(H2N(C2H4)2NH2)[V4O10]ic951237c
危化品安全系统技术说明书大全(MSDS)
危化品安全技术说明书(MSDS)目录表1-001 乙炔气 (1)表1-002 氧气 (2)表1-003 二氧化碳 (3)表1-004 氢气 (4)表1-005 氩气 (5)表1-006 甲烷 (6)表1-007 四氢噻吩 (7)表1-008 活性炭 (8)表1-009 三乙胺 (9)表1-010 硫代磷酰氯 (10)表1-011 硫黄 (11)表1-012 甲胺磷 (12)表1-013 多聚甲醛 (13)表1-014(附表1-3)甲缩醛 (14)表1-015 黄磷 (15)表1-016 氯 (16)表1-017 三氯化磷 (17)表1-018 甲醇 (19)表1-019 液碱 (20)表1-020 氨水 (21)表1-021 硫酸二甲酯 (22)表1-022 甲胺磷 (23)表1-023 液氨 (24)表1-024 氯仿 (25)表1-025 二氯乙烷 (26)表1-026 二硫化碳 (27)表1-027 甲苯 (28)表1-028 盐酸 (29)表1-029 氯甲烷 (30)表1-030 硫酸 (31)表1-031 二甲苯 (33)表1-032 醋酸酐 (34)表1-033 多聚甲醛 (35)表1-034 草甘膦 (36)表1-035 稻瘟灵 (37)表1-036 异丙胺 (38)表1-037 漂白粉 (39)表1-038 氯化氢 (40)表1-039 氰化氢 (41)表1-040 氰化钠 (42)表1-041 氯乙酸 (43)表1-043 丙烯腈 (45)表1-044 氧化亚铜 (46)表1-045 四氯化锡 (47)表1-046 四氧化三铅 (48)表1-047 三氯化铝(无水) (49)表1-048 松香水 (50)表1-049红丹油性防锈漆 (51)表1-050 酚醛树脂 (52)表1-051 硫磺粉(补充) (53)表1-052 一乙胺 (54)表1-053三聚氯氰 (55)表1-054 三氯乙烯 (57)表1-055 磷酸 (58)表1-056 四丁基锡 (59)表1-057 柴油 (60)表1-058 对氨基苯酚 (61)表1-059 醋酸乙酯 (62)表1-060 对氯硝基苯 (63)表1-061 氮气 (64)表1-062莠去津 (65)表1-063 扑草净 (66)表1-064 八氯二丙醚 (67)表1-065 硫化钠 (68)表1-066 异丙醇 (69)表1-067 丙酮 (70)表1-068 二氯丙烷 (71)表1-069 环己酮 (72)表1-070 乙酸异戊酯 (73)表1-071 锌粉 (74)表1-072 乙醇 (75)表1-073 次氯酸钠溶液 (76)表1-074 石脑油 (77)表1-075 双环戊二烯 (78)表1-076 乙酸丁酯 (79)表1-077 双氧水 (80)表1-078 丙烯酸丁酯 (81)表1-079 丙烯酸 (82)表1-080 苯乙烯 (83)表1-081 过硫酸铵 (84)表1-082 过硫酸钾 (85)表1-083 丙烯酰胺 (86)表1-084 甲醛 (87)表1-085 甲基丙烯酸甲酯 (88)表1-087 汽油 (90)表1-088 乙酸 (91)表1-089 丙烯酸树脂 (92)表1-090 丙烯酸清漆 (93)表1-091 丙烯酸漆稀释剂 (94)表1-092 丙烯酸磁漆 (95)表1-093 二乙醇胺 (97)表1-094 煤油 (98)表1-095 漂白粉 (99)表1-096 漂粉精 (100)表1-097 三氯异氰尿酸 (101)表1-098 松香 (102)表1-099 松节油 (103)表1-100 硫化钠 (104)表1-101 保险粉 (105)表1-102 7385聚氨酯清漆(分装) (106)表1-103 甲酸 (107)表1-104 乙酸乙二醇乙醚 (108)表1-105 H-3聚氨酯漆固化剂 (109)表1-106 聚氨酯漆稀释剂 (110)表1-107 263醇酸树脂 (111)表1-108 异噻唑啉酮 (112)表1-109 N-乙基苯胺 (113)表1-110苯胺 (114)表1-111 乙酰甲胺磷 (116)表1-112 亚磷酸 (117)表1-113 亚磷酸二甲酯 (118)表1-114 氯甲烷 (119)表1-115 乙醚 (120)表1-116 丙烯酸甲酯 (121)表1-117 一甲胺 (122)表1-118 硝酸镁 (123)表1-119 硫化氢 (124)表1-120 硫化铵 (125)表1-121 一甲胺水溶液 (126)表1-122 兔宝宝面漆 (127)表1-123 兔宝宝稀释剂 (128)表1-124 硫氢化钠 (129)表1-125丙酸 (130)表1-126乙酰氯 (131)表1-127丙酰氯 (132)表1-128 丁醇 (133)表1-129 醇酸调合漆(未列名) (134)表1-129 碳化钙、电石 (135)表1-130 硝酸钠 (136)表1-131 溴甲烷 (137)表1-132 磷化铝 (138)表1-133 正丁醇 (139)表1-134 硝基木器漆 (140)表1-135 硝化棉(含氮≤12.6%) (141)表1-136 单丁醚 (142)表1-137 砷 (143)表1-138 碘化汞 (144)表1-139 氯化汞 (145)表1-140 叠氮化钠 (146)表1-141 重铬酸钠 (147)表1-142 高锰酸钾 (148)表1-143 氰化金钾 (149)表1-144丙烯酸 (150)表1-145甲基丙烯酸甲酯 (151)表1-146苯乙烯 (152)表1-147丙烯酸丁酯 (153)表1-148丁醇 (155)表1-149偶氮二异丁腈 (156)表1-150甲基丙烯酸异丁酯 (157)表1-151 甲基丙烯酸(正)丁酯 (158)表1-152 乙酰丙酮 (159)表1-153 2-丁酮 (160)表1-154 生松香 (161)表1-155 硫酸铜 (162)表1-155 硝酸 (163)表1-155 氰化钾 (164)表1-156硝基苯 (165)表1-157 氟化钠 (166)表1-158 氢氟酸 (167)表1-159蓄电池(注有酸液) (168)表1-160 环氧树脂 (169)表1-161 氯苯 (170)表1-162 乙苯 (171)表1-163 樟脑 (172)表1-164 赛璐珞 (173)表1-165 氢氧化钾 (174)表1-166 乙酸丁酯 (175)表1-001 乙炔气标识中文名:乙炔英文名:acetylene分子式:C2H2 分子量:26.04 CAS号:74-86-2 危规号:21024理化性质性状:无色无臭气体,工业品有使人不愉快的大蒜气味溶解性:微溶于水、乙醇,溶于丙酮、氯仿、苯熔点(℃):-81.8(119kpPa)沸点(℃):-83.8 相对密度(水=1):0.62临界温度(℃):35.2 临界压力(MPa):6.14 相对密度(空气=1):0.91燃烧热(KJ/mol):1298.4 最小点火能(mJ):饱和蒸汽压(KPa):4053(16.8℃)燃烧爆炸危险性燃烧性:易燃燃烧分解产物:一氧化碳、二氧化碳闪点(℃):无意义聚合危害:聚合爆炸下限(%):2.1 稳定性:稳定爆炸上限(%):80.0 禁忌物:强氧化剂、强酸、卤素引燃温度(℃):305 最小点火能(mJ):0.02危险特性:极易燃烧爆炸。
二氟化氢铵用途-概述说明以及解释
二氟化氢铵用途-概述说明以及解释1.引言1.1 概述二氟化氢铵,化学式为NH4F,是一种重要的氟化物化合物。
它在工业生产和医药领域都具有广泛的应用价值。
本文将详细介绍二氟化氢铵的定义、性质以及其在工业和医药领域的用途,旨在展示它作为一种重要化合物的重要性和潜在价值。
通过对二氟化氢铵的综合介绍,我们可以更好地了解并认识这种化合物的重要性和广泛用途,为其未来的发展提供更多的参考和推动。
1.2 文章结构本文主要分为三个部分:引言、正文和结论。
在引言部分,将首先对二氟化氢铵进行概述,介绍其定义和性质。
然后简要说明本文的结构和目的,为读者提供一个整体的了解。
在正文部分,将详细探讨二氟化氢铵的定义和性质,包括其化学结构、物理性质等。
接着将重点介绍二氟化氢铵在工业上的用途,包括其在化工、材料等领域的应用。
最后将探讨二氟化氢铵在医药领域的应用,包括其作为药物合成和药剂制备的重要性。
在结论部分,将总结二氟化氢铵在不同领域的重要性,并展望其未来的发展前景。
最后得出结论,强调二氟化氢铵在现代社会中的重要性和价值。
1.3 目的:本文主要旨在探讨二氟化氢铵的用途,通过介绍其定义、性质以及在工业和医药领域的具体应用,希望读者能更全面地了解二氟化氢铵在各个领域中的重要性和作用。
同时,通过对二氟化氢铵的研究和应用进行深入讨论,也可为相关领域的研究人员提供一定的启发和参考,促进其在实践中的更广泛应用和发展。
最终目的是为了推动二氟化氢铵在工业和医药领域的进一步应用和创新,为社会发展和人们生活带来更多积极的影响。
2.正文2.1 二氟化氢铵的定义和性质二氟化氢铵,化学式为NH4F,是一种白色结晶性固体,常用作氟化剂和腐蚀剂。
其分子中含有氢离子和氟离子,具有较强的腐蚀性。
二氟化氢铵在常温下为固体,易溶于水,且溶解时放出热量,能够与水发生反应产生氢氟酸。
在化学上,二氟化氢铵是一种重要的氟化合物,常用于化工生产中作为氟化剂,用于制备其他氟化物化合物。
环氧树脂固化剂配方及应用
环氧树脂固化剂配方及应用环氧树脂固化剂配方及应用环氧树脂固化物具有优良的机械性能、电器性能、耐化学药品性能,因而得到广泛的应用。
固化剂是环氧树脂固化物必需的原料之一,否则环氧树脂就不会固化。
为适应各种应用领域的要求,应使用相应的固化剂。
一、脂肪多元胺乙二胺 EDA H2NCH2CH2NH2分子量60活泼氢当量15无色液体每100份标准树脂用6-8份性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。
用于粘接、浇注、涂料。
该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。
但它们放热量大、适用期短。
一般而言它们分子量越大受配合量影响越小。
长期接触脂肪多元胺会引起皮炎,它们的蒸汽毒性很强,操作时须十分注意。
二乙烯三胺DETA H2NC2H4NHC2H4NH2 分子量103活泼氢当量20.6无色液体每100份标准树脂用8-11份。
固化:20℃2小时+100℃30分钟或20℃4天。
性能:适用期50克25℃45分钟,热变形温度95-124℃,抗弯强度1000-1160kg/cm2,抗压强度1120kg/cm2,抗拉强度780kg/cm2,伸长率5.5%,冲击强度0.4尺-磅/寸洛氏硬度99-108。
介电常数(50赫、23℃)4.1 功率因数(50赫、23℃)0.009体积电阻2x1016 Ω-cm常温固化、毒性大、放热量大、适用期短。
三乙烯四胺TETA H2NC2H4NHC2H4NHC2H4NH2分子量146活泼氢当量24.3无色粘稠液体每100份标准树脂用10-13份固化:20℃2小时+100℃30分钟或20℃7天。
性能:适用期50克25℃45分钟,热变形温度98-124℃,抗弯强度950-1200kg/cm2,抗压强度1100kg/cm2,抗拉强度780kg/cm2,伸长率4.4%,冲击强度0.4尺-磅/寸洛氏硬度99-106。
常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。
四乙烯五胺TEPA H2NC2H4(NHC2H4)3NH2分子量189活泼氢当量27棕色液体每100份标准树脂用11-15份性能同上。
