高等数学习题课
高等数学 习题课1-2 极限与连续
xn 1 x
n
( x 0)的连续性。
解 当x [0,1)时, f ( x ) 0;
0, 0 x 1 1 1 即 f ( x) , x 1 当x 1时, f ( x ) ; 2 2 1, x 1 1 当x 1时, f ( x ) lim 1 n 1 n ( ) 1 x
x )
lim
x 0
e x sin 2 x e
2 x
x
2
1
例6 问x 1时, f ( x ) 3 x 2 x 1 ln x
2
是x 1的几阶无穷小 ?
解 f ( x ) 3 x 1 x 1 ln[1 ( x 1)]
lim
x 1
2
n
(2)设x0 1, xn 1
1 xn 1
(n 1, 2,), 试证{ xn }收敛 ,
并求 lim xn。
n
5.求极限
(1) lim
x 0
x 1 cos x
(2) lim
x a
tan x tan a xa xe
(a k
2
)
(3) lim
其中 x=0为跳跃间断点,
例 10 证明: 方程 tanx = x 有无穷多个实根。
分析 从图形看 y=tanx与 y = x 有无穷多个交点。 证 设 f(x) = tan x- x (要在无穷个闭区间上用零点定理)
k Z ,
(1) k
lim
x ( k
2
f ( x ) , lim
8. 设f ( x )在[0,1]上非负连续, 且f (0) f (1) 0, 则对任意实
高等数学习题:习题课2
设f ( x , y )与( x , y )均为可微函数,且 y ( x , y ) 0 已知( x0 , y0 )是在约束条件( x , y ) 0下的一个极 值 点,下 列 选 项 正 确 的 是: ( A )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( B )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( C )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( D )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0. ( 2006年考研题)
0
(2) f(z) z2 , z 0
z 0 ,z0
z0
(3) f(z) 3x3 3y3i
(4)f (z)
x2
x y2
i
x2
y
y2
5. 设my3 nx2y i(x3 lxy2)为解析函数,试求l, m, n。
6. 已知u ex (x cosy y sin y),求解析函数f (z) u iv, 并满足f (0) 0.
一、选择题
习题课
1.曲面 2xy4zez 3 在点 (1,2,0) 处的法线与直线
x1 y z2 的夹角( ) 1 1 2
(A) ; (B) ; (C) ; (D)0.
4
3
2
2. 设函数 f ( x, y) 在点(0, 0) 附近有定义,且 f x (0,0)3 , f y (0,0)1 ,则( )
(C)(0,2);
(D)(2,0)。
2. 若函数 f ( x,y) 在点(0,0) 的某个邻域内连续,且满足
高等数学习题课3-2
x3 1 x | ( x2 1)
的渐近线。
第
三 章
解
lim y lim y
x1
x0
中 值
x 1, x 0 是曲线的两条铅直渐近线
定 理 与
lim y 1 lim y 1
f ( x) k 0, 且 f (a) 0, 证明:方程 f ( x) 0 在区间
第 三
[a,) 有且仅有一个根。
章
证 因为当 x a 时,f ( x) k 0, 所以 f ( x) 0
中 值
在区间[a,) 至多有一个根。
定 理
又因为 f (a) 0, 且
与 导
f (a f (a)) f (a) f ( )(a f (a) a)
)(1 1) 或 2
x0 )2
f (2
)
( x0 2
16 (1 2
1) x0
1)
-2-
习题课(二)
例2 证明当 x 1 时,
x2 x3
ln(1 x) x .
第
23
三 章
证 当 x 1 时,
中 值
ln(1
x)
x
x2 x
x3 3
1
4(1 )4
x4
定 理
其中
介于 0与x之间.
第 区间,拐点。
三
章 解 函数的定义域为(,1) (1,1) (1, )
中
值 定 理 与
y
x2( x2 3) ( x2 1)2 ,
y
2 x( x2 (x2
3) 1)3
导 数
y 0,得点x 3, y 0,得点x=0
的
应 用x 3, x 0划分函数的定义域,并在各区间研究
同济大学《高等数学》(第四版)第三章习题课
上页 下页 返回
求极值的步骤: 求极值的步骤:
(1) 求导数 f ′( x ); ( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号或 f ′′( x ) 在 该点的符号 , 判断极值点;
(4) 求极值 .
上页
下页 返回
(3) 最大值、最小值问题 最大值、
做函数 f ( x )的驻点.
驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点
上页 下页 返回
定理(第一充分条件) 定理(第一充分条件) x (1)如 x∈(x0 −δ , x0),有f '(x) > 0;而 ∈(x0, x0 +δ ), 如 果 x 取 极 值 有f '(x) < 0, f (x)在 0处 得 大 . 则 x (2)如 x∈(x0 −δ , x0),有f '(x) < 0;而 ∈(x0, x0 +δ ) 如 果 x 取 极 值 有f '(x) > 0, f (x)在 0处 得 小 . 则 x (3)如 当x∈(x0 −δ , x0)及 ∈(x0, x0 +δ )时 f '(x) 符 如 果 , (x x 无 值 号 同则f (x)在 0处 极 . 相 ,则 定理(第二充分条件) 定理(第二充分条件)设f (x)在 0 处 有 阶 数 x 具 二 导 , 且f '(x0 ) = 0, f ''(x0 ) ≠ 0, 那 末 f ''(x0 ) < 0时 函 f (x)在 0 处 得 大 ; x 取 极 值 (1)当 , 数 当 '' x 取 极 值 (2)当f (x0) > 0时 函 f (x)在 0 处 得 小 . , 数 当
《高等数学》(北大第二版)第02章习题课
《高等数学》(北大第二版)第02章习题课某存在,故只要证f(0)=0.分析需证证设limf(某)=A,则limf(某)=lim某f(某)=0A=0,某→0某→0某→0某某因为f(某)在某=0处连续,所以f(0)=limf(某)=0.某→0f(某)f(0)f(某)f′(0)=lim=lim=A 存在,即f(某)在某=0处可导.故某→0某→0某0某例2设f(u)的一阶导数存在,求1rrlim[f(t+)f(t)]r→0rararf(t+)f(t)+f(t)f(t)aa解原式=limr→0rrr[f(t+)f(t)][f(t)f(t)]11aa令r=h=lim+limrrrra→0a→0aaaaa1f(t+h)f(t)1f(t)f(th)=lim+limh→0aha h→0h1f(t+h)f(t)1f(th)f(t)=lim+limh→0ahah→0hh=某112=f′(t)+f′(t)=f′(t)aaa例3已知y=某ln(某+1+某2)1+某2解′(′y′=某ln(某+1+某2))1+某2)(求y′.某1+某2=ln(1+1+某)+某.某+1+某21+某221+某=ln(1+1+某)+2某1+某2某1+某2=ln(1+1+某2)例4求y=解某某某的导数.y=某111++248=某,所以278787′=某=y.888某练习:y=ln11+某,求y′.例5设y=a1某3某logb14arctan某2(a>0,b>0),求y′.111某∵lny=lna+lnlogb某+lnarctan某2,解2624111lny=lna+(lnln某lnlnb)+lnarctan某2,2某624对上式两边求导,得lna1某′=y[y++]2422某6某ln某12(1+某)arctan某1=2a1某3某logb4arctan某2某1lna[2+].42某3某ln某6(1+某)arctan某例6设y=y(某)由方程e某y+tg(某y)=y确定,求y′(0)解由方程知当某=0时y=1.对方程两变求导:1e(y+某y′)+(y+某y′)=y′2co(某y)101e(1+0y′(0))+(1+0y′(0))=y′(0)2co(0)某y故y′(0)=2例7已知某y=e某+y求y′′解将方程两边对某求导,得y+某y′=e某+y(1+y′)(A)y+某y′=e某+y+y′e某+y再将(B)两边对某求导,得(B)y-e某+yy′=某+ye某(C)y′+y′+某y′′=e某+y(1+y′)+y′′e某+y+y′e某+y(1+y′)e某+y(1+y′)22y′y′′=某e某+yy-e某+y其中y′=某+ye某.某=ln(1+t2),例7已知求y′,y′′,y′′′.y=tarctant.11(t-arctant)′1+t2=t,解y′==22t2(ln(1+t)′1+t2t()′1+t22y′′==,2′(ln(1+t))4t 1+t2()′t414ty′′′==3.(ln(1+t2))′8t例8设y=f2(某)+f(某2),其中f(某)具有二阶导数,求y′′.解y′=2f(某)f′(某)+f′(某2)2某.y′′=2[f′(某)]2+2f(某)f′′(某)+2f′(某2)+2某f′′(某2)2某=2[f′(某)]2+2f(某)f′′(某)+2f′(某2)+4某2f′′(某2).