册《角的平分线的性质》教案、教学设计

八年级数学上册《角的平分线的性质》教案、教学设计
3.学会运用角的平分线性质解决实际问题,如构造线段相等、角度相等等问题。
学生能够将角的平分线的性质应用于实际问题的解决中,培养学以致用的能力。
(二)过程与方法
1.通过实际操作,让学生经历角的平分线的探索过程,培养动手操作能力和观察能力。
教学过程中,教师引导学生通过实际操作,观察角的平分线,培养学生动手操作的能力和观察能力。
“同学们,你们在生活中见过这样的角吗?它们有什么特殊之处呢?今天我们要学习角的平分线,一起来探索这些角的奥秘吧!”
2.提问:引导学生思考角的平分线的定义及作用。
“谁能来说说什么是角的平分线?它有什么作用呢?”
3.导入新课:通过学生回答,自然导入本节课的学习内容——角的平分线的性质。
(二)讲授新知
1.概念讲解:详细解释角的平分线的定义,并通过图示进行展示。
3.提高题挑战:
完成课后提高题6、7,这两题难度较大,旨在培养学生几何证明的思路和方法,提高学生的逻辑思维能力和解题技巧。
4.探究性问题:
针对本节课所学内容,提出一个探究性问题:“除了点到角的两边的距离相等,角的平分线还有其他性质吗?”鼓励学生在课后进行自主探究,培养学生的创新意识和研究精神。
5.小组合作任务:
五、作业布置
为了巩固本节课所学内容,检验学生对角的平分线性质的理解和应用能力,特布置以下作业:
1.基础知识巩固:
完成课本第章节后的练习题1、2、3,这些题目旨在帮助学生巩固角的平分线的定义和性质,加强对基础知识的掌握。
2.应用题训练:
选择两道应用题(如课本例题4、5),要求学生运用角的平分线性质进行解决。通过解决实际问题,提高学生将理论知识应用于实际情境的能力。
2.强调几何证明的思路和方法。

八年级数学上册《角平分线》教案、教学设计

八年级数学上册《角平分线》教案、教学设计
(2)作业完成情况:评价学生对知识点的掌握程度,以及对尺规作图的熟练程度;
(3)单元测试:通过测试,了解学生对角平分线知识点的掌握情况,以及运用知识解决问题的能力;
(4)课后访谈:了解学生在学习过程中遇到的困难和问题,及时调整教学策略。
4.教学资源:
(1)教材:充分利用课本资源,结合教学目标进行教学设计;
(2)反思自己在学习过程中的收获和不足,为下一节课的学习做好准备。
作业要求:
1.认真完成作业,保持卷面整洁;
2.思考题要结合所学知识,进行深入分析和研究;
3.遇到问题及时与同学、老师交流,提高解决问题的能力;
4.作业提交时间:下周一下午放学前。
(4)应用:设计有针对性的例题和练习,让学生运用角平分线知识解决问题,巩固所学;
(5)拓展:引导学生思考角平分线在其他几何问题中的应用,培养学生的发散思维;
(6)总结:对本节课的知识点进行梳理,强调重难点,帮助学生巩固记忆。
3.教学评价:
(1)课堂表现:关注学生在课堂上的参与程度、积极性和合作精神;
(五)总结归纳
1.教学活动设计:
(1)对本节课的知识点进行梳理,强调重点和难点;
(2)学生分享学习收获和感受,教师给予鼓励和评价;
(3)布置课后作业,巩固所学知识。
2.教学内容:
(1)总结角平分线的定义、性质和判定方法;
(2)回顾尺规作图的方法,强调注意事项;
(3)明确角平分线在实际问题中的应用价值。
五、作业布置
为了巩固本节课所学知识,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.必做题:
(1)完成课本第十五章第二节课后练习题1、2、3;
(2)运用尺规作图,作出给定角的平分线,并简要说明作图过程;