二乙基二硫代氨基甲酸钠结构式
二乙基二硫代氨基甲酸钠结构式二乙基二硫代氨基甲酸钠,全称乙醇胺二乙基二硫代氨基甲酸钠,是一种有机化合物。
它是白色粉末状晶体,具有广泛的应用。
下面,我将分步骤阐述二乙基二硫代氨基甲酸钠的结构式及其相关信息。
一、化学式二乙基二硫代氨基甲酸钠的化学式为C5H11NNaO2S2。
其中,C代表碳元素,H代表氢元素,N代表氮元素,Na代表钠元素,O代表氧元素,S代表硫元素。
这个化学式告诉我们该化合物由这6种元素的原子通过化学反应形成。
二、结构式二乙基二硫代氨基甲酸钠的结构式如下图所示。
可以看出,该结构式由若干个分子模块组成,其中包括一个乙醇胺分子、两个二乙基二硫代氨基甲酸分子和一个钠离子。
这些分子模块通过共价键或离子键互相连接,形成了一个整体的分子结构。
三、结构特点通过以上结构式,可以发现二乙基二硫代氨基甲酸钠具有以下结构特点。
1. 乙醇胺分子中同时含有氨基和羟基,可以与其他分子形成氢键。
2. 二乙基二硫代氨基甲酸分子中有两个硫醇基,它们可以与其他有机物或金属形成配位键。
3. 钠离子与二乙基二硫代氨基甲酸分子中的羧基和氨基形成离子键。
4. 二乙基二硫代氨基甲酸钠分子结构中含有的羧基、硫醇基和氨基等官能团均为生物活性分子所共有的。
四、应用领域二乙基二硫代氨基甲酸钠具有抗氧化、抗菌、抗病毒、降低毒性和增加植物产量等多种生物效应,因此在农业、食品、医药等领域广泛应用。
以下是二乙基二硫代氨基甲酸钠的几个应用领域。
1. 农业:可用于增加植物产量、提高作物抗性、调节植物生长和开花时间,提高果实质量等。
2. 食品:可用于保鲜、防腐、增加营养和味道等。
例如,二乙基二硫代氨基甲酸钠可以作为面包、蔬菜、水果、肉类和蛋制品等食品中的抗氧化剂。
3. 医药:二乙基二硫代氨基甲酸钠可以用作创伤治疗、降低肝毒性、抗病毒、改善老年痴呆等药物的原料。
总之,二乙基二硫代氨基甲酸钠是一种广泛应用的有机化合物,它们的结构式、结构特点和应用领域均十分重要。
己二胺相对分子质量
己二胺相对分子质量己二胺,这种看似平常的有机化合物,其实有着不凡的故事。
在化学的世界里,它的身影或许不起眼,但它的存在却不可或缺。
在实验室里,小张正对着试管发愣,试管里的己二胺溶液在微弱的灯光下泛着淡黄色。
小张是实验室的新人,对于这种复杂的有机物,他总是感到一头雾水。
“小张,你在这里发什么愣呢?”小李走过来,拍拍小张的肩膀。
“小李,我正想着己二胺的相对分子质量,书上说是86,但我感觉它应该不止这些。
”小张皱着眉头说道。
小李听了,笑了笑:“小张,你这是刚入门吧?相对分子质量其实是由组成分子的各原子的相对原子质量之和得出的。
己二胺的分子式是H2NCH2CH2NH2,你把每个原子的相对原子质量加起来不就知道了?”小张听后,恍然大悟,赶紧拿起笔开始计算。
过了一会儿,他抬起头:“小李,我算出来了,己二胺的相对分子质量确实是86。
”小李看着小张,笑着说:“不错嘛,小张。
这还只是基础,以后的路还长着呢。
”就在这时,老李走了进来,看到小张和小李,便问道:“你们两个在讨论什么呢?”“老李,我们在讨论己二胺的相对分子质量。
”小李回答道。
老李听后,微微一笑,走到小张面前,说:“小张,你刚才提到相对分子质量,那你知道相对分子质量在化学中有何作用吗?”小张摇摇头:“还不太清楚。
”老李笑了笑:“相对分子质量是衡量分子质量大小的重要指标,它可以帮助我们判断分子的结构和性质,对于化学反应的研究也有着重要的意义。
”小张听后,陷入了沉思。
他意识到,看似简单的己二胺,背后却有着复杂的化学原理。
接下来的日子里,小张在实验室里努力学习,他渐渐明白了己二胺的奥秘。
在化学的世界里,每一个分子都有自己的故事,而己二胺的故事,才刚刚开始。
磷酸二氢铵的相对分子质量
磷酸二氢铵的相对分子质量1. 什么是磷酸二氢铵?磷酸二氢铵,听起来是不是像个化学博士的专属名词?其实它在我们的生活中可并不陌生,尤其是在农业和化肥的世界里,它可是大名鼎鼎的“明星”。
别看它名字长得让人有点打怵,实际上,它就是一种常用的肥料。
哎,你别小看这玩意儿,给土壤补充营养,植物长得可快了,简直就像是给它们打了鸡血。
那么,它的化学式是什么呢?嘿嘿,它的化学式是NH₄H₂PO₄。
看吧,虽然字母一大堆,但它其实是由氨(NH₄⁺)和磷酸根(H₂PO₄⁻)结合而成。
就像是咱们平常说的“天作之合”,这俩组合在一起,可是有大用处的哦!1.1 磷酸二氢铵的成分说到成分,咱们就要仔细瞧瞧了。
首先,磷酸二氢铵里面有氮、磷和氧。
这些元素各自的相对原子质量分别是:氮大约是14,磷是31,而氧是16。
加起来一算,这些数字可真让人兴奋。
整个化合物的相对分子质量大约是132克每摩尔!想想这数字,简直就是个“大块头”,但又是个精华所在。
1.2 为什么要关心相对分子质量?那么,为什么要特别提到相对分子质量呢?这可不是随便说说的。
相对分子质量就像是化合物的身份证,只有了解了它的“身份”,咱们才能知道该如何使用它。
比如,施肥的时候,就得计算需要多少量,才能让植物吃得饱饱的。
就像人吃饭,量多了消化不良,量少了又饿得慌,适量才是王道啊!2. 磷酸二氢铵的用途2.1 农业中的“隐形英雄”接下来,我们得说说磷酸二氢铵的用途。
它在农业中可是个“隐形英雄”,默默无闻却功不可没。
很多农民朋友把它当作主要肥料之一,特别是在植物生长初期。
你知道吗?它能提供植物生长所需的氮和磷,帮助植物扎根、发芽,简直就像给植物穿上了“保护衣”。
2.2 其他用途除了农业,它还有其他用处哦。
比如,在食品工业中,它常常作为一种添加剂,帮助调节酸碱度,甚至还用于某些药物的制备。
可见,这小小的磷酸二氢铵,真是个多才多艺的家伙,走到哪儿都是明星。
3. 注意事项3.1 使用时的小心翼翼不过,使用磷酸二氢铵的时候,咱们可得小心翼翼。
氮化氢的电子式
氮化氢的电子式
氮化氢是一种重要的有机化合物,它的电子式是N2H4。
氮化氢是一种无色有毒的气体,在室温下具有极强的腐蚀性。
氮化氢由二氧化氮和氢原子组成,原子比例为2:4,它具有一种电子式N2H4,也被称为氯氮化氢,这是一种化学式。
氮化氢具有以下特性:
1.化氢是一种有毒的气体,在室温下具有极强的腐蚀性。
它的毒性非常强,例如,它可以使眼睛及呼吸系统遭受到严重的伤害。
2.化氢是一种无色有毒的气体,在室温下易于挥发,随着温度升高,挥发性增加。
3.化氢还有一种腐蚀性,它可以几乎腐蚀所有金属,但它对金属的腐蚀能力取决于含量,温度和气压等因素。
4.化氢还有一种可燃性,它可以异常容易地与空气混合,在一定的温度和气压下易于燃烧,它的燃烧温度低于500℃。
5.化氢的活性很强,可以与多种元素形成化合物,特别是与氧、氢气以及其他有机物结合形成氮氨类化合物。
因此,氮化氢具有以上这些特性,使它在化学及工业领域具有广泛的应用,例如氟烷制备。
氮化氢也可以用作农药和消毒剂,在食品领域它可以用作无机氮的源,广泛用于食品发酵工艺。
此外,氮化氢也可用作纺织染料制造和微米纳米技术等研究领域。
总而言之,氮化氢具有多种特性,其电子式为N2H4。
它不仅在工业和农业上有广泛的应用,而且在研究领域也有重要的作用。
因
此,氮化氢已经成为化学和工业上被广泛使用的化合物之一。
磷酸氢二铵的相对原子质量
磷酸氢二铵的相对原子质量
磷酸氢二铵拥有较高的相对原子质量,精确定义可以达到53.49(g/mol)。
因其原子量为28.05(g/mol),磷酸根的原子量为30.97(g/mol),两者大体上
相等,在物理计算上有可比性。
而磷酸氢二铵的结构上又是由氢氧阴离子和氨基阳离子重新构成,其中氢氧阴离子还拥有2磷的原子量,故其最终的相对原子质量更增加了氢氧离子中磷的质量,使得最终结果得出来的是一个比较大的数值---53.49(g/mol)。
根据磷酸氢二铵定义,衡算出其相对原子质量后可以得到一个比较可靠的数据,它可以提供给我们一种物理和化学性质的统一标准,用于人们研究,比较磷酸氢二铵与其他物质的性质,从而帮助我们深入评价这种物质,从计算上为实验工作提供正确的依据。
酰亚胺结构
酰亚胺结构
酰亚胺,化学式为CnH2N (NH2)2CH3,是一种有机化合物,分子中含有一个氨基和两个羰基,是一种有机化合物,其分子式为CnH2N (NH2)2CH3,简称酰亚胺,又名N-亚硝基二苯胺、邻二氮杂二苯胺。
酰亚胺在酸性条件下与醛或酮反应生成相应的亚胺盐,如果再进行重氮化反应,就可以得到偶氮化合物。
它是酰肼的衍生物,也是制备重氮盐的原料之一。
酰亚胺是很强的酰基化试剂,常用于酰基化反应,酰亚胺也能够被醛、酮、羧酸、酯等还原。
酰亚胺对于有机合成是非常有用的。
酰亚胺是一类活泼的酰基化试剂,主要作为酰基化试剂参加各种酰基化反应,特别适用于不饱和醛、酮、羧酸及酯等底物。
酰亚胺还具有反应条件温和、操作简便、收率高等优点,因此被广泛地用于不饱和化合物的酰基化反应。
酰亚胺在酰基化反应中经常作为中间体,但也有少数用于产生活泼亚胺的反应,例如:1.用于制取二芳基肼、联苯肼、四唑啉衍生物等;2.用于制备N-亚硝基二苯胺、N-亚硝基二苯基甲烷等;3.用于制备N-亚硝基脲、N-亚硝基脲基丙酸等。
双氰胺分子式
二氰二氨,缩写DICY或DCD。
是一种有机物,化学式为C2H4N4,是氰胺的二聚体,也是胍的氰基衍生物。
化学式C2H4N4。
白色结晶粉末。
可溶于水、醇、乙二醇和二甲基甲酰胺,几乎不溶于醚和苯。
干燥时稳定。
中文名称:氰基胍[5] 、双氰胺[5]
英文别名:Dicyandiamide,Cyanoguanidine
简称:DICY
HS Code: 2926200000
性状:白色结晶性粉末。
水中溶解度在13℃时为2.26%,在热水中溶解度较大。
当水溶液在80℃时逐渐分解产生氨气。
无水乙醇(C2H5OH)、乙醚中溶解度在13℃时,分别为1.26%和0.01%。
溶于液氨、热水、乙醇、丙酮水合物、二甲基甲酰胺,难溶于乙醚,不溶于苯和氯仿。
相对密度(d254)1.40。
熔点209.5℃。
干燥时性质稳定。
不燃烧。
低毒,半数致死量(小鼠,经口)>4000mg/kg。
空气中最高容许浓度5mg/m³。
储存:密封干燥保存。
h2n化学结构式
h2n化学结构式
H2N在化学中通常被称为胺基,它是一种含氮的芳香化合物。
胺基的结构式为-NH2,表示它有两个氢原子和一个氮原子直接相连。
胺基是许多有机化合物的重要构成部分,这些化合物广泛存在于自然界中,如氨基酸、多肽和蛋白质等。
此外,胺基还可以与其他基团结合,形成不同类型的胺类化合物,如一级胺、二级胺和三级胺。
这些胺类化合物在化学和生物领域中具有重要作用,可用于合成染料、药物和农药等。
除了作为有机化合物的重要部分,胺基还在许多化学反应中起到关键作用。
例如,胺基可以与醛发生反应,生成亚胺,亚胺是一种重要的中间体,可用于合成许多有机化合物。
总的来说,H2N作为胺基的结构式,在化学和生物领域中具有重要作用。
通过了解H2N的结构和性质,我们可以更好地理解有机化合物的合成和反应机制。
硫酸氢铵分子量
硫酸氢铵分子量硫酸氢铵的化学结构硫酸氢铵(化学式:NH4HSO4)是一种无机化合物,由氨和硫酸反应而成。
它是一种白色晶体,具有辛辣的气味。
硫酸氢铵在水中可溶解,并且在溶液中呈酸性。
硫酸氢铵的分子量计算公式硫酸氢铵的分子量是指其一摩尔的相对分子质量。
分子量的计算公式是将所有原子的相对原子质量相加。
硫酸氢铵的化学式中包含4个氢原子(H)、1个氮原子(N)、1个硫原子(S)和4个氧原子(O),因此分子量的计算公式如下:分子量 = 相对原子质量(H)* 4 + 相对原子质量(N) + 相对原子质量(S) + 相对原子质量(O)* 4根据化学元素周期表,氢(H)的相对原子质量为1,氮(N)的相对原子质量为14,硫(S)的相对原子质量为32,氧(O)的相对原子质量为16。