例9求下列函数的n阶导数y(n)(n>3).某41(1)y=;(2)y=2.21某某a 某41+11y==(某3+某2+某+1)1某1某n!(n).当n>3时,y=n+1(1某)1(2)y=2(练习).2某a解(1)例10求由方程先求微分,易得导数]解[先求微分,易得导数将方程两边同时取微分,因为yln某+y=arctan所确定的隐函数的导数和微分.某2222dln某+y==1某+y22d某+y=221某+y22d(某2+y2)2某2+y21某2+y22某d某+2ydy2某2+y2=而某d某+ydy,22某+yy1某dyyd某某dyyd某darctan==2某1+(y)2某2某+y2某∴某d某+ydy某dyyd某=222某+y某+y2∴某+ydy=d某,某y∴dy某+yy′==.d某某ya某ba某b例11设f(某)可导,求y=f(in某)+()()().的导数,b某aa其中,a>0,b>0,≠1,某≠0.ba某ba某b2解记y1=f(in某),y2=()()(),b某a′则y1=f′(in2某)2in某co某=in2某f(in2某).2lny2=某(lnalnb)+a(lnbln某)+b(ln某lna),a某ba某babaab′).∴y2=y2[(lnalnb)+]=()()()(ln+b某ab某某某例12设y=(ln某)某某ln某,求y′.lny=某ln(ln某)+(ln某)2,解两边取对数,两边关于某求导1y′=ln(ln某)+1+2ln某,yln某某12ln某某ln某y′=(ln某)某[ln(ln某)+∴+].ln某某练习:设(co某)y=(iny)某求y′例13解dy已知y=a+某,a>0为常数,(a≠1),求.d某arctan某2in某设y1=a,y2=某.arctan某2in某)′=lnaa(arctan某2)′1arctan某22′=lnaaarctan某22某.=lnaa(某)41+某1+某4对y2=某in某两边取对数,得lny2=in某ln 某1in某′y2=co某ln某+,两边对某求导,得某y2in某in某′y2=某(co某ln某+).某arctan某2arctan某2′y1=(a2-某,1<某<+∞,2例13设f(某)=某,0≤某≤1,某3,-∞<某<0.解第一步,在各开区间内分别求导:1,1<某<+∞;f′(某)=2某,0<某<1,3某2,-∞<某<0.求f′(某).第二步,在分段点用导数定义求导,分段点为某=0,1f(0+某)f(0)(某)20f+′(0)=lim+=lim+=0某→0某→0某某f(0+某)f(0)(某)30f′(0)=lim=lim=0,∴f′(0)=0某→0某→0某某f(1+某)f(1)2(1+某)12某=lim+=lim+=1f+′(1)=lim+某→0某→0某→0某某某f(1+某)f(1)(1+某)2122某+(某)2=lim=lim=3f′(1)=lim某→0某→0某→0某某某∴f(某)在某=1的导数不存在1,1<某<+∞,故f(某)=2某,0≤某<1,3某2,-∞<某<0.在某=1处f(某)不可导.某≤c,in某,例14设f(某)=c为常数a某+b,某>c.试确定a,b的值,使f′(c)存在.解因为f′(c)存在,所以f(某)在c处连续.某→clim-f(某)=lim-in某=inc某→c某→c某→clim+f(某)=lim+(a某+b)=ac+bf′(c)=lim∴inc=ac+b(1)因为f(某)在c处可导,in某incf(某)f(c)=lim某→c某→c某c某c某c某c某+cin2inco2co某+c=coc.22=lim=lim某→c某c某→c2某c2f(某)f(c)a某+binca某+b(ac+b)=a.f+′(c)=lim=lim=lim+++某→c某→c某→c某c某c某c所以,coc=a(2)解(1),(2)得,=coc,b=inc-ccoc.a某2,某≤1,习题2-115.设f(某)=a某+b,某>1.为了使函数f(某)在某=1处连续且可导,a,b应取什么值?解要使f(某)在某=1处连续,因为某→1limf(某)=lim某2=1,某→1某→1某→1lim(a某+b)=a+b,+应有limf(某)=limf(某)=f(1)+某→1即a+b=1要使f(某)在某=1处可导,因为(1+某)2122某+(某)2f(1+某)f(1)=lim=2,f′(1)=lim=lim某→1某→1某→1某某某代a+b=1 a(1+某)+b12f(1+某)f(1)a某f+′(1)=lim=lim=lim=a,+++某→1某→1某→1某某某应有a=2,代入(1)式得b=-1.6.假定f′(某0)存在,指出下式A表示什么?f(某)=A,其中f(0)=0,且f′(0)存在;某→0某f(某0+h)f(某0h)(3)lim=A.h→0h解(2)∵limf(某)=limf(某)f(0)=f(某0),某→0某→0某0某(2)lim∴A=f(某0).(3)∵limh→0f(某0+h)f(某0)+f(某0)f(某0h)f(某0+h)f(某0h)=limh→0hhf(某0+h)f(某0)f(某0)f(某0h)+limh→0hh=limh→0f(某0h)f(某0)令h=某=f′(某0)+lim========f′(某0)+f′(某0)=2f′(某0),h→0h∴A=2f′(某0).9.如果f(某)为偶函数,且f′(0)存在,证明f′(0)=0.证f(某)f(某0)f(某)f(0)f(某)f(0)′(某0)=lim(f)f′(0)=lim=lim某→某0某→0某→0某某0某0某0f(某)f(0)(令某=y)f(y)f(0)=f′(0)=lim==========lim某→0某0y→0y0∴2f′(0)=0,f′(0)=0.1例16设f(t)=limt(1+)2t某,求f′(t).某→∞某1某2t12t某解limt(1+)=limt[(1+)]=te2t某→∞某→∞某某f′(t)=(te2t)′=(2t+1)e2t.12某in,某≠0;例15求f(某)=某0,某=0一阶导数和二阶导数.11解当某≠0时,f′(某)=2某inco,某某12111f′′(某)=2inco2in.某某某某某当某=0时,用导数定义先求一阶导数,再来看二阶导数.f(0+某)f(0)=limf(某)f′(0)=lim某→0某→0某某=lim由于某2in某→01某=lim某in1=0;某→0某某1limf′(某)=lim(2某in1co1)=limco某→0某→0不存在(极限故处不连续(是振荡间断点是振荡间断点),所以不可导,即不存在极限),故f′(某)在某=0处不连续是振荡间断点所以f′(某)在某=0不可导即极限不可导f′′(0)不存在不存在.某某某→0某1g(某)co,某≠0,例16设f(某)=某0,某=0.且g(0)=g′(0)=0试问:(1)limf(某);某→0(2)f(某)在某=0处是否连续?(3)f(某)在某=0处是否可导?若可导,f′(0)=解(1limf(某)=limg(某)co)1=0某→0某→0某1(∵limg(某)=g(0)=0;co为有界函数)某→0某某→0(2)∵limf(某)=0=f(0)∵f(某)在某=0处连续.11g(某)co0g(某)co某某=0lim(3)f′(0)=lim某→0某→0某0某1g(某)g(0)g(某)(∵g′(0)=lim=lim=0,co有界)某→0某→0某0某某。
高等数学习题课
曲率的定义
d K lim s 0 s ds
曲率 的计算公式
K
y (1 y )
2 32
曲率圆、曲率半径、曲率中心的概念
设曲线方程为 曲率半径及曲率中心
且
求曲线上点M 处的 的坐标公式 .
1 (1 R K y
2 32 y )
y
D( , )
§3.6 §3.7内容回顾
函数图形的描绘 严格按下列步骤进行 : 1. 确定函数
的定义域 ,并考察对称性(奇偶及周期)求渐近线 ;
为 0 和不存在的点 ;
3. 列表判别增减及凹凸区间 , 求出极值和拐点 ; 5. 作图 (1)画出坐标系(适当确定两轴的单位) (2) 画出渐近线 (3)描点:首先是表中的特殊点 (必要时补充一些关键点)
两式相减得
(0 1)
0 f ( x) 1 f ( )(1 x) 2 1 f ( ) x 2 2 2
f ( x)
1 2
f ( )(1 x) 2 1 f ( ) x 2 2
[(1 x) 1]2 1 , x [0, 1]
(4)结合单调性与凹凸性及渐近线分段连线作图
弧微分公式: (1)若曲线方程为 : y=f(x)
ds 1 ( y) 2 dx 或 ds (dx) 2 (d y ) 2 x x(t ) (2)若曲线由参数方程表示: y y (t ) ds ( x) 2 ( y) 2 d t (3)若曲线由极坐标方程表示: ds 2 ( ) 2 d
例6. 设函数 且 证明
在
上二阶可导,
证: x [0 , 1] , 由泰勒公式得
f (1) f ( x) f ( x)(1 x) 1 f ( )(1 x) 2 (0 1) 2 f (0) f (x) f ( x) x 1 f ( ) x 2 2
高等数学_第四章习题课
四种类型分式的不定积分
1. x A adx Aln xaC;2. (x A a)d nx (1n)A x (a)n1C ;
3. x2M pxN xqdxM 2lnx2pxq
NM2parctx anp2 C;
qp24
qp24
4 .( x 2 M p N q x ) x n d M x 2( x ( 2 2 x p p ) d q x ) n x ( x 2 N p M 2 q x ) n p d
即:连续函数一定有原函数.