角的平分线的性质优秀教学设计

角的平分线的性质优秀教学设计

角的平分线的性质优秀教学设计教学设计:角的平分线的性质教学目标:1.了解角的平分线的概念;2.掌握角的平分线的性质;3.能够应用角的平分线的性质解决相关问题。

教学准备:1.教学课件、教学板书;2.角规、直尺、铅笔等绘图工具;3.《数学课程标准》中关于角的知识点。

教学步骤:第一步:引入知识(时间:10分钟)1.利用实物或图片引入角的概念,让学生了解角的组成元素和名称。

2.引导学生思考:如果一条直线能够将一个角平分成两个角,这条直线是什么?这个性质有什么特点?3.引入角的平分线的概念,并提示学生,我们将要研究角的平分线的性质。

第二步:探究角的平分线的性质(时间:30分钟)1.在教师引导下,学生边观察边探究角的平分线的性质。

2.学生利用角规和直尺,绘制不同角度的角,并将其角度平分,观察平分线的特点。

3.教师通过示范,引导学生观察和总结,整理角的平分线的性质。

第三步:总结角的平分线的性质(时间:15分钟)1.学生与教师一起总结和讨论角的平分线的性质。

2.教师将角的平分线的性质整理成教学板书,并与学生一起进行强化记忆。

第四步:应用角的平分线的性质解决问题(时间:30分钟)1.学生在教师的指导下,通过绘制图形和应用角的平分线的性质解决相关问题。

2.分组活动:每个小组设计一道角的平分线的问题,并交换进行解答,加深对角的平分线性质的理解和应用能力。

第五步:课堂练习(时间:15分钟)1.教师提供一些练习题,让学生在课堂上进行练习,巩固所学的知识点。

2.教师布置一些作业题,让学生完成,并要求学生在下节课上检查和讨论解题过程。

第六步:课堂总结(时间:10分钟)1.教师与学生一起进行课堂总结,巩固角的平分线的性质。

2.学生回答教师提问,对所学知识进行总结和归纳。

教学评价:1.通过观察学生的参与度和答题情况,评价学生对角的平分线的性质的理解和应用能力;2.检查学生完成的作业题,评价学生课后的复习和自主学习的情况。

教学延伸:1.引导学生分组设计更复杂的角平分线问题,并互相交换解答,促使学生深入理解和应用角的平分线的性质。

角的平分线的性质 教学设计

角的平分线的性质 教学设计

《角的平分线的性质》一、教学分析(一)教学内容分析1、本节课选自初中数学《义务教育数学课程标准(2011年版)》的第十二章§12.3.1角的平分线的性质第一课时.2、本节内容是全等三角形知识的运用和延续。

角的平分线的性质反映了角的平分线的基本特征,也是证明两条线段的常用方法。

角的平分线的性质的研究过程为以后学习线段垂直平分线的性质提供了思路和方法。

因此决定本节课的重要地位。

(二)学情分析《角的平分线的性质》是在七年级学习了角平分线的概念和前面刚学完证明三角形全等的基础上进行教学的。

对于初二的学生来说,观察、操作、猜想能力较强,但归纳、运用数学思想的意识比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强和引导。

(三)教学设备几何画板5.0中文版、Microsoft PPT二、教学目标(一)知识与技能掌握用尺规作已知角的平分线的方法,知道作法的合理性;探索并证明角的平分线的性质;理解角的平分线的性质并能初步应用。

(二)过程与方法通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生运用数学知识解决问题的能力。

(三)情感与态度价值观通过角的平分线的生活实例,使学生体会数学的应用价值,激发学生学习数学的兴趣;培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情.三、教学重、难点(一)教学重点:掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用.(二)教学难点:(1)证明以文字命题形式给出的角的平分线的性质。

(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)四、教学方法(一)教学方法:整个教学过程以问题为教学出发点,学生为主体,设计情境激发学生的学习动机,采用探索讨论法进行教学,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性学习活动。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

角的平分线的性质
教学目标 知识与技能:
1、掌握用尺规作已知角的平分线的方法;
2、理解角的平分线的性质并能初步运用。

过程与方法:
通过让学生经历观察演示,动手操作,合作交流,自主探究等过程,培养学生用数学知识解决问题的能力。

情感态度与价值观:
培养学生探究问题的兴趣,增强解决问题的信心,获得解决问题的成功体验,激发学生应用数学的热情。

教学重点:
掌握角平分线的尺规作图,理解角的平分线的性质并能初步运用。

教学难点:
1、对角平分线性质定理中点到角两边的距离的正确理解;
2、对于性质定理的运用。

教学过程: 一、创设情景
生活中有很多数学问题:
小明家居住在通州区一栋居民楼的一楼,刚好位于一条暖气和天然气管道所成角的平分线上的P 点,要从P 点建两条管道,分别与暖气管道和天然气管道相连。

问题1:怎样修建管道最短?
问题2:新修的两条管道长度有什么关系,画来看一看。

二、探究体验
要研究角的平分线的性质我们必须会画角的平分线,工人师傅常用如图所示的简易平分角的仪器来画角的平分线。

出示仪器模型,介绍仪器特点(有两对边相等),将A 点放在角的顶点处,和沿角的两边放下,过画一条射线,即为∠的平分线。

学生口述,用三角形全等的方法证明是∠的平分线。

多媒体展示实验过程。

把简易平分角的仪器放在角的两边时,平分角的仪器两边相等,从几何作图角度怎么画?,从几何作图角度怎么画?
让学生用纸剪一个角,把纸片对折,使角的两边叠合在一起,把对折后的纸片继续折一次,折出一个直三角形(使第一次的折痕为斜边),然后展开,观察
P
天然气
暖气
A
F C
D
B
E
两次折叠形成的三条折痕。

问题1:第一次的折痕和角有什么关系?为什么?
问题2:第二次折叠形成的两条折痕与角的两边有何关系,它们的长度有何关系?
如图:按照折纸的顺序画出角及折纸形成的三条折痕.让学生分组讨论、交流,再利用几何画板软件验证结论,并用文字语言阐述得到的性质.(角的平分线上的点到角两边的距离相等)
结合图形写出已知,求证,分析后写出证明过程.教师归纳,强调定理的条件和作用.
三、合作交流
判断正误,并说明理由:
(1)如图1,P 在射线上,⊥,⊥,则.
(2)如图2,P 是∠的平分线上的一点,E 、F 分别在、上,则.
(3)如图3,在∠的平分线上任取一点P ,若P 到的距离为3,则P 到的距离边为3.
让学生运用本节课所学的知识回答课前引例中的问题:
问题:引例中两条管道的长度有什么关系?理由是什么? 四、例题讲解
例1 如图,在△中,是它的角平分线,且,⊥,⊥,垂足分别是E ,F .求证:.
变题1:如图,△中,∠C =90°,是∠的平分线,
⊥于E ,F 在上,且,求证:.
E
D
O
B A
C
P
A
O B
P
E
F 图2 图3
A
O B
P E
A
O
B P
E
F 图1 A
F C
D
B
E
变题2:如图,△中,∠C=90°,是∠的平分线,⊥于E,8,5,求.五、课堂小结
这节课你本节课学习了哪些知识?学会了什么方法?
六、作业
教材第51页第2、3题
七、板书设计:
12.3 角的平分线的性质
1、角的平分线的作法. 活动6例题。

相关文档
最新文档