代入公式得到:分子量 = 1 * 4 + 14 + 32 + 16 * 4计算得到,硫酸氢铵的分子量为[[1 * 4 + 14 + 32 + 16 * 4 = 99]]99。
因此,硫酸氢铵的分子量为99。
硫酸氢铵分子量的意义确定化学物质的分子量对于许多化学计算和实验十分重要。
硫酸氢铵的分子量的确定可以帮助科学家们进行相关实验和计算。
知道硫酸氢铵的分子量可以帮助我们实现以下几个方面的应用:1.确定物质的化学计量关系:分子量可以用于确定化学反应的计量比。
例如,如果我们知道硫酸氢铵的分子量为99,那么我们就可以确定在一定摩尔量下,硫酸氢铵与其他物质的反应比例。
2.测定化学物质的浓度:根据溶液中溶质的分子量,我们可以通过测量溶液的质量和体积来计算出溶质的浓度。
硫酸氢铵的分子量用于计算含有该物质的溶液的浓度。
3.确定物质的质量:知道硫酸氢铵的分子量,我们可以通过质量和分子量的关系计算出一定量的硫酸氢铵的质量。
4.晶体学研究:硫酸氢铵是一种晶体化合物,它的分子量可以用于晶体学研究和结构分析。
总结硫酸氢铵是一种无机化合物,具有辛辣的气味。
其分子量的计算公式可以根据化学式中的原子数量和相对原子质量得出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hydrothermal Syntheses and Structural Characterization of Layered Vanadium Oxides Incorporating Organic Cations:r-, -(H3N(CH2)2NH3)[V4O10]andr-, -(H2N(C2H4)2NH2)[V4O10]Yiping Zhang,†,‡Robert C.Haushalter,*,‡and Abraham Clearfield*,†NEC Research Institute,4Independence Way,Princeton,New Jersey08540,and Department ofChemistry,Texas A&M University,College Station,Texas77843Recei V ed September26,1995XFour new layered mixed-valence vanadium oxides,which contain interlamellar organic cations,R-(H3N(CH2)2-NH3)[V4O10](1a), -(H3N(CH2)2NH3)[V4O10](1b),R-(H2N(C2H4)2NH2)[V4O10](2a),and -(H2N(C2H4)2NH2)-[V4O10](2b),have been prepared under hydrothermal conditions and their single-crystal structures determined:1a,triclinic,space group P1h,a)6.602(2)Å,b)7.638(2)Å,c)5.984(2)Å,R)109.55(3)°, )104.749-(2)°,γ)82.31(3)°,Z)1;1b,triclinic,P1h,a)6.387(1)Å,b)7.456(2)Å,c)6.244(2)Å,R)99.89(2)°,)102.91(2)°,γ)78.74(2)°,Z)1;2a,triclinic,P1h,a)6.3958(5)Å,b)8.182(1)Å,c)6.3715(7)Å,R)105.913(9)°, )104.030(8)°,γ)94.495(8)°,Z)1;2b,monoclinic,space group P21/n,a)9.360(2)Å,b)6.425(3)Å,c)10.391(2)Å, )105.83(1)°,Z)2.All four of the compounds contain mixed-valenceV5+/V4+vanadium oxide layers constructed from V5+O4tetrahedra and pairs of edge-sharing V4+O5squarepyramids with protonated organic amines occupying the interlayer space.IntroductionThe contemporary interest in vanadium oxide bronzes reflects not only their interesting electronic and magnetic properties1 but also their complex structural chemistry,associated with the ability of vanadium to adopt a variety of coordination geometries in various oxidation states.In addition to the conventional alkali-metal bronzes A x V2O5,2a class of organic-based vanadium bronzes are also known.While most of the alkali-metal bronzes have been prepared at high temperatures,the organic-based vanadium bronzes are prepared at room temperature or slightly higher via intercalation reactions with vanadium pentoxide xerogels,V2O5‚n H2O.The V2O5‚n H2O host possesses a porous layered structure and is capable of intercalating a variety of neutral and charged guest species such as alkali-metal ions,3 alkylamines,4alcohols,5pyridine,6benzidine,7etc.The insertion of amines or metal complexes into V2O5hosts has also been reported.8The resulting intercalation compounds usually retain the lamellar structure with the guest species and water molecules occupying the interlayer regions.Partial reduction of V5+to V4+of the oxide layers has been observed to accompany the intercalation reactions with organic amines.In the cases of aniline9and thiophene,10the reduction of the vanadium oxide host,and the simultaneous oxidative polymerization of the guest molecules in the interlayer regions,have been observed.These intercalation compounds with reduced vanadium sites constitute an interesting class of organic-inorganic composite materials that can be viewed as molecular or polymer vanadium bronzes by analogy to alkali-metal bronzes.2However,the structural information about these intercalation compounds is very limited due to their amorphous or semicrystalline nature and lack of high-quality single crystals.Hydrothermal techniques,in combination with organic tem-plates,have been recently demonstrated to be well suited for the synthesis and crystal growth of reduced oxomolybdenum and oxovanadium phosphates and vanadium phosphonates.A series of novel organically templated molybdenum and vana-dium phosphates and vanadium phosphonates with molecular, two-dimensional layered,and three-dimensional open-frame-work structures have been prepared under hydrothermal condi-tions.11In contrast,hydrothermal synthesis of vanadium oxides using organic templates remains relatively unexplored.12While there are many examples of alkali-metal vanadium oxide bronzes with three-dimensional or two-dimensional structures in which the alkali metals occupy the channels or the interlayer regions, analogous organically templated vanadium oxides with3-D open*To whom all correspondence should be addressed.†Texas A&M University.‡NEC Research Institute.X Abstract published in Ad V ance ACS Abstracts,August1,1996.(1)Murphy,D.W.;Christian,P.A.Science1979,205,651.(2)Hagenmuller,P.In Non-Stoichiometric Compounds,Tungsten Bronzes,Vanadium Bronzes and Related compounds;Bevan,D.J.,Hagen-muller,P.,Eds.;Pergamon Press:Oxford,U.K.,1973;Vol.1. (3)Lemordant,D.;Bouhaouss,A.;Aldebert,P.;Baffier,N.Mater.Res.Bull.1986,21,273.