2、不定积分
(1) 定义
在区间 I内, 函数f(x)的带 有任意 常数项 的 原函 数称 为f(x)在区间 I 内的 不定积 分, 记
为f(x)dx.
f(x)d xF (x)C
函 数 f(x )的 原 函 数 的 图 形 称 为 f(x )的 积 分 曲 线 .
(1)3axdx lan
ln 3 2
dt t2 1
2l1n3(t
1 1 t
1 )dt 1 lnt1C 1 2(ln 3ln2) t1
2
1
3x2x
ln C.
2(l3 nln2) 3x2x
例2 求ex1(1csoixsnx)dx.
ex(12sinxcosx)
解 原式
2 2 dx 2co2sx
2
(ex 1 extanx)dx
高等数学_第四章习题课
1、原函数
定义 如果在区间I内,可导函数F(x)的导函数为 f(x) ,即xI ,都有F(x) f(x) 或 dF(x) f(x)dx,那么函数F(x)就称为f(x)或 f(x)dx在区间I内原函数. 原函数存在定理 如 果 函 数 f(x)在 区 间 I 内 连 续 , 那 么 在 区 间 I内 存 在 可 导 函 数 F (x), 使 x I, 都 有 F (x)f(x).
高等数学 第十二章 常微分方程 习题课
1 4x41 2x2y21 4y4
(0,0) (x,0)
1 4x41 2x2y21 4y4c 为原方程的隐式通解.
例 5. (x3x2y)dx(x2yy3)dy0
又.解dy dx
x3xy2 x2yy3
1
y x
y2
x2 y3 x3
齐次方程
设 u x y,则 y x u ,d d x y u x d d u x .
P y(xys(xiyyn ) syi(y x n )2 coy)s
Q x
例 6. dy3(x1)2(y1)2 dx 2(x1)(y1)
解 .令 u x 1 ,v y 1 ,
则dyd(v1) d v dx d(u1) d u
dv 3u2 v2 du 2uv
3
2
v u v u
x
du dx
1 cosu
,
cousdudxx, xcesinxy .
例 3.(cx o )d dx s yysixn 1 解 . d dx y(tax)n ysexc 一阶线性方程
ye ta xd nx se xe c ta xd nd x x c
e lc n x o ss x e e lc c n x d o c s x
uxd du x1 u u u2 3, xd d u x 1 2 u u 2 u 3 u 4 1 u u 2, 1uduu2 dxx, 1 2ln 1u (2) ln xln c,
ln 1 u (2 ) 2 ln x 2 lc n ,
x2(1u2)2c, x2y2c2.
例 5 .( x 3 x 2 ) d y ( x 2 y y 3 ) d 0 y 事 ,x ( x 实 2 y 2 ) d 上 y x ( x 2 y 2 ) d 0 y
高等数学《曲线积分与曲面积分》习题课
L( A,B)
b
f (x, y)
1 y2dx
a
曲顶柱体的表面积
如图曲顶柱体,
z z f (x, y)
S
(1
1
f2 x
f
2 y
)d
D
f ( x, y)ds L
o
y
x
D L
2
2
例 3 求柱面 x 3 y 3 1在球面 x2 y2 z 2 1内
的侧面积.
解 由对称性
S 8Lzds 1 x2 y2ds
2
解
z
y 1绕y轴旋转面方程为
x 0
y 1 z2 x2
(如下图)
欲求
I
(8
y
1) xdydz
2(1
2
y
)dzdx
4
yzdxdy
z
且有 I
* *
P Q R
*
(
x
y
z
)dxdydz
x
2
o1
*
y
3
(8 y 1 4 y 4 y)dxdydz dv
3
2
2
3
dxdz
D
8
a 0 dx (e x m) 0 0, OA 0
M
A(a,0) x
I
m a2 0 m a2.
AMOA OA
8
8
曲面面积的计算法
z
z f (x, y) S
z
z f (x, y)
o
Dxy
y
a
bo
A
s LB
y
x S dS
1
z
2 x
z
2 y
高等数学第四章不定积分习题课
xdx
de x
或 exdx d(ex 1) ,然后进行计算。 另外,由于
f
(x)
1 1 ex
中含有
1
e x,不能直接计算,可以考虑
换元 t ex 或 t 1 ex,然后再进行计算。
解法1:因为
1
ex
1 e x e x (1 e x )
所以
1
ex
二、基本计算方法
1.直接积分法 首先要对被积函数进行恒等变形,然后利用不定
积分的基本性质和基本积分表求出不定积分。
2.第一类换元法(凑微分法): 设 F(u) f (u) ,则
f ((x))(x)dx f ((x))d(x) F((x)) C
3.第二类换元法(变量置换法):
2
2
注意 运算中综合使用不同方法往往更有效.]。
【例12】 求不定积分
I
arcsin
x dx
x
分析:由于被积函数中含有根式 x ,所以首先要令
t x 把根式去掉,然后选择合适的方法计算。
另外,观察被积表达式的特点,由于
arcsin xdx arcsin x( dx ) 2arcsin xd( x )
2 dx 1 u2 du
2u sin x 1 u2
1 u2 cos x 1 u2
从而
2u 1 u2 2
R(sin x,cos x)dx
R( 1
u2
,
1
u2
)
1
u2
du
☆ 在具体计算不定积分的过程中,不是一种方法就可
以解决,要熟练掌握几种积分法并融会贯通,综合应用。
同济高等数学第一章习题课
f (x) b k = lim [ − ] x→+∞ x x ∴ f (x) k = lim x→+∞ x
(或x →−∞)
f (x) b lim x[ −k − ] = 0 x→+∞ x x f (x) b lim [ −k − ] = 0 x→+∞ x x
b = lim [ f (x) − kx]
1
lim(cos x )
x →0
x2
ln cos x ln(1 + cos x − 1) lim = lim 2 x→ 0 x →0 → x x2 cos x − 1 = lim x→ x →0 x2 x2 − 1 = lim 2 = − x →0 x 2 1 2 − 所以, 所以,原式 = e 2
二、无穷小的比较
例11 当 下列函数分别是x的几阶无穷小 时,下列函数分别是 的几阶无穷小
~ ~
x2 2
x
1 2
2x = 1+ x + 1− x
~
x
练习: 练习: P74,3(1) , ( )
求分段函数的极限, 三、求分段函数的极限,判断分段函数的 连续性, 连续性,间断点的类型
例12
解:
1 x>0 x sin x , f ( x) = , 求 lim f ( x ). x x→ 0 → 1 − cos x − x sin 2 , x<0 x2 x 1 − cos x − x sin 2 lim− f ( x ) = lim− x x →0 x →0 x2 x sin 1 − cos x 1 1 2 = lim− − lim− = − =0 x →0 x →0 x2 x2 2 2 1 lim+ f ( x ) = lim+ x sin = 0 x →0 x →0 x lim− f ( x ) = lim+ f ( x ) = 0
高等数学(同济版)第三章-习题课
m f (0), f (1), f (2) M
m
f (0) f (1) f (2) 3
M
由介值定理, 至少存在一点 c [0, 2] , 使
由罗f分(c尔析) 定: 所想理f f(给到3知(c)条找),必1件一,存f且可点(0在)写fc(f,为x3(使1))在(cff[(,f(c032(,)))c3)]f上3(11()0连f,(3f0续())2,),使f在3(11)(f,c(,ff3((2))3)内)0可1. 导,
一、主要内容
Cauchy 中值定理
F(x) x
洛必达法则
型
f g 1 g1 f 1 g1 f
0型 0 型
00 ,1 , 0 型
令y f g 取对数
0型
f g f 1g
Lagrange 中值定理
f (a) f (b)
Rolle 定理
n0
Taylor 中值定理
常用的 泰勒公式
导数的应用
单调性,极值与最值, 凹凸性,拐点,函数 图形的描绘; 曲率;求根方法.
( x)
1 ln(1
x)
1
1 x
2
0
(x 0)
故 x 0时, (x)单调增加 , 从而 (x) (0) 0
即
ln(1 x) arctan x (x 0)
1 x
思考: 证明 1 x ln(1 x) (0 x 1) 时, 如何设辅助 1 x arcsin x
函数更好 ?