(4)Paul-Boucour,V.;Aldebert,P.Mater.Res.Bull.1983,18,1247.(5)Aldebert,P.;Baffier,N.;Legendre,J.-J.;Livage,J.Re V.Chim.Miner.1982,19,485.Aldebert,P.;Baffier,N.;Gharbi,N.;Livage,J.Mater.Res.Bull.1981,16,949.Lemordant,D.;Bouhaouss,A.;Aldebert, P.;Baffier,N.J.Chim.Phys.Phys.-Chim.Biol.1986,83,105. (6)Ruiz-Hitzky,E.;Casal,B.J.Chem.Soc.,Faraday Trans.11986,82,1597.(7)Hasbah,H.;Tinet,D.;Crespin,M.M.;Erre,R.;Setton,R.;VanDamme,H.J.Chem.Soc.,mun.1985,935.(8)Kanatzidis,M.;Marks,T.J.Inorg.Chem.1987,26,783and referencestherein.(9)Kanatzidis,M.;Wu,C.-G.J.Am.Chem.Soc.1989,111,4139.(10)Kanatzidis,M.;Wu,C.-G.;Marcy,H.O.;DeGroot,D.C.;Kannewurf,C.R.Chem.Mater.1990,2,222.(11)Haushalter,R.C.;Mundi,L.A.Chem.Mater.1992,4,31.Soghomo-nian,V.;Chen,Q.;Haushalter,R.C.;Zubieta,J.;O’Connor,C.J.Science1993,259,1596.Soghomonian,V.;Chen,Q.;Haushalter,R.C.;Zubieta,J.Angew.Chem.,Int.Ed.Engl.1993,32,610.Soghomo-nian,V.;Chen,Q.;Haushalter,R.C.;Zubieta,J.Chem.Mater.1993, 5,1690.Soghomonian,V.;Chen,Q.;Haushalter,R.C.;Zubieta,J., Chem.Mater.1993,5,1595.Soghomonian,V.;Haushalter,R.C.;Chen,Q.;Zubieta,J.Inorg.Chem.1994,33,1700.Zhang,Y.;Clearfield,A.;Haushalter,R.C.J.Solid State Chem.1995,117,157.Zhang,Y.;Clearfield,A.;Haushalter,R.C.Chem.Mater.1995,7, 1221.(12)Huan,G.-H.;Johnson,J.W.;Jacobson,A.J.;Merola,J.S.J.SolidState Chem.1991,91,385.Duan,C.-Y.;Tian,Y.-P.;Lu,Z.-L.;You, X.-Z.;Huang,X.-Y.Inorg.Chem.1995,34,1.4950Inorg.Chem.1996,35,4950-4956S0020-1669(95)01237-7CCC:$12.00©1996American Chemical Societyframeworks have not been observed so far.Inspired by our successful investigation into the hydrothermal synthesis of new reduced vanadium phosphates,we sought to explore the hydrothermal synthesis of new reduced vanadium oxides using organic templates.Along these lines,two novel layered vanadium oxides,(H3N(CH2)3NH3)[V4O10]13and(HN(C2H4)3-NH)[V6O14]‚H2O,14have been isolated and structurally char-acterized by X-ray crystallography.While both compounds contain a layered structure with the organic cations occupying the interlayer regions,the oxide layers in the two structures differ substantially in their composition,connectivity,degree of reduction,and thus electronic and magnetic properties,which reflects the difference in the nature of the two organic cations. In addition,we have discovered a large class of layered vanadium oxide materials with metal coordination complexes (e.g.M(L)2:(M)Ni,Cu,Zn;L)ethylenediamine,1,3-diaminopropane)between the VO layers.15In an effort to further investigate the influence of organic templates on the structures of layered vanadium oxides,we have obtained R-(H3-NCH2CH2NH3)[V4O10](1a), -(H3NCH2CH2NH3)[V4O10](1b),R-(H2N(C2H4)2NH2)[V4O10](2a),and -(H2N(C2H4)2NH2)-[V4O10](2b).The syntheses and single-crystal structures of these compounds are reported here.All of these compounds contain mixed-valence V5+/V4+oxide layers with organic cations occupying the interlayer space.Experimental SectionMaterials and Methods.Chemicals used were of reagent grade quality and were obtained from commercial sources and used without further purification.The powder X-ray diffraction patterns were obtained on a Scintag XDS2000diffractometer with Cu K R radiation (λ)1.5418Å).Thermogravimetric analyses(TGA)were carried out with a Perkin-Elmer TGA7thermal analysis system at a heating rate of10°C/min under an N2atmosphere.The EDS analyses were performed on a Hitachi S-2700SEM.The hydrothermal reactions were carried out in Parr acid digestion bombs with23mL poly(tetrafluo-roethylene)liners.Synthesis of r-and -(H3NCH2CH2NH3)[V4O10].A mixture of V2O5(0.173g),ethylenediamine(0.10mL),and H2O(10mL)with a mole ratio of1.0:1.57:585was sealed in a digestion bomb which was heated at170°C for121h.Black rod-shaped crystals(0.1g)were isolated after filtering,washing with water,and air-drying.Powder X-ray diffraction studies indicated that these crystals are a mixture of 1a and1b,even though they were quite similar in appearance.After examination of several crystals for single-crystal X-ray diffraction studies,the crystals were found to have two sets of distinctive unit cells which corresponded to1a and1b.The optimum conditions for preparation of a single phase of R-or -form have not been found.Synthesis of r-and -(H2N(C2H4)2NH2)[V4O10].A hydrothermal reaction of0.216g of NaVO3,0.346g of H2O3PCH3,0.232g of piperazine,and10mL of H2O in a mole ratio of1.0:3.0:2.3:266at 170°C for47h yielded0.14g of thin black plates after filtering, washing with water,and air-drying.The presence of H2O3PCH3in the starting materials serves to increase the acidity of the solution.The pH of the solution before the reaction and at completion was around 7.Other acids such as HCl also serve in this capacity.The EDS analysis of these crystals showed the presence of only V.Powder X-ray diffraction studies indicated that these thin plates are a mixture of2a and2b.This was further confirmed by single-crystal X-ray diffraction studies on several single crystals selected,which were found to have two distinctive unit cells corresponding to2a and2b.X-ray Crystallographic Study.In each of the four studies,a suitable crystal was mounted on a glass fiber.All measurements were made at room temperature on a Rigaku AFC7R diffractometer with graphite-monochromated Mo K R radiation and an18kW rotating anode generator.Cell constants and an orientation matrix for data collection were obtained from a least-squares refinement using the setting angles of24-25carefully centered reflections in the range20°<2θ<30°. Data were collected in the range5°<2θ<60°using theω-2θscan technique.In all cases only a unique portion of the reflections were collected.The intensities of three representative reflections which were measured after every150reflections remained constant throughout data collection.Empirical absorption corrections based onψ-scan measure-ments were applied.In the case of2b,an empirical absorption correction using the program DIFABS16was applied.The data were corrected for Lorentz and polarization effects,and the structures were solved by direct methods.The non-hydrogen atoms were refined aniso-tropically.All the hydrogen atoms were located from difference Fourier maps and included in the refinement with fixed positional and thermal parameters.Neutral atom scattering factors were taken from Cromer and Waber.17Anomalous dispersion effects were included,and the values for∆f′and∆f′′were those of Cromer.18All structures were refined on the basis of independent reflections with I g3σ(I)by full-matrix least squares using the teXsan program package.19Experimental crystallographic data for1a,1b,2a,and2b are listed in Table1. ResultsPositional and thermal parameters of the atoms in the structures of1a are given in Table2,and selected bond distances and angles in Table3.Figure1shows the layered nature of the structure of1a,consisting of vanadium oxide layers with ethylenediammonium dications occupying the interlamellar space between the layers,and a view perpendicular to one of the vanadium oxide layers.Each oxide layer is constructed from equal numbers of VO4tetrahedra and VO5square pyramids. While the VO4tetrahedra are isolated from each other,the VO5 square pyramids exist in pairs sharing a common edge.Within a pair of square pyramids,the two apical oxygen atoms are oriented toward opposite sides of the plane of the layer.Each pair of the pyramids is linked to six VO4tetrahedra via corner sharing,forming a two-dimensional layer with a composition of V4O102-.Figure2shows the coordination environment of the V atoms in the asymmetric unit and the numbering scheme used in Table3.The V(1)O5group is a distorted square pyramid(13)Zhang,Y.;O’Connor,C.J.;Clearfield,A.;Haushalter,R.C.Chem.Mater.1996,8,595.(14)Zhang,Y.;Clearfield,A.;Haushalter,R.C.J.Chem.Soc.,Chem.Commun.1996,1055.(15)Zhang,Y.;DeBord,J.R.D.;O’Connor,C.J.;Haushalter,R.C.;Zubieta,J.;Clearfield,A.Angew.Chem.,Int.Ed.Engl.1996,35,989.(16)Walker,N.;Stuart,D.Acta Crystallogr.1983,A39,158.(17)Cromer,D.;Waber,J.T.International Tables for X-ray Crystal-lography;Kynoch Press:Bimingham,U.K.,1974;Vol.IV,Table2.2A.(18)Cromer,D.T.Reference16,Table2.3.1.(19)teXsan:Texray Structural Analysis Package;Molecular StructureCorp.,The Woodlands,TX,1992(revised).Table1.Crystallographic Data for Oxides1a,1b,2a,and2b1a1b2a2b empiricalformulaV2O5NCH5V2O5NCH5V2O5NC2H6V2O5NC2H6fw212.94212.94225.96225.96a(Å) 6.602(2) 6.387(1) 6.3958(5)9.360(2)b(Å)7.638(2)7.456(2)8.182(1) 6.425(3)c(Å) 5.984(2) 6.244(2) 6.3715(7)10.391(2)R(deg)109.55(3)99.89(2)105.913(9)90(deg)104.749(2)102.91(2)104.030(8)105.83(1)γ(deg)82.31(3)78.74(2)94.495(8)90V(Å3)274.6(2)281.7(1)307.29(7)601.2(3)Z2224space group P1h(No.2)P1h(No.2)P1h(No.2)P21/n(No.14) D c(g/cm3) 2.575 2.510 2.442 2.496T(°C)20(120(120(120(1λ(Mo K R)(Å)0.71070.71070.71070.7107µ(cm-1)33.4632.6229.9830.65R a0.0300.0220.0330.033R w a0.0350.0260.0400.036a R)∑||F o|-|F c||/∑|F o|and R w)(∑w(|F o|-|F c|)2/∑wF o2)1/2.Layered Vanadium Oxides Inorganic Chemistry,Vol.35,No.17,19964951with the shortest bond distance of 1.607(3)Åformed with the terminal oxygen O(3),while the base of the square pyramid has four V -O bond distances in the range of 1.924(2)-1.996-(2)Å.The V(2)O 4group has a tetrahedral configuration with V -O bond distances in the range of 1.626(3)-1.824(2)Å,and fairly regular bond angles in the range of 107.9(1)-110.1(1)°.While the square-pyramidal vanadium has an oxidation state of +4,the tetrahedral vanadium is indicative of an oxidation state of +5.This assignment of oxidation states is consistent with the overall charge balance of the compound and is confirmed by the valence sum calculation,20which gave a value of 4.1for V(1)and 4.7for V(2).There are three types of oxygen atoms in terms of bonding:O(3)and O(5)are terminaloxygens,O(1)and O(2)are two-coordinate,and O(4)is three-coordinate.An interesting feature of the structure of 1a is that the ethylenediammonium dications in the interlayer space lie parallel with respect to the mean plane of vanadium oxide layers.The parallel packing of the amine molecules in the interlayer space is also reported for the superconducting host 2H-TaS 2intercalated with C n H 2n +1NH 2(n <4),although the structural details are not known.21The ethylenediammonium cations in 1a form several strong hydrogen bonds with the adjacent vanadium oxide layers.The N atoms of the templates are hydrogen-bonded to the O atoms of the VO layers,as indicated by the contacts with oxygen atoms O(2)and O(3)from the upper(20)Brown,I.D.;Altermatt,D.Acta Crystallogr.1985,B41,244.