提示: (x) (1 x) ln(1 x) 1 x2 arcsin x
y
2 x( x2 (x2
3) 1)2
(
x
1 1)3
(x
1 1)3
高等数学第五章习题课1定积分
第 五 章 定 级 分
解
原式 lim
2e
x2
0 e
2 x2
x t2
dt
x
e
0
lim
2 e dt e
x2
x t2
x
lim
2e
x2
2
x 2 xe x
1 lim 0 x x
- 17 -
习题课(一)
3 解
第 五 章 定 级 分
tf ( x t )dt lim 0 ,
1 i 1 2 lim sin sinxdx n 0 n n i 1
n
-2-
习题课(一)
第 五 章 定 级 分
i 1 n i 1 lim sin lim sin n n n n 1 n n n i 1 i 1 1 2 sinxdx 0 2 原式 1 n1 n 2 n nn 3 lim n n n n
1 2 F ( x )dx 0
存在一点 , 使得 F ( ) 0, 即 f ( ) f ( )
-9-
习题课(一)
第 五 章 定 级 分
设在 [0,1] 上 f ( x ) 0, 证明: 1 1 2 0 f ( x )dx f ( 3 ) 证 由于 y f ( x ) 在区间 [0,1] 是上凸的, 所以曲线 1 1 y f ( x ) 在过 ( , f ( )) 处的切线下方,即 3 3 1 1 1 f ( x ) f ( ) f ( )( x ) 3 3 3 1 1 2 1 2 f ( x ) f ( ) f ( )( x ) 3 3 3
高等数学第九章习题课二重积分的计算
习题课二重积分的计算一、主要内容二重积分的计算方法是累次积分法,化二重积分为累次积分的步骤是:①作出积分区域的草图②选择适当的坐标系③选定积分次序,定出积分限1。
关于坐标系的选择这要从积分区域的形状和被积函数的特点两个方面来考虑看图定限 —穿越法定限 和不等式定限先选序,后定限①直角坐标系ⅰ。
先 y 后 x ,过任一x ∈ [ a , b ],作平行于 y 轴的直线穿过D 的内部从D 的下边界曲线)(1x y ϕ=穿入—内层积分的下限从上边界曲线)(2x y ϕ=穿出—内层积分的上限ⅱ。
先 x 后 yy 过任一 yy ∈[ c , d ] 作平行于 x 轴的直线定限左边界)(1y x ψ=——内层积分的下限右边界)(2y x ψ=——内层积分的上限则将D 分成若干个简单区域再按上述方法确定每一部分的上下限分片计算,结果相加②极坐标系积分次序一般是θ后先r 过极点O 作任一极角 为 θ]),[(βαθ∈的射线从D 的边界曲线 )(1θr 穿入从 )(2θr 穿出ⅲ。
如D 须分片)(1θr ——内下限)(2θr —内上限具体可分为三种情况)()(,21θθβθαr r r ≤≤≤≤⑵极点在D 的边界上)()(,21θθβθαr r r ≤≤≤≤是边界在极点处的切线的极角βα,)(1θr 绝大多数情况下为0⑶极点在D 的内部)(0,20θπθr r ≤≤≤≤化累次积分后外限是常数内限是外层积分变量的函数或常数极坐标系下勿忘 r⑴极点在D 的外部∫∫∫∫=D Ddxdy x y f dxdy y x f ),(),(——称为关于积分变量的轮换对称性是多元积分所独有的性质奇函数关于对称域的积分等于0,偶函数关于对称域的积分等于对称的部分区域上积分的两倍,完全类似于 对称区间上奇偶函数的定积分的性质简述为“你对称,我奇偶”①、②、③简单地说就是④若 DD 关于直线 y = x 对称。
高等数学 D1习题课11
机动 目录 上页 下页 返回 结束
例9. 设 f (x) 0 , 则 f (2) f (1) f (2) 0 提示: 利用 f (x) 单调增加 , 及 f (2) f (1) f ( ) (1 2)
机动 目录 上页 下页 返回 结束
n
n
n2 2
lim n1
1
n2
1
lim n
n
n
2
1
n2
1
2
n2
1
n
1
机动 目录 上页 下页 返回 结束
一般有如下结果:
lim
x
a0 xm b0 x n
a1x m1 b1x n1
am bn
为非负常数 )
机动 目录 上页 下页 返回 结束
lim n3 n 5 ____ n 1 4n 2n3
esin
x
ln
x
lim e x ln x
x0
e0 1
例5 目录 上页 下页 返回 结束
例3.
1
6
分析:
原式
lim
x0
cos
x x
(x sin 2
sin x
x)
lim
x0
x
sin x3
x
sin x ~ x
lim cos x 1
x0
lim 1
x0
cos 3x2
x
lim
x0
1 2
x2
3x2
1 6
例10. 铁路上 AB 段的距离为100 km , 工厂C 距 A 处20
Km , AC⊥ AB , 要在 AB 线上选定一点 D 向工厂修一条
高等数学课件:习题课(09)函数性态
(6)设 n 为正整数,则 f ( x)(1 x x2 xn )ex
2!
ቤተ መጻሕፍቲ ባይዱ
n!
()
(A)有极小值;
(B)有极大值;
(C)既无极小值也无极大值;
(D) f ( x) 有无极值依赖于 n 的取值。
二、证明题
1.设 m, n0 , 0 xa ,
证明:
x
m
(a
x)n
(
mmnn m n)mn
a
mn
。
2.设 f ( x) 在[a, ) 上可导,且当 xa 时, f ( x)k0 , 其中 k 为常数。证明如果 f (a)0 ,则方程 f ( x)0 在 (a, a f(a)) 内有且仅有一个实根。 k
习题课九
一、选择题
(1)设在[0,1]上, f ( x)0 ,则下列不等式
成立的是( A )
(A) f (1) f (1) f (0) f (0) ; (B) f (1) f (0) f (1) f (0) ; (C) f (1) f (0) f (1) f (0) ; (D) f (1) f (0) f (1) f (0) 。
三、解答题 1.设 x0 ,求满足不等式 lnx A x 的最小正数 A。
2.讨论曲线 y4ln x k 与 y4xln4 x 的交点个数。
3.若火车每小时所耗燃料费用与火车速度立方成正比, 已知速度为20km h 时,每小时的燃料费用为 40 元, 其他费用每小时 200 元,求最经济的行驶速度。
图形如图所示,则 f (x) 有( ) (A)一个极小值点和两个极大值点;
y y f ( x)
(B)两个极小值点和一个极大值点;
x
o
(C)两个极小值点和两个极大值点;
高等数学习题课(1)函数极限与连续性
连续,
证明 f (x) 对一切 x 都连续 .
提示:
lim f (x x) lim [ f (x) f (x)]
x0
x0
f (x) f (0)
f (x 0) f (x)
P73 题5. 证明: 若 f (x) 在 (, )内连续, lim f (x)
x
存在, 则 f (x) 必在 (, )内有界.
III.课堂训练题 1. 求数列极限
1 lim[ n n n n ] n
2 lim 1 a1 a2 1 a2n ,( a 1) n
2. 求下列极限
1 lim x0
1 tan x 1 sin x sin3 x
2 lim sin x 1 sin x x
公式:sin A sin B 2cos A B sin A B
xx0
f (x)
f
(x0 )
6. 连续函数的性质
1) 有限个连续函数的和、差、积、商(分母不为 零),仍为连续函数;
2) 单值单调连续函数的反函数在对应区间上也为 单值单调的连续函数;
3) 连续函数的复合函数也是连续函数; 4) 一切初等函数在其定义区间内都是连续函数。
7. 闭区间上连续函数的性质
有 y f (x0 x) f (x0 )
如 果 lim y 0
①
x0
或
lim
x0
f
( x0
x)
f
(x0 )
②
或
lim
x x0
f (x)
f (x0 )
③
则 称 函 数y f (x) 在 点 x0 处 连 续 。
命题:lim xx0
f
(x)
f
高等数学课件第二章导数的计算 习题课ppt
lim
3a
x1 x 1
f (1)
lim
x1
f ( x) f (1)
3 x 1 1
lim
Hale Waihona Puke x1x1 x 1 3
3a 1 , 3
f (1) 1
3
a 1, b 8.
9
9
当x 1时,
f
( x)
1 (
x3
8 )
1
x2;
9 93
当x 1时, f ( x) (3 x ) 1 .
33 x2
又 f 0 e ,证明 f x在 , 内处处可导.
解: 取 x y 0 代入恒等式,得 f 0 2 f 0 ,
因此 f 0 0 .
f x lim f x x f x
x 0
x
lim e x f x ex f x f x
x0
x
ex f
lim
0
x
f
0
f
x ex
1
x0
例3.
解:
1
x
2 3
3
所以 y x0 , 即在原点处有垂直切线.
令 1 1 1, 3 3 x2 3
得 x 1, 对应 y 1,
则在点(1,1) , (–1,–1) 处与已知直线平行. 平行的切线方程分别为
y
x 31y
20 y3
x
1
x
3
y
2
0O 1
y
1 1
x
x 1
3
例4.
f
二
阶
可
导, 求
u v
uv uv v2
(v
0) .
复合函数的导数: 设函数 y f (u),均u 可导( ,x)
高等数学课后习题及参考答案(第四章)
高等数学课后习题及参考答案(第四章)习题4-11. 求下列不定积分:(1)⎰dx x 21;解 C x C x dx x dx x +-=++-==+--⎰⎰112111222.(2)⎰dx x x ; 解 C x x C x dx x dx x x +=++==+⎰⎰212323521231. (3)⎰dx x1;解C x C x dx xdx x+=++-==+--⎰⎰21211112121. (4)⎰dx x x 32; 解 C x x C x dx x dx x x+=++==+⎰⎰3313737321031371. (5)⎰dx xx 21;解C x x C x dx xdx xx +⋅-=++-==+--⎰⎰12312511125252. (6)dx x m n ⎰; 解C x m n m C x mn dx x dx x mn m m nm nmn++=++==++⎰⎰111.(7)⎰dx x 35;解 C x dx x dx x +==⎰⎰4334555.(8)⎰+-dx x x )23(2;解 C x x x dx dx x dx x dx x x ++-=+-=+-⎰⎰⎰⎰2233123)23(2322.(9)⎰ghdh 2(g 是常数);解C ghC h gdh hgghdh +=+⋅==⎰⎰-22212122121. (10)⎰-dx x 2)2(;解 C x x x dx dx x dx x dx x x dx x ++-=+-=+-=-⎰⎰⎰⎰⎰423144)44()2(23222.(11)⎰+dx x 22)1(;解 C x x x dx dx x dx x dx x x dx x +++=++=++=+⎰⎰⎰⎰⎰3524242232512)12()1(.(12)dx x x ⎰-+)1)(1(3;解 ⎰⎰⎰⎰⎰⎰-+-=-+-=-+dx dx x dx x dx x dx x x x dx x x 23212323)1()1)(1(C x x x x +-+-=25233523231.(13)⎰-dx xx 2)1(;解C x x x dx x x xdx xx x dx xx ++-=+-=+-=-⎰⎰⎰-2523212321212252342)2(21)1(. (14)⎰+++dx x x x 1133224; 解C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224.(15)⎰+dx x x 221;解⎰⎰⎰+-=+-=+-+=+C x x dx xdx xx dx x x arctan )111(111122222.(16)⎰+dx xe x )32(;解 C x e dx xdx e dx x e x x x ++=+=+⎰⎰⎰||ln 32132)32(.(17)⎰--+dx xx )1213(22;解 ⎰⎰⎰+-=--+=--+C x x dx xdx x dx xx arcsin 2arctan 3112113)1213(2222.(18)dx xe e x x⎰--)1(;解 C x edx xe dx xe e xxx x+-=-=-⎰⎰--21212)()1(.(19)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(20)⎰⋅-⋅dx xxx 32532; 解 C x C x dx dx x xx xxx+--=+-=-=⋅-⋅⎰⎰)32(3ln 2ln 5232ln )32(52])32(52[32532. (21)⎰-dx x x x )tan (sec sec ;解 ⎰⎰+-=-=-C x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2.(22)⎰dx x2cos 2;解 C x x dx x dx x dx x ++=+=+=⎰⎰⎰)sin (21)cos 1(212cos 12cos 2.(23)⎰+dx x 2cos 11;解 ⎰⎰+==+C x dx xdx x tan 21cos 212cos 112.(24)⎰-dx xx xsin cos 2cos ;解 ⎰⎰⎰+-=+=--=-C x x dx x x dx xx xx dx x x x cos sin )sin (cos sin cos sin cos sin cos 2cos 22.(25)⎰dx x x x22sin cos 2cos ;解 ⎰⎰⎰+--=-=-=C x x dx xx dx x x x x dx x x x tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222.(26)⎰-dx x x x)11(2;解 ⎰⎪⎭⎫ ⎝⎛-dx x x x 211⎰++=-=--C x x dx x x 41474543474)(.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|C =2C ,C =3-2=1. 于是所求曲线的方程为 y =ln|x | 1.3. 一物体由静止开始运动, 经t 秒后的速度是3t 2(m/s ), 问 (1)在3秒后物体离开出发点的距离是多少? (2)物体走完360m 需要多少时间?解 设位移函数为s =s (t ), 则s '=v =3 t 2, C t dt t s +==⎰323. 因为当t =0时, s =0, 所以C =0. 因此位移函数为s =t 3. (1)在3秒后物体离开出发点的距离是s =s (3)=33=27.(2)由t 3=360, 得物体走完360m 所需的时间11.73603≈=t s. 4. 证明函数x e 221, e x sh x 和e x ch x 都是x x e xsh ch -的原函数.证明 x x xx x x x x x e ee e e e e e x x e 222sh ch ==--+=----. 因为x x e e 22)21(=', 所以x e 221是x x e xsh ch -的原函数.因为(e x sh x )'=e x sh x e x ch x =e x (sh x ch x )x xx x x x e e e e e e 2)22(=++-=--, 所以e x sh x 是xx e xsh ch -的原函数.因为(e x ch x )'=e x ch x e x sh x =e x (ch x sh x )x xx x x x e e e e e e 2)22(=-++=--, 所以e xch x 是xx e x sh ch -的原函数.习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1d (ax ).(2) dx = d (7x -3);解dx = 71d (7x -3).(3) xdx = d (x 2); 解xdx = 21 d (x 2).(4) x d x = d (5x 2);解x d x = 101d (5x 2).(5))1( 2x d xdx -=;解 )1( 212x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121d (3x 4-2).(7)e 2x dx = d (e 2x ); 解e 2x dx = 21 d (e 2x ).(8))1( 22x x ed dxe --+=;解 )1( 2 22x xe d dx e --+-=.(9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=.(10)|)|ln 5( x d xdx=; 解 |)|ln 5( 51x d x dx =. (11)|)|ln 53( x d xdx-=; 解|)|ln 53( 51x d x dx --=. (12))3(arctan 912x d x dx=+; 解 )3(arctan 31912x d x dx =+. (13))arctan 1( 12x d xdx -=-;解)arctan 1( )1( 12x d xdx --=-.(14))1( 122x d x xdx -=-.解)1( )1( 122x d x xdx --=-.2. 求下列不定积分(其中a , b , ω, ϕ均为常数): (1)⎰dt e t 5; 解 C e x d e dt e xx t +==⎰⎰55551551. (2)⎰-dx x 3)23(; 解 C x x d x dx x +--=---=-⎰⎰433)23(81)23()23(21)23(. (3)⎰-dx x 211; 解C x x d x dx x +--=---=-⎰⎰|21|ln 21)21(21121211.(4)⎰-332xdx ;解C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)32(21)32(2331)32()32(3132. (5)⎰-dx e ax bx)(sin ;解C be ax ab x d e b ax d ax a dx e ax b xb xbx+--=-=-⎰⎰⎰cos 1)()(sin 1)(sin .(6)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(7)⎰⋅xdx x 210sec tan ;解 ⎰⋅xdx x 210sec tan C x x xd +==⎰1110tan 111tan tan . (8)⎰xx x dxln ln ln ;解C x x d x x d x x x x x dx +===⎰⎰⎰|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln .(9)⎰+⋅+dx xx x 2211tan ;解 ⎰+⋅+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=⎰⎰C x x d x ++-=++-=⎰|1cos |ln 1cos 1cos 1222.(10)⎰xx dxcos sin ;解 C x x d xdx x x x x dx +===⎰⎰⎰|tan |ln tan tan 1tan sec cos sin 2. (11)⎰-+dx e e xx 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122.(12)⎰-dx xe x 2; 解 .21)(212222C e x d e dx xe x x x +-=--=---⎰⎰ (13)⎰⋅dx x x )cos(2;解 C x x d x dx x x +==⋅⎰⎰)sin(21)()cos(21)cos(2222. (14)⎰-dx xx 232;解C x C x x d x dx x x+--=+--=---=-⎰⎰-2212221223231)32(31)32()32(6132.(15)⎰-dx xx 4313; 解⎰⎰+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)⎰++dt t t ))sin((cos 2ϕωϕω; 解 C t t d t dt t t ++-=++-=++⎰⎰)(cos 31)cos()(cos 1)sin()(cos 322ϕωωϕωϕωωϕωϕω. (17)⎰dx x x3cos sin ; 解 C x C x x xd dx xx +=+=-=--⎰⎰2233sec 21cos 21cos cos cos sin . (18)⎰-+dx x x xx 3cos sin cos sin ; 解 )sin cos (cos sin 1cos sin cos sin 33x x d x x dx x x x x +--=-+⎰⎰ C x x x x d x x +-=--=⎰-3231)cos (sin 23)cos (sin )cos (sin .(19)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21.(20)⎰+dx xx 239; 解 C x x x d xx d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(9219222222223. (21)⎰-dx x 1212;解⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221.(22)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1.(23)⎰xdx 3cos ;解 C x x x d x x d x xdx +-=-==⎰⎰⎰3223sin 31sin sin )sin 1(sin cos cos .(24)⎰+dt t )(cos 2ϕω; 解 C t t dt t dt t +++=++=+⎰⎰)(2sin 4121)](2cos 1[21)(cos 2ϕωωϕωϕω. (25)⎰xdx x 3cos 2sin ; 解 ⎰xdx x 3cos 2sin C x x dx x x ++-=-=⎰cos 215cos 101)sin 5(sin 21. (26)⎰dx xx 2cos cos ;解 C x x dx x x dx x x ++=+=⎰⎰21sin 23sin 31)21cos 23(cos 212cos cos .(27)⎰xdx x 7sin 5sin ; 解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)⎰xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223⎰⎰⎰=⋅=C x x x d x +-=-=⎰sec sec 31sec )1(sec 32.(29)⎰-dx xx2arccos 2110;解C x d x d dx xx xxx+-=-=-=-⎰⎰⎰10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2.(30)⎰+dx x x x )1(arctan ;解C x x d x x d x xdx x x x +==+=+⎰⎰⎰2)(arctan arctan arctan 2)1(arctan 2)1(arctan .(31)⎰-221)(arcsin xx dx;解C xx d x x x dx+-==-⎰⎰arcsin 1arcsin )(arcsin 11)(arcsin 222.