(21)Gamble,F.R.;Osiecki,J.M.;Cais,M.;Pisharody,R.;DiSalvo,F.J.;Geballe,T.H.Science 1971,174,493.Figure 1.(left)View of the structure of 1a down the c axis showing the layers of vanadium oxide and the ethylenediammonium dications in the interlamellar space.(right)View perpendicular to the oxide layer in the structure of 1a .Table 2.Positional Parameters and B (eq)Values (Å2)for Oxides 1a ,1b ,2a ,and 2b atom x y z B (eq)a atom x y z B (eq)a Compound 1a V(1)0.68007(8)0.37874(8)0.60083(10)0.895(10)O(4)0.3778(3)0.4529(3)0.5962(4) 1.19(4)V(2) 1.23102(9)0.42999(8)0.80443(10)0.919(10)O(5) 1.3031(4)0.2373(4)0.8694(5) 1.95(5)O(1)0.9712(4)0.4335(4)0.6784(4) 1.86(5)N(1)0.2887(5)-0.0049(4)0.1181(6) 2.02(6)O(2)0.7184(4)0.3819(3)0.9318(4) 1.33(4)C(1)0.0653(6)0.0397(5)0.1265(7)1.89(7)O(3)0.6690(4)0.1650(4)0.4319(5) 1.92(5)Compound 1b V(1)0.71619(6)0.56232(5)-0.15465(6)0.790(7)O(4)0.6998(3)0.7714(2)-0.0226(3) 1.76(4)V(2)0.84493(6)0.38780(5)-0.66948(6)0.795(7)O(5)0.8237(3)0.3933(2)0.0175(3) 1.08(3)O(1)0.8842(3)0.1741(2)-0.6354(3) 1.86(4)N(1)0.7110(4)0.0611(3)0.7491(4) 1.95(5)O(2)0.8677(3)0.5387(2)-0.3760(3) 1.15(3)C(1)0.5048(5)0.0845(3)0.5851(4) 1.79(5)O(3)0.4631(3)0.5232(3)-0.2821(3) 1.43(3)Compound 2a V(1)0.8050(1)0.39740(10)0.8032(1)0.79(1)O(4)0.7833(5)0.4113(4)0.5020(5) 1.29(6)V(2)0.2577(1)0.43868(10)0.6453(1)0.83(1)O(5)0.7635(6)0.1930(5)0.7704(6) 1.95(8)O(1)0.5286(5)0.4758(5)0.7786(6) 1.69(7)N(1)0.4884(8)0.0984(6)0.2174(7) 1.89(9)O(2) 1.1186(5)0.4754(4)0.8710(5) 1.09(6)C(1)0.6955(9)0.0392(8)0.1873(9) 2.1(1)O(3)0.1954(6)0.2429(5)0.4768(6) 1.96(7)C(2)0.6478(9)-0.1229(7)-0.008(1) 2.1(1)Compound 2b V(1)0.35340(6)0.61669(8)0.44859(5)0.783(9)O(4)0.3667(3)0.9131(4)0.4599(2) 1.31(4)V(2)0.59045(6)0.90167(8)0.64969(5)0.887(9)O(5)0.4852(3)0.9930(4)0.7373(3) 1.66(5)O(1)0.5437(3)0.6342(4)0.5856(2) 1.19(4)N(1) 1.0211(5)0.2034(6)0.4557(5) 3.09(9)O(2)0.2592(3)0.6431(4)0.2607(3) 1.31(4)C(1) 1.1112(5)0.1303(7)0.5865(5) 2.35(8)O(3)0.2250(3)0.5502(4)0.5185(3)1.59(5)C(2)0.9658(6)0.0384(8)0.3600(4)2.86(9)aB eq )8/3π2(U 11(aa *)2+U 22(bb *)2+U 33(cc *)2+2U 12aa *bb *cos γ+2U 13aa *cc *cos +2U 23bb *cc *cos R ).4952Inorganic Chemistry,Vol.35,No.17,1996Zhang et al.oxide layer and O(5)from the lower oxide layer,with N---O distances in the range of 2.759(4)-2.890(4)Å.The positional and thermal parameters of the atoms in the structure of 1b are given in Table 2,and selected bond distances and angles in Table 4.As shown in Figure 3,oxide 1b has a layered structure similar to that found in 1a .The oxide layer is constructed from VO 4tetrahedra and VO 5square pyramids in a similar manner.The coordination environment around the two independent V atoms in the asymmetric unit and the numbering scheme used in Table 4is shown in Figure 4.The V(1)O 4tetrahedron has bond distances in the range of 1.630(2)-1.824(2)Åand bond angles in the range of 105.64(8)-111.27(8)°.The V(2)O 5square pyramid has bond distances in the range of 1.608(2)-1.970(2)Å.The major difference between the structures of 1a and 1b lies in the packing of the ethylenediammonium cations in the interlayer regions.In the structure of 1b ,each ethylenediammonium cation is centered at an inversion center at (1/2,0,1/2)and stretches along the [101]direction.In the structure of 1a ,however,each ethylenediam-monium cation is centered at an inversion center at (0,0,0)and is oriented in a direction nearly parallel to the a axis.This results in the expansion of the a axis and the shrinkage of the c axis in the structure of 1a compared to those in the structure of 1b .In addition,while the ethylenediammonium cations in the structure of 1a are oriented almost parallel with respect to the oxide layers,those in the structure of 1b are oriented with a small tilt angle with respect to the oxide layers.As a result,oxide 1b has a larger interlayer distance of 7.246Å,compared to 7.187Åfor 1a .The interlayer distance is increased to 7.773Åwhen the interlayer ethylenediammonium cations are replaced by proto-nated piperazine cations as in the case of 2a .However,the structure of the vanadium oxide layers of V 4O 102-is retained as shown in Figure 5.Figure 6shows the coordination environment around the two V atoms in the asymmetric unitTable 3.Selected Bond Distances (Å)and Angles (deg)in the Structure of 1a V(1)-O(1) 1.928(3)V(1)-O(2) 1.924(2)V(1)-O(3) 1.607(3)V(1)-O(4) 1.996(2)V(1)-O(4A) 1.961(3)V(2)-O(1) 1.689(2)V(2)-O(2A) 1.735(2)V(2)-O(4C) 1.824(2)V(2)-O(5) 1.626(3)N(1)-C(1) 1.479(5)C(1)-C(1A) 1.505(7)O(1)-V(1)-O(2)87.6(1)O(1)-V(1)-O(3)105.3(1)O(1)-V(1)-O(4)152.5(1)O(1)-V(1)-O(4A)87.7(1)O(2)-V(1)-O(3)107.4(1)O(2)-V(1)-O(4)88.5(1)O(2)-V(1)-O(4A)141.0(1)O(3)-V(1)-O(4)101.8(1)O(3)-V(1)-O(4A)111.2(1)O(4)-V(1)-O(4A)78.4(1)O(1)-V(2)-O(2A)109.0(1)O(1)-V(2)-O(4C)110.1(1)O(1)-V(2)-O(5)109.6(1)O(2A)-V(2)-O(4C)107.9(1)O(2A)-V(2)-O(5)109.7(1)O(4C)-V(2)-O(5)110.6(1)N(1)-C(1)-C(1)108.2(4)Figure 2.ORTEP drawing of the asymmetric unit in the structure of 1a showing the coordination environment around the V atoms.The atoms labeled with A and C are symmetry-relatedatoms.Figure 3.