(32)⎰+dx x x x 2)ln (ln 1; 解C xx x x d x x dx x x x+-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122. (33)⎰dx xx xsin cos tan ln ;解⎰⎰⎰=⋅=x d x x xdx x x dx x x x tan tan tan ln sec tan tan ln sin cos tan ln 2C x x d x +==⎰2)tan (ln 21tan ln tan ln .(34)⎰-dx x a x 222(a >0);解⎰⎰⎰⎰-===-dt t a dt t a tdt a t a t a t a x dx xa x 22cos 1sin cos cos sin sin 22222222令, C x a xa x a C t a t a +--=+-=222222arcsin 22sin 421. (35)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(36)⎰+32)1(x dx ;解C t tdt t d t tx x dx +==+=+⎰⎰⎰sin cos tan )1(tan 1tan )1(3232令C x x ++=12.(37)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(38)⎰+xdx 21;解C x x C t t dt t tdt t t x xdx ++-=++-=+-=+=+⎰⎰⎰)21ln(2)1ln()111(11221令.(39)⎰-+211x dx ;解⎰⎰⎰⎰-=+-=+=-+dt tdt t tdt t tx x dx)2sec211()cos 111(cos cos 11sin 1122令 C xxx C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan . (40)⎰-+21x x dx .解⎰⎰⎰+-++=⋅+=-+dt tt tt t t tdt t t tx x x dx cos sin sin cos sin cos 21cos cos sin 1sin 12令C t t t t t d t t dt +++=+++=⎰⎰|cos sin |ln 2121)cos (sin cos sin 12121 C x x x ++-+=|1|ln 21arcsin 212.习题4-3求下列不定积分: 1. ⎰xdx x sin ; 解C x x x xdx x x x xd xdx x ++-=+-=-=⎰⎰⎰sin cos cos cos cos sin .2. ⎰xdx ln ;解 C x x x dx x x x xd x x xdx +-=-=-=⎰⎰⎰ln ln ln ln ln . 3. ⎰xdx arcsin ;解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin ⎰--=dx xx x x 21arcsinC x x x +-+=21arcsin . 4. ⎰-dx xe x ;解 ⎰⎰⎰----+-=-=dx e xe xde dx xe x x x x C x e C e xe x x x ++-=+--=---)1(. 5. ⎰xdx x ln 2; 解 ⎰⎰⎰-==x d x x x xdx xdx x ln 31ln 31ln 31ln 3332 C x x x dx x x x +-=-=⎰332391ln 3131ln 31.6. ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .7. ⎰-dx xe x 2sin 2;解 因为⎰⎰⎰-----==x x x x de xx e x d e dx x e 22222cos 22cos 22cos 22sin⎰⎰----+=+=2sin 82cos 22cos 42cos 22222xd e x e dx x e x e x x x x⎰----+=x x x de xx e x e 2222sin 82sin 82cos 2⎰---++=dx xe x e x e x x x 2sin 162sin 82cos 2222,所以 C xx e dx x e x x ++-=--⎰)2sin 42(cos 1722sin 22.8. ⎰dx xx 2cos ;解 C xx x dx x x x x xd dx x x ++=-==⎰⎰⎰2cos 42sin 22sin 22sin 22sin 22cos .9. ⎰xdx x arctan 2; 解 ⎰⎰⎰+⋅-==dx x x x x xdx xdx x 233321131arctan 31arctan 31arctan ⎰⎰+--=+-=2232223)111(61arctan 31161arctan 31dx xx x dx x x x x C x x x x +++-=)1ln(6161arctan 31223.10. ⎰xdx x 2tan解 ⎰⎰⎰⎰⎰+-=-=-=x xd x xdx xdx x dx x x xdx x tan 21sec )1(sec tan 2222C x x x x xdx x x x +++-=-+-=⎰|cos |ln tan 21tan tan 2122.11. ⎰xdx x cos 2;解 ⎰⎰⎰⎰+=⋅-==x xd x x xdx x x x x d x xdx x cos 2sin 2sin sin sin cos 2222C x x x x x xdx x x x x +-+=-+=⎰sin 2cos 2sin cos 2cos 2sin 22. 12. ⎰-dt te t 2;解 ⎰⎰⎰----+-=-=dt e te tde dt te t t tt 2222212121 C t e C e te t t t ++-=+--=---)21(214121222.13. ⎰xdx 2ln ;解 ⎰⎰⎰-=⋅⋅-=xdx x x dx xx x x x xdx ln 2ln 1ln 2ln ln 222C x x x x x dx x x x x x x ++-=⋅+-=⎰2ln 2ln 12ln 2ln 22.14. ⎰xdx x x cos sin ; 解 ⎰⎰⎰⎰+-=-==xdx x x x xd xdx x xdx x x 2cos 412cos 412cos 412sin 21cos sin C x x x ++-=2sin 812cos 41.15. ⎰dx xx 2cos 22; 解 ⎰⎰⎰⎰-+=+=+=xdx x x x x x d x x dx x x dx x x sin sin 2161sin 2161)cos 1(212cos 2323222⎰⎰-++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323C x x x x x x +-++=sin cos sin 216123.16. ⎰-dx x x )1ln(; 解 ⎰⎰⎰-⋅--=-=-dx x x x x dx x dx x x 1121)1ln(21)1ln(21)1ln(222 ⎰-⋅++--=dx x x x x )111(21)1ln(212C x x x x x +-----=)1ln(212141)1ln(2122.17. ⎰-xdx x 2sin )1(2;解 ⎰⎰⎰⋅+--=--=-xdx x x x x d x xdx x 22cos 212cos )1(212cos )1(212sin )1(222 ⎰+--=x xd x x 2sin 212cos )1(212⎰-+--=xdx x x x x 2sin 212sin 212cos )1(212C x x x x x +++--=2cos 412sin 212cos )1(212.18. ⎰dx x x 23ln ;解⎰⎰⎰⎰+-=+-=-=xdx xx x x d x x x x xd dx x x22333323ln 13ln 1ln 1ln 11ln ln⎰⎰+--=--=x d xx x x x x xd x x 22323ln 13ln 3ln 11ln 3ln 1⎰⎰---=+--=x xd x x x x dx x x x x x x 1ln 6ln 3ln 1ln 16ln 3ln 123223⎰+---=dx xx x x x x x 22316ln 6ln 3ln 1C x x x x x x x +----=6ln 6ln 3ln 123.19. ⎰dx e x3;解 ⎰⎰⎰==t t xde t dt e t t x dx e223333令⎰⎰-=-=t t t t tde e t dt te e t 636322 ⎰+-=dt e te e t t t t 6632 C e te e t t t t ++-=6632 C x x ex ++-=)22(33323.20. ⎰xdx ln cos ; 解 因为⎰⎰⋅⋅+=dx xx x x x xdx 1ln sin ln cos ln cosdx xx x x x x x xdx x x 1ln cos ln sin ln cos ln sin ln cos ⋅⋅-+=+=⎰⎰⎰-+=xdx x x x x ln cos ln sin ln cos , 所以 C x x xxdx ++=⎰)ln sin ln (cos 2ln cos .21. ⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. 22. ⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e xx x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2.习题4-4求下列不定积分:1. dx x x ⎰+33;解 dx x x x x dx x x dx x x ⎰⎰⎰+-+-+=+-+=+327)93)(3(327273233 ⎰⎰+-+-=dx x dx x x 3127)93(2 C x x x x ++-+-=|3|ln 279233123.2. ⎰-++dx x x x 103322;解 C x x x x d x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222.3. ⎰--+dx xx x x 3458; 解 ⎰⎰⎰--++++=--+dx xx x x dx x x dx x x x x 3223458)1(8 ⎰⎰⎰--+-+++=dx x dx x dx x x x x 13148213123C x x x x x x +--+-+++=|1|ln 3|1|ln 4||ln 8213123.4. ⎰+dx x 133;解 ⎰⎰⎰+-⋅++--⋅-+=+-+-++=+dx x x x x x x dx x x x x dx x )11231122111()1211(132223⎰⎰-+-++-+--+=)21()23()21(123)1(1121|1|ln 2222x d x x x d x x xC x x x x +-++-+=312arctan31|1|ln2. 5. ⎰+++)3)(2)(1(x x x xdx;解dx x x x x x x xdx )331124(21)3)(2)(1(+-+-+=+++⎰⎰C x x x ++-+-+=|)1|ln |3|ln 3|2|(ln 21.6. ⎰-++dx x x x )1()1(122;解 ⎰⎰+--⋅++⋅=-++dx x x x dx x x x ])1(111211121[)1()1(1222 C x x x +++-+-=11|1|ln 21|1|ln 21C x x +++-=11|1|ln 212.7. dx x x )1(12+⎰; 解 C xx dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.8. ⎰++))(1(22x x x dx;解⎰⎰+⋅-++⋅-=++dx x x x x x x x dx )112111211())(1(222⎰++-+-=dx x x x x 1121|1|ln 21||ln 2⎰⎰+-+-+-=dx x dx x x x x 11211241|1|ln 21||ln 22C x x x x +-+-+-=arctan 21)1ln(41|1|ln 21||ln 2.9. ⎰+++)1)(1(22x x x dx; 解dx x xx x x x x x dx )111()1)(1(2222⎰⎰+-+++=+++)1ln(21112111221222+-++++++=⎰⎰x dx x x x x x ⎰++++-++=dx x x x x x 1121)1ln(21|1|ln 21222C x x x x ++++-++=312arctan 33)1ln(21|1|ln 2122. 10. ⎰+dx x 114;解dx x x x x dx x ⎰⎰+-++=+)12)(12(111224⎰⎰+-+-++++=dx x x x dx x x x 12214212214222⎰⎰+----++++=dx x x x dx x x x 1222)22(21421222)22(214222 )1212(41]12)12(12)12([82222222⎰⎰⎰⎰+-+++++-+--++++=x x dxx x dx x x x x d x x x x d C x x x x x x +-++++-++=)12arctan(42)12arctan(42|1212|ln 8222. 11. ⎰++--dx x x x 222)1(2; 解 ⎰⎰⎰++-++-=++--dx x x dx x x x dx x x x 11)1(1)1(2222222 ⎰⎰⎰++-++-+++=dx x x dx x x dx x x x 11)1(123)1(122122222 ⎰⎰++-++-++⋅-=dx x x dx x x x x 11)1(12311212222, 因为)312arctan(32)312()312(11321122+=+++=++⎰⎰x x d x dx x x , 而⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1由递推公式 ⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx ,得⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1312arctan 323211231)1121()23(212222+⋅++++⋅=++++++=⎰x x x x x x dx x x x , 所以 ⎰++--dx x x x 222)1(2C x x x x x x x ++-+-+++-++⋅-=312arctan 32312arctan 3211221112122C x x x x ++-+++-=312arctan34112.12. ⎰+x dx2sin 3;解⎰⎰⎰+=-=+x d x dx x x dx tan 3tan 41cos 41sin 3222C x x d x +=+=⎰3tan 2arctan321tan )23(tan 14122.13.⎰+dx x cos 31;解 ⎰⎰⎰+=+=+)2sec 1(2cos )2(2cos 121cos 31222x x x d x dx dx x ⎰+=+=C x x x d 22tanarctan 212tan 22tan 2. 或⎰⎰+⋅++=+du u u u xu dx x221212312tancos 31令 C xC u du u +=+=+=⎰22tan arctan212arctan21)2(122. 14.⎰+dx x sin 21;解 ⎰⎰⎰+=+=+)2cot 2(csc 2sin )2(2cos 2sin 22sin 2122x x x x d x x dx dx x⎰⎰+++-=++-=222)23()212(cot )212(cot 12cot 2cot )2(cot x x d x x x dC x ++-=312cot 2arctan 32. 或⎰⎰+⋅++=+du u u u xu dx x221212212tansin 21令 ⎰⎰++=++=du u du u u 222)23()21(111C xC u ++=++=312tan 2arctan 32312arctan 32. 15.⎰++x x dxcos sin 1;解 ⎰⎰⎰+=+=+=++C x x xd x x dx x x dx |2tan |ln 2tan1)2(tan )2tan 1(2cos 21cos sin 12. 或⎰⎰+⋅+-+++=++du u u u u ux u xx dx2222121112112tancos sin 1令C xC u du u ++=++=+=⎰|12tan |ln |1|ln 11. 16.⎰+-5cos sin 2x x dx; 解⎰⎰⎰++=+⋅++--+=+-du u u du u u u u ux u x x dx2231125111412tan5cos sin 222222令C xC u du u ++=++=++=⎰512tan 3arctan 51513arctan 51)35()31(13122. 或⎰⎰+⋅++--+=+-du uu uu u x u x x dx2222125111412tan5cos sin 2令⎰⎰++=++=du u du u u 222)35()31(1312231C xC u ++=++=512tan 3arctan 51513arctan 51. 17.⎰++dx x 3111;解⎰⎰⎰++-=⋅+=+=++du uu du uu ux dx x )111(33111111233令 C x x x C u u u +++++-+=+++-=)11ln(313)1(23|1|ln 332333322.18.⎰++dx x x 11)(3;解C x x x dx x x dx x x ++-=+-=++⎰⎰232233221]1)[(11)(.19.⎰++-+dx x x 1111;解⎰⎰⎰++-=⋅+-=+++-+du u u udu u u u x dx x x )122(221111111令 C u u u +++-=|)1|ln 2221(22C x x x +++++-+=)11ln(414)1(. 20.⎰+4xx dx ;解⎰⎰⋅+=+du uu u u x xx dx 324441令C u u u du uu +++-=++-=⎰|1|ln 442)111(42 C x x x +++-=)1ln(4244.21.⎰+-xdxx x 11;解 令u x x=+-11, 则2211u u x +-=, du u u dx 22)1(4+-=,⎰⎰⎰++-=+-⋅-+⋅=+-du uu du u u u u u x dx x x )1111(2)1(41111222222 C u u u +++-=arctan 2|11|ln C xxxx x x ++-+++-+--=11arctan2|1111|ln . 22.⎰-+342)1()1(x x dx .解 令u x x =-+311, 则1133-+=u u x , 232)1(6--=u udx , 代入得C x x C u du x x dx +-+-=+-=-=-+⎰⎰334211232323)1()1(.总习题四求下列不定积分(其中a , b 为常数):1. ⎰--x x e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(; 解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(. 3. ⎰-dx xa x 662(a >0);解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662.4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1.5. ⎰dx xxln ln ; 解 C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln .6.⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan ; 解 xxd x x d xx xdx tan sin tan tan cos sin tan 22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ; 解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9.⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656.10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a a xa +--=22arcsin .11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos ; 解 ⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22 C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122.13. ⎰bxdx e ax cos ; 解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax ⎰⎰⎰+==sin cos 1cos 1cos dx bx e ab bx e a b bx e a de bx a b bx e a ax ax ax axax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以 C bx e ab bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e ba ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e edx xx)1111(112)1ln(11122令.c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x x dx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12.16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a++=tan 1tan 31434C xa x ax a x a+-+-⋅=224322341)(31.17.⎰+241xxdx;解tdt t t tx x xdx 2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324 C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x )1ln(2;解 ⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx x x x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122.21. ⎰dx x arctan ;解 x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx . 24. ⎰++dx x x x 234811; 解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444.25.⎰-416x dx;解⎰⎰⎰++-=+-=-dx x x dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx x x x++-=+-=⎰tan sec )cos 11cos sin (22.27. dx xxx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x x x 2cossin 212cos 212cos 2sin cos 1sin 222 ⎰⎰+=dx xx xd 2tan 2tanC xx dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan .28. ⎰-dx x x x x e x23sin cos sin cos ;解 ⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x ex x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xe x x sec sin sin sin ⎰⎰+⋅-=x x x xde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x x cos sec sec sin sin sin sin C e x xe x x +⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dx x x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x x C t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln(C ee x xx ++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e x x +-=-)arctan( C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xd e d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x xxxde e ee x )111(1 C e e e xx x x ++-++-=)1ln(ln 1C e e xe x x x++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解 dx x x x x x x dx x x ])1([ln )1(ln )1(ln 222222'++⋅-++=++⎰⎰ ⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln x d x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222 ⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222 C x x x x x x x +++++-++=2)1ln(12)1(ln 2222.34.⎰+dx x x2/32)1(ln ;解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t t x dx x 2232/321sin cos sec sec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx x x xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=.36.⎰-dx xx x 231arccos ;解⎰⎰⎰--=-⋅=-2222231arccos 1arccos 1arccos x xd x dx x x x x dx x x x⎰'⋅-+--=dx x x x x x x )arccos (1arccos 12222 ⎰-⋅-⋅-+--=dx xx x x x x x x )11arccos 2(1arccos 122222⎰⎰-⋅-+--=dx x xdx x x x x x 2222arccos 12arccos 1⎰-----=32322)1(arccos 3231arccos 1x xd x x x x⎰-------=dx x x x x x x x )1(32arccos )1(3231arccos 1232322。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现在我们利用上面的结果来计算工程上常用的广义积分 (也叫概
率积分)
D2 {( x, y) | x 2 y 2 2R 2 , x 0, y 0 ,
D1 {( x, y) | x 2 y 2 R 2 , x 0, y 0 ,
S
0
e
x2
dx . 设
ba D1
2a lim
ba
a r b rdr
2 2 0
ba
0
0
a2 r 2
a2 r 2
2a lim (a a 2 b 2 ) 2a 2 .