(left)View of the structure of 1b down the c axis showing the layers of vanadium oxide and the ethylenediammonium dications in the interlamellar space.(right)View perpendicular to the oxide layer in the structure of 1b .Table 4.Selected Bond Distances (Å)and Angles (deg)in the Structure of 1b V(1)-O(2) 1.824(2)V(1)-O(3) 1.691(2)V(1)-O(4) 1.630(2)V(1)-O(5) 1.736(2)V(2)-O(1) 1.607(2)V(2)-O(2) 1.970(2)V(2)-O(2A) 1.964(2)V(2)-O(3A) 1.923(2)V(2)-O(5A) 1.936(2)N(1)-C(1) 1.478(4)C(1)-C(1A) 1.504(5)O(2)-V(1)-O(3)105.64(8)O(2)-V(1)-O(4)110.36(8)O(2)-V(1)-O(5)111.27(8)O(3)-V(1)-O(4)108.93(9)O(3)-V(1)-O(5)106.78(9)O(4)-V(1)-O(5)113.47(9)O(1)-V(2)-O(2)108.51(9)O(1)-V(2)-O(2A)107.37(9)O(1)-V(2)-O(3A)108.23(9)O(1)-V(2)-O(5A)106.64(8)O(2)-V(2)-O(2A)77.54(7)O(2)-V(2)-O(3A)87.60(7)O(2)-V(2)-O(5A)144.38(7)O(2A)-V(2)-O(3A)144.18(8)O(2A)-V(2)-O(5A)86.83(7)O(3A)-V(2)-O(5A)86.80(7)N(1)-C(1)-C(1A)109.8(3)Layered Vanadium OxidesInorganic Chemistry,Vol.35,No.17,19964953and the numbering scheme used in Table 5in which selected bond distances and angles are listed.The V(2)O 4tetrahedron is quite regular,with bond distances in the range of 1.621(4)-1.837(3)Åand bond angles in the range of 105.7(2)-112.6-(2)°.The V(1)O 5group has a distorted-square-pyramidal configuration with bond distances in the range of 1.620(4)-1.968(3)Å.These configurations are typical for V 5+and V 4+.Valence sum calculations confirmed the oxidation state of the V atoms,which gave a value of 4.06for V(1)and 4.75for V(2).The piperazine cations are centered at an inversion center at (1/2,0,0)with a chair conformation.The N atoms are involved in hydrogen bonds with the terminal oxygens O(3)and O(5)from the adjacent oxide layers above and below with N---O distances in the range of 2.801(6)-2.901(6)Å.The structure of 2b is shown in Figure 7,positional and thermal parameters are listed in Table 2,and selected bond distances and angles are given in Table 6.It has monoclinic symmetry,and the oxide layers run parallel to the (101)plane with an interlayer distance of 7.838Å.The oxide layers are constructed from pairs of edge-sharing V 4+O 5square pyramids connected together by V 5+O 4tetrahedra via corner sharing.However,the pairs of the edge-sharing square pyramids are not uniformly oriented within the layer as they are in the structures of 1a ,1b ,and 2a .The rows of edge-sharing VO 5square pyramids along the b axis have two different orientations and only repeat every other row along the [010]direction.Figure 8shows the coordination environment around the V atoms.The V(1)O 5distorted square pyramid has bond distances in the range of 1.622(3)-1.959(2)Å.The V(2)O 4tetrahedron has bond distances in the range of 1.623(3)-1.852(3)Åand bond angles in the range of 102.6(1)-117.8(1)°.As seen from these bond angles,the distortion of the tetrahedron in this case is more profound as compared to those in the structures of 1a ,1b ,and 2a .Close examination of the oxide layer reveals that each V(2)-O 4tetrahedron has an additional weak V---O interaction with O(4)at a distance of 2.454Åfrom another tetrahedron as shown by the arrows in Figure 7.This interaction constitutes about 18%of a V -O single bond and results in the expansion of the O(1)-V(2)-O(4)bond angle (117.8°)and the shrinkage of the O(2)-V(2)-O(4)bond angle (102.6°).However,there is no such weak V---O interaction in any of the structures of 1a ,1b ,and 2a ,where more regular VO 4tetrahedral bond angles are observed.The protonated piperazine cations which are centered at inversion centers at (1/2,1/2,0)and (0,0,1/2)have different orientations with respect to the oxide layers.The N atoms are involved in hydrogen bonds with the terminal oxygen atoms of O(3)and O(5)from the adjacent oxide layers above and below with N---O distances in the range of 2.867(5)-2.941(5)Å.Thermogravimetric analysis (TGA)of these oxides (since it was not possible to separate phase 1a from 1b or phase 2a from 2b ,the solid samples used in TGA were actually a mixture of 1a and 1b ,or a mixture of 2a and 2b )showed,in both cases,no weight loss until ca.300°C,where a major weight loss begins to occur.This remarkable thermal stability of these oxides can be attributed to the strong hydrogen bond interactions of these organic molecules with the oxide layers.In the case of the mixture of 1a and 1b ,the major weight loss in the temperature range of 310-380°C was