ba
例2 求锥面
z x2 y2
2 被柱面 z 2 x 所割下部分的曲面面积.
解 所求曲面在 xOy面上的投影区域为
以这些元素为被积表达式,在闭区域 D 上积分,便得
M y x ( x, y) d , M x y ( x, y) d ,
D D
M ( x, y) d .
D
所以,薄片的重心的坐标为
x My M
x ( x, y) d
D
( x, y) d
I x yi2 mi ; I y xi2 mi .
i 1 i 1 n n
设一平面薄片占有 xOy面上的闭区域 D,在点 ( x, y )处的面密度为, ( x, y), 假定 ( x, y ) 在D 上连续.现在要求该薄片对于x 轴的转动惯量I x 以及对于y 轴的转动惯量 I y . 应用元素法.在闭区域D 上任取一直径很小的闭区域d (同时 ( 也表示面积), x, y ) 是这小闭区域上的一个点.因为d 的直径很小, 且 ( x, y ) 在 D上连续,所以薄片中相应于 d 部分的质量近似等于 ( x, y ) d,这部分质量可近似看作集中在点( x, y ) 上,于是可写出薄 片对于 x 轴以及对于 y 轴的转动惯量元素: dI x y 2 ( x, y) d , dI y x2 ( x, y) d .
A
Dz x
y y 1 d z dx z x
2
2
或
A
D yz
x x 1 dydz. y z
2
2
例1 求半径为a 的球的表面 积. 解 取上半球面方程为 z a 2 x 2 y 2 ,则它 在 xOy 面上的投影区域 D 可表示为 x2 y 2 a2 .
D
,y
Mx M
y ( x, y) d
D
( x, y) d
D
.
如果薄片是均匀的,即面密度为常量,则在上式中可把 提到 积分记号外面并从分子、分母中约去,于是,均匀薄片的重心的 坐标为 1 1 x xd , y yd , (1) AD AD 其中 A d 为闭区域D 的面积.此时薄片的重心完全由闭区域D 的
D ( x, y) 0 x2 y 2 2x ,
y
z
则有
A
D
z z 1 y dxdy x
2
2
o
y
D2பைடு நூலகம்
x 2 y 2 2x
x
D
x y 1 2 2 dxdy 2 2 x y x y 2dxdy 2 dxdy
D
2
2
D
o
1
图9-32
2 x
D
2 .
二、平面薄片的重心
( 设 xOy 平面上有n 个质点,它们分别位于点 x1, y1 ), ( x2 , y2 ), , ( xn , yn ) 处,质量分别为 m1 , m2 , , mn .由力学知道,该质点系的重心的 坐标为 m x m y M M
D2
R2 2
应用例8的结果有
4 (1 e
2R 2
R2
x2 y 2
dxdy
),
于是上面的不等式可写成
4
(1 e
R e x 2 dx (1 e 2 R 2 ). ) 0 4
x2
从而
0
e
x
2
dx lim
R
e
0
R
dx
2
.
例9 计算球体 x 2 y 2 z 2 4a 2 被圆柱面 x 2 y 2 2ax(a 0) z 所截得的(含在圆柱面内的部分)立体的体积(图9-23). 解 由对称性,得
V 4
D
4a 2 x 2 y 2 dxdy 4 a r rdrd
2 2
o
D y
4
D
4 2 d
0
2a
2 a cos 0
4 a r rdr
2 2
x
y
图9-23(a)
32 3 a 2 (1 sin 3 ) d 0 3 32 3 2 a . 3 2 3
r 2a cos
D
o
图9-23(b)
D
形状所决定.我们把均匀平面薄片的重心叫做该平面薄片所占的平
面图形 D 的形心.因此,平面图形的形心,就可用公式(1)计算.
二十一讲
例3 求位于两圆 和 r 4 sin 之间的均匀薄片的重心(图9y 33. 2 r 4 sin 解 因为闭区域 D 关于 y 轴对称,所以 D 重心 C ( x , y ) (形心)必位于y 轴上,于是
x
在闭区域 D上任取一直径很小的闭区域d(这小 闭区域的面积也记作 d ).在 d 上取一点P( x, y ),对 应地曲面上有一点 M ( x, y, f ( x, y)) ,点M 在 xOy 面上的投 影即点 P .点 M 处曲面 S 的切平面设为T (图9-29 )。 以小闭区域d 的边界为准线作母线平行于 z 轴的柱 面,这柱面在曲面 S 下截下一小片曲面,在切平面 T 上截下一小片平面.由于d 的直径很小,切平面 T 上的那一小片平面的面积dA 可以近似代替相应的 那小片曲面的面积.设点 M 处曲面 S 上的法线(指向 朝上)与 z 轴所成的角为 ,则
x2 y2
dxdy e
2
dxdy.
D2
因为
e dxdy e dx e e dxdy (1 e 4
x2 y 2 x2 0 S
x2 y 2 D1
R
R e x 2 dx , dy 0
) , e
n i s 2 r
n i s 2 r
1
o
图9-33
4 sin 2 sin
x
r 2 dr
三、平面薄片的转动惯量 设xOy 平面上有n 个质点,它们分别位于点( x1 , y1 ), ( x2 , y2 ),, ( xn , yn ) 处,质量分别为 m1 , m2 , , mn.由力学知道,该质点系对于 x 轴 以及对于 y 轴的转动惯量依次为:
y
S {( x, y) | 0 x R,0 y R .
D1
O
x2 y 2
D2
R
2R
显然 D1 S D2 (图9-22(b)).由于 e 从而有不等式
x2 y 2
0 ,
x
图9-22(b)
e
D1
x2 y2
dxdy e
S
R y2 0
T
dA
M
S
y
o
x
P
图9-29
dA
d dA . cos
dA
d
图9-30
因为cos
1 1 f ( x, y ) f ( x, y )
2 x 2 y
,
所以 dA 1 f x2 ( x, y) f y2 ( x, y) d .
这就是曲面S的面积元素,以它为被积表达式在闭区域 D 上积分,得
n n
x
y
M
i 1 n
i
i
M 其中 M mi 为该质点系的总质量, i 1
n
mi i 1
, y
x
M
n
i 1 n
i
i
mi i 1
n i 1
y
mi xi , M x mi y i 分别为该质点
i 1
系对 y 轴和 x 轴的静矩. 设一平面薄片占有xOy 面上的闭区域D ,在点( x, y ) 处的面密度 为 ( x, y) ,假定 ( x, y) 在 D 上连续,用元素法求薄片的重心坐标.在 ( 闭区域 D 上任取一直径很小的闭区域 d ,x, y )是闭区域 d上的一个 点.由于它的直径很小,且 ( x, y )在 D上连续,所以薄片中相应于d 的部分的质量近似等于 ( x, y) d ,这部分质量可近似看作集中在点 ( x, y ) 上 ,于是可写出静矩元素dM y 及 dM x : dM y x ( x, y) d , dM x y ( x, y) d .
因为被积函数在闭区域 D 上无界,所以这是广义二重积分。应用 广义积分的计算方法,令 D1 ( x, y) x2 y2 b2 , 0 b a, 则 a A lim dxdy 2 2 2 b a a x y D1 2 b a rdr lim rdrd a lim d
z
o
由
z x
z , 2 2 2 y a x y