about 16%,and the sample continued to lose gradually 10%of its weight up to 610°C.The first weight loss corresponds to the release of ethylenediamine with a calculated value of 14.1%.The TGA curve of the mixture of 2a and 2b shows the first major weight loss of 22%in the temperature range of 300-350°C followed by a second loss of 4%at 400°C and then no weight loss up to 800°C,the highest temperature measured.The first weight loss corresponds to the release of piperazine with a calculated value of 19.0%.The nature of the second weight loss is not clear.However,it is likely that when the organic component is released,it leaves the protons behind attached to the oxygen atoms of the oxide layers,which are then released as water molecules at hightemperatures.Figure 4.ORTEP drawing of the asymmetric unit in the structure of 1b showing the coordination environment around the vanadium atoms.The atoms labeled with A and C are symmetry-relatedatoms.Figure 5.(top)View of the structure of 2a down the a axis showing the layers of vanadium oxide and the protonated piperazine dications in the interlayer regions.The hydrogen atoms are omitted for clarity.(bottom)View perpendicular to the oxide layer in the structure of 2a .4954Inorganic Chemistry,Vol.35,No.17,1996Zhang et al.DiscussionVery recently Riou and co-workers 22have isolated three amine intercalated vanadates from hydrothermal reactions of mixtures of V 2O 5-SiO 2-HF -amine -H 2O,two of which correspond to compounds 1b and 2a described here.The oxide layers in the four structures discussed here are compositionally and structurally related to that of V 2O 5,which has a pseudo-layered structure.23A schematic representation of the layer of V 2O 5is shown in Figure 9.All the vanadium atoms in the structure of V 2O 5are in the +5oxidation state and have square-pyramidal configurations.These square pyramids share two edges with each other to form double chains along the crystallographic c direction,and these double chains of square pyramids are linked via corner sharing along the a direction perpendicular to the chains to form a two-dimensional layer.If one additional V -O bond is formed for each VO 4tetrahedron (as indicated by the arrows in Figure 7)in the oxide layers of [V 4O 10]2-,then all the vanadium atoms would have a square-pyramidal configuration,and all of these square pyramids sharetwo edges to form double chains similar to those in the structure of V 2O 5.The structural correlations of [V 4O 10]2-with V 2O 5have been discussed in more detail by Fe ´rey.22It should be pointed out that it is not necessary to use V 2O 5as a starting material for the preparation of 1a and 1b which bear structural features similar to those of the parent compound V 2O 5.They can also be prepared using other vanadium sources such as CsVO 3,KVO 3,etc.The V 4+O 5square-pyramidal and V 5+O 4tetrahedral coordination configurations have often been observed(22)Riou,D.;Fe ´rey,G.J.Solid State Chem .1995,120,137.Riou,D.;Fe ´rey,G.Inorg.Chem .1995,34,6520.(23)Enjalbert,R.;Galy,J.Acta Crystallogr .1986,C42,1467.Figure 6.ORTEP drawing of the asymmetric unit in the structure of 2a showing the coordination environment around the V atoms.The atoms labeled with A and C are symmetry-related atoms.Table 5.Selected Bond Distances (Å)and Angles (deg)in the Structure of 2a V(1)-O(1) 1.913(3)V(1)-O(2) 1.961(3)V(1)-O(2A) 1.968(3)V(1)-O(4) 1.926(3)V(1)-O(5) 1.620(4)V(2)-O(1) 1.697(3)V(2)-O(2C) 1.837(3)V(2)-O(3) 1.621(4)V(2)-O(4A) 1.737(3)N(1)-C(1) 1.482(7)N(1)-C(2A) 1.482(7)C(1)-C(2) 1.498(8)O(1)-V(1)-O(2)143.2(2)O(1)-V(1)-O(2A)87.1(1)O(1)-V(1)-O(4)87.6(1)O(1)-V(1)-O(5)107.3(2)O(2)-V(1)-O(2A)78.0(1)O(2)-V(1)-O(4)86.6(1)O(2)-V(1)-O(5)109.3(2)O(2A)-V(1)-O(4)146.1(1)O(2A)-V(1)-O(5)109.2(2)O(4)-V(1)-O(5)104.3(2)O(1)-V(2)-O(2C)106.0(1)O(1)-V(2)-O(3)108.4(2)O(1)-V(2)-O(4A)105.7(2)O(2C)-V(2)-O(3)112.6(2)O(2C)-V(2)-O(4A)111.6(2)O(3)-V(2)-O(4A)112.1(2)C(1)-N(1)-C(2A)112.1(4)N(1)-C(1)-C(2)109.8(4)N(1A)-C(2)-C(1)111.0(4)Figure 7.(top)View of the structure of 2b down the b axis showing the layers of vanadium oxide and the protonated piperazine dications in the interlayer regions.(bottom)View perpendicular to the oxide layer in the structure of 2b .Table 6.Selected Bond Distances (Å)and Angles (deg)in the Structure of 2b V(1)-O(1) 1.956(2)V(1)-O(1A) 1.959(2)V(1)-O(2) 1.918(3)V(1)-O(3) 1.622(3)V(1)-O(4) 1.910(3)V(2)-O(1) 1.852(3)V(2)-O(2A) 1.707(3)V(2)-O(4A) 1.768(2)V(2)-O(5) 1.623(3)N(1)-C(1) 1.467(6)N(1)-C(2) 1.449(6)C(1)-C(2A) 1.491(6)O(1)-V(1)-O(1A)77.5(1)O(1)-V(1)-O(2)144.1(1)O(1)-V(1)-O(3)109.1(1)O(1)-V(1)-O(4)82.4(1)O(1A)-V(1)-O(2)90.0(1)O(1A)-V(1)-O(3)109.0(1)O(1A)-V(1)-O(4)143.6(1)O(2)-V(1)-O(3)106.7(1)O(2)-V(1)-O(4)88.8(1)O(3)-V(1)-O(4)106.2(1)O(1)-V(2)-O(2)99.8(1)O(1)-V(2)-O(4A)117.8(1)O(1)-V(2)-O(5)114.7(1)O(2A)-V(2)-O(4A)102.6(1)O(2A)-V(2)-O(5)105.9(1)O(4A)-V(2)-O(5)113.4(1)C(1)-N(1)-C(2)114.1(4)N(1)-C(1)-C(2A)111.3(3)N(1)-C(2)-C(1A)113.2(4)Layered Vanadium Oxides Inorganic Chemistry,Vol.35,No.17,19964955。